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1.1 GOALS OF THIS BOOK

Is it possible to build a general-purpose learning machine, which can learn to maxi-
mize whatever the user wants it to maximize, over time, in a strategic way, even when
it starts out from zero knowledge of the external world? Can we develop general-
purpose software or hardware to “solve” the Hamilton-Jacobi-Bellman equation for
truly large-scale systems? Is it possible to build such a machine which works effec-
tively in practice, even when the number of inputs and outputs is as large as what the
mammal brain learns to cope with? Is it possible that the human brain itself is such
a machine, in part? More precisely, could it be that the same mathematical design
principles which we use to build rational learning-based decision-making machines
are also the central organizing principles of the human mind itself? Is it possible to
convert all the great rhetoric about “complex adaptive systems” into something that
actually works, in maximizing performance?

Back in 1970, few informed scientists could imagine that the answers to these
questions might ultimately turn out to be yes, if the questions are formulated carefully.
But as of today, there is far more basis for optimism than there was back in 1970.
Many different researchers, mostly unknown to each other, working in different
fields, have independently found promising methods and strategies for overcoming
obstacles that once seemed overwhelming.

This section will summarize the overall situation and the goals of this book briefly
but precisely, in words. Section 1.2 will discuss the needs and opportunities for ADP
systems across some important application areas. Section 1.3 will discuss the core
mathematical principles which make all of this real.
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Goal-oriented people may prefer to read Section 1.2 first, but bottom-up re-
searchers may prefer to jump immediately to Section 1.3. The discussion of goals
here and in Section 1.2 is really just a brief summary of some very complex lessons
learned over time, which merit much more detailed discussion in another context.

This book will focus on the first three questions above. It will try to bring together
the best of what is known across many disciplines relevant to the question: how
can we develop better general-purpose tools for doing optimization over time, by
using learning and approximation to allow us to handle larger-scale, more difficult
problems? Many people have also studied the elusive subtleties of the follow-on
questions about the human brain and the human mind [1]; however, we will never
be able to construct a good straw-man model of how the mammalian brain achieves
these kinds of capabilities, until we understand what these capabilities require of any
information processing system on any hardware platform, wet, dry, hard or ethereal.
The first three questions are a difficult enough challenge by themselves.

As we try to answer these three questions, we need to constantly re-examine what
they actually mean. What are we trying to accomplish here? What is a “general-
purpose” machine? Certainly no one will ever be able to build a system which is
guaranteed to survive when it is given just a microsecond to adapt to a totally crazy
and unprecedented kind of lethal shock from out of the blue. Mammal brains work
amazingly well, but even they get eaten up sometimes in nature. But certainly, we
need to look for some ability to learn or converge at reasonable speed (as fast as
possible!) across a wide variety of complex tasks or environments. We need to
focus on the long-term goal of building systems for the general case of nonlinear
environments, subject to random disturbances, in which our intelligent system gets to
observe only a narrow, partial window into the larger reality in which it is immersed.

In practical engineering, we, like nature, will usually not want to start our systems
out in a state of zero knowledge. But even so, we can benefit from using learning
systems powerful enough that they could converge to an optimum, even when starting
from zero. Many of us consider it a gross abuse of the English language when people
use the word “intelligent” to describe high-performance systems which are unable to
learn anything fundamentally new, on-line or off-line.

Inmany practical applications today, we can use ADP as akind of offline numerical
method, which tries to “learn” or converge to an optimal adaptive control policy for a
particular type of plant (like a car engine). But even in offline learning, convergence
speed is a major issue, and similar mathematical challenges arise.

Is it possible to achieve the kind of general-purpose optimization capability we
are focusing on here, as the long-term objective? Even today, there is only one
exact method for solving problems of optimization over time, in the general case
of nonlinearity with random disturbance: dynamic programming (DP). But exact
dynamic programming is used only in niche applications today, because the “curse
of dimensionality” limits the size of problems which can be handled. Thus in many
engineering applications, basic stability is now assured via conservative design, but
overall performance is far from optimal. (It is common to optimize or tweak a
control parameter here and there, but that is not at all the same as solving the
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dynamic optimization problem.) Classical, deterministic design approaches cannot
even address questions like: How can we minimize the probability of disaster, in
cases where we cannot totally guarantee that a disaster is impossible?

There has been enormous progress over the past ten years in increasing the scale
of what we can handle with approximate DP and learning; thus the goals of this book
are two-fold: (1) to begin to unify and consolidate these recent gains, scattered across
disciplines; and (2) to point the way to how we can bridge the gap between where we
are now and the next major watershed in the basic science — the ability to handle
tasks as large as what the mammal brain can handle, and even to connect to what we
see in the brain.

The term “ADP” can be interpreted either as “Adaptive Dynamic Programming”
(with apologies to Warren Powell) or as “Approximate Dynamic Programming” (as
in much of my own earlier work). The long-term goal is to build systems which
include both capabilities; therefore, 1 will simply use the acronym “ADP” itself.
Various strands of the field have sometimes been called “reinforcement learning”
or “adaptive critics” or “neurodynamic programming,” but the term “reinforcement
learning” has had many different meanings to many different people.

In order to reach the next major watershed here, we will need to pay more attention
to two major areas: (1) advancing ADP as such, the main theme of this book; (2)
advancing the critical subsystems we will need as components of ADP systems,
such as systems that learn better and faster how to make predictions in complex
environments.

1.2 FUNDING ISSUES, OPPORTUNITIES AND THE LARGER
CONTEXT

This book is the primary product of an NSF-sponsored workshop held in Mexico
in April 2002, jointly chaired by Jennie Si and Andrew Barto. The goals of the
workshop were essentially the same as the goals of this book. The workshop covered
some very important further information, beyond the scope of the book itself, posted
at http://www.eas.asu.edu/ nsfadp

The potential of this newly emerging area looks far greater if we can combine what
has been achieved across all the relevant disciplines, and put the pieces all together.
There are substantial unmet opportunities here, including some “low lying fruit.”
One goal of this book is to help us see what these opportunities would look like, if
one were to bring these strands together in a larger, more integrated effort. But as
a practical matter, large funding in this area would require three things: (1) more
proposal pressure in the area; (2) more unified and effective communication of the
larger vision to the government and to the rest of the community; (3) more follow-
through on the vision within the ADP community, including more cross-disciplinary
research and more unified education.

Greater cross-disciplinary cooperation is needed for intellectual reasons, as you
will see from this book. It is also needed for practical reasons. The engineering and
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operations research communities have done a good job on the applications side, on the
whole, while the computer science communities have done a good job on educational
outreach and infrastructure. We will need to combine both of these together, more
effectively, to achieve the full potential in either area.

At a lower level, the Control, Networks and Computational Intelligence (CNCI)
program in the Electrical and Communication Systems (ECS) Division of NSF has
funded extensive work related to ADP, including carlier workshops which led to
books of seminal importance [2, 3]. The center of gravity of CNCI has been the
IEEE communities interested in these issues (especially in neural networks and in
control theory), but ECS also provided some of the early critical funding for Barto,
Bertsekas and other major players in this field. ADP remains a top priority in CNCI
funding. It will benefit the entire community if more proposals are received in these
areas. The Knowledge and Cognitive Systems program in Intelligent Information
Systems (IIS) Division of NSF has also funded a great deal of work in related areas,
and has joined with ECS in joint-funding many projects.

In the panels that I lead for CNCI, I ask them to think of the funding decision itself
as a kind of long-term optimization problem under uncertainty. The utility function
to be maximized is a kind of 50-50 sum of two major terms — the potential benefit
to basic scientific understanding, and the potential benefit to humanity in general.
These are also the main considerations to keep in mind when considering possible
funding initiatives.

Occasionally, some researchers feel that these grand-sounding goals are too large
and too fuzzy. But consider this analogy. When one tries to sell a research project to
private industry, one must address the ultimate bottom line. Proposals which are not
well-thought-out and specifically tuned to maximize the bottom line usually do not
get funded by industry. The bottom line is different at NSF, but the same principle
applies. Strategic thinking is essential in all of these sectors. All ofus need to reassess
our work, strategically, on a regular basis, to try to maximize our own impact on the
larger picture.

The biggest single benefit of ADP research, in my personal view, is based on the
hope that answers to the first three questions in Section 1.1 will be relevant to the
further questions, involving the brain and the mind. This hope is a matter for debate in
the larger world, where it contradicts many strands of inherited conventional wisdom
going back for centuries. This book cannot do justice to those complex and serious
debates, but the connection between those debates and what we are learning from

ADP has been summarized at length elsewhere (e.g. [9, 52], with reference to further
discussions).

1.2.1 Benefits to Fundamental Scientific Understanding

In practice, the fundamental scientific benefit of most of the proposals which I see
comes down to the long-term watershed discussed above. There are few questions
as fundamental in science as “What is Mind or Intelligence?” Thus I generally ask
panelists to evaluate what the impact might be of a particular project in allowing us
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to get to the watershed earlier than we would without the project. Since we will
clearly need some kind of ADP to get there, ADP becomes the top scientific priority.
But, as this book will bring out, powerful ADP systems will also require powerful
components or subsystems. This book will touch on some of the critical needs and
opportunities for subsystems, such as subsystems which learn to predict or model
the external world, subsystems for memory, subsystems for stochastic search and
subsystems for more powerful function approximation. This book may be uniquely
important in identifying what we need to get from such subsystems, but there are
other books which discuss those areas in more detail. CNCI funds many projects
in those areas from people who may not know what ADP is, but are providing
capabilities important to the long-term goals. Likewise, there are many projects in
control system design which can feed into the long-term goal here, with or without
an explicit connection to ADP. In every one of these areas, greater unification of
knowledge is needed, for the sake of deeper understanding, more effective education,
and reducing the common tendencies toward reinventing or spinning wheels.

1.2.2 Broader Benefits to Humanity

Optimal performance turns out to be critical to a wide variety of engineering and
management tasks important to the future of humanity — tasks which provide excel-
lent test-beds or drivers for new intelligent designs. The ECS Division has discussed
the practical needs of many major technology areas, directly relevant to the goals
of achieving sustainable growth here on earth, of cost-effective settlement of space,
and of fostering human potential in the broadest sense. ADP has important potential
applications in many areas, such as manufacturing [3], communications, acrospace,
Internet software and defense, all of interest to NSF; however, test-beds related to
energy and the environment have the closest fit to current ECS activities.

This past year, ECS has played a major role in three cross-agency funding activ-
ities involving energy and the environment, where ADP could play a critical role in
enabling things which could not be done without it. It looks to me as if all three
will recur or grow, and all three are very open to funding partnerships between ADP
researchers and domain experts. The three activities focus on: (1) new crossdisci-
plinary partnerships addressing electric power networks (EPNES); (2) space solar
power (JIETSSP); and (3) sustainable technology (TSE). To learn about these activi-
ties in detail, search on these acronyms at http://www.nsf.gov. Here I will talk about
the potential role of ADP in these areas.

1.2.2.1 Potential Benefits In Electric Power Grids  Computational intelligence
is only one of the core areas in the CNCI program. CNCI is also the main funding
program in the US government for support of electric utility grid research. CNCI has
long-standing ties with the IEEE Power Engineering Society (PES) and the Electric
Power Research Institute (EPRI). Transitions and flexibility in the electric power
sector will be crucial to hopes of achieving a sustainable global energy system. Many
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people describe the electric power system of the Eastern United States as “the largest,
most complicated single machine ever built by man.”

