
CHAPTER 1

Review of Power Cable
Standard Rating Methods

1.1 INTRODUCTION

Calculation of the current-carrying capability, or ampacity, of electric power cables
has been extensively discussed in the literature and is the subject of several interna-
tional and national standards. The main international standards are those issued by
the International Electrotechnical Commission (IEC) and the Institute of Electrical
and Electronic Engineers (IEEE). References at the end of this chapter list the doc-
uments either issued or sponsored by these two organizations. The calculation pro-
cedures in both standards are, in principle, the same, with the IEC method incorpo-
rating several new developments that took place after the publication of the Neher
and McGrath (NM) paper (1957). Similarities in the approaches are not surprising,
since during the preparation of the standard, Mr. McGrath was in touch with the
Chairman of Working Group 10 of IEC Subcommittee 20A (responsible for the
preparation of ampacity calculation standards). The major difference between the
two approaches is the use of metric units in IEC 60287 and imperial units in NM
paper (the same equations look completely different because of this). Even though
the methods are similar in principle, the IEC document is more comprehensive than
the NM paper. IEC 60287 not only contains all the formulas (with minor exceptions
listed in Appendix F of Anders, 1997) of the NM paper, but, in several cases, it
makes a distinction between different cable types and installation conditions where
the NM paper does not make such a distinction. Also, the constants used in the IEC
document are more up to date.

Nevertheless, the principles of heat transfer for buried cables applied in both
standards are the same, and the resulting equations will be reviewed in this chapter.
The ampacity calculations are usually carried out in two different ways. On the one
hand, steady-state or continuous ratings are sought; and, on the other, time-depen-
dent or transient calculations are performed. In both cases, for cables buried under-
ground, soil dry out caused by the heat generated in the cable might be considered.
The calculation methods for cables in air are slightly different in both standards
and, where applicable, the differences will be brought up in this book. For cables in-
stalled in air, the presence of solar radiation and wind may have profound effects on
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the cable rating. Again, where applicable, these influences will be discussed in the
subsequent chapters.

The focus of this book is on the installations that are not covered in the interna-
tional standards mentioned above. However, the starting point of the analysis will
be the standard methods and they will be reviewed in this chapter based on the pre-
sentation in Anders (1997).1 This approach will make this book self-contained, thus
allowing analysis of both standard and nonstandard calculation methods. The devel-
opments leading to the standard rating equations will not, however, be repeated
here and the interested reader is referred to Anders (1997) for the relevant back-
ground information.

1.2 ENERGY CONSERVATION EQUATIONS

Ampacity computations of power cables require solution of the heat transfer equa-
tions, which define a functional relationship between the conductor current and the
temperature within the cable and in its surroundings. In this section, we will analyze
how the heat generated in the cable is dissipated to the environment. We will also
show the basic heat transfer equations, and discuss how these equations are solved,
thus laying the groundwork for cable rating calculations.

1.2.1 Heat Transfer Mechanism in Power Cable Systems

The two most important tasks in cable ampacity calculations are the determination
of the conductor temperature for a given current loading, or conversely, determina-
tion of the tolerable load current for a given conductor temperature. In order to per-
form these tasks, the heat generated within the cable and the rate of its dissipation
away from the conductor for a given conductor material and given load must be cal-
culated. The ability of the surrounding medium to dissipate heat plays a very impor-
tant role in these determinations, and varies widely because of several factors such
as soil composition and moisture content, ambient temperature, and wind condi-
tions. The heat is transferred through the cable and its surroundings in several ways
and these are described in the following sections.

1.2.1.1 Conduction. For underground installations, the heat is transferred by
conduction from the conductor and other metallic parts as well as from the insulation.
It is possible to quantify heat transfer processes in terms of appropriate rate equa-
tions. These equations may be used to compute the amount of energy being trans-
ferred per unit time. For heat conduction, the rate equation is known as Fourier's law.
For a wall having a temperature distribution 6{x), the rate equation is expressed as

I dO

'The author would like to acknowledge the permission received from the IEEE Press and the McGraw-
Hill Company for extracting information from my first book for the purposes of this chapter.
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The heat flux q (W/m2) is the heat transfer rate in the x direction per unit area
perpendicular to the direction of transfer, and is proportional to the temperature gra-
dient dOldx in this direction. The proportionality constant p is a transport property
known as thermal resistivity (K • m/W) and is a characteristic of the material. The
minus sign is a consequence of the fact that heat is transferred in the direction of de-
creasing temperature.

