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BASIC CONCEPTS IN WIRELESS
COMMUNICATIONS

1.1 OVERVIEW

In this chapter, we review the important and basic concepts in wireless com-
munications. In Section 1.2, we first review different types of wireless channel
models, namely, time dispersion, multipath dispersion, and spatial dispersion 
in microscopic fading. Concepts of frequency-selective fading, frequency 
flat fading, fast fading, slow fading, coherence bandwidth, coherence time, and
coherence distance will be introduced. In Section 1.3, we establish the equiva-
lence of discrete-time and continuous-time models in wireless communications
for both the frequency flat fading and frequency-selective fading channels. In
Section 1.4, we review the important and fundamental concepts of entropy,
mutual information, and channel capacity, which are critical to the under-
standing of the materials and approaches in the subsequent chapters. Finally,
in Section 1.5, we conclude with a brief summary of main points.

1.2 WIRELESS CHANNEL MODELS

A typical communication system consists of a transmitter, a receiver, and a
channel. The channel is defined as the physical medium linking the transmit-
ter output and the receiver input. For instance, telephone wire, optical fiber,
and the atmosphere are different examples of communication channels. In
fact, communication channel plays a very important role in communication
system design because the transmitter and receiver designs have to be opti-
mized with respect to the target channel.
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In this book, we focus on the wireless communication channels involving
radiofrequencies. In other words, the atmosphere is the medium carrying
radiowaves. Please refer to References 15 and 114 for a more detailed intro-
duction to wireless communication channels. Specifically, we briefly review the
statistical models of wireless communication channels for single-antenna and
multiple-antenna systems, which are frequently used in the analysis and the
design of wireless communication systems.

1.2.1 AWGN Channel Model

We consider the simplest wireless channel, the additive white Gaussian noise
(AWGN) channel. Without loss of generality, we consider single-antenna
systems as illustrative in this section. The received signal (y(t)) is given by the
transmitted signal (x(t)) plus a white Gaussian noise (z(t))

(1.1)

where L is the power attenuation from the transmitter to the receiver. In free
space, L obeys the inverse square law.1

The AWGN channel is in fact quite accurate in deep-space communications
and the communication links between satellite and Earth station. However, it
is far from accurate in most terrestrial wireless communications, due to mul-
tipath, reflection, and diffraction. Yet, AWGN channel serves as an important
reference on the performance evaluation of communication systems.

In terrestrial wireless communications, signals travel to the receiver via mul-
tiple paths, and this creates additional distortion to the transmitted signal on
top of the channel noise. In general, the effect of multipath and reflections
could be modeled as wireless fading channels or microscopic fading. Factors
affecting the microscopic fading include multipath propagation, speed of the
mobile (unit), speed of the surrounding objects, the transmission symbol dura-
tion, and the transmission bandwidth of the signal.

1.2.2 Linear Time-Varying Deterministic Spatial Channel

Consider a general linear channel that can be characterized by a lowpass
equivalent time-domain impulse response denoted by h(t; t, r) (where t is 
the time-varying parameter, t is the path delay parameter, and r is the spatial
position parameter). The general linear channel is therefore characterized by
three independent dimensions: the time dimension (characterized by the time
parameter t), the delay dimension (characterized by the delay parameter t),
and the spatial dimension (characterized by the position parameter r). Given
a lowpass equivalent input signal x(t), the lowpass equivalent received signal

y t Lx t z t( ) = ( ) + ( )
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y(t, r) through the general linear deterministic channel at time t and position
r is given by

(1.2)

where the input signal (in time domain) is mapped into output signal (in time
domain and spatial domain) through the impulse response h(t; t, r). For sim-
plicity, we shall discuss the channel characterization based on single-antenna
systems. Extension to the MIMO systems will be straightforward. For example,
to extend the model to MIMO systems, the transmitted signal x(t) is replaced
by the nT ¥ 1 vector x(t):

The received signal y(t, r) and the noise signal z(t, r) are replaced by the nR ¥
1 vector y(t) and z(t), respectively:

The time-varying channel impulse response is replaced by the nR ¥ nT matrix
h(t; t, r), given by

where h[i, j] is the channel response corresponding to the jth transmit 
antenna and the ith receive antenna and r is the corresponding position 
parameter.

1.2.2.1 Spectral Domain Representations. While Equation (1.2) gives
the fundamental input–output relationship of the linear deterministic chan-
nels, Fourier transforms are sometimes useful for gaining additional insights
in channel analysis. Since the channel impulse responses h(t; t, r) are defined
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over the time, delay, and position domains, Fourier transforms may be defined
for each of these domains, and they are elaborated as follows:

Frequency Domain. The spectral domain of the delay parameter t is called
the frequency domain �. They are related by the Fourier transform rela-
tionship h(t; t, r) ´ H(t; �, r). For example, H(t; �, r) is given by

(1.3)

Since x(t - t) = Ú∞
-∞X(�)exp( j2p�(t - t))d�, substituting into Equation

(1.2), we have

(1.4)

Hence, the channel response can also be specified by the time-varying
transfer function H(t; �, r). In addition, it can be found from Equation
(1.4) that the output signal (in time domain) y(t, r) is mapped from the
input signal (in frequency domain) X(�) through the time-varying trans-
fer function H(t; �, r).

Doppler Domain. The spectral domain of the time parameter t is called the
Doppler domain f. They are related by the Fourier transform relation-
ship h(t; t, r) ´ H(f; t, r). For example, H(f; t, r) is given by

(1.5)

Similarly, the input signal (in delay domain) x(t) can be mapped into the
output signal (in frequency domain) Y(f, r) through the transfer func-
tion H(f; t, r):

(1.6)

Wavenumber Domain. The spectral domain of the position parameter r is
called the wavenumber domain k.The wavenumber in three-dimensional
space has a physical interpretation of the plane-wave propagation direc-
tion. The position and wavenumber domains are related by the Fourier
transform relationship h(t; t, r) ´ H(t; t, k). For example, H(t; t, k) is
given by
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In general, two important concepts are applied to describe these linear deter-
ministic channels: spreading and coherence. The spreading concept deals with
the physical spreading of the received signal over the parameter space (t, f, k)
when a narrow pulse is transmitted in the corresponding domain. The coher-
ence concept deals with the variation of the channel response with respect to
another parameter space (�, t, r). These concepts are elaborated in the text
below.

1.2.2.2 Channel Spreading. The channel spreading concepts of describ-
ing the general linear deterministic channels focus on the spreading of the
received signals over the parameter space (t, f, k) when a narrow pulse in the
corresponding parameter is transmitted. We therefore have three types of
channel spreading:

Delay Spread. If we transmit a test pulse that is narrow in time, the received
signal will have a spread in propagation delay t due to the sum of dif-
ferent propagation delays of multipaths at the receiver. From Equation
(1.2), when the transmit signal is narrow in time, we have x(t) = d(t).
Hence, the received signal is given by y(t, r) = h(t; t = t, r). The plot of
|h(t; t, r)|2 versus time is called the power-delay profile as illustrated in
Figure 1.1a. The range of delays where we find significant power is called
the delay spread st.

Doppler Spread. If we transmit a test pulse narrow in frequency X(�) =
d(�), the received signal in general will experience a spread in the
received spectrum. The range of spectrum spread in the frequency
domain of the received signal Y(f, r) refers to Doppler spread. The

Doppler spread is given by , where v is the maximum speed

between the transmitter and the receiver and l is the wavelength of the
carrier. This is illustrated in Figure 1.2a.

f
v

d =
l
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Figure 1.1. Delay spread (a) and coherence bandwidth (b).



Angle Spread. Finally, the scattering environment introduces variation in
the spatial parameter r, which is equivalent to the spreading in the
wavenumber domain k, this is called the angle spread. For example, if a
test pulse narrow in direction is transmitted, the received signal will
experience a spread in the wavenumber domain (angle of arrivals) due
to the scattering surroundings; this is called the angle spread as illustrated
in Figure 1.3a.

1.2.2.3 Channel Coherence. On the other hand, we can describe the linear
deterministic channels by looking at the channel coherence or channel selec-
tivity properties over the parameter space (�, t, r).A channel is said to be selec-
tive in the corresponding dimension if the channel response varies as a
function of that parameter. The opposite of selectivity is coherence. A 
channel has coherence in the corresponding dimension if it does not change 
significantly as a function of that parameter. The channel coherence proper-
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ties with respect to the frequency, time, and position dimensions are elabo-
rated below.

Frequency Coherence or Frequency Selectivity. A wireless channel has fre-
quency coherence if the magnitude of the carrier wave does not change
over a frequency window of interest. This window of interest is usually
the bandwidth of the transmitted signal. Hence, mathematically, we can
quantify the frequency coherence of the channels by a parameter called
the coherence bandwidth Bc

(1.8)

where H0(t, r) is a constant in the frequency domain � and Bc is the size
of the frequency window where we have constant channel response. The
largest value of Bc for which Equation (1.8) holds is called the coherence
bandwidth and can be interpreted as the range of frequencies over which
the channel appears static. Figure 1.1b illustrates the concept of coher-
ence bandwidth. In fact, if the bandwidth of the transmitted signal is
larger than the coherence bandwidth of the channel, the signal will expe-
rience frequency distortion according to Equation (1.4). Such a channel
is classified as a frequency-selective fading channel. On the other hand, if
the transmitted signal has bandwidth smaller than the coherence band-
width of the channel, frequency distortion will be no introduced to the
signal and therefore, the channel will be classified as a frequency flat
fading channel. Frequency selectivity introduces intersymbol interference,
and this results in irreducible error floor in the BER (bit error rate)
curve. Hence, this is highly undesirable. Whether a signal will experience
frequency-selective fading or flat fading depends on both the environ-
ment (coherence bandwidth) and the transmitted signal (transmitted
bandwidth).