The workshop led by Si and Barto was actually just one of two coordinated
workshops held back-to-back in the same hotel in Mexico. In effect, the first workshop
asked: “How can we develop the algorithms needed in order to better approximate
optimal control over time of extremely large, noisy, nonlinear systems?”” The second
workshop, chaired by Ron Harley of the University of Natal (South Africa) and
Georgia Tech, asked: “How can we develop the necessary tools in order to do
integrated global optimization over time of the electric power grid as one single
system?” It is somewhat frightening that some engineers could not see how there
could be any connection between these two questions, when we were in the planning
stages.

The Harley workshop — sponsored by James Momoh of NSF and Howard Uni-
versity, and by Massoud Amin of EPRI and the University of Minnesota — was
actually conceived by Karl Stahlkopf, when he was a Vice-President of EPRI. Iron-
ically, Stahlkopf urged NSF to co-sponsor a workshop on that topic as a kind of
act of reciprocity for EPRI co-sponsoring a workshop I had proposed (when I was
temporarily running the electric power area) on hard-core transmission technology
and urgent problems in California. Stahlkopf was very concerned by the growing
difficulty of getting better whole-system performance and flexibility in electric power
grids, at a time when nonlinear systems-level challenges are becoming more difficult
but control systems and designs are still mainly based on piecemeal, local, linear
or static analysis. “Is it possible,” he stressed, “to optimize the whole thing in an
integrated way, as a single dynamical system?”

It will require an entire new book to cover all the many technologies and needs for
optimization discussed at the second workshop. But there are five points of particular
relevance here.

First, James Momoh showed how his new Optimal Power Flow (OPF) system —
being widely distributed by EPRI — is much closer to Stahlkopf’s grand vision than
anything else now in existence.

Real-world suppliers to the electric utility industry have told me that OPF is far
more important to their clients than all the other new algorithms put together. OPF
does provide a way of coordinating and integrating many different decisions across
many points of the larger electric power system. Momoh’s version of OPF — using a
combination of nonlinear interior point optimization methods and genetic algorithms
—has become powerful enough to cope with a growing variety of variables, all across
the system. But even so, the system is “static” (optimizes at a given time slice) and
deterministic. Stahlkopf’s vision could be interpreted either as: (1) extending OPF to
the dynamic stochastic case — thus creating dynamic stochastic OPF (DSOPF); (2)
applying ADP to the electric power grid. The chances of success here may be best if
both interpretations are pursued together in a group which understands how they are
equivalent, both in theory and in mathematical details. Howard University may be

particularly well equipped to move toward DSOPF in this top-down, mathematically-
based approach.
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Some researchers in electric power are now working to extend OPF by adding the
“S” but not the “D”. They hope to learn from the emerging area of stochastic pro-
gramming in operations research. This can improve the treatment of certain aspects
of power systems, but it does provide a capability for anticipatory optimization. It
does not provide a mechanism for accounting for the impact of present decisions on
future situations. For example, it would not give credit to actions that a utility system
could take at present in order to prevent a possible “traffic jam” or breakdown in the
near future. Simplifications and other concepts from stochastic programming could
be very useful within the context of a larger, unifying ADP system, but only ADP is
general enough to allow a unified formulation of the entire decision problem.

Second, Venayagamoorthy of Missouri-Rolla presented important results which
form a chapter of this book. He showed how DHP — a particular form of ADP
design — results in an integrated control design for a system of turbogenerators
which is able to keep the generators up, even in the face of disturbances three times
as large as what can be handled by the best existing alternative methods. This was
shown on an actual experimental electric power grid in South Africa. The neural
network models of generator dynamics were trained in real time as part of this design.
The ability to keep generators going is very useful in a world where containing and
preventing system-wide blackouts is a major concern. This work opens the door to
two possible extensions: (1) deployment on actual commercially running systems, in
areas where blackouts are a concern or where people would like to run generators ata
higher load (i.e. with lower stability margins); (2) research into building up to larger
and larger systems, perhaps by incorporating power-switching components into the
experimental networks and models. This may offer a “bottom-up” pathway toward
DSOPF. This work was an outcome of a CNCI grant to fund a partnership between
Ron Harley (a leading power engineer) and Don Wunsch (a leading researcher in
ADP from the neural network community).

Third, the DHP system used in this example outputs value signals which may
be considered as “price signals” or “shadow prices.” They represent the gradient
of the more conventional scalar value function used in the Bellman equation or in
simpler ADP designs. They are generalizations of the Lagrange Multipliers used in
Momoh’s OPF system. They may also offer new opportunities for a better interface
between the computer-based grid control systems and the money-based economic
control systems.

Fourth, there is every reason to worry that the technology used by Venayagamoor-
thy — which works fine for a dozen to a few dozen continuous state variables — will
start to break down as we try to scale up to thousands of variables, unless the compo-
nents of the design are upgraded, as 1 will discuss later in this chapter. The effort to
scale up is, once again, the core research challenge ahead of us here. One warning:
some writers claim to handle a dozen state variables when they actually mean that
they handle a dozen possible states in a finite-state Markhov chain system; however,
in this case, I really am referring to a state space which is R12, a twelve-dimensional
space defined by continuous variables, which is highly nonlinear, and not reducible
to clusters around a few points in that space.
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Finally, ADP researchers who are interested in exploring this area are strongly
urged to look up “EPNES” at http://www.nsf.gov, and look in particular at the
benchmark problems discussed there. The benchmark problems there, developed in
collaboration between the two sponsors (NSF and the Navy), were designed to make
it as easy as possible for non-power-engineers to try out new control approaches.
As a practical matter, however, EPNES is more likely to fund partnerships which do
include a collaborator from hard-core power engineering.

1.2.2.2 Potential Benefits in Space Solar Power (SSP) The Millennium Project
of the United Nations University (http://millennium-project.org) recently asked de-
cision makers and science policy experts all over the world: “What challenges can
science pursue whose resolution would significantly improve the human condition?”
The leading response was: “Commercial availability of a cheap, efficient, environ-
mentally benign non-nuclear fission and non-fossil fuel means of generating base-load
electricity, competitive in price with today’s fossil fuels.” Space solar power is a high
risk vision for future technology, but many serious experts believe that it is the most
promising of the very few options for meeting this larger need. (Earth-based solar
is another important option.) Thus in March 2002, NASA, NSF and EPRI issued a
solicitation for proposals called the “Joint Investigation of Enabling Technologies for
Space Solar Power (JIETSSP).” John Mankins of NASA and I served as co-chairs of
the Working Group which managed this activity.

Reducing cost was the number one goal of this effort. For each proposal, we
asked the reviewers to consider: What is the potential impact of funding this work
on reducing the time we have to wait, before we know enough to build SSP systems
which can safely beat the cost of nuclear power in developing regions like the Middle
East? We also asked the usual questions NSF asks about the potential benefits to
basic science and other impacts.

Earlier proposals for SSP, dating back to the 1960’s and 1970’s, could not meet this
kind of cost target, for several reasons. One of the key problems was the enormous
cost of sending up humans to do all of the assembly work in space. Consider the
total costs of sending up six people to live in a space station, multiply by a thousand,
and you begin to see how important it is to reduce this component of cost as much as
possible.

JIETSSP was partly the outcome of a workshop organized by George Bekey of
USC in April 2000, jointly sponsored by NSF and NASA. The original goal was
to explore how radically new approaches to robotics, such as robots building robots
or robots with real intelligence, might be used to reduce costs either in space solar
power or in building earth-based solar power systems.

The most practical concept to emerge from that workshop was the concept of
“teleautonomy” as described by Rhett Whittaker of Carnegie-Mellon. Truly au-
tonomous, self-replicating robots may indeed become possible, using ADP and other
new technologies, but we do not really need them for SSP, and we need to make SSP
affordable as soon as possible. But by the same token, we cannot afford to wait until
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domain specialists in robotics develop complete three-dimensional physics models
of every possible task and every possible scenario that might occur in space.

Whittaker proposed that we plan for a system in which hundreds of human oper-
ators (mostly on earth) control hundreds or thousands of robots in space, to perform
assembly and maintenance. He proposed that we build up to this capability in an
incremental way, by first demonstrating that we can handle the full range of required
tasks in a more traditional telerobotics mode, and then focus on coordination and cost
reduction. Ivory tower robotics research can easily become a gigantic, unfocused,
nonproductive swamp; Whittaker’s kind of strategy may be crucial to avoiding such
pitfalls. Greg Baiden, of Penguin ASI in Canada and Laurentian University, has
implemented real-world teleautonomy systems used in the mining industry which
can provide an excellent starting point. Lessons from assembling the International
Space Station need to be accounted for as well.

In the short term, the most promising role for ADP in SSP robotics may be
mid-level work, analogous to the work of Venayagamoorthy in electric power. Ve-
nayagamoorthy has developed better sensor-based control policies, flexible enough
to operate over a broader range of conditions, for a component of the larger power
system. In the same way, ADP could be used to improve performance or robustness
or autonomy for components of a larger teleautonomy system. Half of the intellectual
challenge here is to scope out the testbed challenges which are really important within
realistic, larger systems designs in the spirit of Whittaker or Baiden.

What kinds of robotics tasks could ADP really help with, either in space or on
earth?

Practical robotics in the United States often takes a strictly domain-specific ap-
proach, in the spirit of expert systems. But the robotics field worldwide respects the
achievements of Hirzinger (in Germany) and Fukuda (in Japan), who have carefully
developed ways to use computational intelligence and learning to achieve better re-
sults in a wide variety of practical tasks. Fukuda’s work on free-swinging, ballistic
kinds of robots (motivated by the needs of the construction industry) mirrors the needs
of space robotics far better than the domain-specific Japanese walking robots that
have become so famous. Hirzinger has found ways to map major tasks in robotics into
tasks for general-purpose learning systems [4], where ADP (and related advanced
designs) may be used to achieve capabilities even greater than what Hirzinger himself
has achieved so far.

It is also possible that new research, in the spirit of Warren Powell’s chapter
10 in this book, could be critical to the larger organizational problems in moving
thousands of robots and materials around a construction site in space. Powell’s
methods for approximating a value function have been crucial to his success so far
in handling dynamic optimization problems with thousands of variables — but even
more powerful function approximators might turn out to be important to SSP, if
coupling effects and nonlinearities should make the SSP planning problems more
difficult than the usual logistics problems on earth. We do not yet know.

In 2002, JIETSSP funded twelve or thirteen research projects (depending on how
one counts). Five of these were on space robotics. These included an award to Singh,
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Whittaker and others at Carnegie-Mellon, and other projects of a more immediate
nature. They also included two more forwards-looking projects — one led by Shen at
USC and one by Jennie Si— aiming at longer-term, more fundamental improvements
in what can be done with robots. The Si project emphasizes ADP and what we can
learn from biology and animal behavior. The Shen project emphasizes robots which
can adapt their physical form, in the spirit of Transformers, in order to handle a wide
range of tasks.