1.2.1.2 Convection. For cables installed in air, convection and radiation are
important heat transfer mechanisms from the surface of the cable to the surrounding
air. Convection heat transfer may be classified according to the nature of the flow.
We speak of forced convection when the flow is caused by external means, such as
by wind, pump, or fan. In contrast, for free (or natural) convection, the flow is in-
duced by buoyancy forces, which arise from density differences caused by tempera-
ture variations in the air. In order to be somewhat conservative in cable rating com-
putations, we usually assume that only natural convection takes place at the outside
surface of the cable. However, both convection modes will be considered in Chap-
ter 6.

Regardless of the particular nature of the convection heat transfer process, the
appropriate rate equation is of the form

q=h{ds-Oamb) (1.2)

where q, the convective heat flux (W/m2), is proportional to the difference between
the surface temperature and the ambient air temperature, 6S and 6arnb, respectively.
This expression is known as Newton's law of cooling, and the proportionality con-
stant h (W/m2 • K) is referred to as the convection heat transfer coefficient. Deter-
mination of the heat convection coefficient is perhaps the most important task in
computation of ratings of cables in air. The value of this coefficient varies between
2 and 25 W/m2 • K for free convection and between 25 and 250 W/m2 • K for forced
convection.

1.2.1.3 Radiation. Thermal radiation is energy emitted by cable or duct sur-
face. The heat flux emitted by a cable surface is given by the Stefan-Boltzmann
law:

q = saB0r (1.3)

where 0* is the absolute temperature (K) of the surface,2 aB is the Stefan-Boltz-
mann constant (crB = 5.67 • 10~8 W/m2 • K4), and s is a radiative property of the sur-
face called the emissivity. This property, whose value is in the range 0 < s < 1, in-
dicates how efficiently the surface emits compared to an ideal radiator. Conversely,

throughout this book, the temperature with an asterisk will denote absolute value in degrees Kelvin.
Similarly, dimensions with an asterisk will denote the measurements in meters rather than in millimeters,
as is usually the case.
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if radiation is incident upon a surface, a portion will be absorbed, and the rate at
which energy is absorbed per unit surface area may be evaluated from knowledge
of the surface radiative property known as absorptivity, a. That is,

qabs = <x<linc 0-4)

where 0 < a < 1. Equations (1.3) and (1.4) determine the rate at which radiant en-
ergy is emitted and absorbed, respectively, at a surface. Since the cable both emits
and absorbs radiation, radiative heat exchange can be modeled as an interaction be-
tween two surfaces. Determination of the net rate at which radiation is exchanged
between two surfaces is generally quite complicated. However, for cable rating
computations, we may assume that a cable surface is small and the other surface is
remote and much larger. Assuming this surface is one for which a = s (a gray sur-
face), the net rate of radiation exchange between the cable and its surroundings, ex-
pressed per unit area of the cable surface, is

q = SCTB{6?* - 0*aL) (1-5)

Throughout this book, we will use a notion of heat rate rather than heat flux. The
heat transfer rate is obtained by multiplying heat flux by the area. Thus, the heat
rate for radiative heat transfer will be given by the following equation3:

Wrad=s<rBAsr{ep-6*J,b) (1.6)

where Asr (m2) is the effective radiation area per meter length.
In power cables installed in air, the cable surface within the surroundings will si-

multaneously transfer heat by convection and radiation to the adjoining air. The to-
tal rate of heat transfer from the cable surface is the sum of the heat rates due to the
two modes.4 That is,

w = hAs(ds - eamh) + sAsraB(o?4 - e*aL) 0-7)

where As (m
2) is the convective area per meter length.

For some special cable installations, the ambient temperature used for heat con-
vection can be different from the one used for heat transfer by radiation. The appro-
priate temperatures to be used are described in Chapter 10 of Anders (1997).

