INTRODUCTION
TO OPTIMIZATION

This text is an introduction to optimization theory and its application to prob-
lems arising in engineering. In the most general terms, optimization theory is
a body of mathematical results and numerical methods for finding and iden-
tifying the best candidate from a collection of alternatives without having to
explicitly enumerate and evaluate all possible alternatives. The process of
optimization lies at the root of engineering, since the classical function of the
engineer is to design new, better, more efficient, and less expensive systems
as well as to devise plans and procedures for the improved operation of
existing systems.

The power of optimization methods to determine the best case without
actually testing all possible cases comes through the use of a modest level of
mathematics and at the cost of performing iterative numerical calculations
using clearly defined logical procedures or algorithms implemented on com-
puting machines. The development of optimization methodology will there-
fore require some facility with basic vector—matrix manipulations, a bit of
linear algebra and calculus, and some elements of real analysis. We use math-
ematical concepts and constructions not simply to add rigor to the proceedings
but because they are the language in terms of which calculation procedures
are best developed, defined, and understood.

Because of the scope of most engineering applications and the tedium of
the numerical calculations involved in optimization algorithms, the techniques
of optimization are intended primarily for computer implementation. How-
ever, although the methodology is developed with computers in mind, we do
not delve into the details of program design and coding. Instead, our emphasis
is on the ideas and logic underlying the methods, on the factors involved in
selecting the appropriate techniques, and on the considerations important to
successful engineering application.
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1.1 REQUIREMENTS FOR THE APPLICATION OF
OPTIMIZATION METHODS

To apply the mathematical results and numerical techniques of optimization
theory to concrete engineering problems, it is necessary to clearly delineate
the boundaries of the engineering system to be optimized, to define the quan-
titative criterion on the basis of which candidates will be ranked to determine
the “best,” to select the system variables that will be used to characterize or
identify candidates, and to define a model that will express the manner in
which the variables are related. This composite activity constitutes the process
of formulating the engineering optimization problem. Good problem formu-
lation is the key to the success of an optimization study and is to a large
degree an art. It is learned through practice and the study of successful ap-
plications and is based on the knowledge of the strengths, weaknesses, and
peculiarities of the techniques provided by optimization theory. For these
reasons, this text is liberally laced with engineering applications drawn from
the literature and the experience of the authors. Moreover, along with pre-
senting the techniques, we attempt to elucidate their relative advantages and
disadvantages wherever possible by presenting or citing the results of actual
computational tests.

In the next several sections we discuss the elements of problem formulation
in a bit more detail. In Section 1.2 we follow up this discussion by examining
a few application formulations.

1.1.1 Defining the System Boundaries

Before undertaking any optimization study, it is important to clearly define
the boundaries of the system under investigation. In this context a system is
the restricted portion of the universe under consideration. The system bound-
aries are simply the limits that separate the system from the remainder of the
universe. They serve to isolate the system from its surroundings, because, for
purposes of analysis, all interactions between the system and its surroundings
are assumed to be frozen at selected representative levels. Nonetheless, since
interactions always exist, the act of defining the system boundaries is the first
step in the process of approximating the real system.

In many situations it may turn out that the initial choice of boundary is
too restrictive. To fully analyze a given engineering system, it may be nec-
essary to expand the system boundaries to include other subsystems that
strongly affect the operation of the system under study. For instance, suppose
a manufacturing operation has a paint shop in which finished parts are
mounted on an assembly line and painted in different colors. In an initial
study of the paint shop, we may consider it in isolation from the rest of the
plant. However, we may find that the optimal batch size and color sequence
we deduce for this system are strongly influenced by the operation of the
fabrication department that produces the finished parts. A decision thus has
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to be made whether to expand the system boundaries to include the fabrication
system. An expansion of the system boundaries certainly increases the size
and complexity of the composite system and thus may make the study much
more difficult. Clearly, to make our work as engineers more manageable, we
would prefer as much as possible to break down large complex systems into
smaller subsystems that can be dealt with individually. However, we must
recognize that such a decomposition may constitute a potentially misleading
simplification of reality.

1.1.2 Performance Criterion

Given that we have selected the system of interest and have defined its bound-
aries, we next need to select a criterion on the basis of which the performance
or design of the system can be evaluated so that the best design or set of
operating conditions can be identified. In many engineering applications, an
economic criterion is selected. However, there is a considerable choice in the
precise definition of such a criterion: total capital cost, annual cost, annual
net profit, return on investment, cost—benefit ratio, or net present worth. In
other applications a criterion may involve some technological factors—for
instance, minimum production time, maximum production rate, minimum en-
ergy utilization, maximum torque, maximum weight, and so on. Regardless
of the criterion selected, in the context of optimization the best will always
mean the candidate system with either the minimum or maximum value of the
performance index.

It is important to note that within the context of the optimization methods
discussed in this book, only one criterion or performance measure can be
used to define the optimum. It is not possible to find a solution that, say,
simultaneously minimizes cost and maximizes reliability and minimizes en-
ergy utilization. This again is an important simplification of reality, because
in many practical situations it would be desirable to achieve a solution that
is best with respect to a number of different criteria.

One way of treating multiple competing objectives is to select one criterion
as primary and the remaining criteria as secondary. The primary criterion is
then used as an optimization performance measure, while the secondary cri-
teria are assigned acceptable minimum or maximum values and are treated
as problem constraints. For instance, in the case of the paint shop study, the
following criteria may well be selected by different groups in the company:

1. The shop foreman may seek a design that will involve long production
runs with a minimum of color and part changes. This will maximize
the number of parts painted per unit time.

2. The sales department would prefer a design that maximizes the inven-
tory of parts of every type and color. This will minimize the time be-
tween customer order and order dispatch.
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3. The company financial officer would prefer a design that will minimize
inventories so as to reduce the amount of capital tied up in parts inven-
tory.

These are clearly conflicting performance criteria that cannot all be optimized
simultaneously. A suitable compromise would be to select as the primary
performance index the minimum annual cost but then to require as secondary
conditions that the inventory of each part not be allowed to fall below or rise
above agreed-upon limits and that production runs involve no more than some
maximum acceptable number of part and color changes per week.