A deep challenge to NASA and NSF here is the need to adapt to changes in high-
level design concepts for SSP. “What are we trying to build?” ask the roboticists. But
we don’t yet know. Will it be something like the Sun Tower design which Mankins’
groups developed a few years ago? Or will the core element be a gigantic light-to-
light laser, made up of pieces “floating” in a vacuum, held together by some kind
of tensegrity principle with a bit of active feedback control? Could there even be
some kind of safe nuclear component, such as a laser fusion system in space, using
the new kinds of fuel pellets designed by Perkins of Lawrence Livermore which
allow light-weight MHD energy extraction from the protons emerging from D-D
fusion? One should not even underestimate ideas like the Ignatiev/Criswell schemes
for using robotic systems to exploit materials on the moon. Given this huge spectrum
of possibilities, we clearly need approaches to robotic assembly which are as flexible
and adaptive as possible.

1.2.2.3 Benefits to Technology for a Sustainable Environment (ISE) Com-
plicated as they are, the electric power grid and the options for SSP are only two
examples taken from a much larger set of energy/environment technologies of interest
to the Engineering Directorate of NSF and to its partners, (e.g., see [5]).

Many of the other key opportunities for ADP could now fit into the recently
enlarged scope of Technology for a Sustainable Environment (TSE), a joint initiative
of EPA and NSF. Recent progress has been especially encouraging for the use of
intelligent control in cars, buildings and boilers.

Building energy use is described at length in the chapter by Charles Anderson
et al., based on a grant funded jointly by CNCI and by the CMS Division of NSF.
Expert reviewers from that industry have verified that this new technology really does
provide a unique opportunity to reduce energy use in buildings by a significant factor.
Furthermore, use of ADP should make it possible to learn a price-responsive control
policy, which would be very useful to the grid as a whole (and to saving money for
the customer). There are important possibilities for improved performance through
further research — but the biggest challenge for now is to transfer the success already
achieved in the laboratory to the global consumer market. There are no insuperable
barriers here, but it always takes a lot of time and energy to coordinate the many
aspects of this kind of fundamental transition in technology.

ADP for cars has larger potential, but the issues with cars are more complicated.
There are urgent needs for reduced air pollution and improved fuel flexibility and
efficiency in conventional cars and trucks. Many experts believe that the emission
of NOx compounds by cars and trucks is the main accessible cause of damage to



FUNDING ISSUES, OPPORTUNITIES AND THE LARGER CONTEXT 13

human health and to nature today, from Los Angeles to the Black Forrest of Germany.
Improved fuel flexibility could be critical to the ability of advanced economies to
withstand sharp reductions in oil supply from the Middle East ten years in the future
— an issue of growing concern. In the longer term, cost and efficiency concerns will
be critical to the rate at which new kinds of cars — hybrid-electric, pure electric or
fuel-cell cars — can actually penetrate the mass market.

Up to now, Feldkamp’s group at Ford Research has demonstrated the biggest
proven opportunity for learning systems to yield important benefits here. By 1998,
they had demonstrated that a neural network learning system could meet three new
stringent requirements of the latest Clean Air Act in an affordable way, far better
than any other approach ever proven out: (1) on-board diagnostics for misfires, using
time-lagged recurrent networks (TLRN); (2) idle speed control; (3) control of fuel/air
ratios. In September of 1998, the President of Ford committed himself (in a major
interview in Business Week) to deploying this system in every Ford car made in the
world by 2001. An important element of this plan was a new neural network chip
design from Mosaix LLC of California (led by Raoul Tawel of the Jet Propulsion
Laboratory), funded by an SBIR grant from NSF, which would cost on the order of
$1-$10 per chip. Ken Marko — who until recently ran a Division at Ford Research
which collaborated closely with Feldkamp’s Division — was asked to organize a
major conference on clean air technology for the entire industry, based in part on this
success. But there are many caveats here.

First, there have been changes in the Clean Air Act in the past few years, and
major changes in Ford management.

Second, management commitment by itself is not sufficient to change the basic
technology across a large world-wide enterprise, in the throes of other difficult
changes. The deployment of the lead element of the clean air system — the misfire
detector — has moved ahead very quickly, in actuality. Danil Prokhorov — who has
an important chapter in this book — has played an important role in that activity,
under Lee Feldkamp.

Third, the neural network control system was not based on ADP, and was not
trained to reduce NOx as such. Statistics on NOx reduction were not available,
at last check. The control system and the misfire detectors were both based on
TLRNs trained by backpropagation through time (BPTT [7]). In effect, they used
the kind of control design discussed in Section 2.10 of my 1974 Ph.D. thesis on
backpropagation [6], which was later implemented by four different groups by 1988
[2] including Widrow’s famous truck-backer-upper, and was later re-interpreted as
“neural model predictive control” ([3, ch. 13], [8]). Some re-inventions of the method
have described it as a kind of “direct policy reinforcement learning,” but it is not a
form of ADP. It does not use the time-forwards kind of learning system required of
a plausible model of brain-like intelligence. Some control engineers would call it a
kind of receding horizon method. Feldkamp’s group has published numerous papers
on the key ideas which made their success possible, summarized in part in [4].

In his chapter 15, Prokhorov raises a number of questions about ADP versus BPTT
which are very important in practical engineering. Properly implemented (as at Ford),
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BPTT tends to be far superior in practice to other methods commonly used. Stability
is guaranteed under conditions much broader than what is required for stability with
ordinary adaptive control [8, 9]. Whenever BPTT and ADP can both be applied to a
task in control or optimization, a good evaluation study should use both on a regular
basis, to provide akind of cross-check. Powell’s chapter gives one good example of a
situation where ADP works far better than a deterministic optimization. (Unless one
combines BPTT with special tricks developed by Jacobsen and Mayne [10], BPTT
is a deterministic optimization method.) There are many connections between BPTT
and ADP which turn out to be important in advanced research, as Prokhorov and I
have discussed. Many of the techniques used by Ford with BPTT are essential to
larger-scale applications of ADP as well.

More recently, Jagannathan Sarangapani of the University of Missouri-Rolla has
demonstrated a 50 percent reduction in NOx (with a clear possibility for getting it
lower) in tests of a simple neural network controller on a Ricardo Hydra research
engine with cylinder geometry identical to that of the Ford Zetec engine [11], under
a grant from CNCI. Sarangapani has drawn heavily on his domain knowledge from
years of working at Caterpillar, before coming to the university. While BPTT and
ADP both provide a way to maximize utility or minimize error over the entire future,
Sarangapani has used a simpler design which tries to minimize error one time step
into the future, using only one active “control knob” (fuel intake). But by using a
good measure of error, and using real-time learning to update his neural networks,
he was still able to achieve impressive initial results.

Saragapani explains the basic idea as follows. People have known for many years
that better fuel efficiency and lower NOx could be achieved, if engines could be
run in a “lean regime” (fuel air ratios about 0.7) and if exhaust gasses could be
recycled into the engine at a higher level. But in the past, when people did this, it
resulted in a problem called “cyclic dispersion” — a kind of instability leading to
misfires and other problems. Physics-based approaches to modeling this problem and
preventing the instabilities have not been successful, because of real-world variations
and fluctuations in engine behavior. By using a simple neural network controller,
inspired by ideas from his Ph.D. thesis adviser Frank Lewis [12], he was able to
overcome this problem. This approach may lead to direct improvements in air
quality from large vehicles which do not use catalytic converters (and are not likely
to soon, for many reasons).

As with the Anderson work, it will be important to take full advantage of the initial
breakthrough in performance here. But one can do better. One may expect better
performance and extensions to the case of cars by incorporating greater foresight
— by minimizing the same error or cost measure Sarangapani is already using, but
minimizing it over the long-term, and multiplying it by a term to reflect the impact
of fuel-oxygen ratios on the performance of the catalytic converter (or using a more
direct measure or predictor of emissions); ADP provides methods necessary to that
extension. ADP should also make it possible to account for additional “control
knobs” in the system, such as spark plug advance and such, which will be very
important to wringing out optimal performance from this system. It may also be
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important to use the approaches Ford has used to train TLRNS to predict the system,
in order to obtain additional inputs to the control systems, in order to really maximize
performance and adaptability of the system. (See 1.3.2.2.) It may even be useful to
use something like the Ford system to predict the likelihood of misfire, to construct
an error measure still better than what Saragapani is now using. In the end, theory
tells us to expect improved performance if we take such measures, but we will not
know how large such improvements can actually be until we try our best to achieve
them.

ADP may actually be more important to longer-term needs in the world of cars
and trucks.

For example, if mundane issues of mileage and pollution are enough to justify
putting learning chips into all the cars and trucks in the world, then we can use those
chips for additional purposes, without adding too much to the cost of a car. Years ago,
the first Bush Administration made serious efforts to try to encourage dual-fired cars,
able to flip between gasoline and methanol automatically. Roberta Nichols (now with
University of California Riverside) once represented Ford in championing this idea
at a national level. But at that time, it would have cost about $300 per car to add this
flexibility, and oil prices seemed increasingly stable. In 2003, it seems increasingly
clear that more “fuel insurance” would be a very good thing to have, and also an
easier thing to accomplish. Materials are available for multi-fuel gas tanks. It does
not have to be just gasoline or methanol; a wide spectrum can be accommodated.
But more adaptive, efficient engine control becomes crucial. Learning-based control
may provide a way to make that affordable. Fuel flexibility may also be important
in solving the “chicken and egg” problems on the way to a more sustainable mix of
energy sources.

Cost and efficiency of control are central issues as well in hybrid, electric and fuel
cell vehicles. As an example, chemical engineers involved in fuel cells have often
argued that today’s fuel cell systems are far less efficient than they could be, if only
they took better advantage of synergies like heat being generated in one place and
needed in another, with the right timing. Optimization across time should be able to
capture those kinds of synergies.

1.2.2.4 Benefits in Other Application Domains  For reasons of space, I cannot
do real justice to the many other important applications of ADP in other areas. [ will
try to say a little, but apologize to those who have done important work I will not get
to.

Certainly the broader funding for ADP, beyond ECS, would benefit from greater
use of ADP in other well-funded areas such as counterterrorism, infrastructure pro-
tection above and beyond electric power, health care, transportation, other branches
of engineering and software in general. Sometimes strategic partnerships with do-
main experts and a focus on benchmark challenges in those other sectors are the
best way to get started. When ECS funding appears critical to opening the door
to large funding from these other sources, many of us would bend over backwards
to try to help, within the constraints of the funding process. In some areas — like
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homeland security and healthcare, in particular — the challenges to humanity are so
large and complex that the funding opportunities available today may not always be
a good predictor of what may become available tomorrow, as new strategies evolve
to address the underlying problems more effectively.

Ferrari and Stengel in this book provide solid evidence for an astounding conclu-
sion — namely, that significant improvements in fuel efficiency and maneuverability
are possible even for conventional aircraft and conventional maneuvers, using ADP.
Stengel’s long track record in aerospace control and optimal control provides addi-
tional evidence that we should take these results very seriously.

ADP clearly has large potential in “reconfigurable flight control (RFC),” the effort
to control aircraft so as to minimize the probability of losing the aircraft after damage
so severe that an absolute guarantee of survival is not possible. The large current
efforts in RFC across many agencies (most notably NASA Ames) can be traced back
to successful simulation studies using ADP at McDonnell-Douglas, using McDon-
nell’s in-house model of its F-15 [3]. Mark Motter of NASA organized a special
session at the American Control Conference (ACCO1 Proceedings) giving current
status and possibilities. Lendaris’ work in this book was partly funded by NSF,
and partly funded under Motter’s effort, in association with Accurate Automation
Corporation of Tennessee. Jim Neidhoefer and Krishnakumar developed important
ADP applications in the past, and have joined the NASA Ames effort, where Charles
Jorgensen and Arthur Soloway made important earlier contributions, particularly in
developing verification and validation procedures.