Time Coherence or Time Selectivity. A wireless channel has temporal
coherence if the envelope of the unmodulated carrier does not change
over a time window of interest. The time coherence of channels can be
specified by a parameter called the coherence time Tc

(1.9)

where |H(t; �, r)| is the envelope of the response at the receiver (at a fixed
position r) when a single-tone signal (at a fixed frequency �) is trans-
mitted, H0(�, r) is a constant in the time domain t and Tc is the size of
the time window where we have constant channel response. The largest
value of Tc for which Equation (1.9) holds is called the coherence time
and can be interpreted as the range of time over which the channel

H t r H r t
Tc; � �, , for( ) ª ( ) £0 2

H t r H t r
Bc; � �, , for( ) ª ( ) £0 2
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appears static as illustrated in Figure 1.2b. In wireless fading channels,
temporal incoherence (or time selectivity) is caused by the motion of the
transmitter, the receiver or the scattering objects in the environment.
Time selectivity can degrade the performance of wireless communica-
tion systems. If the transmit data rate is comparable to the coherence
time, it becomes extremely difficult for the receiver to demodulate the
transmitted signal reliably because the time selectivity within a symbol
duration causes catastrophic distortion on the received pulseshape.
Hence, when the transmit symbol duration Ts is longer than the coher-
ence time Tc, we have fast fading channels. On the other hand, when the
transmit symbol duration is shorter than the coherence time, we have
slow fading channels. In the extreme case of slow fading the channel
remains static for the entire transmit frame.

Spatial Coherence or Spatial Selectivity. A wireless channel has spatial
coherence if the magnitude of the carrier wave does not change over a
spatial displacement of the receiver. Mathematically, the spatial coher-
ence can be parameterized by the coherence distance, Dc

(1.10)

where |H(t; �, r)| is the envelope of the response at the receiver when a
single-tone signal (at a fixed frequency �) is transmitted (at a fixed time
t), H0(t; �) is a constant with respect to the spatial domain r, and Dc is
the size of the spatial displacement where we have constant channel
response. The largest value of Dc for which Equation (1.10) holds is
called the coherence distance and can be interpreted as the range of dis-
placement over which the channel appears static as illustrated in Figure
1.3b. Note that for a wireless receiver moving in three-dimensional space,
the coherence distance is a function of the direction that the receiver
travels; that is, the position displacement r is a vector instead of a scalar.
Hence, the study of spatial coherence is much more difficult than the
study of the scalar quantities of temporal or frequency coherence. While
frequency selectivity is a result of multipath propagation arriving with
many different time delays t, spatial selectivity is caused by the multi-
path propagation arriving from different directions in space. These 
multipath waves are superimposed on each other, creating pockets of
constructive and destructive interference in the three-dimensional
spatial domain so that the received signal power does not appear to be
constant over small displacements of receiver position. Hence, if the dis-
tance traversed by a receiver is greater than the coherence distance, the
channel is said to be spatially selective or small-scale fading. On the other
hand, if the distance traversed by a receiver is smaller than the coher-
ence distance, the channel is said to be spatially flat. Spatially selective
or spatial flat fading is important when we have to apply spatial diver-

H t r H t r
Dc; � �, , for( ) ª ( ) £0 2

10 BASIC CONCEPTS IN WIRELESS COMMUNICATIONS



sity (or spatial multiplexing) and beamforming. For instance, in order to
produce a beam of energy along the designated direction through
antenna array, the dimension of the antenna array must be within the
coherence distance of the channels. On the other hand, to effectively
exploit the spatial multiplexing or spatial diversity of MIMO systems, the
spacing of the antenna array must be larger than coherence distance of
the channels.

Figure 1.4 summarizes the various behaviors of microscopic fading channels.
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1.2.3 The Random Channels

In Section 1.2.2, we have introduced the general linear deterministic channel
where the relationship of output given an input signal is modeled as a general
time-varying system. However, in practice, the wireless fading channels we
experience are random instead of deterministic; that is, h(t; t, r) is a random
process instead of a deterministic quantity. Hence, in this section, we shall
extend the model of linear deterministic channels to cover the random 
channels.

For simplicity, let’s consider a channel response on the time dimension only.
The most common way to characterize the statistical behavior of the random
process h(t) is by means of autocorrelation:

(1.11)

The random process is called wide-sense stationary (WSS) if the autocorrela-
tion Rh(t1, t2) is a function of |t1 - t2|.

On the other hand, we can also consider the correlation in the spectral
domain of t. Specifically, after Fourier transform on h(t), we have a random
frequency-varying process H(f ). The autocorrelation of the random process
H(f ) is given by

(1.12)

Lemma 1.1 (Wide-Sense Stationary) A random process is WSS if and only
if its spectral components are uncorrelated.

Proof Since H(f ) is the Fourier transform of h(t), we have

Suppose that we have uncorrelated spectral components: SH(f1, f2) =
Sh(f1)d(f1 - f2). Hence e[H(f1)H*(f2)] = 0 for f1 π f2. For this case, we can write
the complex exponent as exp(j2pf1[t1 - t2]) and therefore, Rh(t1, t2) is a func-
tion of |t1 - t2|.

On the other hand, if Rh(t1, t2) is a function of |t1 - t2|, the multiplier in the
integration must be zero for f1 π f2 because otherwise, there is no way to force
exp(j2p[f1t1 - f2t2]) to be a function of |t1 - t2| only. Hence, we must have
e[H(f1)H*(f2)] = 0 for f1 π f2.

In fact, the condition of uncorrelated spectral components is often referred
to as uncorrelated scattering (US).

1.2.3.1 Joint Correlation and Spectrum. Now, let’s consider the general
random channel response H(t; �, r) with respect to the time t, frequency �, and
position r. To accommodate all the random dependencies of such a channel,

R t t H f H f j f t f t df dfh 1 2 1 2 1 1 2 2 1 22, *( ) = ( ) ( )[ ] -[ ]( )
-•

•

-•

•

ÚÚ e pexp

S f f H f H fH 1 2 1 2, *( ) = ( ) ( )[ ]e
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it is possible to define a joint correlation of H(t; �, r) with respect to (t, �, r).
The joint correlation of the channel response is given by

(1.13)

For simplicity, we assume the random channel is a wide-sense stationary, un-
correlated scattering (WSS-US) random process. Hence, the joint correla-
tion RH(t1, �1, r1; t2, �2, r2) is a function of (Dt, D�, Dr) only where Dt = |t1 - t2|,
D� = |�1 - �2| and Dr = |r1 - r2|. Note that WSS refers to wide-sense stationary
with respect to the time parameter t, the frequency parameter �, and the posi-
tion parameter r. On the other hand, uncorrelated scattering refers to uncor-
relation of the spectral components (as a result of Lemma 1.1) in the Doppler
parameter f, delay parameter t, and wavenumber parameter k

(1.14)

where SH(f1, t1, k1) is the power spectral density of the random process 
H(t, �, r). The Wiener–Khintchine theorem for WSS-US process leads to the
following Fourier transform relationship between the autocorrelation 
function RH(Dt, D�, Dr) and the power spectral density SH(f, t, k):

(1.15)

1.2.3.2 Time–Frequency Transform Mapping. Since the joint correlation
function RH(Dt, D�, Dr) is a function of three independent parameters, it is
easier for illustration purposes to fix one dimension and focus on the inter-
relationship between the other two dimensions. For instance, consider single-
antenna systems with the receiver at a fixed position r. Thus, this random
channel has no dependence on r. Hence, the statistical properties of the
random channels can be specified by either the time–frequency autocorrela-
tion RH(Dt, D�) or the delay–Doppler spectrum SH(f, t) as illustrated in Figure
1.5. In a WSS-US channel, knowledge of only one is sufficient as they are two-
dimensional Fourier transform pairs.

In Section 1.2.2, we have introduced the concepts of coherence time and
coherence bandwidth or equivalently, Doppler spread and delay spread for
deterministic channels. We will try to extend the definition of these parame-
ters for WSS-US random channels. From the time–frequency autocorrelation
function, the correlation in time dimension is given by

(1.16)

The coherence time Tc for the random channel is defined to be value of Dt
such that RH(Dt) < 0.5.

R t R tH HD D D D( ) = ( ) =, � � 0

R t r S f kH HD D D, , , ,�( ) ´ ( )t

S f k f k H f k H f k

S f k f f k k
H
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1 1 1 2 2 2 1 1 1 2 2 2
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Similarly, the correlation in the frequency dimension is given by

(1.17)

The coherence time Bc for the random channel is defined to be value of D�
such that RH(D�) < 0.5.

R R tH H tD D D D� �( ) = ( ) =, 0
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Figure 1.5. Time–frequency autocorrelation and delay–Doppler spectrum.



On the other hand, we can characterize the random channel on the basis
of the delay–Doppler spectrum. For instance, the Doppler spectrum is given by

(1.18)

The Doppler spread s 2
f is defined as the second centered moment of the

Doppler spectrum:

(1.19)

Similarly, the power-delay profile is given by

(1.20)

The delay spread s 2
t is defined as the second centered moment of the power-

delay profile:

(1.21)

Since the Doppler spectrum and the time autocorrelation function are
Fourier transform pairs, a large Doppler spread s 2

f will result in small coher-
ence time Tc and therefore faster temporal fading and vice versa. Similarly, the
power-delay profile and the frequency autocorrelation function are Fourier
transform pairs. Hence, a large delay spread s 2

t will result in a small 
coherence bandwidth Bc and vice versa. In practice, the four parameters are
related by

(1.22)

and

(1.23)

1.2.3.3 Frequency–Space Transform Mapping. For a static channel, we
may extend the time–frequency map described in the previous section for the
frequency–space relationship as illustrated in Figure 1.6.

In this diagram, the joint space–frequency autocorrelation RH(D�, Dr) and
the joint delay–wavenumber spectrum SH(t, k) are related by Fourier trans-
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form pairs. In Section 1.2.2, we have introduced the concepts of coherence 
distance and angle spread for deterministic channels. We shall try to extend 
the definition of these parameters for WSS-US random channels. From the 
frequency–space autocorrelation function, the single dimension spatial 
autocorrelation of the random channels is given by

(1.24)R r R rH HD D D D( ) = ( ) =� �, 0
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Figure 1.6. Illustration of frequency–space autocorrelation and delay–wavenumber spectrum.



The coherence distance Dc is therefore defined as the maximum Dr such that
RH(Dr) < 0.5.