In summary, for purposes of applying the methods discussed in this text,
it is necessary to formulate the optimization problem with a single perform-
ance criterion. Advanced techniques do exist for treating certain types of
multicriteria optimization problems. However, this new and growing body of
techniques is quite beyond the scope of this book. The interested reader is
directed to recent specialized texts [1, 2].

1.1.3 Independent Variables

The third key element in formulating a problem for optimization is the selec-
tion of the independent variables that are adequate to characterize the possible
candidate designs or operating conditions of the system. There are several
factors to be considered in selecting the independent variables.

First, it is necessary to distinguish between variables whose values are
amenable to change and variables whose values are fixed by external factors,
lying outside the boundaries selected for the system in question. For instance,
in the case of the paint shop, the types of parts and the colors to be used are
clearly fixed by product specifications or customer orders. These are specified
system parameters. On the other hand, the order in which the colors are
sequenced is, within constraints imposed by the types of parts available and
inventory requirements, an independent variable that can be varied in estab-
lishing a production plan.

Furthermore, it is important to differentiate between system parameters that
can be treated as fixed and those that are subject to fluctuations influenced
by external and uncontrollable factors. For instance, in the case of the paint
shop, equipment breakdown and worker absenteeism may be sufficiently high
to seriously influence the shop operations. Clearly, variations in these key
system parameters must be taken into account in the formulation of the pro-
duction planning problem if the resulting optimal plan is to be realistic and
operable.

Second, it is important to include in the formulation all the important
variables that influence the operation of the system or affect the design def-
inition. For instance, if in the design of a gas storage system we include the
height, diameter, and wall thickness of a cylindrical tank as independent var-
iables but exclude the possibility of using a compressor to raise the storage
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pressure, we may well obtain a very poor design. For the selected fixed pres-
sure, we would certainly find the least-cost tank dimensions. However, by
including the storage pressure as an independent variable and adding the
compressor cost to our performance criteria, we could obtain a design with a
lower overall cost because of a reduction in the required tank volume. Thus,
the independent variables must be selected so that all important alternatives
are included in the formulation. In general, the exclusion of possible alter-
natives will lead to suboptimal solutions.

Finally, another consideration in the selection of variables is the level of
detail to which the system is considered. While it is important to treat all key
independent variables, it is equally important not to obscure the problem by
the inclusion of a large number of fine details of subordinate importance. For
instance, in the preliminary design of a process involving a number of dif-
ferent pieces of equipment—pressure vessels, towers, pumps, compressors,
and heat exchanges—one would normally not explicitly consider all the fine
details of the design of each individual unit. A heat exchanger may well be
characterized by a heat transfer surface area as well as shell-side and tube-
side pressure drops. Detailed design variables such as number and size of
tubes, number of tube and shell passes, baffle spacing, header type, and shell
dimensions would normally be considered in a separate design study involv-
ing that unit by itself. In selecting the independent variables, a good rule is
to include only those variables that have a significant impact on the composite
system performance criterion.

1.1.4 System Model

Once the performance criterion and the independent variables have been se-
lected, the next step in problem formulation is to assemble the model that
describes the manner in which the problem variables are related and the way
in which the performance criterion is influenced by the independent variables.
In principle, optimization studies may be performed by experimenting directly
with the system. Thus, the independent variables of the system or process
may be set to selected values, the system operated under those conditions,
and the system performance index evaluated using the observed performance.
The optimization methodology would then be used to predict improved
choices of the independent variable values and the experiments continued in
this fashion. In practice, most optimization studies are carried out with the
help of a simplified mathematical representation of the real system, called a
model. Models are used because it is too expensive or time consuming or
risky to use the real system to carry out the study. Models are typically used
in engineering design because they offer the cheapest and fastest way of
studying the effects of changes in key design variables on system perform-
ance.

In general, the model will be composed of the basic material and energy
balance equations, engineering design relations, and physical property equa-
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tions that describe the physical phenomena taking place in the system. These
equations will normally be supplemented by inequalities that define allowable
operating ranges, specify minimum or maximum performance requirements,
or set bounds on resource availabilities. In sum, the model consists of all
elements that normally must be considered in calculating a design or in pre-
dicting the performance of an engineering system. Quite clearly, the assembly
of a model is a very time consuming activity and one that requires a thorough
understanding of the system being considered. In later chapters we will have
occasion to discuss the mechanics of model development in more detail. For
now, we simply observe that a model is a collection of equations and in-
equalities that define how the system variables are related and that constrain
the variables to take on acceptable values.

From the preceding discussion, we observe that a problem suitable for the
application of optimization methodology consists of a performance measure,
a set of independent variables, and a model relating the variables. Given these
rather general and abstract requirements, it is evident that the methods of
optimization can be applied to a very wide variety of applications. In fact,
the methods we will discuss have been applied to problems that include the
optimum design of process and structures, the planning of investment policies,
the layout of warehouse networks, the determination of optimal trucking
routes, the planning of heath care systems, the deployment of military forces,
and the design of mechanical components, to name but a few. In this text our
focus will be on engineering applications. Some of these applications and
their formulations are discussed in the next section.