It is straightforward to extend ADP for use in strategic games. Some of the
hybrid control designs described by Shastry and others are general-purpose ADP
designs, with clear applicability to strategic games, autonomous vehicles and the
like. Balakrishnan has demonstrated success in hit-to-kill simulations (on benchmark
challenges provided by the Ballistic Missile Defense Organization) far beyond that
of other competitors. As with electric power, however, upgraded components may be
critical in making the transition from controlling one piece of the system, to optimal
management of the larger theater.

There is also a strong parallel between the goal of “value-based management” of
communication networks and the goal of DSOPF discussed in Section 1.2.2.1. In
particular, preventing “traffic jams” is essentially a dynamic problem, which static
optimization and static pricing schemes cannot address as well.

Helicopter control and semiconductor manufacturing with ADP have been ad-
dressed by Jennie Si in this book, and by David White in [3] and in other places.
Unmet opportunities probably exist to substantially upgrade the manufacturing of
high-quality carbon-carbon composite parts, based on the methods proven out by
White and Sofge when they were at McDonnell-Douglas [3].

As this book was going to press, Nilesh Kulkarni of Princeton and Minh Phan of
Dartmouth reported new simulations of the use of ADHDP in design of plasma hyper-
sonic vehicles, a radically new approach to lower-cost reusable space transportation,
where it is crucial to have a more adaptive nonlinear sort of control scheme like ADP.
(This was jointly funded by CNCI and by the Air Force.) During the meeting at
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the Wright-Patterson Air Force Base, the key aerospace designers and funders were
especially enthusiastic about the possible application of ADP to “Design for Optimal
Dynamic Performance,” which we had asked Princeton to investigate. In DODP, the
simulator would contain truly vicious noise (reflecting parameter uncertainties), and
ADP would be used to tune both the weights and the physical vehicle design pa-
rameters so as to optimize performance over time. Researchers such as Frank Lewis
and Balakrishnan have demonstrated promising systems and opportunities with Mi-
croElectroMechanical Systems (MEMS), a key stream of nanotechnology. Many
forward-looking funding discussions stress how we are moving toward a new kind
of global cyberinfrastructure, connecting in a more adaptive way from vast networks
of sensors to vast networks of action and decision, with more and more fear that we
cannot rely on Moore’s Law alone to keep improving computing throughput per dol-
lar beyond 2015. ADP may provide a kind of unifying framework for upgrading this
new cyberinfrastructure, especially if we develop ADP algorithms suitable for im-
plementation on parallel distributed hardware (such as cellular neural networks)with
analog aspects (as in the work of Chris Diorio, funded by ECS).

Many researchers such as John Moody have begun to apply ADP or related
methods in financial decision-making. Older uses of neural networks in finance have
taken a “behaviorist” or “technical” approach, in which the financial markets are
predicted as if they were stochastic weather systems without any kind of internal
intelligence. George Soros, among others, has argued very persuasively and very
concretely how limited and dangerous that approach can become (even though many
players are said to be making a lot of money in proprietary systems). The financial
system itself may be analyzed as a kind of value-calculation system or critic network.
More concretely, the systems giving supply and demand (at a given price) may be
compared to the Action networks or policy systems in an ADP design, and systems
which adapt prices to reflect supply and demand and other variables may be compared
to certain types of critic systems (mainly DHP). The usual pricing systems assumed in
microeconomic optimality theorems tend to require perfect foresight, but ADP critics
remain valid in the stochastic case; thus they might have some value in areas like
auction system development, stability analysis, or other areas of economic analysis.

Again, of course, the work by Warren Powell on large-scale logistics problems is
a major watershed in showing how ADP can already outperform other methods, and
is doing so today on large important real-world management problems.

1.3 UNIFYING MATHEMATICAL PRINCIPLES AND ROADMAP
OF THE FIELD

1.3.1 Definition of ADP, Notation and Schools of Thought

The key premise of this book is that many different schools of thought, in different
disciplines, using different notation have made great progress in addressing the same
underlying mathematical design challenge. Each discipline tends to be fiercely
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attached to its own notation, terminology and personalities, but here I will have to
choose a notation “in the middle” in order to discuss how the various strands of
research fit each other. I will try to give a relatively comprehensive review of the
main ideas, but | hope that the important work which I do not know about will be
discussed in the more specialized reviews in other chapters of this book.

Before I define ADP, I will first define a focused concept of reinforcement learning,
as a starting point. The founders of artificial intelligence (AI)[13] once proposed that
we build artificial brains based on reinforcement learning as defined by Figure 1.1:

External
Environment
or "Plant"

U(t) "utility" or "reward"
or "reinforcement”

X(t) x u
sensor inputs " RLS -

actions

Fig. 1.1 Reinforcement Learning in Al. Reinforcement Learning Systems (RLS) choose
actions u so as to maximize U, informed by raw sensor data X.

(See Figure 3.1 of [2] for a more intuitive cartoon version.). At each time ¢, a Re-
inforcement Learning System (RLS) outputs a list of numbers u (1), ug(2) . . . un(t),
which form a vector G(¢). These numbers form the “action vector” or “decisions”
or “controls” which the RLS uses in order to influence its environment. The RLS is
supposed to operate in a digital kind of fashion, from time tick to time tick; thus the
time ¢ is treated as an integer. [ would define an RLS as a certain type of system which
is designed to learn how to output actions, 1(t), so as to maximize the expected value
of the sum of future utility over all future time periods:

oo k
MAXIMIZE <Z (T’Jl;_r) U(t+k)>. (1.1)

k=0
Already some questions of notation arise here.

Here I am proposing that we should use the letter “U” for utility, because the
goal of these systems is to maximize the expectation value of “cardinal utility,” a
concept rigorously developed by Von Neumann and Morgenstern [14] long before
the less rigorous popular versions appeared elsewhere. The concept of cardinal
utility is central to the field of decision analysis [15] (or “risk assessment”) which
still has a great deal to contribute to this area. Other authors have often used the
letter “r” for “reinforcement” taken from animal learning theory. Animal learning
theory also has a great deal to contribute here, but the concepts of “reinforcement
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learning” used in animal learning theory have been far broader and fuzzier than the
specific definition here. The goal here is to focus on a mathematical problem, and
mathematical specificity is crucial to that focus.

Likewise, I am using the letter “»” for the usual discount rate or interest rate as
defined by economists for the past many centuries. It is often convenient, in pure
mathematical work, to define a discount factor v by:

_ 1
T 14

gl (1.2)

However, the literature of economics and operations research has a lot to say about
the meaning and use of 7 which is directly relevant to the use of ADP in engineering
as well [16]. Some computer science papers discuss the choice of «y as if it were
purely a matter of computational convenience — even in cases where the choice of y
makes a huge difference to deciding what problem is actually being solved. Values
of v much less than one can be a disaster for systems intended to survive for more
than two or three time ticks.

From the viewpoint of economics, the control or optimization problems which
we try to solve in engineering are usually just subproblems of a larger optimization
problem — the problem of maximizing profits or maximizing value-added for the
company which pays for the work. To do justice to the customer, one should use an
interest rate  which is only a few percent per year. True, ethical foresight demands
that we try to set » = 0, in some sense, for the utility function U which we use
at the highest level of decision-making [16]. It is often more difficult to solve an
optimization problem for the case where » — 0; however, our ability to handle
that case is just as important as our ability to scale up to larger plants and larger
environments.

Finally, I am using angle brackets, taken from physics, to denote the expectation
value.

There are many other notations for expectation value used in different disciplines;
my choice here is just a matter of convenience and esthetics.

Over the years, the concept of an RLS in Al has become somewhat broader, fuzzier
and not really agreed upon. I will define a more focused concept of RLS here, just
for convenience.

Much of the research on RLS in Al considers the case where the time horizon is
not infinite as in Eq. (1.1). That really is part of RLS research, and part of ADP as
well, so long as people are using the kinds of designs which can address the case of
an infinite time horizon. But when people address the classic problem of stochastic
programming (i.e., when their future time horizon is just one period ahead), that is not
ADP. There are important connections between stochastic programming and ADP,
just as there are connections between nonlinear programming and ADP, but they are
different mathematical tasks.

Likewise, in Figure 1.1, we are looking for an RLS design which marches forwards
in time, and can be scaled up “linearly” as the complexity of the task grows. It is
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tricky to define what we mean by “linear scaling” in a precise way. (See [9] for a
precise statement for the particular case of Multiple-Input Multiple-Output (MIMO)
linear control.) But we certainly are not looking for designs whose foresight is totally
based on an explicit prediction of every time period 7 between the present ¢ and some
future ultimate horizon ¢t + H. Designs of that sort are basically a competitor to ADP,
as discussed in Section 1.2.2.3. We are not looking for designs which include explicit
solution of the N2-by-N? supraoperator [17] equations which allow explicit solution
of matrix Riccati equations. Nevertheless, ADP research does include research which
uses less scalable components, if it uses them within scalable designs and if it teaches
us something important to our long-term goals here (e.g., [18, 19]).

ADP is almost the same as this narrow version of RLS, excepf that we assume that
utility is specified as a function U(X (t)) instead of just a “reinforcement signal” U (t).
ADP is more general, because we could always append a “reinforcement signal” to
the vector X (t) of current inputs, and define U(X) as the function which picks out
that component. ADP also includes the case where time t may be continuous.

In ADP, as in conventional control theory, we are interested in the general case
of partially observed plants or environments. In my notation, [ would say that the
“environment” box in Figure 1.1 contains a “state vector,” R(t), which is not the
same as X(t) (In control theory [12, 20, 21], the state vector is usually denoted as
X, while the vector of observed or sensed data is called ¥.) “R” stands for “reality.”
Within an ADP system, we do not know the true value of R(t), the true state of
objective reality; however we may use Recurrent systems to Reconstruct or update a
Representation of Reality. (See Section 1.3.2.2.)

True ADP designs all include a component (or components) which estimates
“value.”” There are fundamental mathematical reasons why it is impossible to achieve
the goals described here, without using “value functions” somehow. Some work in
ADP, in areas like hybrid control theory, does not use the phrase “value function,”
but these kinds of functions are present under different names. Value functions are
related to utility functions U, but are not exactly the same thing. In order to explain

why value functions are so important, we must move on to discuss the underlying
mathematics.

1.3.2 The Bellman Equation, Dynamic Programming and Control Theory

Traditionally, there is only one exact and efficient way to solve problems in optimiza-
tion over time, in the general case where noise and nonlinearity are present: dynamic
programming. Dynamic programming was developed in the field of operations re-
search, by Richard Bellman, who had close ties with John Von Neumann.

The basic idea of dynamic programming is illustrated in Figure 1.2. In dynamic
programming, the user supplies both a utility function, the function to be maximized,
and a stochastic model of the external plant or environment. One then solves for
the unknown function J(X(t)) which appears in the equation in Figure 1.2. This
function may be viewed as a kind of secondary or strategic utility function. The
key theorem in dynamic programming is roughly as follows: the strategy of action
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Dynamic programming

Model of reality

JGE(®) = Max <UCKO, BOM+OE+DI(L+))> W)

~_

Secondary, or strategic utility function J

Fig. 1.2 The basic idea of dynamic programming: given U, solve the Bellman equation to
get J; use J to calculate optimal actions.

d which maximizes J in the immediate future (time ¢ + 1) is the strategy of action
which maximizes the sum of U over the long-term future (as in Eq. (1.2)). Dynamic
programming converts a problem in optimization over time into a “simple” problem
in maximizing J just one step ahead in time.