1.2.1.4 Energy Balance Equations. In the analysis of heat transfer in a cable
system, the law of conservation of energy plays an important role. We will formu-
late this law on a rate basis; that is, at any instant, there must be a balance between
all energy rates, as measured in joules per second (W). The energy conservation law
can be expressed by the following equation:

throughout the book, the symbol Wwill be used for heat transfer rate.
4The heat conduction in air is often neglected in cable rating computations.
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Wenl+Wint=Wout + t,Ws, (1.8)

Where Went is the rate of energy entering the cable. This energy may be generated
by other cables located in the vicinity of the given cable or by solar radiation. Wint is
the rate of heat generated internally in the cable by joule or dielectric losses and
AWst is the rate of change of energy stored within the cable. The value of Wout cor-
responds to the rate at which energy is dissipated by conduction, convection, and
radiation. For underground installations, the cable system will also include the sur-
rounding soil.

We will use the fundamental equations described in this section to develop rating
equations throughout the reminder of the book.

1.2.2 Heat Transfer Equations

As we mentioned earlier, current flowing in the cable conductor generates heat,
which is dissipated through the insulation, metal sheath, and cable servings into the
surrounding medium. The cable ampacity depends mainly upon the efficiency of
this dissipation process and the limits imposed on the insulation temperature. To
understand the nature of the heat dissipation process, we need to use the relevant
heat transfer equations.

1.2.2.1 Underground, Directly Buried Cables. Let us consider an under-
ground cable located in a homogeneous soil. In such a cable, the heat is transferred
by conduction through cable components and the soil. Since the length of the cable
is much greater than its diameter, end effects can be disregarded and the heat trans-
fer problem can be formulated in two dimensions only.5

The differential equation describing heat conduction in the soil has the following
form:

d I 1 dd \ d I 1 36 \ dd
— —— + -7-\ —— + Wint = C^r (1.9)
dx\p dx ) dy\p dy j mt dt v y

where
p = thermal resistivity, K • m/W
S = surface area perpendicular to heat flow, m2

dO , • - , . •
-7- = temperature gradient in x direction
c = the volumetric thermal capacity of the material

For a cable buried in soil, Equation (1.9) is solved with the boundary conditions
usually specified at the soil surface. These boundary conditions can be expressed in
two different forms. If the temperature is known along a portion of the boundary, then

5Because end effects are neglected, all thermal parameters will be expressed in this book on a per-unit-
length basis.
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0=0B(s) (1.10)

where 6B is the boundary temperature that may be a function of the surface length s.
If heat is gained or lost at the boundary due to convection h(6- 6amb) or a heat flux
q, then

1 30
--to+q + h(0-6amb) = 0 (1.11)

where n is the direction of the normal to the boundary surface, h is a convection co-
efficient, and 6 is an unknown boundary temperature.

In cable rating computation, the temperature of the conductor is usually given
and the maximum current flowing in the conductor is sought. Thus, when the con-
ductor heat loss is the only energy source in the cable, we have Wint = I2R, and
Equation (1.9) is used to solve for /with the specified boundary conditions.

The challenge in solving Equation (1.9) analytically stems mostly from the dif-
ficulty of computing the temperature distribution in the soil surrounding the cable.
An analytical solution can be obtained when a cable is represented as a line source
placed in an infinite homogenous surrounding. Since this is not a practical as-
sumption for cable installations, another assumption is often used; namely, that
the earth surface is an isotherm. In practical cases, the depth of burial of the ca-
bles is on the order of ten times their external diameter, and for the usual temper-
ature range reached by such cables, the assumption of an isothermal earth surface
is a reasonable one. In cases where this hypothesis does not hold, namely, for
large cable diameters and cables located close to the earth surface, a correction to
the solution equation has to be used or numerical methods applied. Both are dis-
cussed in Anders (1997).

1.2.2.2 Cables in Air. For an insulated power cable installed in air, several
modes of heat transfer have to be considered. Conduction is the main heat trans-
fer mechanism inside the cable. Suppose that the heat generated inside the cable
(due to joule, ferromagnetic and dielectric losses) is Wt (W/m). Another source of
heat energy can be provided by the sun if the cable surface is exposed to solar ra-
diation. Energy outflow is caused by convection and net radiation from the cable
surface. Therefore, the energy balance Equation (1.83) at the surface of the cable
can be written as

vv t 7 vy sol *y conv *v rad u V l • L z 7

where Wsol is the heat gain per unit length caused by solar heating, and Wconv and
Wrad are the heat losses due to convection and radiation, respectively. Substituting
appropriate formulas for the heat gains and losses at the surface of the cable, the fol-
lowing form of the heat balance equation is obtained:

W, + crDfH- <irD*h{0*- d*mb) - -nDfea^O** - 0*%b) = 0 (1.13)
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where
6* = cable surface temperature, K
a = solar absoiption coefficient
H = intensity of solar radiation, W/m2

aB = Stefan-Boltzmann constant, equal to 5.67 • 108 W/m2K4

s = emissivity of the cable outer covering
D* = cable external diameter,6 m
6*amb = ambient temperature, K

This equation is usually solved iteratively. In steady-state rating computations,
the effect of heat gain by solar radiation and heat loss caused by convection are tak-
en into account by suitably modifying the value of the external thermal resistance of
the cable. Computation of the convection coefficient h can be quite involved. Suit-
able approximations are summarized in Section 1.6.6.5 and, for special installations
discussed in this book, are revisited in Chapter 6.

1.2.3 Analytical Versus Numerical Methods of Solving Heat
Transfer Equations

Equations (1.9) and (1.13) can be solved analytically, with some simplifying as-
sumptions, or numerically. Analytical methods have the advantage of producing
current rating equations in a closed formulation, whereas numerical methods re-
quire iterative approaches to find cable ampacity. However, numerical methods
provide much greater flexibility in the analysis of complex cable systems and allow
representation of more realistic boundary conditions. In practice, analytical meth-
ods have found much wider application than the numerical approaches. There are
several reasons for this situation. Probably the most important one is historical: ca-
ble engineers have been using analytical solutions based on either Neher/McGrath
(1957) formalism or IEC Publication 60287 (1994) for a long time. Computations
for a simple cable system can often be performed using pencil and paper or with the
help of a hand-held calculator. Numerical approaches, on the other hand, require
extensive manipulation of large matrices and have only become popular with an ad-
vent of powerful computers. Both approaches will be used in this book; analytical
methods are discussed in Chapters 2 and 3, whereas the numerical approaches are
dealt with in Chapter 4.

1.3 THERMAL NETWORK ANALOGS

Analytical solutions to the heat transfer equations are available only for simple ca-
ble constructions and simple laying conditions. In solving the cable heat dissipation
problem, electrical engineers use a fundamental similarity between the heat flow

6We recall that the dimension symbols with an asterisk refer to the length in meters and without it to the
length in millimeters.
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due to the temperature difference between the conductor and its surrounding medi-
um and the flow of electrical current caused by a difference of potential. Using their
familiarity with the lumped parameter method to solve differential equations repre-
senting current flow in a material subjected to potential difference, they adopt the
same method to tackle the heat conduction problem. The method begins by dividing
the physical object into a number of volumes, each of which is represented by a
thermal resistance and a capacitance. The thermal resistance is defined as the mate-
rial's ability to impede heat flow. Similarly, the thermal capacitance is defined as
the material's ability to store heat. The thermal circuit is then modeled by an analo-
gous electrical circuit in which voltages are equivalent to temperatures and currents
to heat flows. If the thermal characteristics do not change with temperature, the
equivalent circuit is linear and the superposition principle is applicable for solving
any form of heat flow problem.

In a thermal circuit, charge corresponds to heat; thus, Ohm's law is analogous to
Fourier's law. The thermal analogy uses the same formulation for thermal resis-
tances and capacitances as in electrical networks for electrical resistances and ca-
pacitances. Note that there is no thermal analogy to inductance or in steady-state
analysis; only resistance will appear in the network.

Since the lumped parameter representation of the thermal network offers a sim-
ple means for analyzing even complex cable constructions, it has been widely
used in thermal analysis of cable systems. A full thermal network of a cable for
transient analysis may consist of several loops. Before the advent of digital com-
puters, the solution of the network equations was a formidable numerical task.
Therefore, simplified cable representations were adopted and methods to reduce a
multiloop network to a two-loop circuit were developed. A two-loop representa-
tion of a cable circuit turned out to be quite accurate for most practical applica-
tions and, consequently, was adopted in international standards. In this section, we
will explain how the thermal circuit of a cable is constructed, and we will show
how the required parameters are computed. We will also explain how full network
equations are solved.