1.2 APPLICATIONS OF OPTIMIZATION IN ENGINEERING

Optimization theory finds ready application in all branches of engineering in
four primary areas:

1. Design of components or entire systems

2. Planning and analysis of existing operations
3. Engineering analysis and data reduction

4. Control of dynamic systems

In this section we briefly consider representative applications from each of
the first three areas. The control of dynamic systems is an important area to
which the methodology discussed in this book is applicable but which requires
the consideration of specialized topics quite beyond the scope of this book.
In considering the application of optimization methods in design and op-
erations, keep in mind that the optimization step is but one step in the overall
process of arriving at an optimal design or an efficient operation. Generally,
that overall process will, as shown in Figure 1.1, consist of an iterative cycle
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Figure 1.1. Engineering design process.

involving synthesis or definition of the structure of the system, model for-
mulation, model parameter optimization, and analysis of the resulting solu-
tion. The final optimal design or new operating plan will be obtained only
after solving a series of optimization problems, the solution to each of which
will serve to generate new ideas for further system structures. In the interests
of brevity, the examples in this section show only one pass of this iterative
cycle and deal mainly with preparations for the optimization step. This focus
should not be interpreted as an indication of the dominant role of optimization
methods in the engineering design and systems analysis process. Optimization
theory is a very powerful tool, but to be effective, it must be used skillfully
and intelligently by an engineer who thoroughly understands the system under
study. The primary objective of the following examples is simply to illustrate
the wide variety but common form of the optimization problems that arise in
the process of design and analysis.
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1.2.1 Design Applications

Applications in engineering design range from the design of individual struc-
tural members to the design of separate pieces of equipment to the preliminary
design of entire production facilities. For purposes of optimization, the shape
or structure of the system is assumed to be known, and the optimization
problem reduces to that of selecting values of the unit dimensions and op-
erating variables that will yield the best value of the selected performance
criterion.

Example 1.1 Design of an Oxygen Supply System

Description. The basic oxygen furnace (BOF) used in the production of steel
is a large fed-batch chemical reactor that employs pure oxygen. The furnace
is operated in a cyclical fashion. Ore and flux are charged to the unit, treated
for a specified time period, and then discharged. This cyclical operation gives
rise to a cyclically varying demand rate for oxygen. As shown in Figure 1.2,
over each cycle there is a time interval of length ¢, of low demand rate D,
and a time interval ¢, — ¢, of high demand rate D,. The oxygen used in the
BOF is produced in an oxygen plant in a standard process in which oxygen
is separated from air by using a combination of refrigeration and distillation.
Oxygen plants are highly automated and are designed to deliver oxygen at a
fixed rate. To mesh the continuous oxygen plant with the cyclically operating
BOF, a simple inventory system (Figure 1.3) consisting of a compressor and
a storage tank must be designed. A number of design possibilities can be
considered. In the simplest case, the oxygen plant capacity could be selected

yfj—————
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Rate,D
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— — — —_———— — —_t ——F
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[¢] t{ tZ

Time
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Figure 1.2. Oxygen demand cycle, Example 1.1.



1.2 APPLICATIONS OF OPTIMIZATION IN ENGINEERING 9

Vent
Comprassor

"
Plant
an Basic
Oxygen
Furnoce

Tank

Figure 1.3. Design of oxygen production system, Example 1.1.

to be equal to D,, the high demand rate. During the low-demand interval the
excess oxygen could just be vented to the air. At the other extreme, the oxygen
plant capacity could be chosen to be just enough to produce the amount of
oxygen required by the BOF over a cycle. During the low-demand interval,
the excess oxygen produced would then be compressed and stored for use
during the high-demand interval of the cycle. Intermediate designs could use
some combination of venting and storage of oxygen. The problem is to select
the optimal design.

Formulation. The system of concern will consist of the O, plant, the com-
pressor, and the storage tank. The BOF and its demand cycle are assumed
fixed by external factors. A reasonable performance index for the design is
the total annual cost, which consists of the oxygen production cost (fixed and
variable), the compressor operating cost, and the fixed costs of the compressor
and storage vessel. The key independent variables are the oxygen plant pro-
duction rate F (Ib O,/hr), the compressor and storage tank design capacities,
H (HP) and V (ft®), respectively, and the maximum tank pressure p (psia).
Presumably the oxygen plant design is standard so that the production rate
fully characterizes the plant. Similarly, we assume that the storage tank will
be of a standard design approved for O, service.

The model will consist of the basic design equations that relate the key
independent variables.

If 1., is the maximum amount of oxygen that must be stored, then using

max

the corrected gas law we have

V=>22—; (1.1)
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where R = gas constant
T = gas temperature (assume fixed)
z = compressibility factor
M = molecular weight of O,

From Figure 1.2, the maximum amount of oxygen that must be stored is
equal to the area under the demand curve between ¢, and ¢, and D, and F.
Thus,

L = (D) — F)(1, — 1) (1.2)

Substituting (1.2) into (1.1), we obtain

(D, — F)@t, — tl)R_’TZ

V:
M p

(1.3)

The compressor must be designed to handle a gas flow rate of (D, —
F)(t, — t,)/t, and to compress the gas to the maximum pressure p. Assuming
isothermal ideal gas compression [3],

_ (D, - F)t, — 1) RT P
H= N ks 1“<po> 15

where k, = unit conversion factor
k, = compressor efficiency
Po = O, delivery pressure

In addition to (1.3) and (1.4), the O, plant rate F must be adequate to
supply the total oxygen demand, or

F= Dotl + Dt1(t2 — t1) (1‘5)
2

Moreover, the maximum tank pressure must be greater than the O, delivery
pressure,

P =po (1.6)

The performance criterion will consist of the oxygen plant annual cost,
C, ($/yr) = a, + a,F (1.7)
where a, and a, are empirical constants for plants of this general type and

include fuel, water, and labor costs.
The capital cost of storage vessels is given by a power law correlation,
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C, ($) = b,V (1.8a)

where b, and b, are empirical constants appropriate for vessels of a specific
construction.
The capital cost of compressors is similarly obtained from a correlation:

C; ($) = bH"™ (1.8b)

The compressor power cost will, as an approximation, be given by bt H,
where bs is the cost of power. The total cost function will thus be of the form

Annual cost = a, + a,F + d(b,V* + b;H") + Nbst,H (1.9)

where N is the number of cycles per year and d is an appropriate annual cost
factor.

The complete design optimization problem thus consists of the problem of
minimizing (1.9) by the appropriate choice of F, V, H, and p subject to Egs.
(1.3) and (1.4) as well as inequalities (1.5) and (1.6).

The solution of this problem will clearly be affected by the choice of the
cycle parameters (N, D,, D,, t,, and t,), the cost parameters (a,, a,, b,—bs,
and d), and the physical parameters (7, p,, k,, z, and M).