1.3.2.1 Explanation of Basic Elements in Figure 1.2 Before going further, we
need to explain Figure 1.2 very carefully. There are some hidden issues here which
are important even to advanced research in ADP.

The equation in Figure 1.2 is a variant of the original equation developed by
Bellman. The task of optimization in the deterministic case, where there is no noise,
was studied centuries before Bellman. Bellman’s equation was re-interpreted, years
ago, as the stochastic generalization of the Hamilton-Jacobi equation of physics.
Thus many control theorists now refer to it as the “Hamilton-Jacobi-Bellman” (HIB)
Equation.

Many people have found that DP or ADP can be useful even in the deterministic
case. The case of zero noise is just a special case of the general method. Many books
start out by explaining DP in the case of zero noise, and then discussing the general
case, which they call “stochastic dynamic programming.” But for researchers in
the field, “stochastic dynamic programming” is a redundant expression, like “mental
telepathy.”

In Figure 1.2, J is the value function. Many researchers use “J” [15, 25], but
many others — especially in Al — use “V,” in part because of the seminal paper by
Barto, Sutton and Anderson [26]. The idea is that “V™ stands for “value.” But there
are other types of value function which occur in ADP research.

The equation in Figure 1.2 deviates a little from the original formulation of
Von Neumann, insofar as the utility function U is now shown as a function of
the state X(t) and of the actions 1(t). I did not include that extension, back in the
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first crude paper which proposed that we develop reinforcement learning systems
by approximating Howard’s version of dynamic programming [27, 22]. In that
paper, | stressed the difference between primitive, unintelligent organisms — whose
behavior is governed by in-born automatic stimulus-response action responses —
versus intelligent organisms, which learn to choose actions based on the results
which the actions lead to. There is no real need for the extension to U (X, d), since
we can always account for variables like costs in the state vector. Nevertheless,
the extension turns out to be convenient for everyday operations research. When
we make this extension, the optimal t(t) is no longer the G(t) which maximizes
<J(X(t + 1))>; rather, it is the U which maximizes <U (t) + J(t + 1)>, as shown in
Figure 1.2.

The reader who is new to this area may ask where the stochastic model fits into
this equation. The stochastic model of reality is necessary in order to compute the
expectation values in the equation.

1.3.2.2  Partial Observability and Robust Control: Why “X” in Figure 1.2 Is a
Central Problem Note that [ used “X” here to describe the state of the plant or
environment. [ deliberately did not write “X” or “ﬁ,” in Figure 1.2, because there is
a very serious problem here, of central importance both in theory and in practice, in
DP and in ADP. The problem is that classical DP assumes a fully observed system.
In other words, it assumes that the system which chooses t(t) is able to make its
decision based on full knowledge of X(t). More precisely, it assumes that we are
trying to solve for an optimal strategy or policy of action, which may be written as a
function G(X), and it assumes that the observed variables obey a Markhov process;
in other words, X(¢ + 1) is governed by a probability distribution which depends
on X(t) and 1(t), and is otherwise independent of anything which happened before
time ¢. Failure to fully appreciate this problem and its implications has been a major
obstacle to progress in some parts of ADP research.

In control theory and in operations research, there has long been active research
into Partially Observed Markhov Decision Problems (POMDP). ADP, as defined in
this book, is really an extension of the general case, POMDP, and not of DP in the
narrowest sense.

Control theory has developed many insights into partial observability. I cannot
summarize all of them here, but I can summarize a few highlights.

There are three very large branches of modern control theory: (1) robust control,
(2) adaptive control and (3) optimal control. There are also some important emerging
branches, like discrete event dynamical systems (DEDS) and hybrid control, also rep-
resented in this book. Even within control theory, there are big communication gaps
between different schools of thought and different streams of practical applications.

Optimal control over time in the linear case, for a known plant subject to Gaussian
noise, is a solved problem. There are several standard textbooks [20, 28]. For thiskind
of plant, an optimal controller can be designed by hooking together two components:
(1) a Kalman filter, which estimates the state vector R(t), using a kind of recurrent
update rule mainly based on the past R(t — 1), the current observations }Z(t) and the



UNIFYING MATHEMATICAL PRINCIPLES AND ROADMAP OF THE FIELD 23

past actions d(t — 1); (2) a “certainty equivalence” controller, which is essentially
the same as what DP would ask for, assuming that the estimated state vector is the
true state vector. This kind of “certainty equivalence” approach is not exactly correct
in the nonlinear case, but it can be a useful approximation, far better than assuming
that the state vector is just the same as the vector X!

Robust and adaptive control are two different ways of responding to the question:
“What can we do when the dynamics of the plant themselves are unknown?” Ro-
bust control and adaptive control were both developed around the goal of stability,
first, rather than performance. In both cases, you usually assume that you have a
mathematical model of the plant to be controlled, but there are parameters in that
model whose values are unknown. In robust control, you try to find a control law or
controller design ﬁ(i) which guarantees that the plant will not blow up, no matter
what the unknown parameters are, over a very wide space of possibilities. There are
computational tools now widely available for “mu synthesis” and such, which allow
you to maximize the margin of safety (the acceptable range of parameters) for the
usual linear case. In adaptive control, you try to adapt your control rule in real time,
based on real-time observations of how the plant actually behaves. Note that adaptive
dynamic programming (ADP) is not a special case of adaptive control in the usual
sense!

Several advanced researchers in robust control, such as Athans and Barras, have
addressed the task of robust control in the general nonlinear case. It turns out that
the solution to that task reduces to the task of trying to solve the HIB equation!
Thus the most accurate possible approximation to true nonlinear robust control, in
the general case, can only be found by developing software which approximates the
solution to the HIB equation. From the viewpoint of nonlinear robust control, this
entire book can be seen as a book about the computational issues in implementing
nonlinear robust control. But in actuality, when we use an HJB equation to derive a
robust controller, we can add terms in the utility function to represent concepts like
energy use and cost, to represent more accurately what we really want.

Barras [29] has done important fundamental work on partial observability in this
case. Crudely, his work appears to say that we can solve for the true “optimal”
nonlinear robust controller, if we take the certainty equivalence approach, but we
use a different kind of filter instead of the Kalman filter. We must use a nonlinear
function approximator, and we must tune or train it so as to minimize a special loss
function which properly penalizes different kinds of prediction errors. The reader is
urged to study the original paper for a more precise statement of the findings. (See
[9, 20] and the chapter by Anderson et al. in this book for some other connections
between robust control, optimal control, adaptive control and ADP.)

Both in nonlinear robust control and in other ADP applications, there will always
be a certain amount of approximation error in solving the HIB equations, no matter
how hard we work to minimize that error. This does have some implications for
stability analysis, for real-world nonlinear robust control just as much as for other
forms of ADP. As Balakrishnan has frequently argued, we know that the controller
we get afier the fact is stable, if we have found a way to converge to a reasonably
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accurate solution of the HJB equation in off-line learning, even if we had to try out
different sets of initial weights to get there, and exploit tricks like “shaping” ([3],
Foreword).

The problem of partial observability is crucial to practical applications, in many
ways. For example, Section 1.2.2.3 mentions the work by Ford Research in devel-
oping a clean car chip. Both Ford and Sarangapani have stressed how variations
between one car engine and another explain why classical types of control design
(implemented at great detail and at great cost) failed to achieve the kind of success
they were able to achieve. No fixed feedforward controller, conventional or neural,
can be expected to perform well across such a wide range of plants. However, there
are two approaches which have worked here: (1) as in Sarangapani, the approach of
learning or adapting in real time to the individual plant; (2) as at Ford, the use of a
kind of certainty equivalence approach.

In the simplest neural certainty equivalence approach (or “neural observer” ap-
proach, as described by Frank Lewis), we train a Time-Lagged Recurrent Network
[3, 6] to predict the observed variables i(t) as a function of X(t —1),R(t—1)and
d(t — 1), where R now represents a set of recurrent neurons. In fact, the combination
of X (t) and of this R(t) is basically just an estimated state vector! When we make
this expanded vector of inputs available to our policy, ﬁ()—i, f{) , We arrive at a reason-
able approximation to the exact results of Stengel, Barras and others. The recurrent
tunable prediction structure does not have to be a neural network, but for the general
nonlinear case, it should be some kind of universal nonlinear approximator.

Eventually, brain-like capability will require a combination of real-time learning
(to learn the laws of nature, in effect) and time-lagged recurrence (to allow fast adap-
tation to changes in familiar but unobserved parameters like friction and how slippery
aroad is [4]). It will also require moving ahead from deterministic forecasting com-
ponents, to more general stochastic components, unifying designs such as adaptive
hidden Markhov models [30], Stochastic Encoder-Decoder-Predictors ([3, ch. 13]),
and probability distribution estimators like Kohonen’s self-organizing maps [31], etc.
The development of better stochastic adaptive system identifiers is a major area for
research in and of itself.

Finally, there may exist other ways to cope with partial observability which do
not require use of a neural observer. Some kind of internal time-lagged recurrence or
“memory” is necessary, because without memory our system cannot infer anything
about the dynamics of the plant which it is trying to control. But the recurrence could
be elsewhere. The recurrence could even be within the control rule or policy itself. In
([3, ch. 13]), I showed how the concept of “Error Critic” could be used to construct
amodel of the olive-cerebellum system in the brain, in which the “policy” is a time-
lagged recurrent neural network. This approach results in a system which does not
learn as fast, over time, as the neural observer approach, but it allows the resulting
controller to function at a much higher sampling rate. One can easily imagine a kind
of “master-slave” design in which the “master” ADP system learns quickly but has
a lower sampling rate (say, 4 hertz or 10 hertz), while the “slave” system runs at a
higher sampling rate (say, 200 hertz) and tries to maximize a utility function defined
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as something like J*(¢ +1) — J*(t), where J* is the value function computed by the
“master” system.

Partial observability presents even larger challenges, in the longer term. In Al,
there is a classic paper by Albus [32] which proposes a design for intelligent systems,
in which there is both an estimated state vector and a “World Model” (a regularly
updated map of the current state of the entire world of the organism). At first, this
seems hard to understand, from an engineering point of view; after all, the estimated
state vector is supposed to be a complete image of reality all by itself. But as the
environment becomes more and more complex, something like this two-level system
may turn out to be necessary after all. The Albus design may only be a kind of cartoon
image of a truly optimizing learning system, but it may offer some real clues to the
kinds of issues and patterns that we will need to address as we scale up to the level
of complexity that the mammal brain can handle. Lokendra Shastri of Berkeley has
addressed related issues as well, using ADP methods as part of a reasoning system.

In many engineering applications today, the easiest way to overcome the hurdles
involving stability proof and verification is to combine off-line ADP learning with
training sets based on very nasty “meta” simulation models like those used in the
Ford work. It is essential that the ADP components contain the recurrence necessary
to allow good performance for a fixed feedback controller over such nasty training
sets. This kind of approach can be honestly described as an application of nonlinear
robust control. It is necessary to achieve and verify convergence after the fact, but
it is not necessary to provide an absolute guarantee that the ofHline learning would
always converge without human assistance on all possible plants! In the case of true
real-time adaptation, the adaptive control community has shown [21] that stability can
be guaranteed only under very stringent conditions, even for multi-input multi-output
(MIMO) linear systems. The usual methods for training critic or value-approximation
networks do not possess guaranteed robust stability even in the linear case [9, sec.
7]. One may question whether even the brains of humans are universally stable under
all possible streams of input experience. Nevertheless, I have proposed a suite of
new ways to train value functions which do overcome these problems in the linear
stochastic case [[9], section 9]. I conjecture that these methods provide the missing
part of the long-sought design for true distributed MIMO adaptive control possessing
total system stability for all controllable linear systems [9]. Proving such a theorem
is one of the many important opportunities now at hand in this area.