Similarly, we can characterize the statistical behavior of the random 
channels by the delay–wavenumber spectrum SH(t, k). Consider the single-
dimension wavenumber spectrum SH(k):

(1.25)

The angle spread s 2
k is defined to be the second centered moment of the

wavenumber spectrum:

(1.26)

An important indication of the nature of the channel is called the spread
factor, given by BcTc. If BcTc < 1, the channel is said to be underspread; other-
wise, it is called overspread. In general, if BcTc << 1, the channel impulse
response could be easily measured and the measurement could be utilized at
the receiver for demodulation and detection or at the transmitter for adapta-
tion. On the other hand, if BcTc >> 1, channel measurement would be extremely
difficult and unreliable. In this book, we deal mainly with underspread fading
channels.

1.2.4 Frequency-Flat Fading Channels

We shall consider the effect of fading channels on a transmitted signal.We first
look at a simple case called a flat fading channel. Let x(t) be the lowpass equiv-
alent signal transmitted over the channel and X(�) be the corresponding
Fourier transform. The lowpass equivalent received signal y(t, r) is given by

(1.27)

where h(t; t, r) is the time-varying impulse response and H(t; �, r) is the time-
varying transfer function of the channel. Note that both H(t; �, r) and h(t; t, r)
are random processes. Suppose that the two-sided bandwidth W of x(t) is less
than the coherence bandwidth Bc. According to the definition of the correla-
tion function RH(0; D�, 0), the random channel fading H(t, �, r) is highly cor-
related within the range of the transmitted bandwidth � Œ [-W/2, W/2]. Hence,
all the frequency component of X(�) undergoes the same complex fading
within the range of frequencies � Œ [-W/2, W/2]. This means that within the
bandwidth W of X(�), we obtain H(t, �, r) = h(t; t, r) = h(t, r), where h(t, r) is
a complex stationary random process in t and r only. This results in both the
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envelope attenuation and phase rotation on the transmitted signal. The
received signal simplifies to

(1.28)

Hence, the signal x(t) is said to experience the flat fading channel. Therefore,
the flat fading channel has a time-varying multiplicative effect on the trans-
mitted signal. In this case, the multipath components are not resolvable
because the signal bandwidth W << Bc = 1/(5Tc). In accordance with the 
central-limit theorem, the random process h(t, r) (as a result of multipath
aggregation) can be well approximated by complex stationary zero-mean
Gaussian random process. A flat fading channel is also called a slowly fading
channel if the time duration of a transmitted symbol Ts is much smaller than
the coherence time of the channel Tc. Otherwise, it is called a fast fading
channel. Since in general W ≥ 1/Ts, a slowly flat fading channel is underspread
because BcTc << 1.

1.2.5 Frequency-Selective Fading Channels

When the transmit signal bandwidth W >> Bc, frequency components in X(�)
have frequency separation greater than Bc. In this case, the random fading
components H(t; �1, r) and H(t; �2, r) become uncorrelated whenever |�1 - �2|
≥ Bc. Hence, some frequency components in X(�) (within the transmitted
bandwidth W) may experience independent fading. In such case, the channel
is said to be frequency-selective.

Any lowpass equivalent signal x(t) with two-sided bandwidth W and 
time duration t Œ {0, T} may be represented geometrically by a (N = WT)-
dimensional vector x = [x(0), x(1/W), . . . , x(T - 1/W)] in the signal space
spanned by the orthonormal basis {y0(t), . . . , yN-1(t)}. Specifically, by sampling
theorem, yn(t) = sinc(pW(t - n/W))/pW(t - n/W), and the lowpass equivalent
signal is given by

(1.29)

where x[n] denotes the nth component of the vector x. The corresponding
Fourier transform of x(t) is given by

(1.30)

Hence, the received signal as a result of frequency-selective fading is given 
by

x W
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(1.31)

where hn(t, r) = h (t; n/W, r) and L = [W/Bc] is the number of resolvable multi-
paths as seen by the transmitted signal. Hence, the larger the transmitted signal
bandwidth W (or the smaller the channel coherence bandwidth Bc), the larger
the number of resolvable multipaths that the transmit signal will see. Figure
1.7 illustrates the equivalent view of the frequency-selective channel model in
Equation (1.31).

According to the statistical characterization of the channel presented
above, the channel taps hn(t, r) are complex stationary random processes.
Specifically, due to the central-limit theorem, the random process can be well
approximated by zero-mean complex Gaussian stationary random process.
Furthermore, hn(t) and hm(t) are statistically independent if n π m due to the
uncorrelated scattering assumption.

1.3 EQUIVALENCE OF CONTINUOUS-TIME AND 
DISCRETE-TIME MODELS

While the physical transmitted signals and received signals are all in continu-
ous time domain, it is quite difficult to gain proper design insights by working
in the original forms. For example, given the received signal2 y(t), it is not clear
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x(t)

hn(t,r )

y (t,r )

h1(t,r ) h1(t,r ) hL-1(t,r )

x(t-1/W ) x(t-L-1/W )ZZZ

X X X

+++

x(t-Z /W )

X

Figure 1.7. Illustration of tapped-delay-line frequency-selective channel model.

2 Without loss of generality, ignore the notation about the position parameter r in the received
signal y(t) to simplify notation.



what should be the optimal structure to extract the information bits carried
by the signal. Hence, for statistical signal detection and estimation problems,
it is usually more convenient to formulate the problems in the geometric
domain or discrete-time domain. In this section, we try to establish the equiv-
alence relationship of the two domains.

1.3.1 Concepts of Signal Space

Theorem 1.1 (Orthonormal Basis for Random Process) For any wide-sense
stationary (WSS) complex random process x(t) for t Œ [0,T], there exists a set of
orthonormal3 basis functions {y0(t), . . . ,yN-1(t)} and complex random variables
{x0, . . . , xN-1} such that limNÆ∞e[|x(t) - xN(t)|2] = 0 for all t where xN(t) is given by:

and xn =< x(t), yn(t) >. In particular, the basis functions are the solution (called
eigenfunctions) of the integral equation:

(where Rx(t) is the autocorrelation function of x(t)) and e[xnxm*] = lndnm

(uncorrelated).
In addition, if x(t) is bandlimited to W (x(t) has significant energy only for 

f Œ [-W, W]) and WT >> 1, we have ln � 0 for n > 2WT and ln � 1 for n < 2WT.

Proof Please refer to [122] for the proof.

Since ln represents the energy of the basis function yn(t) over [0, T], in other
words only about 2WT coefficients in xN(t) have significant energy and we
might say that the signal x(t) lies in a signal space of 2WT dimensions.

1.3.2 Sufficient Statistics

Before we discuss the equivalence of continuous-time model and discrete-time
model, we have to introduce a concept called sufficient statistics.

Definition 1.1 (Sufficient Statistics) Suppose that we have a probability
density function on the random sample f(x; q), where q is an unknown param-
eter. Let T (X1, . . . , XN) (a function of N random samples X1, . . . , XN from
the population) be a statistical estimate of the unknown parameter q.The esti-
mate T is called sufficient statistic for q if X = (X1, . . . , XN) is independent of
q given T(X1, . . . , XN):

Pr PrX XT T,q[ ] = [ ]
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3 Orthonormal basis refers to ÚT
0yn(t)y*m(t)dt = d(n - m).



Example 1.1 (Sufficient Statistics) Given: X1, . . . , XN, Xn Œ {0, 1}, is an inde-
pendent and identically distributed (i.i.d.) sequence of coin tosses of a coin with
unknown parameter q = Pr[Xn = 1]. Given N, the number of 1s is a sufficient sta-
tistic for q. Here T(X1, . . . , XN) = SnXn. T is a sufficient statistic for q because

Example 1.2 (Sufficient Statistics) If X is Gaussian distributed with mean q
and variance 1, and X1, . . . , XN are drawn independently according to this 
distribution, then is a sufficient statistic for q. This is because
Pr[(X1, . . . , XN)|T] is independent of q.

In other words, the concept of sufficient statistics allows us to discard data
samples that are not related to the parameter in question because the condi-
tional pdf (probability distribution function) of X given T is independent of q.
Note that sufficient statistic is not unique. There could be many sufficient sta-
tistics for the same parameter q. As shown by Examples 1.1 and 1.2, it is rela-
tively easy to verify whether a statistic T is sufficient with respect to a parameter
q. However, it is a more difficult problem to identify potential sufficient statis-
tics for a parameter q. Below we summarize the Neyman–Fisher factorization
theorem, which can be used to find sufficient statistics in several examples.

Theorem 1.2 (Necessary and Sufficient Condition for Sufficient Statistics) If
we can factorize the pdf p(X; q) as p(X; q) = g(T(X), q)h(X), where g is a func-
tion depending on X only through T(X) and h is a function depending only
on X, then T(X) is a sufficient statistic for q. Conversely, if T(x) is a sufficient
statistic for q, then the pdf p(X; q) can be factorized as shown above.

Some examples are given below to illustrate the use of this theorem to find
a sufficient statistic.

Example 1.3 (Sufficient Statistics) Let X be Gaussian distributed with
unknown mean q and unit variance, with X1, . . . , XN drawn independently
according to this distribution. The pdf of the data is given by

Since SN
n=1(Xn - q)2 = SN

n=1X 2
n - 2qSN

n=1Xn + Nq 2, the pdf could be factorized into
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Hence, T(X) = SN
n=1Xn is a sufficient statistic for q because g is a function

depending on X only through T. In fact, any one-to-one mapping of T(X) is
also a sufficient statistic for q.

Example 1.4 (Sufficient Statistics) Let X be Gaussian distributed with zero
mean and unknown variance q, with X1, . . . , XN drawn independently accord-
ing to this distribution. The pdf of the data is given by

Hence, T(X) = SN
n=1X 2

n is a sufficient statistic for q.

1.3.3 Discrete-Time Signal Model—Flat Fading

A digital transmitter can be modeled as a device with input as information
bits and continuous-time analog signals matched to the channel or the medium
as output. A string of k information bits is passed to a channel encoder 
(combined with modulator) where redundancy is added to protect the raw
information bits. N encoded symbols {x1, . . . , xN} (where xn Œ X ) are produced
at the output of the channel encoder. The N encoded symbols are mapped to
the analog signal (modulated) and transmitted out to the channel.The channel
input signal x(t) is given by

(1.32)

where Ts is the symbol duration and g(t) is the low pass equivalent transmit
pulse with two-sided bandwidth W and pulse energy Ú∞

-∞|g(t)|2dt = 1. Equation
(1.32) is a general model for digitally modulated signals, and the signal set
X is called the signal constellation. For example, X = {ej2pm/M : m = {0, 1, . . . ,
M - 1}} represents MPSK modulation. X =
represents MQAM modulation. The signal constellations for MPSK and
MQAM are illustrated in Figure 1.8.