1.3.1 Thermal Resistance

All nonconducting materials in the cable will impede heat flow away from the ca-
bles (the thermal resistance of the metallic parts in the cable, even though not equal
to zero, is so small that it is usually neglected in rating computations). Thus, we can
talk about material resistance to heat flow. Of particular interest is an expression for
the thermal resistance of a cylindrical layer, for example, cable insulation, with con-
stant thermal resistivity pth. If the internal and external radii of this layer are i\ and
r2, respectively, then the thermal resistance for conduction of a cylindrical layer per
unit length is

r=-gln^ (1.14)
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For a rectangular wall, we have

T=Ptn-s (1-15)

where
pth = thermal resistivity of a material, K • m/W
S = cross-section area of the body, m2

/ = thickness of the body, m

In analogy to electrical and thermal networks, we also can write that

Ad
W=-jr (1.16)

which is the thermal equivalent of Ohm's law.
A thermal resistance may also be associated with heat transfer by convection at a

surface. From Newton's law of cooling [Equation (1.2)],

W=hconvAs(0e-0amh) (1.17)

where As is the area of the outside surface of the cable for unit length, hconv is the ca-
ble surface convection coefficient, and 6e is the cable surface temperature.

The thermal resistance for convection is then

T =
 e ~ amb

 = (\ \Q\
Lconv UT h A U-1CV

*convil-s

Yet another resistance may be pertinent for a cable installed in air. In particular,
radiation exchange between the cable surface and its surroundings may be impor-
tant. It follows that a thermal resistance for radiation may be defined as

/9*_ #* i
T - e gas - _—— n i o\

YV rad nr^sr

where Asr is the area of the cable surface effective for heat radiation for unit length of
the cable and 0*a-s is the temperature of the air surrounding the cable which, when ca-
ble is installed in free air, is equal to the ambient temperature 6*mb. hr is the radiation
heat transfer coefficient obtained from Equation (1.6) for radiation heat transfer rate:

hf. = saB(0f + 0*J(0*2 + 6fas) (1.20)

The total heat transfer coefficient for a cable in air is given by

h, = hconv + hr (1.21)
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1.3.2 Thermal Capacitance

Many cable rating problems are time dependent. To determine the time depen-
dence of the temperature distribution within the cable and its surroundings, we
could begin by solving the appropriate form of the heat equation, for example,
Equation (1.9) In the majority of practical cases, it is very difficult to obtain ana-
lytical solutions of this equation and, where possible, a simpler approach is pre-
ferred. One such approach may be used where temperature gradients within the
cable components are small. It is termed the lumped capacitance method. In order
to satisfy the requirement that the temperature gradient within the body must be
small, some components of the cable system, for example, the insulation and sur-
rounding soil, must be subdivided into smaller entities. This is done using a theo-
ry developed by Van Wormer (1955), application of which is briefly reviewed in
this section.

As mentioned above, an equivalent thermal network will contain only thermal
resistances T and thermal capacitances Q. The thermal capacitance Q can be de-
fined as the "ability to store the heat," and is defined by

Q=V-c (1.22)

where
V = volume of the body, m3

c = volumetric specific heat of the material, J/m3oC

As an illustration, the formula for the thermal capacitance for a coaxial configu-
ration with internal and external diameters Df and Df (m), respectively, which may
represent, for example, a cylindrical insulation, is given by

(1.23)

Thermal capacitances and resistances are used to construct a thermal ladder net-
work to obtain the temperature distribution within the cable and its surroundings as
a function of time. This topic is discussed in the next section.

1.3.3 Construction of a Ladder Network of a Cable

The electrical and thermal analogy discussed in Section 1.3.1 allows the solution of
many thermal problems by applying mathematical tools well known to electrical
engineers. An ability to construct a ladder network is particularly useful in transient
computations. To build a ladder network, the cable is considered to extend as far as
the inner surface of the soil for buried cables, and to free air for cables in air.

In constructing ladder networks, dielectric losses require special attention. Al-
though the dielectric losses are distributed throughout the insulation, it may be
shown that for a single-conductor cable and also for multicore, shielded cables with
round conductors, the correct temperature rise is obtained by considering for tran-
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sients and steady-state that all of the dielectric loss occurs at the middle of the ther-
mal resistance between the conductor and the sheath. For multicore belted cables,
dielectric losses can generally be neglected, but if they are represented, the conduc-
tors are taken as the source of dielectric loss (Neher and McGrath, 1957).

Thermal capacitances of the metallic parts are placed as lumped quantities corre-
sponding to their physical position in the cable. The thermal capacitances of materi-
als with high thermal resistivity and possibly large temperature gradients across
them (e.g., insulation and coverings) are allocated by the technique described be-
low.