1.3.3 ADP: Methods and Opportunities to Beat the Curse of Dimensionality

Exact dynamic programming, as illustrated in Figure 1.2, cannot be used in the
general case. There is no general method to calculate an exact closed form solution
to any arbitrary nonlinear differential equation! In fact, there is no such method
even for simple algebraic equations, when they get beyond fourth-order or fifth-order
polynomial equations. For the general case, numerical methods or approximations
are the best that can be done. Even the human brain itself cannot exactly “solve”
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NP-hard problems like playing a perfect game of chess or of Go; in reality, the goal
is to do as well as possible, not more.

Exact solutions of the Bellman equation are possible in two important special
cases: (1) when the dynamics of the environment are purely linear, with Gaussian
noise and a quadratic utility function, the optimal control policy is well known
[20, 28]; (2) when the plant or environment is a finite-state system, the mathematics
become much easier.

A finite-state system is nof a system which has a finite number of state variables;
rather, it is a system which can only exist in a finite number of possible states. If
a plant can only exist in N possible states, = 1 to N, we only need to solve for
N numbers J(i). Afier we choose a specific policy or strategy of action, 1é(%), the
stochastic model of the plant reduces to a simple Markhov chain, M;;, a matrix
containing the probabilities of transition from any state j at time ¢ to state 4 at the next
time tick. We can represent the state of such a system at any time as a simple integer
1, but it turns out to be more convenient to use a more complicated representation,
representing the state as a vector % in RY . If the system is in state number 4, we set
z; = 1 and z; = 0 for all the other states j. In this representation, the function J(X)
is represented by a simple vector J; in other words:

J(&) = JT2, (1.3)

and likewise for U (X), if we delete the unnecessary dependence on d. The Bellman
equation then reduces to:

JTE(t) = (JTM* 4 UT)&(t) for all possible %(t), (1.4)

where M* is the transition matrix for the optimal policy. This is easily solved
algebraically:

J=(1-MT)"7. (1.5)

Equation (1.5) is not a complete analytic solution of the Bellman equation in
this case, because we still need to find the optimal G(:). Sometimes this can be
done analytically. But often we can use the iterative dynamic programming methods
of Howard [22], which could be viewed as the first ADP designs. Howard also
developed methods to deal with “crossroads” problems which can occur sometimes,
when the interest rate r is zero and the time horizon is infinite. (Crossroads as in
“the crossroads of history.”) These crossroads problems are a real substantive issue
at times, and not just a mathematical anomaly; thus I deeply regret that I did not
use the language of social science correctly in describing such problems, in the first
published paper [33] which defined several of the basic ADP methods in relatively
complete, mathematical fashion (stressing the use of backpropagation as a tool to
enable scaling up to larger problems).

Very few decision or control problems in the real world fit exactly into one of these
two special cases. Even for problems of inventory management and control, where
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the number of possible states N is often finite in principle, the number of possible
states in the real world is often much too large to let us use Eq. (1.5) exactly.

Early attempts to approximate dynamic programming were mostly based on a
very simple approximation to the Bellman equation. The true environment, however
complex, was approximated as a finite state system. For example, if the state vector X
is a bounded vector in RV, we can represent J (X) by using a kind of N-dimensional
lookup table containing all possible values of X. But the size of such a lookup
table grows exponentially with N! This is the core of the “curse of dimensionality.”
Warren Powell, in his chapter, discusses the curse of dimensionality in more detail.

Strictly speaking, ADP does not throw out that old approach to approximation! It

treats it as a special case of one of the three more general principles which are the
core of ADP:

(1) Value approximation: Instead of solving for J(X) exactly, we can use a
universal approximation function J (X, W), containing a set of parameters W,
and try to estimate parameters W which make J(X, W) a good approximation
to the true function J;

(2) Alternate starting points: Instead of always starting from the Bellman
equation directly, we can start from related recurrence equations (Section
1.3.3.2) which sometimes improve the approximation;

(3) Hybrid design: We can combine multiple ADP systems and other systems in
more complex hybrid designs, without losing generality, in order to scale up
to larger real-world problems, such as problems which involve multiple time
scales and a mixture of continuous and discrete variables at multiple scales of
space.

Dozens of different ADP designs or algorithms have been developed and used in
different disciplines, based on one or more of these three general approaches. In
order to build a unified ADP design, which can learn to handle the broadest possible
variety of complex tasks (as well as the mammalian brain does), we will need to
exploit all three approaches to the utmost, and learn how to combine them together
more effectively.

The remainder of this section will discuss each of these three approaches, in turn.
It will proceed systematically from simpler ADP designs — easier to implement but
less able to cope with difficult tasks — all the way up to the larger research challenges
critical to the long-term strategic goals discussed above. In so doing, it will try to
provide a kind of global roadmap of this very complicated field.

1.3.3.1 Value Approximation and the Adaptive Critic  This subsection will
mainly discuss how we choose and tune an approximate value function J(X, W)
based on the Bellman equation proper. But the reader should be warned that the sim-
plest reinforcement learning packages based on this approach often converge slowly
when they are used on engineering tasks with a moderate number of continuous
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variables in them. Many critics of reinforcement learning have claimed that rein-
forcement learning could not be useful on large-scale problems — mainly because
their students, using the easiest off-the-shelf tools in MatLab, were unable to tackle
alarge problem at first pass. The simplest designs are an important place to start, but
one must build up beyond them (as in Sections 1.3.2.2, 1.3.3.2 and even 1.3.3.3) in
order to handle larger problems. And of course we need further research and better
software in order to capture the full power of the approach.

Even if we limit ourselves to ADP methods which tune J(X, W) based on the
Bellman equation proper, there is still a huge variety of more-or-less general designs.
There are four decisions you must make when you put together such a system:

(1) What function J (X, W) do you choose to approximate J(X)?

(2) Value updates: For any given strategy or policy or controller 1i(X), how do
you adapt the weights W to “best fit the Bellman equation”?

(3) Policy updates: How do you represent and adapt t(X) itself as part of this
process?

(4) How do you coordinate, manage and time the value updates and policy updates?

With regard to question 1, many researchers still use lookup tables or linear basis
function approximators:

J@W) =" Wafal(@), (1.6)

where the functions f, are preprogrammed basis functions or features chosen by
the user. A truly general-purpose computer program to calculate value updates and
policy updates should be able to accommodate these particular choices as a special
case. These special cases can also yield mathematical insights [25] which might be
useful as a stepping-stone to where we want to go. But our goal here is to get to
the general case, where we need to be able to use a universal approximator able to
approximate “any” nonlinear function. Powell, in particular, has stressed that his
success in handling large problems is based on going beyond what he could get with
linear basis functions as in [25].

But which universal approximator J(X, W) do we use? The choice of function
approximator has been one of the key issues explaining why some researchers have
done much better than others in real-world applications of ADP. We will also need
to use approximators much more powerful than anyone has used in the past, in order
to scale up to more brain-like performance.

Universal approximation theorems have been proven for many, many systems
such as Taylor series, fuzzy logic systems, wavelet systems, simple “global” neural
networks (like the Multilayer Perceptron, MLP [7, 34]), and “local” neural networks
like the Radial Basis Function (RBF), the CMAC, the SOM, the ART, etc. These all
have advantages in various application domains. Some people from statistics argue
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that there can never be any real science here, because “there is no free lunch.” They
argue that some approximators will be better in some domains, and others will be
better in others, and there never can be a truly general-purpose system.

Certainly it makes sense for software designers to give their users a wide choice
of options, but the “no free lunch” theory misses a few critical points. It misses a
very large historical literature on the foundations of induction and learning, which is
relevant here but is too complicated to discuss in detail (e.g., see ([4, ch. 10]) and
sources cited in [34].) It misses the fact that approximators in family A can be dense
in family B but not vice-versa. More concretely, it does not fully account for the
important, practical theorems proven by researchers like Barron [35] and Sontag on
function approximation.

Taylor series, lookup tables, gain schedulers, CMAC and RBF are all examples
of the broad class of linear basis function approximators. Barron [35] proved that
linear basis function systems and MLPs are both universal approximators, but with
different accuracy in approximation. When we try to approximate smooth functions,
and maintain a certain level of accuracy with more and more inputs (m), the number
of parameters or nodes needed to maintain that accuracy rises at an exponential
rate with m, for linear basis function approximators, while it only rises as a gentle
polynomial function of m for MLPs. This makes intuitive sense, because we know
that the required size of a lookup table grows exponentially with m, and we know that
other linear basis function approximators are based on the same underlying principle.

Barron’s result is only the tip of a very large iceberg, but it already conveys an
important lesson. In practical work in the neural network field, it is well known
that MLPs allow greater accuracy in approximation for moderately large m than
the local approximators. (There are some exceptions, when the data is all clustered
around a few points in state space, but that is not the general case.) A majority of
the practical successes discussed in Section 1.2 were based on using MLPs as the
value approximator(s). On the other hand, it usually takes more time and skill to
train MLPs than to train linear basis function approximators. Thus one has to work
harder if one wants to get better results; this is a recurrent theme across all parts
of the ADP field. There is also still a need for more research on ways to blend
global networks like MLPs and local networks together, to combine the advantages
of both, particularly when the speed of learning is an urgent issue; this is one of the
subsystem-level issues I referred to in Section 1.2.1.

I have speculated [36] that Elastic Fuzzy Logic systems (ELF) might be as powerful
as MLPs in function approximation, but for now this is just a speculation, so far as I
know.

MLPs can do well in approximating smooth functions with m on the order of
50 — 100. That is a huge step up from the old lookup-table dynamic programming.
But it is still a far cry from a brain-like scale of performance. 1t is good enough when
the job is to control a single car engine, or airplane, or turbogenerator or router. It
is not good enough to meet the needs of large-scale network control as discussed in
Section 1.2.
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Many people from Al and statistics have argued that we will never be able to
scale up to brain-like complexity, without exploiting a whole lot of prior information.
This is true, in principle. But researchers going back to the philosopher Emmanuel
Kant and the statistician Brad Efron have stressed that we can use a particular type
of prior information which does not block our ability to learn new things in an open-
minded way. From a practical viewpoint, we can exploit tacit prior assumptions about
symmetry in order to design whole new classes of neural network designs, which
are capable of addressing large-scale network management, image processing and
segmentation and the like. There is a ladder of designs which now exists here, rising
up from the generalized MLP [7, 34], to the Simultaneous Recurrent Network (SRN),
to the Cellular SRN [37, 38], to the ObjectNet [39]. These should not be confused
with the simple recurrent networks which are widely discussed in psychology but are
not so useful here.