In principle we could solve this problem by eliminating V and H from (1.9)
using (1.3) and (1.4), thus obtaining a two-variable problem. We could then
plot the contours of the cost function (1.9) in the plane of the two variables
F and p, impose the inequalities (1.5) and (1.6), and determine the minimum
point from the plot. However, the methods discussed in subsequent chapters
allow us to obtain the solution with much less work. For further details and
a study of solutions for various parameter values, the reader is invited to
consult Jen et al. [4].

Example 1.1 presented a preliminary design problem formulation for a
system consisting of several pieces of equipment. The next example illustrates
a detailed design of a single structural element.

Example 1.2 Design of a Welded Beam

Description. A beam A is to be welded to a rigid support member B. The
welded beam is to consist of 1010 steel and is to support a force F' of 6000
Ib. The dimensions of the beam are to be selected so that the system cost is
minimized. A schematic of the system is shown in Figure 1.4.

Formulation. The appropriate system boundaries are quite self-evident. The
system consists of the beam A and the weld required to secure it to B. The
independent or design variables in this case are the dimensions 4, [, ¢, and b,
as shown in Figure 1.4. The length L is assumed to be specified at 14 in. For
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Figure 1.4. Welded beam, Example 1.2.
notational convenience we redefine these four variables in terms of the vector
of unknowns x:

X =[x}, X,, X3, x4’]T =[h, 1Lt b]"

The performance index appropriate to this design is the cost of a weld
assembly. The major cost components of such an assembly are (1) setup labor
cost, (2) welding labor cost, and (3) material cost:

F&X) = ¢y + ¢, + ¢ (1.10)

where F(x) = cost function

¢, = setup cost
¢, = welding labor cost
¢, = material cost

Setup Cost c,. The company has chosen to make this component a weld-
ment, because of the existence of a welding assembly line. Furthermore, as-
sume that fixtures for setup and holding of the bar during welding are readily
available. The cost ¢, can therefore be ignored in this particular total-cost
model.

Welding Labor Cost c,. Assume that the welding will be done by machine
at a total cost of $10/hr (including operating and maintenance expense). Fur-
thermore, suppose that the machine can lay down a cubic inch of weld in 6
min. The labor cost is then

_ $ 1 hr min _ i
= (10 hr><60 min> <6 in.3>VW - 1<in.3>vw

where V,, = weld volume, in.?
Material Cost c,

e =6V, + e,V
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where ¢; = cost per volume of weld material, $/in.?, =(0.37)(0.283)
¢, = cost per volume of bar stock, $/in.3, =(0.17)(0.283)
V, = volume of bar A, in.?

From the geometry,
V., = 23R = Wl
and
Vg = tb(L + )
SO
¢, = ;M1 + ctb(L + 1)
Therefore, the cost function becomes
F(x) = W2l + ¢kl + ctb(L + 1) (1.11)
or, in terms of the x variables,
Fx) = (1 + ¢))xix, + c,x3x,(L + x,) (1.12)
Not all combinations of x,, x,, x5, and x, can be allowed if the structure is
to support the load required. Several functional relationships between the
design variables that delimit the region of feasibility must certainly be defined.
These relationships, expressed in the form of inequalities, represent the design

model. Let us first define the inequalities and then discuss their interpretation.
The inequalities are

gi(x) =1, — 7(x) =0 (1.13)
g&x) =0, — o) =0 (1.14)
2x) =x,—x,=0 (1.15)
8:(0) =x, =0 (1.16)
8s(x) =x;=0 (1.17)
8x) = P(x) —F=0 (1.18)
g,x)=x, —0125=0 (1.19)

gs(x) = 0.25 — 8(x) = 0 (1.20)
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where 7, = design shear stress of weld
7(x) = maximum shear stress in weld; a function of x
o, = design normal stress for beam material
o(x) = maximum normal stress in beam; a function of x
P_(x) = bar buckling load; a function of x
8(x) = bar end deflection; a function of x

To complete the model, it is necessary to define the important stress states.

Weld Stress 7(x). After Shigley [5], the weld shear stress has two com-
ponents, 7' and 7", where 7' is the primary stress acting over the weld throat
area and 7" is a secondary torsional stress:

! F and » - MR
T = 7= —
V2x,.x, J
with
X
M=FlL+=2
(£+%)

RN EAY
4 2
x3 x4\
J = 2{0707x,x2[1—; + <%> i|}

where M = moment of F about center of gravity of weld group
J = polar moment of inertia of weld group

Therefore, the weld stress T becomes
7(x) = [(7)* + 27'7" cos O + (77)*]'/?

where

cos 0 = X2
2R

Bar Bending Stress o(x). The maximum bending stress can be shown to
be equal to

olx) = —
X4 X3
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Bar Buckling Load P .(x). If the ratio t/b = x,/x, grows large, there is a
tendency for the bar to buckle. Those combinations of x; and x, that will
cause this buckling to occur must be disallowed. It has been shown [6] that
for narrow rectangular bars a good approximation to the buckling load is

4.013VEI
P.(x) = FUovV i 1 -5 El
¢ L? 2L\ «

where E = Young’s modulus, =30 X 10° psi
I'= 1500
a = 3Gxyx;
G = shearing modulus, =12 X 10° psi

Bar Deflection 8(x). To calculate the deflection, assume the bar to be a
cantilever of length L. Thus,

4FL3?

S(x) =
*) Exix,

The remaining inequalities are interpreted as follows: Inequality g, states
that it is not practical to have the weld thickness greater than the bar thickness,
Inequalities g, and g5 are nonnegativity restrictions on x, and x;. Note that
the nonnegativity of x, and x, are implied by g, and g,. Constraint g, ensures
that the buckling load is not exceeded. Inequality g, specifies that it is not
physically possible to produce an extremely small weld.

Finally, the two parameters 7, and o, in g, and g, depend on the material
of construction. For 1010 steel, 7, = 13,600 psi and o, = 30,000 psi are
appropriate.

The complete design optimization problem thus consists of the cost func-
tion (1.12) and the complex system of inequalities that results when the stress
formulas are substituted into (1.13)—(1.20). All of these functions are ex-
pressed in terms of four independent variables.