From Equation (1.28), the low pass equivalent received signal through flat
fading channel can be expressed as

(1.33)

where z(t) is the low pass equivalent white complex Gaussian noise, h(t) is a
zero-mean unit variance complex Gaussian random process, and only x(t) con-
tains information.
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16QAM signal set

8PSK signal set

(b)

Figure 1.8. Illustration of signal constellations: (a) MPSK constellation; (b) MQAM 
constellation.
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At the receiver side, the decoder produces the string of k decoded infor-
mation bits based on the observation y(t) from the channel. Hence, the
receiver problem can be modeled as a detection problem; that is, given the
observation y(t), the receiver has to determine which one of the 2k hypothesis
is actually transmitted. It is difficult to gain very useful design insight if we
look at the problem from continuous-time domain. In fact, as we have illus-
trated, the continuous-time signal y(t) can be represent equivalently as vectors
in signal space y. Hence, the receiver detection problem [assuming knowledge
of channel fading H(t)] is summarized below.

Problem 1.1 (Detection) Let w Œ {1, 2k} be the message index at the input
of the transmitter. The decoded message ŵ at the receiver is given by

Such a receiver is called the maximum-likelihood (ML) receiver, which mini-
mizes the probability of error if all the 2k messages are equally probable.

Due to the white channel noise term in (1.33), we need infinite dimension
signal space in general to represent the received signal y(t) as vector y.
However, since only h(t)x(t) contains information and h(t)x(t) can be repre-
sented as vector in a finite-dimensional signal subspace, not all components in
y will contain information. Hence, the detection problem in Problem 1.1 could
be further simplified, and this is expressed mathematically below.

Let �y = {Y1(t), . . . , Yn(t), . . .} denote the infinite-dimensional signal space
that contains y(t) and �s = {Y1(t), . . . , YDs

(t)} denote a Ds-dimensional sub-
space of �y that contains s(t) = h(t)x(t); that is

(1.34)

and

(1.35)

where yj =< y(t), Yj(t) >= Ú∞
-∞ y(t)Yj*(t)dt and sj =< s(t), Yj(t) >= Ú∞

-∞ s(t)Yj*(t)dt.
Let y and s be the vectors corresponding to y(t) and s(t) = h(t)x(t) with respect

to the signal spaces �y and �s, respectively. Define v as the projection of y over
the signal space �s. Since p(y|w, h(t)) = p(v|w, h(t)), v forms a sufficient statistics
for the unknown parameter w. Therefore, it is sufficient to project the received
signal y(t) over the signal space �s, and there is no loss of information with
respect to the detection of the message index w.

The vector representation of s(t) = h(t)x(t) is given by (s1, . . . , sDs
), where
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In the special case of slow fading where Tc >> Ts, we have h(t) � hn for 
t Œ [(n - 1)Ts, nTs]. The vector representation of s(t) becomes

where gn,j = Ú∞
-∞g(t - nTs)Yj*(t)dt, Ds = WNTs and N is the number of trans-

mitted symbols. Therefore, we have s = Snxnhngn, where gn is the vector repre-
sentation of the time-delayed transmit pulse g(t - nTs). The equivalent
discrete-time flat fading model with channel input s and channel output v 
(the projection of y(t) onto the signal space �s) is therefore given by

(1.36)

where the vectors are defined with respect to the NWTs-dimensional signal
space �x that contains x(t). If z(t) is the low pass equivalent white Gaussian
noise and the two-sided noise spectral power density of the real and quadra-
ture components are both h0/2, the noise covariance of z is given by

In other words, we have i.i.d. noise vector components in z, each with 
variance h0.

In addition, if the channel noise is a white Gaussian random process, the
likelihood function of Problem 1.1 (with knowledge of channel fading at the
receiver) can be expressed as

Maximizing the likelihood function is equivalent to minimizing the distance
metric d(v, s) between the observation v and the hypothesis s(w). The distance
metric is given by: d(v, s) = |v - s(w)|2. This can be further simplified as 
follows:

Since |v|2 is independent of w, the maximum-likelihood (ML) metric of w,
m(v, w), is given by
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(1.37)

where Rg(n - m) = Ú∞
-∞g(t - nTs)g*(t - mTs)dt and qn = Ú∞

-∞y(t)g*(t - nTs)dt 
is the matched-filter output (with impulse response g*(-t)) of the received
signal y(t) (sampled at t = nTs). Observe that the ML metric m(v, w) of w
in Equation (1.37) depends on the received signal y(t) only through qn =
Ú∞

-∞y(t)g(t - nTs)dt. Once q = [q1, . . . , qN] are known, the ML metric m(v, w)
can be computed. Hence, the matched-filter outputs, qn = Ú∞

-∞y(t)g(t - nTs)dt,
are also the sufficient statistics with respect to w. Therefore, the ML metric 
m(v, w) in Equation (1.37) can be expressed in terms of the sufficient statistics
q = [q1, . . . , qN] directly as m(q, w).

If g(t) = 0 for all t > Ts or t < 0 [zero intersymbol interference (ISI) due to
the transmit pulseshape g(t)], we have Ú∞

-∞g(t - nTs)g*(t - mTs)dt = d(n - m)
and the ML metric m(q, w) can be further simplified as

(1.38)

Figure 1.9 illustrates the optimal detector structure based on matched filtering.
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Figure 1.9. Optimal detector structure based on matched filtering for fading channels with zero
ISI transmit pulse.



The sufficient statistics q are first generated from y(t) through matched fil-
tering and periodically sampling at t = nTs. The sequence of sufficient statis-
tics is passed to the ML metric computation, where the ML metrics m(q, w)
for each hypothesis w are computed. Hence, the hypothesis that maximizes the
metrics is the decoded information ŵ . Finally, the following theorem establish
the equivalence of the continuous-time flat fading channel and the discrete-
time flat fading channels.

Theorem 1.3 (Equivalence of Continuous-Time and Discrete-Time Models)
Given any continuous-time flat fading channels with the transmitted signal x(t)
given by Equation (1.32) and the received signal y(t) given by Equation (1.33),
there always exists an equivalent discrete-time channel with input xn and
output qn such that

(1.39)

where Rg(n - k) = Ú∞
-∞g(t - kTs)g*(t - nTs)dt, zn is a zero-mean Gaussian noise

with variance h0, and h0 is the power spectral density of z(t). The term equiv-
alent channels means that both channels will have the same ML detection
results with respect to the message index w. Furthermore, if g(t) = 0 for all 
t > Ts or t < 0 such that

(1.40)

Proof Since qn is a sufficient statistic with respect to the detection of w, there
is no loss of information if the receiver can only observe qn instead of the com-
plete received signal y(t). Hence, substituting y(t) in Equation (1.33) into qn,
we have

where Rg(n - k) = Ú∞
-∞g(t - kTs)g*(t - nTs)dt and zn = Ú∞

-∞z(t)g*(t - nTs)dt. Since
the message index w is contained in the symbols [x1, . . . , xN] only, there is no
loss of information if the receiver only observes qn due to sufficient statistic
properties. Hence, the two channels produce the same ML detection results.
If the pulse duration of g(t) is Ts, then gn-k = d(n - k) and Equation (1.40)
follows immediately.

Extending Equation (1.40) to MIMO channels, let X Œ X be the (nT ¥ 1)-
dimensional input vector, Y Œ Y be the nR ¥ 1 output vector, and H Œ H be
the (nR ¥ nT)-dimensional channel fading of the discrete-time MIMO channel.
The received symbol yn is given by
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1.3.4 Discrete-Time Channel Model—Frequency-Selective Fading

The transmitted signal x(t) is given by

(1.42)

where Ts is the symbol duration and g(t) is the low pass equivalent transmit
pulse with two-sided bandwidth W and pulse energy Ú∞

-∞ |g(t)|2dt = 1. From
Equation (1.31), the received signal after passing through a frequency-
selective fading channel is given by

(1.43)

where isthenumber of resolvable paths.Letting s(t) = Sl=0
L-1hl(t)x(t - lTs),

using similar arguments, the vector projection of y onto the signal space con-
taining s(t), v, is a sufficient statistic for the message index w.

The vector representation of s(t) is given by (s1, . . . , sDs
), where

In the special case of slow fading where Tc >> Ts, we have hl(t) � hm,l for 
t Œ [(m - 1)Ts, mTs]. Hence, the vector representation of s(t) becomes

where gm,j is the component of the projection of g(t - mTs) onto Yj(t) given by

(1.44)

Therefore, we have s = Sl=0
L-1Snxnhn+l,lgn+l. The equivalent discrete-time 

frequency-selective fading model with input vector s and output vector v is
therefore given by
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(1.45)

where the vectors are defined with respect to the signal space that contains
s(t). Similarly, since z(t) is the low pass equivalent white Gaussian noise with
two-sided power spectral density of the real and quadrature components 
both given by h0/2, we have i.i.d. noise vector components in z with noise vari-
ance h0.