A few quick comments about strategic games may be of interest to some readers.
Fogel [18] has argued that the past success of reinforcement learning in playing games
has been oversold. Reinforcement learning has generated human-class performance
in backgammon and checkers, but only when the programmers spent enormous effort
in crafting the features they use in a linear basis function value function. There was
never any true learning of the game from scratch. With tic-tac-toe, he was able to
train a perfect game player simply by using genetic algorithms to evolve an optimal
game player (G(X)). But this did not really work for checkers, as he had hoped. He
was able to achieve human-level performance for the first time in checkers without
cheating, by evolving a value-approximating MLP network J (X, W), and using that
network as a basis for choosing moves. This was an historic achievement. But no
one has ever achieved real human-level performance in the game of Go, with or
without learning; based on what we learned from earlier work on lattices similar to
Go boards [37], I would conjecture that: (1) Fogel’s approach might work with Go,
if he replaced the MLP with a cellular SRN or ObjectNet; (2) even his earlier attempt
to evolve a controller directly for checkers might have succeeded if he had used an
SRN; (3) success in theater-like strategy games would also require Object Nets, but
research on Go would be a good starting point to get there. I do not claim that this
simple approach would do full justice to the game of Go. Rather, it offers a tangible
hope to show that learning systems might outperform existing Go players. One
could do better, to start, by using more advanced evolutionary computing methods,
such as the use of particle swarm methods to adapt the continuous valued weights
in the value-approximating network. In parallel, we need to develop better gradient-
exploiting methods to train recurrent recurrent systems like ObjectNets, in order to
train networks too large for evolutionary computing to handle, and in order to get
closer to brain-like approaches. Go can provide a testbed for even more powerful
general concepts, but it would be useful to get this stream of research extended and
disseminated much further immediately, based on the best we can do today.

Again, this is all the tip of an iceberg, but the other three design questions above
also merit serious discussion here.
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First, the issue of how to do value updates. Beginners to ADP often suggest that
we should try to train the weights or parameters W by minimizing the following
measure of error as a function of W:

B =Y (JEW), W) — (UEEL), 7(t)) +yJ (@t +1),W))*, (1.7

where the sum is taken over real or simulated pairs of data (X(t),%(¢t + 1)). (The
subscript “G” refers to Galerkin.) Years ago, I evaluated the performance of this
value-updating method, for the case of linear multiple-input multiple-output (MIMO)
plants with nonzero noise. I proved that it converges to the wrong estimate of W
almost always [9, 40].

The connection to Galerkin is discussed at length in [9]. The procedure of
minimizing E¢ is essentially a special case of one of the more general methods
proposed by Galerkin decades ago to approximate the solution to partial differential
equations (PDE). But the Bellman equation is not strictly a PDE, because of its
stochastic aspect. The stochastic aspect turns out to be the source of the problem
in trying to apply Galerkin’s approach here [9]. More recently, Balakrishnan has
adapted a different method of Galerkin (specialized to time-forwards systems rather
than PDE in general) to the challenge of optimal, ADP control of systems like fluid
flows governed by PDE.

In 1977 [41], I proposed instead that we approximate Howard’s iterative procedure
directly, by training the network J (X, W) to try to match or predict the targets:

JH)=U@)+J(t+1)/(1+r). (1.8

This training could be done by minimizing least square error and backpropagation,
or we could use any other method used to train any kind of function approximator
to match examples of input vectors and desired output vectors. I called this method
“Heuristic Dynamic Programming” (HDP) [41]. This statement of the method is
quite brief, but it is complete. The method really is quite simple, in the general case.
(See [3] for elaborate discussions of how to embed this idea in simple, general form
within a larger software system for ADP.)

Earlier, in 1973 [42], Widrow implemented an alternative training method for a
neural network which he called a “critic”, for use in playing blackjack. In effect, he
trained J(X(t), W) directly to predict:

T-1

Tty = U(r) +UN(T), (1.9)

where U* is a kind of terminal payoff at a terminal time 7'. There was no connection
made to utility functions or dynamic programming. In 1983, Barto, Sutton and
Anderson [26] generalized Widrow’s method to define the class of methods T'D(\),
such that A\ = 0 and A = 1 would yield a choice between Eq. (1.8) and Eq.
(1.9). There was no indication of a connection to [41] or to any form of dynamic
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programming at that time; that connection was made later, in 1987, when Sutton read
[43], and set up the discussions at GTE which later led to the 1988 NSF workshop
reported in [2]. Since then, we have used the term “critic” or “critic network” to refer
to any parameterized network used to approximate J(X) or to approximate any of the
other various value functions which emerge from relatives of the Bellman equation
(Section 1.3.3.2). An “adaptive critic” system is any system which contains such
a critic network, plus some mechanism to adapt or tune the critic based on off-line
learning or on-line learning,

Many researchers such as Williams have been able to show how pathological
training sets {X } can cause HDP itself to converge to the wrong answer or even to
diverge. Van Roy [44] has proven that it will always converge to the right value,
under reasonable conditions, if the training set is chosen from the normal stream
of experience one would expect to see while controlling and observing the actual
plant. There are several more complex variants of HDP, for which I have proven
that the method will always converge to the right value function for linear MIMO
plants (including stochastic versions), even when the training sets are chosen in a
pathological manner [9]. There are also a wide variety of other methods available,
some more truly learning-based and some based on linear programming, as described
by Van Roy’s chapter 10 in this book. It would be interesting to see whether Van Roy’s
approach could be made more powerful, by exploiting the nonlinear programming
methods described in Momoh’s chapter 22. It would also be interesting to see whether
such methods could be restructured or adapted into true, scalable learning-based
methods for adapting J(X, W), similar in spirit to some of the work by Trafalis in
training simpler types of neural networks based on sophisticated ideas from operations
research [45].

Policy updates are much more straightforward than value updates, in theory. Many
researchers in Al address tasks where there is only a finite set of possible actions
to take at any time t. In designing a system to play Go, for example, one might
search over every possible move, and do the maximization on the fly by brute force.
(There are many other similar choices familiar to Al researchers.) In engineering
applications today, it is reasonable to train a controller G(X, W), which may also
be a universal approximator. For example, we may train the weights W, so as to
maximize <U(t) +~J (¢t + 1)>, by adapting them in response to a stochastic gradient
estimate:

J
i (U(e) + 20)

1.10)
sU BJ(t+1) Ozj(t+1 Ou;(t (
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The control theorist should immediately see that this is exactly the same as the
procedure used to update or train a controller in Indirect Adaptive Control (IAC)
[46], except that IAC eliminates “U” and it replaces J(¢ + 1) with a fixed measure
of tracking error which is basically arbitrary. Both here and in IAC, we must train or
obtain a model of the plant in order to estimate the required partial derivatives. In both
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cases, the derivative calculations and summation can be done more quickly and more
efficiently in real time by using an algorithm which I call “backpropagation through a
model.” [3, 7]. This algorithm calculates the required derivatives efficiently through
any differentiable model, neural, fuzzy, classical or other. In 1988 [2], I coined
the term “Backpropagated Adaptive Critic” (BAC) [2] to name this way of training
a controller or Action Net u(X, W,,). The stability guarantees for IAC depend on
highly restrictive assumptions, even in the linear case [21]; however, there is good
reason to believe that the extension of IAC provided by the use of new HDP variants
can yield universal total system stability guarantees for all controllable linear plants
(91

More recently, some researchers have used the term “Policy Gradient Control
Synthesis” (PGCS) for this approach to updating or training an Action Net. In
certain designs, this may require the efficient real-time calculation of selected second
derivatives. The form of second-order backpropagation required for such applications
was first discussed in 1979 [33], but explained in more detail in [3].

High-level decision problems sometimes require more than just brute-force maxi-
mization or an Action network of this type. As we scale up to brain-like capabilities,
we will need to design and train something like Option Networks, which generate
reasonable choices for Ui(t) decisions, along with search and selection systems to go
with them [47]. This involves some kind of stochastic search capability, related to
evolutionary computing (EC), but not at all the same. In conventional EC, the user
supplies a function U (1), and a fixed algorithm searches through possible values of
U. But in brain-like stochastic search (BLiSS?), we try to develop learning systems
which learn to do better and better stochastic search for families of optimization prob-
lems U(d, X). For example, one such function U(d, X) would be the family of all
travelling salesman problems for 1,000 cities, where x is the vector of coordinates of
those cities. There has been some preliminary research related to BLiSS by Wunsch
and by Serpen, but much more will be needed.

Finally, the issue of how to manage, time and control value updates and policy
updates is an extremely complex issue, very dependent on the specific choices one
makes. Many chapters in this book will discuss various aspects of these issues. As
a general rule, we do know that mammal brains somehow do concurrent real-time
updates of all their components. But they also need periods of offline-learning and
consolidation, in deep sleep and dreams. There are learning tasks in ADP which
clearly relate to these biological functions [1, 2, 43], but more research will be
needed to pin them down more completely.

1.3.3.2 Alternative Starting Points: Beyond the Bellman Equation Proper The
previous section discussed value approximation for ADP designs based directly on
the Bellman equation — HDP, TD and variations of them. The Bellman equation
itself may be viewed as a kind of recursion equation for the function J(X).

There are two alternative starting points which are important to applications of
ADP today. One of them is the recursion equation which underlies methods called
Action-Dependent HDP (ADHDP), Q-learning, and related methods. The other is
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the recursion relation underlying Dual Heuristic Programming (DHP); that equation
is essentially a stochastic generalization of the Pontryagin equation, which is as
important and well known as the Hamilton-Jacobi equation in some fields of science.

Crudely speaking, the ADHDP/Q-recurrence leads to ADP designs which do not
directly require amodel of the plant or environment. (However, they do not escape the
issues discussed in Section 1.3.3.2.) The DHP recurrence equation was developed in
order to overcome scaling problems with all methods discussed so far in this section,
for tasks involving continuous variables.

Q-learning and ADHDP are different methods, dating back to two independent
sources in 1989 — the classic Ph.D. thesis of Watkins [23] and a far briefer paper
given at the IEEE Conference on Decision and Control [24], respectively. But both
can be derived from the same recurrence equation. Here I will derive that equation
as in [24], but will now label the new value function as “Q)” instead of “J.”

If we write the Bellman equation as:
J () = max < U(E(£), 6(#) +J (X(t +1)) >, (1.11)

we may simply define:
QX(t),d(t)) = < URFK(®),d@®)) +~+JXE+1)) > . (1.12)
Using this definition, Eq. (1.11) may be expressed equivalently as:
J(%(8)) = max QR(t), 6(t)), (1.13)

ii(t)
substituting Eq. (1.13) into Eq. (1.12), we deduce:

QX(),d(t)) = < UR(t),d(t)) + 'yﬁr(r}%)Q(i'(t +1),d(t+1)>. (1.14)

Equation (1.14) is the recurrence equation underlying both ADHDP and Q-learning.

Q@-learning generally uses lookup tables to represent or approximate the function
Q. Inthe 1990 workshop which led to [3], Watkins did report an effort to approximate
@ using a standard CMAC neural network, for a broom-balancing task; however, he
reported that that variation did not work.

With Q-learning, as in TD learning, one can derive the policy t(X) simply by
considering every possible choice of actions, in tasks where there is only a manage-
able, finite list of choices. However, in the TD case, dynamic programming clearly
calls on us to try to predict < J(t + 1) > for each choice, which then requires some
kind of model of the plant or environment. With Q-learning, you only need to know
the @ function. You escape the need for a model. On the other hand, if ¥ and 1 are
actually continuous variables, and if you are using a lookup table approximation to
Q, then the curse of dimensionality here is even worse than with conventional DP.