This problem is sufficiently complex that graphical solution is patently
infeasible. However, the optimum design can readily be obtained numerically
by using the methods of subsequent chapters.

For a further discussion of this problem and its solution, see reference 7.

1.2.2 Operations and Planning Applications

The second major area of engineering application of optimization is found in
the tuning of existing operations and development of production plans for
multiproduct processes. Typically an operations analysis problem arises when
an existing production facility designed under one set of conditions must be
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adapted to operate under different conditions. The reasons for doing this might
be as follows:

1. To accommodate increased production throughout
2. To adapt to different feedstocks or a different product slate

3. To modify the operations because the initial design is itself inadequate
or unreliable

The solution to such problems might require the selection of new temperature,
pressure, or flow conditions; the addition of further equipment; or the defi-
nition of new operating procedures. Production planning applications arise
from the need to schedule the joint production of several products in a given
plant or to coordinate the production plans of a network of production facil-
ities. Since in such applications the capital equipment is already in place, only
the variable costs need to be considered. Thus, this type of application can
often be formulated in terms of linear or nearly linear models. We will illus-
trate this class of applications using a refinery planning problem.

Example 1.3 Refinery Production Planning

Description. A refinery processes crude oils to produce a number of raw
gasoline intermediates that must subsequently be blended to make two grades
of motor fuel, regular and premium. Each raw gasoline has a known perform-
ance rating, a maximum availability, and a fixed unit cost. The two motor
fuels have a specified minimum performance rating and selling price, and
their blending is achieved at a known unit cost. Contractual obligations im-
pose minimum production requirements of both fuels. However, all excess
fuel production or unused raw gasoline amounts can be sold in the open
market at known prices. The optimal refinery production plan is to be deter-
mined over the next specified planning period.

Formulation. The system in question consists of the raw gasoline interme-
diates, the blending operation, and the fluid motor fuels, as shown schemat-
ically in Figure 1.5. Excluded from consideration are the refinery processes
involved in the production of the raw gasoline intermediates as well as the
inventory and distribution subsystems for crudes, intermediates, and products.
Since equipment required to carry out the blending operations is in place,
only variable costs will be considered.

The performance index in this case will be the net profit over the planning
period. The net profit will be composed of motor fuel and intermediate sales
minus blending costs minus the charged costs of the intermediates. The in-
dependent variables will simply be the flows depicted as directed arcs in
Figure 1.5. Thus, each intermediate will have associated with it a variable
that represents the amount of that intermediate allocated to the production of
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Figure 1.5. Schematic of refinery planning problem, Example 1.3.

regular-grade gasoline, another that represents the amount used to make pre-
mium, and a third that represents the amount sold directly.
Thus, for each intermediate i,

=
Il

amount used for regular, bbl/period

y; = amount used for premium, bbl/period

amount sold directly, bbl/period

N
I

Each product will have two variables associated with it: one to represent the
contracted sales and one to represent the open-market sales.
Thus, for each product j,

<
Il

amount allocated to contracts, bbl/period
v; = amount sold in open market, bbl/period
The model will consist of material balances on each intermediate and product,

blending constraints that ensure that product performance ratings are met, and
bounds on the contract sales:
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1. Material balances on each intermediate i:
xtytz <« (1.21)

where «; is the availability of intermediate i over the period, in bbl/
period.

2. Material balances on each product:

2 X, =u t v Z Y = Uy T, (1.22)

3. Blending constraints on each product:

2 Bix; = y(u, + v)) 2 Biy: = v2(uy + v,) (1.23)

where B, is the performance rating of intermediate i and v, is the min-
imum performance rating of product j.

4. Contract sales restrictions for each product j.

u, =9, (1.24)

J J

where §; is the minimum contracted production, in bbl/period.

The performance criterion (net profit) is given by

E CJ(‘])MJ‘ + Z CJ(‘z)Uj + E Pz, — Z P+ y +z) — Z cP(x; +y)

1 l

where ¢!V = unit selling price for contract sales of j
¢ = unit selling price for open-market sales of j
¢® = unit selling price of direct sales of intermediate i
¢ = unit charged cost of intermediate i
¢ = blending cost of intermediate i

Using the data given in Table 1.1, the planning problem reduces to

Maximize 40u, + 55u, + 46v, + 60v, + 6z, + 8z, + 7.50z,
+ 7.50z, + 20z5 — 25(x; + y,) — 28(x, + y,)
= 29.50(x; + y;) — 35.50(x, + y,) — 41.50(x5 + y5)

Subject to
Constraints of type (1.21):
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Table 1.1 Data for Example 1.3

Raw Availability,  Performance  Selling  Charged Blending
Gasoline Q Rating, Price, Cost, Cost,
Intermediate  (bbl/period) B c® c® ™
1 2 X 10° 70 30.00 24.00 1.00
2 4 X 10° 80 35.00 27.00 1.00
3 4 X 10° 85 36.00 28.50 1.00
4 5 X 10° 90 42.00 34.50 1.00
5 5 %X 10° 99 60.00 40.00 1.50
Minimum Minimum Selling Price ($/bbl)
Product Contract Performance Contract,  Open Market,
Type Sales §; Rating e c?
Regular (1) 5% 10° 85 $40.00 $46.00
Premium (2) 4 x 10° 95 $55.00 $60.00

X, +y, +z, =2X10
X+ y, +z,<4x10°
X3+ vy, + 23 <4X10°
X, +y, +z,s5X10°

Xs+ys +z5<5x10°
Constraints of type (1.22):
X, +x, x5+ x, X5 = U + v
Wty tysF vyt ys=u, + v,
Constraints of type (1.23):

70x; + 80x, + 85x; + 90x, + 99x5 = 85(u, + v,)

70y, + 80y, + 85y; + 90y, + 99y = 95(u, + v,)
Constraints of type (1.24):
u, =5 x 10° u, =4 X 10°

In addition, all variables must be greater than or equal to zero to be
physically realizable. The composite optimization problem involves 19 vari-
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ables and 11 constraints plus the nonnegativity conditions. Note that all model
functions are linear in the independent variables.