When the channel noise is white Gaussian, the likelihood function is given
by

Factorizing the likelihood function according to Theorem 1.2, we have the ML
metric m(v, w) given by

where

(1.46)

is the matched-filter output [with impulse response g*(-t)] of the received
signal y(t) sampled at t = nTs. Observe that the ML metric depends on the
received signal y(t) only through the matched-filter outputs q = [q1, . . . , qN].
Once q is known, the ML metric m(v, w) can be computed and hence, the 
ML detection of ŵ can be obtained directly from q. In other words, there 
is no loss of information if the receiver can only observe q instead of the 
complete received signal y(t). q is therefore another sufficient statistics 
with respect to the detection of the message w. If g(t) = 0 for all t > Ts or 
t < 0 [zero ISI due to the transmit pulse g(t)], the ML metric can be further 
simplified as

(1.47)m w wv, * *, , ,
,,

( ) = ( ) -+ +
=

-

+ ¢+ ¢ ¢ ¢
¢ + = ¢+ ¢¢

Â ÂÂÂ x h q h h x xn n l l n l
l

L

n l l n l l n n
l l n l n ln nn

* * .
:0

1

q y t g t nT dtn s= ( ) -( )
-•

•

Ú *

m w wr v g g, * * *

* * ,

*

, ,

,

, ,

( ) = ( ) ◊ -

= ( ) - +( )( )
-

+ +=

-
+ +=

-

+=

-

+ ¢+ ¢ ¢

Â ÂÂÂ
ÂÂ

2

2

0

1

0

1 2

0

1

x h x h

h x y t g t n l T

h h x

n n l l n ll

L
n n l l n lnl

L

n

n l l n sl

L

n

n l l n l l n xx g t n l T g t n l T

h x y t g t n l T dt

h h x x g t n l T g t

n s sl ln n

n l ll

L
n sn

n l n l n n s

¢¢¢

+=

-

-•

•

¢ ¢ ¢

- +( )( ) - ¢ + ¢( )( )

= ( ) - +( )( )

- - +( )( )

ÂÂ
Â ÚÂ

* ,

* * *

* * *

,,

,

, ,

2
0

1

-- ¢ + ¢( )( )

= - + - ¢ - ¢( )
-•

•

¢¢

+ + ¢ ¢ ¢¢¢=

-
ÚÂÂ

ÂÂÂÂ
n l T dt

h x q h h x x R n l n l

sl ln n

n l l n n l n l n l n n gl ln nl

L

n

,,

, ,,,
* * * *2

0

1
,

p
N

v h v sw
ph h

, exp( ) =
( )

- -È
ÎÍ

˘
˚̇

1 1
2

0 0

2

v s z z= + = ++ +
=

-

ÂÂ x h gn n l l n l
nl

L

,
0

1

EQUIVALENCE OF CONTINUOUS-TIME AND DISCRETE-TIME MODELS 29



Figure 1.9 illustrates the optimal detector structure for frequency-selective
fading channel with zero ISI pulse based on matched filtering.

Similar to the flat fading case, we can establish a discrete-time equivalent
channel with any given continuous-time frequency-selective fading channels
and summarize the results by the following theorem.

Theorem 1.4 (Equivalence of Continuous-Time and Discrete-Time Models)
For any continuous-time frequency-selective fading channels with input x(t)
given by Equation (1.42) and received signal y(t) given by Equation 
(1.43), there always exists an equivalent discrete-time frequency-selective
fading channel with discrete-time inputs {xn} and discrete-time outputs {qn}
such that

(1.48)

where Rg(m) = Ú∞
-∞g(t)g*(t - mTs)dt, hm,l = hl(t) for t Œ [mTs, (m + 1)Ts],

zn is a zero-mean Gaussian noise with variance h0, and h0 is the power 
spectral density of z(t). If g(t) = 0 for all t > Ts or t < 0 (zero ISI), we have
Rg(m) = d(mTs). Hence

(1.49)

Proof Similar to the flat fading case in Theorem 1.3, q is a sufficient statistic
with respect to the detection of w and there is no loss of information if the
receiver can observe q only. Substituting y(t) from Equation (1.43) into qn, the
results follow.

Extending Equation (1.49) to MIMO channels, the received symbol yn is
given by

(1.50)

1.4 FUNDAMENTALS OF INFORMATION THEORY

In this section, we give an overview on the background and mathematical con-
cepts in information theory in order to establish Shannon’s channel coding
theorem. Concepts of ergodic and outage capacities will be followed. Finally,
we give several examples of channel capacity in various channels. This will
form the basis for the remaining chapters in the book.
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1.4.1 Entropy and Mutual Information

The first important concept in information theory is entropy, which is a
measure of uncertainty in a random variable.

Definition 1.2 (Entropy of Discrete Random Variable) The entropy of a dis-
crete random variable X with probability mass function p(X) is given by

(1.51)

where the expectation is taken over X.

Definition 1.3 (Entropy of Continuous Random Variable) On the other
hand, the entropy of a continuous random variable X with probability density
function f(X) is given by

(1.52)

For simplicity, we shall assume discrete random variable unless otherwise 
specified.

Definition 1.4 (Joint Entropy) The joint entropy of two random variables X1,
X2 is defined as

(1.53)

where the expectation is taken over (X1, X2).

Definition 1.5 (Conditional Entropy) The conditional entropy of a random
variable X2 given X1 is defined as

(1.54)

where the expectation is taken over (X1, X2).

After introducing the definitions of entropy, let’s look at various properties
of entropy. They are summarized as lemmas below. Please refer to the text by
Cover and Thomas [30] for the proof.

The first lemma gives a lower bound on entropy.

Lemma 1.2 (Lower Bound of Entropy)

(1.55)

Equality holds if and only if there exists x0 Œ X such that p(x0) = 1.
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Proof Directly obtained from Equation (1.51).

The following lemma gives an upper bound on entropy for discrete and con-
tinuous random variable X.

Lemma 1.3 (Upper Bound of Entropy) If X is a discrete random variable,
then

(1.56)

Equality holds if and only if p(X) = 1/|X|. On the other hand, if X is a contin-
uous random variable, then

(1.57)

where s 2
X = e[|X|2] and equality holds if and only if X is Gaussian distributed

with an arbitrary mean m and variance s 2
X.

From the lemmas presented-above, entropy can be interpreted as a measure
of information because H(X) = 0 if there is no uncertainty about X. On the
other hand, H(X) is maximized if X is equiprobable or X is Gaussian 
distributed.

The chain rule of entropy is given by the following lemma.

Lemma 1.4 (Chain Rule of Entropy)

(1.58)

On the other hand, as summarized in the lemma below, conditioning
reduces entropy.

Lemma 1.5 (Conditioning Reduces Entropy)

(1.59)

Equality holds if and only if p(XY) = p(X)p(Y) (X and Y are independent).

Lemma 1.6 (Concavity of Entropy) H(X) is a concave function of p(X).

Lemma 1.7 If X and Y are independent, then H(X + Y) ≥ H(X).

Lemma 1.8 (Fano’s Inequality) Given two random variables X and Y, let 
X̂ = g(Y) be an estimate of X given Y. Define the probability of error as

H X Y H X( ) £ ( )

H X X H X H X X1 2 1 2 1,( ) = ( ) + ( )

H X e X( ) £ ( )1
2

22
2log p s

H X X( ) £ ( )log2
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we have

(1.60)

where H2(p) = -p log2(p) - (1 - p)log2(1 - p).

After we have reviewed the definitions and properties of entropy, we shall
discuss the concept of mutual information.

Definition 1.6 (Mutual Information) The mutual information of two random
variables X and Y is given by

(1.61)

From Equation (1.53), we have

(1.62)

Figure 1.10 illustrates the mutual information.
Hence, mutual information is the reduction in uncertainty of X, due to

knowledge of Y.Therefore, if X is the transmitted symbol and Y is the received
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symbol, mutual information could be interpreted as a measure of the amount
of information communicated to the receiver. We shall formally establish this
interpretation in the next section when we discuss Shannon’s channel coding
theorem.

Definition 1.7 (Conditional Mutual Information) The mutual information of
2 random variables X and Y conditioned on Z is given by

(1.63)

We shall summarize the properties of mutual information below.

Lemma 1.9 (Symmetry)

The proof can be obtained directly from definition.

Lemma 1.10 (Self-Information)

The proof can be obtained directly from the definition.

Lemma 1.11 (Lower Bound)

Equality holds if and only if X and Y are independent.

Lemma 1.12 (Chain Rule of Mutual Information)

Lemma 1.13 (Convexity of Mutual Information) Let (X, Y) be the random
variable with the joint pdf given by p(X)p(Y|X). I(X; Y) is a concave func-
tion of p(X) for a given p(Y|X). On the other hand, I(X; Y) is a convex func-
tion of p(Y|X) for a given p(X).

Lemma 1.14 (Data Processing Inequality) X, Y, Z are said to form a Markov
chain X Æ Y Æ Z if p(x, y, z) = p(x)p(y|x)p(z|y). If X Æ Y Æ Z, we have

Equality holds if and only if X Æ Z Æ Y.
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Corollary 1.1 (Preprocessing at the Receiver) If Z = g(Y), then X Æ Y Æ Z
and we have I(X; Y|Z) £ I(X; Y) and I(X; Z) £ I(X; Y). Equality holds in both
cases if and only if Y, X are independently conditioned on g(Y).

If we assume that X is the channel input and Y is the channel output, then
the function of received data Y cannot increase the mutual information about
X. On the other hand, the dependence of X and Y is decreased by the obser-
vation of a downstream variable Z = g(Y). Since I(X; Y) gives the channel
capacity as we shall introduced in the next section, Corollary 1.1 states that
the channel capacity will not be increased by any preprocessing at the receiver
input.

Corollary 1.2 (Postprocessing at the Transmitter) If Y = g(X), then X Æ Y
Æ Z and we have I(X; Z) £ I(Y; Z). Equality holds in both cases if and only
if X, Z are independently conditioned on g(X).

Similarly, any postprocessing at the transmitter cannot increase the channel
capacity as illustrated by Corollary 1.2. These points are illustrated in 
Figure 1.11.
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1.4.2 Shannon’s Channel Coding Theorem

The Shannon’s channel coding theorem is in fact based on the law of large
numbers. Before we proceed to establish the coding theorem, we shall discuss
several important mathematical concepts and tools.

Convergence of Random Sequence
Definition 1.8 (Random Sequence) A random sequence or a discrete-time
random process is a sequence of random variables X1(x), . . . , Xn(x), . . . ,
where x denotes an outcome of the underlying sample space of the random
experiment.

For a specific event x, Xn(x) is a sequence of of numbers that might or might
not converge. Hence, the notion of convergence of a random sequence might
have several interpretations:

Convergence Everywhere. A random sequence {Xn} converges everywhere
if the sequence of numbers Xn(x) converges in the traditional sense4 for
every event x. In other words, the limit of the random sequence is a
random variable X(x), which is Xn(x) Æ X(x) as n Æ ∞.

Convergence Almost Everywhere. Define V = {x : limnÆ∞xn(x) = x(x)} be the
set of events such that the number sequence xn(x) converges to x(x) 
as n Æ ∞. The random sequence xn is said to converge almost every-
where (or with probability 1) to x if there exists such a set V such that
Pr[V] = 1 as n Æ ∞.