For Action-Dependent HDP (ADHDP) [3, 24], I proposed that we approximate
Q(X(t),t(t)) and d(X) by using universal approximators, like neural networks. We
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can train a network Q(X, i, W) to try to match targets Q* based on the recurrence
Eq. (1.14), using exactly the same procedure as in HDP. (See [3] for psendo-code,
flowcharts, examples and analysis.) We can train t(x, W,,) to maximize @, by tuning
the weights of W, in response to the derivatives of @, backpropagated from @ to d
to the weights.

Some neural network researchers would immediately ask: “Doesn’t the use of
backpropagation lead to slow learning here?” Not necessarily. When a traditional
MLP is trained by backpropagation, the learning is indeed slower than what we
see with radial basis functions (RBF), for example. But the problem lies with the
MLP structure, more than with backpropagation. (It is also important to know
modern techniques for adjusting learning rates and such.) More powerful function
approximators (like humans!) are even trickier to train, because they are searching
a space of possibilities which is even larger. But when backpropagation is used to
train simpler, local networks, it can be reasonably fast.

As an example, David White — co-sponsor of the 1990 joint NSF/McDonnell-
Douglas workshop which led to [3] — applied ADHDP in 1990 to control the
McDonnell model of the F-15 aircraft in simulation. He and Urnes did a study in
which the simulated aircraft was badly damaged in random ways, and the ADHDP
system tried to relearn the control fast enough (2 seconds) to keep the craft from
crashing. It succeeded about half the time, which was far better than conventional
methods (2 percent survival or so). The neural networks used to approximate ¢) and
U were a new, differentiable variant of the CMAC design. (See [3] for details.) White
and Sofge also used ADHDP to produce high-quality carbon-carbon parts using a
cost-effective process which had defied earlier, expensive approaches based on more
traditional methods. (See [3] and Section 1.2 of this chapter.)

ADHDP in some form has been independently rediscovered by a number of
researchers, who have reported good results. For example, Ford Research [48]
reported a quick and easy solution of the bioreactor control challenge problem in
[3], which, according to Ungar, defied the very best and most modern adaptive
control methods. Many of Si’s results reported in this book use a design in this
category. Shibata’s “fuzzy critic” for robot control [49], developed under Fukuda,
also appears to be in this category. It is good news that we are beginning to integrate
and consolidate more of this work.

ADHDP can handle larger-scale engineering problems than lookup-table @ or TD
approaches. (From an engineering viewpoint, | have described the lookup-table and
“associative trace” versions of @ and TD as “level 1,” versus ADHDP as “level 2.”)
But it still encounters problems as one tries to scale up to even larger problems, and
it also has problems related to “persistence of excitation” ([3, ch. 13]). Because
of these issues, and because of the issues of partial observability, I have argued that
the combination of HDP and BAC discussed in the previous section tends to be
more powerful — “level 3” — on engineering problems which involve continuous
variables. In order to scale up still further — “level 4” — many of us have gone on
to use a different recurrence equation altogether, the DHP recurrence equation.
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The correct recurrence equation for DHP may be derived in a straightforward way,
by first defining:

X(t) = VzJ(Z(t)), 1.15)

which is another way of writing:

v =Tl

by performing the calculation for a particular policy G(X), and by differentiating Eq.
(1.11) with respect to z;(t) to get:

(1.16)
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This general type of complex derivative calculation relies heavily on mathematical
foundations discussed further in [6].

Some control theorists have asked at first: “Can you do this? Just differentiate
the Bellman equation?” In fact, we know that Eq. (1.11) must hold for the optimal
policy. So long as J and u and the plant are differentiable (within the Kolmogorov
probability formalism [10]), we know that Eq. (1.17) must hold as well, for an
optimal policy. It is a necessary condition for an optimum. Likewise, the policy
update equivalent to Eq. (1.10) is trivial to deduce. (See [3].) But Eq. (1.10) is not
a sufficient condition for a globally optimal policy; that is why I discussed stochastic
search issues after the discussion of Eq. (1.10), and similar issues apply here. For
complex nonlinear problems in general it is often possible to guarantee local optima,
superiority to linear methods, and global optima in various convex cases in a rigorous
way, but intelligent systems design can never guarantee “perfect” creativity in finding
global optima. Stronger guarantees exist for GDHP (to be discussed below) than for
DHP.

The recurrence equation for X follows by using the definition of Xto simplify Eq.
(1.17):
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where variables without time arguments refer to values at time ¢.

(1.18)
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The obvious way to approximate this recurrence relationship is to train an ap-
proximator, )\(x W), to meet the targets X* defined by the right-hand side of Eq.
(1.18); more precisely, starting from any estimate of W, one can update the estimate
of W to make X(X, W) better match X*(%, W), where X*(%, W) is defined by the
right-hand side of Eq. (1.18), using the current estimates of W to estimate the values
of X(t+1) by )\(X(t—l- 1), W) as required to calculate to right-hand side of Eq. (1.18).
Details, flow-charts, pseudo-code and some theoretical analysis (along with a couple
of unfortunate typos) can be found in [3, ch. 13]. Using modular code design, and a
basic understanding of backpropagation, it is not necessary to be an expert in control
theory or on these equations in order to implement DHP.

Certain warnings are needed here. Although I discussed the general idea of DHP
back in 1977 [41], I did not really specify the method then (unlike the case for
HDP). In 1981 [50]. I discussed a way to implement the idea, using backpropagation
and an error function similar to Eq. (1.7); however, that kind of variation (which I
now call DHPG) converges to the wrong answer almost always for linear dynamical
systems with noise [9]. In order to converge to the correct answer, it is necessary
in principle to include the (Quy /Ox;) terms, which were explained for the first time
in [3]. (See [9] for extensions important to robust and adaptive control.) All of the
actual implementations and applications of DHP occurred after the publication of
[3]. Many of the most important ones appear in this book.

The vector X of DHP has many connections to concepts in other fields of science
and engineering. For example, to the economist, \;(¢) represents a kind of “marginal
utility” or “shadow price” — the long-term market value of the commodity whose
quantity or level is given by the variable z;. DHP critics could actually be used
as pricing systems. In the Pontryagin equation, A; is called a “costate variable” in
modern optimal control [20, 28], the letter “X” is still used for costate variables. The
vector A is also closely related to the gradients calculated in backpropagation through
time, which creates many opportunities for seamless, integrated hybrid designs,
discussed in part in the chapter 15 by Prokhorov.

DHP could have some interesting applications in network control, as discussed
in Section 1.2.2. For a large network system, we would need something like an
ObjectNet (Section 1.3.3.1) in order to input observations across an entire electric
power grid, and output a vector of shadow prices or values for all of those observed
values. Physically, an ObjectNet may be thought of as a specific kind of highly
coordinated assembly of component networks, each of which refers to a particular
object in the grid; thus we could choose to implement such a value-approximation
network as a distributed system, with chips located near each object to implement
the component network for that object. Such a system would output the estimate of
values which apply to each object, from the node which is actually located at that
object. At each object, we could perform a kind of local optimization over time, using
a lower-level ADP system which responds to these global values, using a master-slave
kind of arrangement similar to the one discussed in Section 1.3.2.2. Communication
constraints could simply be represented as part of the topology specification of the
ObjectNet to be trained.
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DHP is not the only method in its class. There have also been a few simulations of
Action-Dependent DHP (ADDHP), Globalized DHP (GDHP), ADGDHP and related
Error Critic designs. (See [3, 9] and some of the work of Wunsch and Prokhorov.) In
essence, GDHP is a hybrid of HDP and DHP. It trains a scalar critic which estimates
the J function, but uses second derivatives in order to achieve the same effect as DHP.
In effect, GDHP provides a way of performing DHP (as described above) while also
guaranteeing strict adherence to the requirement that the vectors X are the gradient of
a function J. More generally [43], GDHP allows one to train the critic to minimize
a weighted sum of the DHP second-order error measure and the usual HDP/TD first-
order error measure; if some state variables are continuous while others are discrete,
one can use GDHP on the entire J function by simply by not using the (undefined)
second-order terms for the discrete state variables. (The discussion of [43] needs to
be updated, to reflect the convergence results in [3] and [9].) Benchmark studies by
Whunsch and Prokhorov show little difference in performance between the easier DHP
method and GDHP in difficult engineering problems involving continuous variables.
Thus it may be premature to say more about GDHP at the present time.

1.3.3.3 Hpybrid and Large-Scale Designs: Closing the Gap to the Mammal Brain
Level This chapter started out by posing a question: when and how can we handle
dynamic optimization problems as large and as complex as what the smallest mammal
brain can learn to handle? (Of course, such systems could do far better than mice or
humans on some problems, as a byproduct of this effort.)

Years ago, | believed that the kinds of designs discussed in Sections 1.3.3.1 and
1.3.3.2 might be enough to achieve that goal by themselves. After all, the famous
neuropsychologist Hebb argued decades ago that all the complexities of higher-order
intelligence might result as an emergent property of a much simpler kind of learning
system [51]. Why could they not emerge from these kinds of more sophisticated and
powerful learning design? The parallels to what was known about the brain in 1980
were also quite strong [43].

Recent research both in neuroscience and in technology has made it ever more
clear that our earlier beliefs were mistaken.

For example, neuroscience has learned a great deal about the basal ganglia [52,
53]. Decision-making in the brain does not follow the highly rigid, pre-programmed
kinds of hierarchies that were used in classical Al and in the old Red Army — but it
clearly does have a mechanism for exploiting multiple time scales. Furthermore, it
now seems more and more clear that critic methods can converge faster — by orders
of magnitude at times — when they include a way to exploit such structure. The
challenge lies in how to build systems which exploit such properties as effectively
as possible, without using ad hoc patches and hierarchies that interfere with the
flexibility of learning and the ability to converge in the end to a true multi-level
optimum.

Three strands of research have demonstrated promising ideas to help us handle
this issue. The field of hybrid control, represented here by Shankar Shastry, has
studied decoupled methods for the HIB equation, particularly for problems involving
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amix of continuous an discrete variables. Al researchers in reinforcement learning
have also explored a number of ideas; the chapter 2 by Dietterich gives an excellent
overview, and the chapter 14 by Barto describes further recent work. I myself have
also developed some modified multilevel Bellman equations [47, 54] based on the
concept of fuzzy or crisp partitions of the state space, which may have some role to
play in this strand of research. (These were inspired in part by some earlier work by
Sutton [55], and by some work on matrix decomposition theory which I did in 1978,
but go substantially beyond the initial inspirations.)

Spatial structure is also very critical, as was already discussed in Section 1.3.3.1.
Large-scale network control will be an important testbed in learning how to handle
spatial structure, but concepts like the Object Net still leave open some key questions.
For example, how do brains learn object types? How can systems like the brain
implement such structures, using some kind of multiplexing or thalamic gating [56]?
How does spatial complexity interface with temporal complexity?

As we move up to systems which truly make high-level decisions, in order to
manage multiple levels of time, issues related to stochastic search and stochastic
system identification become ever more important. This chapter has already discussed
these issues, but we need to remember that they will become more important in the
future.

None of this work would allow us to build an artificial human mind. The human
mind involves a whole new set of issues [1] far beyond the scope of this chapter. But
99 percent of the human brain is more or less equivalent to structures which exist in
the smallest mouse. A deeper, more functional understanding of the latter should be
a big step forward, in allowing us someday to understand the former more deeply as
well.
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