In general, refineries will involve many more intermediate streams and
products than were considered in this example. Moreover, in practice it may
be important to include further variables, reflecting the material in inventory,
as well as to expand the model to cover several consecutive planning periods.
In the latter case, a second subscript could be added to the set of variables,
for example,

X, = amount of intermediate i used for regular grade in planning period k

The resulting production planning model can then become very large. In prac-
tice, models of this type with over a thousand variables are solved quite
routinely.

1.2.3 Analysis and Data Reduction Applications

A further fertile area for the application of optimization techniques in engi-
neering can be found in nonlinear regression problems as well as in many
analysis problems arising in engineering science. A very common problem
arising in engineering model development is the need to determine the pa-
rameters of some semitheoretical model given a set of experimental data. This
data reduction or regression problem inherently transforms to an optimization
problem, because the model parameters must be selected so that the model
fits the data as closely as possible.

Suppose some variable y assumed to be dependent upon an independent
variable x and related to x through a postulated equation y = f(x, 6,, 6,) that
depends upon two parameters 6, and 6,. To establish the appropriate values
of 0, and 6,, we run a series of experiments in which we adjust the indepen-
dent variable x and measure the resulting y. As a result of a series of N
experiments covering the range of x of interest, a set of y and x values (y,,
x), i =1,..., N, is available. Using these data, we now try to “fit” our
function to the data by adjusting 6, and 6, until we get a “good fit.” The
most commonly used measure of a good fit is the least-squares criterion,

L6, 6,) = ; [y, — f(x,, 6,, 0] (1.25)

The difference y, — f(x;, 0,, 6,) between the experimental value y, and the
predicted value f(x,, 0,, 6,) measures how close our model prediction is to
the data and is called the residual. The sum of the squares of the residuals at
all the experimental points gives an indication of goodness of fit. Clearly, if
L(6,, 6,) is equal to zero, then the choice of 6,, 6, has led to a perfect fit; the
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data points fall exactly on the predicted curve. The data-fitting problem can
thus be viewed as an optimization problem in which L(6,, 6,) is minimized
by appropriate choice of 0, and 6,.

Example 1.4 Nonlinear Curve Fitting

Description. The pressure—molar volume—temperature relationship of real
gases is known to deviate from that predicted by the ideal gas relationship,

Pv = RT

where P = pressure, atm
v = molar volume, cm?/g - mol
T = temperature, K
R = gas constant, 82.06 atm-cm?/g-mol-K

The semiempirical Redlich—Kwong equation [3]

RT a
P = v—b TV + b) (1.26)

is intended to correct for the departure from ideality, but it involves two
empirical constants a and b whose values are best determined from experi-
mental data. A series of PvT measurements, listed in Table 1.2, are made for
CO,, from which a and b are to be estimated using nonlinear regression.

Formulation. Parameters a and b will be determined by minimizing the least-
squares function (1.25). In the present case, the function will take the form

8 RT. a ?
P. — — 4+ 1.27
; [ Cou—b o TP b):| ( )

1

Table 1.2 PVT Data for CO,

Experiment
Number P, atm v, cm?/g - mol T, K
1 33 500 273
2 43 500 323
3 45 600 373
4 26 700 273
5 37 600 323
6 39 700 373
7 38 400 273
8 63.6 400 373
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where P, is the experimental value at experiment i and the remaining two
terms correspond to the value of P predicted from Eq. (1.26) for the condi-
tions of experiment i for some selected values of the parameters a and b. For
instance, the term corresponding to the first experimental point will be

33 3206273) a ’
500 — b (273)"/%(500)(500 + b)

Function (1.27) is thus a two-variable function whose value is to be min-
imized by appropriate choice of the independent variables a and b. If the
Redlich—Kwong equation were to precisely match the data, then at the opti-
mum the function (1.27) would be exactly equal to zero. In general, because
of experimental error and because the equation is too simple to accurately
model the CO, nonidealities, Eq. (1.27) will not be equal to zero at the op-
timum. For instance, the optimal values of ¢ = 6.377 X 107 and b = 29.7
still yield a squared residual of 9.7 X 1072

In addition to regression applications, a number of problems arise in en-
gineering science that can be solved by posing them as optimization problems.
One rather classical application is the determination of the equilibrium com-
position of a chemical mixture [3]. It is known that the equilibrium compo-
sition of a closed system at fixed temperature and pressure with specified
initial composition will be that composition that minimizes the Gibbs free
energy of the system. As shown by White et al. [8], the determination of the
equilibrium composition can thus be posed as the problem of minimizing a
nonlinear function subject to a set of linear equations in nonnegative variables.

Another classical engineering problem that can be posed and solved as an
optimization problem is the determination of the steady-state current flows in
an electrical resistance network [9]. Given a network with specified arc re-
sistances and a specified overall current flow, the arc current flows can be
determined as the solution of the problem of minimizing the total /2R power
loss subject to a set of linear constraints that ensure that Kirchhoff’s current
law is satisfied at each arc junction in the network.

Example 1.5 Metal Cutting

One of the engineering applications of mathematical programming is the
problem of determining the optimal machining parameters in metal cutting.
A detailed discussion of different optimization models in metal cutting with
illustrations is given in a survey paper by Philipson and Ravindran [10]. Here
we shall discuss a machining problem in which a single cutting tool turns a
diameter in one pass.

The decision variables in this machining problem are the cutting speed v
and the feed per revolution f. Increasing the speed and feed reduces the actual
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machining time and hence the machining cost, but it has an adverse effect on
the life of the cutting tool and results in a higher tooling cost. In addition,
the optimal values of v and f will also depend on labor and overhead costs
of nonproductive time and tool-changing time. Hence, minimization of the
total cost per component is the criterion most often used in selecting the
optimal machining parameters, feed and speed.