Convergence in the Mean-Square Sense. The random sequence xn tends to
the random variable x in the mean-square sense if e[|xn - x|2] Æ 0 as 
n Æ ∞.

Convergence in Probability. The random sequence xn converges to the
random variable x in probability if for any e > 0, the probability 
Pr[|xn - x| > e] Æ 0 as n Æ ∞.

Convergence in Distribution. The random sequence xn is said to converge
to a random variable x in distribution if the cumulative distribution func-
tion (cdf) of xn(Fn(a)) converges to the cdf of x(F(a)) as n Æ ∞

for every point a of the range of x. Note that in this case, the sequence
xn(x) needs not converge for any event x.

Figure 1.12 illustrates the relationship between various convergence modes.
For instance, “almost-everywhere convergence” implies convergence in prob-

F F nn a a( ) Æ ( ) Æ •
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ability but not the converse. Hence, almost-everywhere convergence is a
stronger condition than convergence in probability. Obviously, convergence
everywhere implies convergence almost everywhere but not the converse.
Hence, convergence everywhere is an even stronger condition compared with
almost everywhere convergence. Another example is convergence in mean-
square sense implies convergence in probability because

as a result of Chebyshev’s inequality.5 Hence, if xn Æ x in mean-square sense,
then for any fixed e > 0, the right side tends to 0 as n Æ ∞. Again, the converse
is not always true. Note that convergence in mean-square sense does not
always imply convergence almost everywhere and vice versa.

Law of Large Numbers. The law of large numbers is the fundamental magic
behind information theory.

Weak Law of Large Numbers. If X1, . . . , Xn are i.i.d. random variables, then

lim
n

n
nn

X X
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The expression on the left side is also called the sample mean.

Strong Law of Large Numbers. If X1, . . . , Xn are i.i.d. random variables, then

with probability 1 (almost everywhere).

We shall explain the difference between the two versions of law of large
numbers by an example below.

Suppose that the random variable Xn has two possible outcomes {0, 1} and
the probability of the event Xn = 1 in a given experiment equals p and we wish
to estimate p to within an error e = 0.1 using the sample mean x̄(n) = (1/n)Snxn

as its estimate. If n ≥ 1000, then Pr[|x̄(n) - p| < 0.1] ≥ 1 - 1/(4ne 2) ≥ . Hence,
if we repeat the experiment 1000 times, then in 39 out of 40 such runs, our
error |x̄(n) - p| will be less than 0.1.

Suppose now that we perform the experiment 2000 times and we determine
the sample mean x̄(n) not for one n but for every n between 1000 and 2000.
The weak law of large numbers leads to the following conclusion. If our experi-
ment is repeated a large number of times, then for a specific n larger than 1000,
the error |x̄(n) - p| will exceed 0.1 only in one run out of 40. Hence, 97.5% of
the runs will be “good.” We cannot draw the conclusion that in the good runs,
the error will be less than 0.1 for every n between 1000 and 2000. This con-
clusion, however, is correct but can be deduced only from the strong law of
large numbers.

Typical Sequence. As a result of the weak law of large numbers, we have the
following corollary.

Corollary 1.3 (Typical Sequence) If X1, . . . , Xn are i.i.d. random variables
with distribution p(X), then

in probability.

The proof follows directly by recognizing (1/n)log2(p(X1, . . . , Xn)) =
(1/n)Sn log2 p(Xn), which converges to e[log2(p(X))] in probability.This is called
asymptotic equipartition (AEP) theorem. As a result of the AEP theorem, we
define a typical sequence as follows.

Definition 1.9 (Typical Sequence) A random sequence (x1, . . . , xN) is called
a typical sequence if 2-N(H(X)+e) £ p(x1, . . . , xN) £ 2-N(H(X)-e). The set of typical
sequences is called the typical set and is denoted by

1
2 1n
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Together with the AEP theorem, we have the following properties concerning
typical set AŒ. Please refer to the text by Cover and Thomas [30] for the proof
of the lemmas below.

Lemma 1.15 If (x1, . . . , xN) Œ A e, then

The proof follows directly from the definition of typical set A e.

Lemma 1.16

for sufficiently large N.

Lemma 1.17

for sufficiently large N.

Lemma 1.18

for sufficiently large N.

Figure 1.13 illustrates the concepts of typical set. As a result of AEP and
Lemma 1.16, the probability of a sequence (x1, . . . , xN) being a member of the
typical set A e is arbitrarily high for sufficiently large N. In other words, the
typical set contains all highly probable sequences. Suppose that Xn is a binary
random variable; then the total number of possible combinations in a sequence
(x1, . . . , xN) is 2N. However, as a result of Lemmas 1.17 and 1.18, the cardinal-
ity of A e is around 2NH(X). Since H(X) £ 1, we have |A e | £ 2N. This means 
that the typical set is in general smaller than the set of all possible sequences,
resulting in possible data compression. The key to achieve effective compres-
sion is to group the symbols into a long sequence to exploit the law of large
numbers.

Jointly Typical Sequence. We can extend the concept of typical sequence to
jointly typical sequence.

Ae
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Definition 1.10 (Jointly Typical Sequence) Let xN and yN be two sequences
of length N generated according to p(xN, yN). (xN, yN) is called a jointly typical
sequence if

and

The jointly typical set A e is defined as

Similarly, we have the following interesting properties about jointly typical
sequences.

Lemma 1.19 Let xN and yN be two sequences of length N drawn i.i.d. accord-
ing to p(xN, yN) = PN

n=1p(xn, yn). For any e > 0, we have

(1.64)

and

(1.65)Ae
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Furthermore, if (x
~
N, y

~
N) are two sequences drawn i.i.d. according to p(x

~
N, y

~
N)

= p(x
~
N)p(y

~
N) (i.e., the distributions of X

~
N and Y

~
N have the same marginal dis-

tribution as XN and YN but X
~
N and Y

~
N are independent), then

(1.66)

for sufficiently large N.

Hence, from these properties regarding typical sequences, we can see that
when N is sufficiently large, there are about 2NH(X) typical X sequences and
about 2NH(Y) typical Y sequences in the typical sets. However, not all pairs of
typical X sequence and typical Y sequence are jointly typical as illustrated in
Figure 1.14. There are about 2NH(X,Y) such jointly typical sequences between X
and Y. If xN and yN are naturally related according to their joint density func-
tion p(X, Y), then there is a high chance that (xN, yN) is in the jointly typical
set for sufficiently large N. However, if xN and yN are randomly picked from
their respective typical sets, the chance for (xN, yN) in the jointly typical set is
very small. This serves as an important property that we shall utilize to prove
the channel coding theorem in the next section.

Channel Coding Theorem. We have now introduced the essential mathe-
matical tools to establish the channel coding theorem. Before we proceed, here
is a summary of the definitions of channel encoder, generic channel, channel
decoder, and error probability in discrete-time domain.

1 2 23 3-( ) £ Œ{ } £- ( )+( ) - ( )-( )e e
e

eN I X Y N N N I X Y;
~ ~

;Pr ( )x y, A
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Figure 1.14. Illustration of a jointly typical set.



Definition 1.11 (Channel Encoder) The channel encoder is a device 
that maps a message index m Œ {1, 2, . . . , M = 2NR} to the channel input 
XN = [X1, . . . , XN] as illustrated in Figure 1.15.

Hence, the transmitter has to use the channel N times to deliver the message
m through the transmit symbols X1, . . . , XN and is specified by a function
mapping f : f :m Œ {1, 2, . . . , M = 2NR} Æ XN. Alternatively, the channel encoder
could be characterized by a codebook {XN(1), XN(2), . . . , XN(M)} with M ele-
ments. When the current message index is m, the channel encoder output will
be f(m) = XN(m). The encoding rate of the channel encoder is the number of
information bits delivered per channel use and is given by

Definition 1.12 (Generic Channel) A generic channel in discrete time is a
probabilistic mapping between the channel input XN and the channel output
YN as illustrated in Figure 1.16, namely, p(YN|XN). The channel is called mem-
oryless if p(YN|XN) = PN

n=1 p(Yn|Xn), meaning that the current output symbol Yn

is independent of the past transmitted symbols.6

R
M

N
=

( )log2
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m Æ XN

(x1,…,xN)

Figure 1.15. Channel encoder.

P (YN|XN )

Y1,…,YNX1,…,XN

Figure 1.16. Generic channel.

6 Strictly speaking, this definition of memoryless channel is valid only if the encoder has no knowl-
edge of the past channel outputs. i.e. p(Xn|Xn-1, Yn-1) = p(Xn|Xn-1).This condition holds in this book
as the feedback channel is used to carry channel state only. Otherwise, a more general definition
of memoryless channel should be: p(Yn|XnYn-1) = p(Yn|Xn) for all n ≥ 1[100]. This more general
definition reduces to the original definition if the encoder has no knowledge of past channel
outputs. This is because p(YN|XN) = Pnp(Yn|XNYn-1) = Pnp(Yn|XnYn-1) = Pnp(Yn|Xn).



Definition 1.13 (Channel Decoder) A channel decoder is a deterministic
mapping from the received symbols YN = [Y1, . . . , YN] to a decoded message
index m̂ Œ {1, 2, . . . , 2NR} as illustrated in Figure 1.17

for some decoding functions g. The error probability associated with a decod-
ing function is defined as

For simplicity and illustration purposes,we shall focus on the memoryless channel
unless otherwise specified. Shannon’s coding theorem is summarized below.

Theorem 1.5 (Shannon’s Channel Coding Theorem) Letting C = maxp(X)

I(X; Y). For rate R < C, there exists at least one channel encoder f and one
channel decoder g for the memoryless channel p(y|x) such that the error prob-
ability Pe Æ 0 as N Æ ∞. On the other hand, when R > C, the error probabil-
ity is bounded away from zero for any channel encoder and channel decoder.

In other words, the channel coding theorem establishes a rigid bound on the
maximal supportable data rate over a communication channel. From the def-
inition of C above, the channel capacity [aftermaximization over p(x)] is a
function of the channel p(y|x) only. Note that I(X; Y) is a function of both
transmitter design (p(x)) and the channel (p(y|x)). We shall exploit the typical
sequence to prove this powerful coding theorem on the basis of the random
codebook argument. It is also important to go over the proof as it helps us
understand the meaning of channel capacity and decoding mechanism.