The cost per component ¢ for a part produced in one pass is given by
Armarego and Brown [11]:

¢ = (cost of nonproductive time/component) + (machining time cost)

+ (cost of tool-changing time/component) + (tool cost/component)

Material costs are not considered. The third and fourth terms may be stated
more specifically as

Cost of tool-changing time per component

cost rate X tool-changing time

" number of parts produced between tool changes
and

tool cost per cutting edge

Tool cost per component =
P P number of parts produced between tool changes

The cost equation can be expressed mathematically as

T, T,
c=xT, +xT, + de<%> + y<?> (dollars) (1.28)

where x = labor plus overhead cost rate, $
T, = nonproductive time (loading, unloading, and inspection time), min
T. = machining time, including approach time, min
T, = actual cutting time (approximately equal to 7)), min
T = tool life, min [given by Eq. (1.30)]
T, = tool-changing time, min
y = tool cost per cutting edge, $
T/T,. = number of parts produced between tool changes

The equation for machining time 7. is

T. = 1 (min) (1.29)
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where [ = distance traveled by the tool in making a turning pass, in.

A = 12/7D, where D is the mean workpiece diameter, in.
v = cutting speed, surface feet/min
f = feed, in./rev

It has been found [11] that tool life, cutting speed, and feed are related as
follows:

A

T= !/ fim

(min) (1.30)

where A, n, and n, are constants.
Assuming that 7. = T, and inserting Eqs. (1.29) and (1.30) into Eq. (1.28),
we obtain

1 Iyl
¢ =xT, + %f + <de i yﬁ>v<“">1f“/m>l (dollars)  (1.31)

The constraints imposed on v and f by the machine tool and by process
and part requirements are as follows:

(i) Maximum and Minimum Available Cutting Speed
(ii) Maximum and Minimum Available Feed
fmin = f = fmax

(iii) Maximum Allowable Cutting Force (F,,,, ). This constraint is neces-
sary to limit tool work deflections and their effect upon the accuracy
of the turned part. Armarego and Brown [11] give the following ex-
pression for the tangential cutting force F;:

F, = c fed} (1.32)
where c,, «, and <y are constants and d, is the depth of cut, which is

held constant at a given value. This constraint on the cutting force
results in the following feed constraint:

f - Fr,max e
| e

(iv) Maximum Available Horsepower. The horsepower consumed in cut-
ting can be determined from the equation
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F
HP = 33,000

where F, is obtained from Eq. (1.32). If P, is the maximum horse-
power available at the spindle, then

P,...(33,000)
o < Zmax\99,VUV)
T
For a given P__,, ¢, 7, and d_, the right-hand side of the above in-

equality will be a constant.

(v) Stable Cutting Region. Certain combinations of v and f values are
likely to cause chatter vibration, adhesion, and built-up edge forma-
tion. To avoid this problem, the following stable cutting region con-
straint is used:

v'f =B
where & and B are given constants.

As an illustration [10], consider the case where a single diameter is to be
turned in one pass using the feed rate and cutting speed that will minimize
costs. The bar is 2.75 in. in diameter by 12.00 in. long. The turned bar is
2.25 in. in diameter by 10.00 in. long. In the cutting speed calculations, a
mean diameter of 2.50 in. will be used. The lathe has a 15-HP motor and a
maximum speed capability of 1500 rpm. The minimum speed available is 75
rpm. The cost rate, tool costs, ideal time, tool-changing time, and tool life
parameters are given below:

x = $0.15/min T, = 2.00 min
= 10.00 in. D = 2.50 in.

A= 1528 T, = 1.00 min

y = $0.50 A = 113,420

n =0.30 n, = 0.45

dc = 0.25 in. Nmin =75 rpm
Ninyx = 1500 rpm ¢, = 3447
F,po = 158301b =09

a=0.78 Machine drive efficiency = 0.8

6=120 Machine HP = 15.0

B = 380,000

When the fixed values are inserted into Eq. (1.28), the cost function becomes
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Minimize ¢ = 0.30 + % + 8.1 X 107 %2333 1222

(Note: For ease of calculations, f is expressed in thousandths of an inch per
revolution rather than in inches per revolution.)
The constraints on v and f are given by

v =< 982.0
v =49.1
<350 (cutting force)
f=1.0
vf%78 < 4000.0 (horsepower)
v*f = 380,000.0 (stable cutting region)
v, f=0

1.2.4 Classical Mechanics Applications

The methods described in this book can be useful in a number of application
areas, including engineering design, and various forms of data approximation.
A student of this field learns that design is the essence of engineering and
optimization is the essence of design. On the other hand, it is now clear that
the optimization philosophy given in this text is also applicable to problems
in classical mechanics and many other fields not considered by the authors.

Ragsdell and Carter proposed the “‘energy method™ [12] as an alternative
to more traditional approaches to the solution of conservative, linear and
nonlinear initial-value problems. The energy method employs a minimum
principle and avoids most of the difficulties associated with the solution of
nonlinear differential equations by formulation and iterative solution of an
appropriate sequence of optimization problems. It is interesting to note that
solutions to almost any predetermined accuracy level are possible and that
the energy method appears to be especially useful for very nonlinear problems
with solutions that progress over long periods of time and/or space. The
method has been used to predict the position of spacecraft over long distances
and the position of the robot arm on the Space Shuttle.

Carter and Ragsdell [13] have given a direct solution to the optimal column
problem of Lagrange. This problem is of interest because it defied solution
for so long. The problem statement is simple: Given an amount of material
with known physical properties (e.g., 1010 mild steel) that is to be formed
into a column and pinned at each end, what is the optimal tapering function
if we assume uniform, solid cross sections? (See Figure 1.6.)

Lagrange worked on this problem most of his life and published [14] his
conclusions shortly before his death. He was led to conclude that the optimal
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D(x)

Figure 1.6. Optimal column.

column was a right circular cylinder. Lagrange suspected and many later
proved that this could not be so. Carter and Ragsdell later showed that a
direct optimization approach employing Fourier approximating functions
would produce a valid solution to the optimal column problem of Lagrange
and to many related minimum-weight structural design problems. The reader
is referred to the references for additional details.