Proof (Achievability) Let’s first consider the proof for the achievability 
part,which is,given R < C, there exist a channel encoder f and a channel decoder
g with arbitrarily low error probability.Consider a fixed distribution on x (p(x)).
We generate 2NR independent codewords at random according to the distribu-
tion p(x). Hence, we formed a random codebook given by the matrix

P g m me
N= ( ) π[ ]Pr Y is transmitted

m̂ g N= ( )Y
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Figure 1.17. Illustration of channel decoder.



where the mth row represents the mth codeword that will be transmitted when
the message index is m. The codebook W is then revealed to both the 
transmitter and the receiver. A message m Œ [1, 2NR] is chosen according to 
a uniform distribution. The mth codeword W(m) {which has N symbols x(m) 
= [x1(m), . . . , xN(m)]} is sent out of the transmitter. The receiver receives a
sequence y = [y1, . . . , yN] according to the distribution p(y|x) = PN

n=1 p(yn|xn).
At the receiver, the decoder guesses which message was transmitted accord-

ing to typical set decoding. The receiver declares that m̂ was transmitted if
there is one and only one index m̂ such that (x(m̂), y) is jointly typical. Hence,
if there does not exist such index m̂ or there is more than one such index, the
receiver declares error. There will also be decoding error if m̂ π m.

To prove the achievability part, we shall show that the error probability 
of such encoder and decoder can achieve an arbitrarily low level. The error
probability averaged over all possible random codebook realizations W is
given by

where

By symmetry of code construction, the average probability of error averaged
over all codes does not depend on the particular index m being sent. Without
loss of generality, assume that message m = 1 is transmitted. Define the events
Ei as

Thus Ei is the event that the ith codeword x(i) and y are jointly typical. Error
occurs when the transmitted codeword and the received sequence are not
jointly typical or a wrong codeword is jointly typical with the received
sequence. On the basis of the union bound, we have

E i ii
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and by the jointly AEP theorem, we have P(Ec
1) £ e for sufficiently large N.

Since by random code generation, x(1) and x(i) are independent, so are y and
x(i). By the jointly AEP theorem, we have

Hence, the average error probability is bounded by

If R < I(X; Y) - 3e, we can choose e and N such that P–e £ e. Since the average
error probability is averaged over all codebook realizations {W}, there exists
at least one codebook W* with a small average probability of error P*e(W*) 
£ e. This proved that there exists at least one achievable code with rate 
R < I(X; Y) - 3e for arbitrarily small error probability e.

Converse In the converse, we have to prove that any (N, 2NR) codes with
limNÆ∞ Pe

(N) = 0 must have R £ C. From Fano’s inequality, let Y be the channel
output from a discrete memoryless channel when X is the channel input. We
have I(X; Y) £ NC for all p(X) because

where the first equality is due to the fact that Yn depends on Xn only and the
last inequality is obtained directly from the definition of C. Let W be the
message index drawn according to a uniform distribution over [1, 2NR]. We
have

Thus
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Hence, if R > C, the error probability is bounded away from 0.

As a result of the random coding proof, we can see that good codes are actu-
ally very easy to find. For instance, we can randomly generate the M code-
words to form a random codebook. We reveal this randomly generated
codebook realization to the receiver so that the receiver can employ typical
sequence decoding as illustrated in the proof.The random codebook argument
presented above shows that there is a high chance that this randomly gener-
ated codebook is indeed a good code (or capacity achieving code). However,
in practice, the problem lies in the receiving side. If our receiver has infinite
processing power enabling us to exhaustively search in the decoding process,
then there is almost no need for any code design at the transmitter. Because
of limited processing power at the receiver, we have to create some artificial
structures in the channel encoder to facilitate simple decoding at the receiver.
For example, we have various types of codes such as block codes, trellis codes,
and turbo codes in the literature. Once these artificial structures are added,
good codes that can achieve the Shannon capacity are much harder to find.
Yet, the channel coding theorem offers a tight upper bound on the maximum
achievable rate so that we know how far we are from the best possible per-
formance when we design practical codes.

1.4.3 Examples of Channel Capacity

In this section, we try to illustrate the concept of channel capacity by looking
at several examples in wireless channels. We shall focus on some simple chan-
nels here. More sophisticated channels (such as the finite-state channels) will
be discussed in detail in Chapter 2. In general, there is no closed-form expres-
sion for channel capacity except for a few special cases.

Discrete Memoryless Channels. Real-world channels are continuous-time
with continuous-time input and continuous output. From Section 1.3, we estab-
lished the equivalence between continuous-time and discrete-time channels.
Hence, without loss of generality, we assume a discrete-time channel model
with channel input X Œ X and channel output Y Œ Y.

In general, the channel input X and the channel output Y are continuous
complex numbers. However, if we consider a superchannel including a M-ary
digital modulator, a memoryless physical channel, and a digital demodulator
with Q quantization levels, we have a M-input, Q-output discrete memoryless
channel as illustrated in Figure 1.18.

The M ¥ Q discrete memoryless channel is specified by the channel transi-
tion matrix p(y|x):

R P R
N

C P
C
R NRe

N
e

N£ + + fi ≥ - -( ) ( )1
1

1
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In addition, if the channel transition matrix is symmetric (i.e., all the rows are
permutation of each other and so are the columns), the channel is called a
symmetric channel.

Example 1.5 (Binary Symmetric Channel) A binary symmetric channel is a
discrete channel with X = {0, 1} and Y = {0, 1}. Furthermore, the probability of
error p(y = 0|x = 1) = p(y = 1|x = 0) = p and the probability of correct 
transmission is p(y = 0|x = 0) = p(y = 1|x = 1) = 1 - p as illustrated in Figure
1.19.

The mutual information is given by

where H2(p) = -plog2p - (1 - p) log2(1 - p) and the last inequality follows
because Y is a binary random variable. Equality holds if and only if 
p(Y = 1) = p(Y = 0) = 0.5. This is equivalent to uniform input distribution 
p(X = 0) = p(X = 1) = 0.5. Hence, we have C = 1 - H2(p) = 1 + plog2p +
(1 - p) log2(1 - p).

Example 1.6 (Binary Erasure Channel) A binary erasure channel is a dis-
crete channel with X = {0, 1} and Y = {0, 1, e}, where e denotes erasure.
Furthermore, the probability of erasure is p(y = e|x = 1) = p(y = e|x = 0) = p,
and the probability of correct transmission is p(y = 0|x = 0) = p(y = 1|x = 1) 
= 1 - p as illustrated in Figure 1.20.
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The channel capacity of the binary erasure channel is calculated as follows:

While the first guess for the maximum of H(Y) is log2(3), this is not achiev-
able by any choice of input distribution p(X). Let E be the event {Y = e},

C I X Y

H Y H Y X

H Y H p

p x

p x

p x

= ( )
= ( ) - ( )( )
= ( ) - ( )( )

( )

( )

( )

max ;

max

max 2
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(erasure). We have H(Y) = H(Y, E) = H(E) + H(Y |E). Letting p = p(X = 1),
we have H(Y ) = H2(p) + (1 - p)H2(p). Hence

where the capacity achieving input distribution is p = 0.5. The expression for
capacity has some intuitive meaning. Since a proportion p of the bits are erased
in the channel, we can recover at most a proportion (1 - p) of the bits. Hence,
the channel capacity is at most (1 - p).

Discrete-Input Continuous-Output Channels. A channel is called discrete-
input continuous-output if the channel input alphabet X is discrete and the
channel output alphabet Y is continuous. For example, the superchannel
including a digital modulator and a physical channel as illustrated in Figure
1.21 belongs to this type of channel. The channel is characterized by a transi-
tion density f(yN|xN). Similarly, the channel is memoryless if f(yN|xN) =
Pnf(yn|xn).

Example 1.7 (Binary Input Continuous-output AWGN Channel) Consider
a superchannel with a binary modulator and an AWGN physical channel. The
discrete-time received signal Yn is given by:

where Xn is the binary input and Zn is a zero-mean white Gaussian noise with
variance s 2

z. Hence,we have f(yN|xN) = Pnf(yn|xn), where f(yn|xn = -A)N(-A,
s 2

z) and f(yn|xn = A)N(A, s 2
z). The mutual information is given by
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where p = p(X = A). Hence, the mutual information is maximized when 
p = 0.5. Note that C £ 1 because the digital modulator in the “superchannel”
is a binary modulator delivering at most 1 bit per modulation symbol. At finite
channel noise, some of the bits transmitted will be in error. However, we
observe that C approaches 1 bit per channel use as s 2

z Æ 0. This means that
at high SNR, nearly all of the transmitted bits could be decoded at the receiver
and therefore, achieving a capacity of 1 bit per channel use.

In general, for M-ary modulator, the channel capacity is given by

where p = [p1, . . . , pM] and pq = p(X = q). In general, the capacity achieving
distribution p has to be evaluated numerically.

Continuous-Input Continuous-Output Channels. In this case, both the
channel input X and the channel output Y are continuous values (or complex
values in general). The channel is specified by the transition density f(y|x). In
fact, we can consider a continuous-input channel as a limiting case of a dis-
crete-input channel when we have infinitely dense constellation at the digital
modulator. For any input distribution p(X = x1), . . . , p(X = xM) of an M-ary
digital modulator, we could find an equivalent input distribution f(X) in the
continuous input case. In other words, we expect the channel capacity of con-
tinuous-input channels to be greater than or equal to the channel capacity of
discrete input channels because the input distribution of the latter case is a
subset of that in the former case.

Example 1.8 (Discrete Time AWGN Channel) Consider a discrete-time
AWGN channel where X Œ X is the channel input and Y Œ Y is the channel
output. Both the channel input and channel output are complex numbers. The
channel output is given by:
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where Zn is the white Gaussian channel noise with variance s 2
z. Therefore, the

channel transition probability is given by f(y|x) = .The

channel capacity is given by

where s 2
x = e[|X|2]. Note that the second equality is due to the fact that H(Z)

is independent of f(x) and the final equality is due to the fact that H(Y ) is
maximized if and only if Y is complex Gaussian, which is equivalent to X being
complex Gaussian.