1.2.5 Taguchi System of Quality Engineering

The American, British, and European schools of thought on optimization and
optimal design have developed along rather different paths than the work in
Japan since the early work of George Dantzig [14] and others during and
after World War II. The American, British, and European approach is essen-
tially monolithic, whereas there are some important differences to be noted
in the Japanese approach. It is not our purpose to judge whether one path is
best, but simply to note that they appear to be significantly different. In the
United States many optimization methods have been developed and used
based on the assumption that an analytical (mathematical) model or simula-
tion is available. This assumption is used much less in Japan. On the contrary,
the common assumption seen is that the system performance will be available
through direct measurement of the system being optimized. In addition, in
Japan there seems to be much greater emphasis on stochastic formulations
and a desire to understand the resulting variation propagation.

Genichi Taguchi is the father of what is now called quality engineering in
Japan. He was asked to help with the poor telephone system performance in
Japan after the war. It was difficult to have a phone conversation lasting more
than a few minutes. It would have been easy to suggest higher quality com-
ponents to achieve better reliability, but funding was poor, so he took another
approach. Taguchi asked, “Is it possible to achieve good performance with
inexpensive components?” He wondered, “Can we control the propagation
of unwanted variation?”” This led him to develop product parameter design,
which is now known as the first of four actions in the Taguchi system of
quality engineering (Figure 1.7).
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Figure 1.7. Taguchi’s system of quality engineering.

Taguchi’s approach is based on an additive model or linear independence
of factor effects. He seeks to find the control factor levels, which will attenuate
variation propagation, so that the product will continue to perform at target
even in the presence of internal and external variation. The emphasis is on
finding better, more stable designs, not necessarily optimal designs. The ap-
proach employs direct sampling of system performance typically using pro-
totypes and very compact sampling strategies. Orthogonal arrays are used to
estimate system sensitivities. Taguchi’s work is beyond the scope of this book,
but it is important work and the interested reader is advised to consult the
many excellent references [15-18].

1.3 STRUCTURE OF OPTIMIZATION PROBLEMS

Although the application problems discussed in the previous section originate
from radically different sources and involve different systems, at their root
they have a remarkably similar form. All four can be expressed as problems
requiring the minimization of a real-valued function f(x) of an N-component
vector argument x = (x;, X,, . . . , X,) whose values are restricted to satisfy
a number of real-valued equations &, (x) = 0, a set of inequalities g;(x) = 0,
and the variable bounds x{¥ = x;, = x®. In subsequent discussions we will
refer to the function f(x) as the objective function, to the equations h,(x) =
0 as the equality constraints, and to the inequalities g;(x) = 0 as the inequality
constraints. For our purposes, these problem functions will always be as-
sumed to be real valued, and their number will always be finite.
The general problem
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Minimize f(x)
Subject to A (x) = 0 k=1,...,K
gx) =0 j=1,...,J

XV = x, = x®

Il
B

is called the constrained optimization problem. For instance, Examples 1.1,
1.2, and 1.3 are all constrained problems. The problem in which there are no
constraints, that is,

and
X = —xB = o i=1,...,N

is called the unconstrained optimization problem. Example 1.4 is an uncon-
strained problem.

Optimization problems can be classified further based on the structure of
the functions f, h;, and g; and on the dimensionality of x. Unconstrained
problems in which x is a one-component vector are called single-variable
problems and form the simplest but nonetheless very important subclass. Con-
strained problems in which the function 4, and g; are all linear are called
linearly constrained problems. This subclass can further be subdivided into
those with a linear objective function f and those in which f is nonlinear.
The category in which all problem functions are linear in x includes problems
with continuous variables, which are called linear programs, and problems in
integer variables, which are called integer programs. Example 1.3 is a linear
programming problem.

Problems with nonlinear objective and linear constraints are sometimes
called linearly constrained nonlinear programs. This class can further be sub-
divided according to the particular structure of the nonlinear objective func-
tion. If f(x) is quadratic, the problem is a quadratic program; if it is a ratio
of linear functions, it is called a fractional linear program; and so on. Sub-
division into these various classes is worthwhile because the special structure
of these problems can be efficiently exploited in devising solution techniques.
We will consider techniques applicable to most of these problem structures
in subsequent chapters.

1.4 SCOPE OF THIS BOOK

In this text we study the methodology applicable to constrained and uncon-
strained optimization problems. Our primary focus is on general-purpose tech-
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niques applicable to problems in continuous variables, involving real-valued
constraint functions and a single real-valued objective function. Problems
posed in terms of integer or discrete variables are considered only briefly.
Moreover, we exclude from consideration optimization problems involving
functional equations, non-steady-state models, or stochastic elements. These
very interesting but more complex elements are the appropriate subject matter
for more advanced, specialized texts. While we make every effort to be pre-
cise in stating mathematical results, we do not normally present detailed
proofs of these results unless such a proof serves to explain subsequent al-
gorithmic constructions. Generally we simply cite the original literature
source for proofs and use the pages of this book to motivate and explain the
key concepts underlying the mathematical constructions.

One of the goals of this text is to demonstrate the applicability of optim-
ization methodology to engineering problems. Hence, a considerable portion
is devoted to engineering examples, to the discussion of formulation alter-
natives, and to consideration of computational devices that expedite the so-
lution of applications problems. In addition, we review and evaluate available
computational evidence to help elucidate why particular methods are preferred
under certain conditions.

In Chapter 2, we begin with a discussion of the simplest problem, the
single-variable unconstrained problem. This is followed by an extensive treat-
ment of the multivariable unconstrained case. In Chapter 4, the important
linear programming problem is analyzed. With Chapter 5 we initiate the study
of nonlinear constrained optimization by considering tests for determining
optimality. Chapters 6—10 focus on solution methods for constrained prob-
lems. Chapter 6 considers strategies for transforming constrained problems
into unconstrained problems, while Chapter 7 discusses direct-search meth-
ods. Chapters 8 and 9 develop the important linearization-based techniques,
and Chapter 10 discusses methods based on quadratic approximations. Then,
in Chapter 11 we summarize some of the methods available for specially
structured problems. Next, in Chapter 12 we review the results of available
comparative computational studies. The text concludes with a survey of strat-
egies for executing optimization studies (Chapter 13) and a discussion of three
engineering case studies (Chapter 14).
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