Continuous-Time Channels. In this section, we try to connect the channel
capacity of discrete-time channels to continuous-time channels. The channel
capacity of discrete-time channels is expressed in units of bits per channel use.
On the other hand, the unit of channel capacity of continuous-time channels
is bits per second. To facilitate the discussion, let’s consider the following
example.

Example 1.9 (Continuous-Time AWGN Channel) Consider a continuous-
time AWGN channel with channel input X(t) (with two-sided bandwidth W)
and channel output Y(t). Both the channel input and channel output are
complex-valued random processes. The channel output is given by

where Z(t) is the white Gaussian channel noise with two-sided power spectral
density h0.

From the discussions in previous section, a bandlimited random process
X(t) could be represented in geometric domain as vector X in WT dimension
signal space over the complex field. Hence, the equivalent discrete time
channel is given by

where z is a zero-mean Gaussian i.i.d. sequence with variance s 2
z. The total

noise power is given by
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Hence, we have s 2
z = h0. The channel transition density is given by f(y|x) =

PWT
n=1 f(yn|xn), where

Treating X as a supersymbol, the asymptotic channel capacity [in bits per
second (bps)] is given by

Because of the i.i.d. nature of the noise sequence Z, we have

where s 2
x = e[|Xn|2]. On the other hand, the transmit power is given by

(1.67)

as T Æ ∞. Substituting into the capacity equation, the channel capacity (in bps)
is given by

(1.68)

Note that h0W equals to the total noise power and hence, the channel capac-
ity could also be written as C = log2(1 + SNR).

Define bandwidth efficiency as h = R/W, where R denotes the transmission
bit rate and W denotes the bandwidth. From Shannon’s capacity, the band-
width efficiency could be expressed as

where R is the bit rate and Eb is the bit energy. Since R/W = h, the equation
above has a solution as follows:

(1.69)
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In the limiting case of very large bandwidth, we have hmax Æ 0 and Eb/h0 ≥
log(2) = -1.59dB.This represents the absolute minimum bit energy :noise ratio
that is required to reliably transmit one bit of information over a very large
bandwidth.

Figure 1.22 illustrates the bandwidth efficiency versus Eb/h0 for various
modulation schemes over the AWGN channel. As mentioned, the capacity of
a continuous modulator is an upper bound of all other discrete modulators
such as BPSK, QPSK, and 16QAM. At a very low Eb/h0 region (such as in
deep-space communications), we have to sacrifice bandwidth to trade for
power efficiency because power is the limiting factor. Hence, modulation
schemes operating in the region are called bandwidth expansion modes. Exam-
ples are M-ary orthogonal modulations. On the other hand, when bandwidth
is a limited resource (such as in terrestrial communications), we have to sac-
rifice power for bandwidth efficiency. Examples are 16QAM and 64QAM
modulations. This region of operation is therefore referred to as consisting of
high-bandwidth-efficiency modes.
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1.5 SUMMARY

In this chapter, we have reviewed the fundamental concepts in wireless com-
munications. We have discussed the wireless fading channels in continuous-
time domain and established the equivalence between continuous-time and
discrete-time models based on the concept of signal space and sufficient sta-
tistics. The wireless fading channel is modeled as a random process H(t, �, r)
in the time domain t, frequency domain �, and the position domain r. Equiv-
alently,we can also characterize the random fading channels from the spectral
domain H(f, t, k), which involves the Doppler domain f, the delay domain t,
and the wavenumber domain k. In fact, the two random processes are related
by three-dimensional Fourier transform pairs (H(t, �, r) ´ H(f, t, k)).

In most cases, we are concerned with the types of random channels that are
wide-sense stationary (WSS) uncorrelated scattering (US). Hence, the auto-
correlation of H(t, �, r) is a function of (Dt, D�, Dr) only. To characterize the
statistical properties of the WSS-US random channels, we can define coher-
ence time Tc, coherence bandwidth Bc, and coherence distance Dc on the basis
of the one-dimensional autocorrelation RH(Dt), RH(D�) and RH(Dr).

On the other hand, from the spectral domains (f, t, k), the uncorrelated
scattering property implies that e[H(f, t, k)H*(f ¢, t ¢, k¢)] = SH(f, t, k)
d(f - f ¢)d(t - t ¢)d(k - k¢). Hence, we can also define the corresponding dual
parameters on the basis of the scattering function SH(f, t, k): the Doppler
spread s 2

f , the delay spread s 2
t, and the angle spread s 2

k . With respect to the
coherence bandwidth (or delay spread) and the transmitted bandwidth, we can
deduce whether flat fading channels (W < Bc) or frequency-selective fading
channels (W > Bc) will be experienced by the signal. On the other hand, on
the basis of the coherence time (or Doppler spread) and the transmitted
symbol duration, we can deduce whether we have fast fading channels 
(Tc < Ts) or slow fading channels (Tc > Ts).

Finally, we reviewed the fundamentals of information theory including
entropy, mutual information, and channel capacity. We illustrate the applica-
tion of information theory by evaluating the channel capacity of several simple
channels.

From now on, unless specified otherwise, we shall further develop the the-
ories and concepts based on the discrete-time model.

EXERCISES

1. Spreading and Coherence in different environment Recall that delay,
doppler and angle spread are defined by the environment and so as the cor-
responding frequency, time and spatial coherence. Using the knowledge of
them, determine the order of the following environment in terms of the
magnitudes of spreads and coherence with 1 being the smallest and 6 being
the largest.
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(a) Office
(b) Elevator
(c) Residential Building
(d) Underground Trains
(e) Bullet Trains
(f) Pedestrian Pathway

2. Wide Sense Stationary A random processes X(t, �, r) is regarded as a wide
sense stationary process if the correlation with itself only depends on the
difference of its parameters. Therefore, samples taking at an interval of
time, frequency and space are no different from samples taken at the shifts
of the interval. In other words, the randomness of the process does not
depends on its parameters. X(t, �, r) is the input random process of the
system characterized by a system function H(t, �, r) which is also random
in nature and Y(t, �, r) is the output random process. Suppose there is noise
N(t, �, r) in the system, the input-output equation is therefore

(a) Construct a random process X(t, �, r) which is WSS in time, frequency
and position.

(b) Under which condition(s) is output Y(t, �, r) WSS?
(c) Under which condition(s) are X(t, �, r) and Y(t, �, r) jointly WSS?

3. Upper Bound of differential entropy Differential entropy is the entropy of
a continuous random variable. It can be shown that the entropy is upper
bounded by the following.

where s 2
x is the variance of the random variable X.

(a) verify that the upper bound is achieved if X is of guassian distributed.

4. Entropy of morphism Compare the entropy of 2 random variables X and
Y if
(a) the mapping from X to Y is isomorphic
(b) the mapping from X to Y is endomorphic or subjective

5. Entropy of markov chains Suppose there are 2 states A and B as shown in
the diagram 1. At each state, one can choose to either stay in the same state
or jump to the other state. pAA, pAB, pBA, pBB are the corresponding transi-
tion probabilities. Define Xn to be the state at time instant n and X0 is the
initial state. Assume that it is equally probable for X0 to be A or B.

H X e x( ) £ ( )1
2

22
2log p s

Y t r H t r X t r N t r, , , , , , , ,� � � �( ) = ( ) ( ) + ( )
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(a) Find the probability if X3 equals A.
(b) What is the entropy of Xn, H(Xn) as n Æ ∞?
(c) verify the result obtained in (b) if the transition probabilities are sym-

metric. That is pAA = pBB and pAB = pBA.
(d) verify the result obtained in (b) if the transition probabilities are biased,

say to A. That is pAA >> pBA and pAB >> pBB.

6. Fano’s inequality Suppose Y is an estimate of the random variable X. If
there is no error, we can say that the conditional entropy H(X|Y) = 0. Thus,
the estimate error is expected to be small when the conditional entropy is
small. Recall the Fano’s inequality,

where Pe is the probability of error and |x| denote the size of the support
set of x. Therefore, given a target or required probability of error, it gives
an upper bound of the conditional entropy. To have more insight into this
inequality, we can reorganize the terms to be the following

Given the conditional entropy, Fano’s inequality provides a lower bound of
the probability of error. Define an indicator variable E such that

(a) Use chain rule of entropy to expand H(E, X |Y)
(b) Prove that H(E|Y) £ H(Pe).
(c) Prove that H(X |E, Y) £ Pe log(|x| - 1)
(d) Combining parts (a), (b) and (c) prove the Fano’s inequality.

E
X X

X X
= π

=
Ï
Ì
Ó
1

0

, ˆ ;

, ˆ .

if

if

P
H X Y

xe ≥
( ) -

( )
1

log

H P P x H X Ye e( ) + -( ) ≥ ( )log 1
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7. Binary symmetric channel v.s. Binary Erasure channel Suppose the input X
of the channel is equally probable to take values X0 and X1, (a = 0.5),
whereas the output can take values of Y0 and Y1. The probability of receiv-
ing the right symbol is denoted by p. In other words, p(Y0|X0) = p(Y1|X1) =
p. In the binary erasure channel, the output Y can take one more value e
which is called the erasure. The probability of getting the erasure is 1 - p
and p(Y0|X1) = p(Y1|X0) = 0. Both channels are shown as reference in 
figure 2.
(a) Compute H(X |Y) in the binary symmetric channel
(b) Compute H(X |Y) in the binary erasure channel
(c) Compute H(Y) in both cases.
(d) What does H(Y) tend to if p Æ 1? How about p Æ 0? Explain.

8. Venn Diagram Use Venn Diagram to illustrate the following
(a) I(X; Y |Z)
(b) I(X1, X2, X3; Y)

9. Channel Capacity of AWGN Channels
(a) Given an AWGN channel with channel output given by Yn = Xn + Zn,

show that the capacity is
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where s 2
x is the variance of X and s 2

z is the variance of Z.Assume every-
thing is complex. What is the unit of the capacity obtained.

(b) In practice, we transmit continuous waveforms x(t) instead of discrete-
time symbols, Xn. Using (a) and Nyquist sampling theorem, show that
the channel capacity of the continuous waveform AWGN channel with
bandwidth W is given by

where h0 is the single-sided noise power spectral density. What is the
unit of the capacity obtained.

C W
P

W
= +Ê

Ë
ˆ
¯log2

0
1

h

C x

z

= +Ê
ËÁ

ˆ
¯̃log2

2

2
1

s
s
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