1.3.3.1 Representation of Capacitances of the Dielectric To improve
the accuracy of the approximate solution using lumped constants, Van Wormer
(1955) proposed a simple method for allocating the thermal capacity of the insula-
tion between the conductor and the sheath so that the total heat stored in the insula-
tion is represented. An assumption made in the derivation is that the temperature
distribution in the insulation follows a steady-state logarithmic distribution for the
period of the transient. The ladder networks for short and long duration transients
are somewhat different and are discussed below.

Whether the transient is long or short depends on the cable construction. For the
purpose of transient rating computations, long-duration transients are those lasting
longer than ^ST- %Q, where XT and %Q are the internal cable thermal resistance
and capacitance, respectively. The methods for computing the values of T and Q are
summarized in Section 1.6 in this chapter.

Ladder Network for Long-Duration Transients. The dielectric is represented by
lumped thermal constants. The total thermal capacity of the dielectric (Q() is divid-
ed between the conductor and the sheath, as shown in Figure 1-1.

When screening layers are present, metallic tapes are considered to be part of the
conductor or sheath, whereas semiconducting layers (including metallized carbon
paper tapes) are considered part of the insulation in thermal calculations.

Figure 1-1 Representation of the dielectric for times greater that ^%T • HQ. Tx = total ther-
mal resistance of dielectric per conductor (or equivalent single-core conductor of a three-core
cable; see below). Qt = total thermal capacitance of dielectric per conductor (or equivalent
single-core conductor of a three-core cable). Qc = thermal capacitance of conductor (or
equivalent single-core conductor of a three-core cable).
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The Van Wormer coefficient/? is given by

p = 7 — r - - 7 — \ (1-24)

Equation (1.24) is also used to allocate the thermal capacitance of the outer cov-
ering in a similar manner to that used for the dielectric. In this case, the Van
Wormer factor is given by

where De and Ds are the outer and inner diameters of the covering.
For long-duration transients and cyclic factor computations, the three-core cable

is replaced by an equivalent single-core construction dissipating the same total con-
ductor losses (Wollaston, 1949). The diameter J* of the equivalent single-core con-
ductor is obtained on the assumption that new cable will have the same thermal re-
sistance of the insulation as the thermal resistance of a single core of the three-core
cable; that is,

where D* is the same value of diameter over dielectric (under the sheath) as for the
three-core cable, and Tx is the thermal resistance of the three-conductor cable as
given in Section 1.6.6.1; pt is the thermal resistivity of the dielectric.

Hence, we have

d* = D1tr2"Wn (1.27)

Thermal capacitances are calculated on the following assumptions:

1. The actual conductors are considered to be completely inside the diameter of
the equivalent single conductor, the remainder of the equivalent conductor
being occupied by insulation.

2. The space between the equivalent conductor and the sheath is considered to
be completely occupied by insulation (for fluid-filled cable, this space is
filled partly by the total volume of oil in the ducts and the remainder is oil-
impregnated paper).

Factor/? is then calculated using the dimensions of the equivalent single-core ca-
ble, and is applied to the thermal capacitance of the insulation based on assumption
(2) above.

3 2TT
 I n d*

p'^>h~m->

p=-(i)"(f)'-'
(1.24)

(1.25)

(1.26)

£/*=D*e-2rf l/3p / (1.27)

Tx Pi , DJ
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Ladder Network for Short-Duration Transients. Short-duration transients last
usually between 10 min and about 1 h. In general, for a given cable construction,
the formula for the Van Wormer coefficient shown in this section applies when
the duration of the transient is not greater than \XT- XQ. The heating process for
short-duration transients can be assumed to be the same as if the insulation were
thick.

The method is the same as for long-duration transients except that the cable insu-
lation is divided at diameter dx = V/),- • dc, giving two portions having equal ther-
mal resistances, as shown in Figure 1-2. The thermal capacitances Qn and Qi2 are
defined in Section 1.6.7.

The Van Wormer coefficient is given by

p* =
1 1

In A
dj \dc

A
(1.28)

- 1

Example 1.1
Construct a ladder network for model cable No. 4 in Appendix A for a short-dura-
tion transient.

This network is shown in Figure 1-3, where it is shown that the insulation ther-
mal resistance is divided into two equal parts, the insulation capacitance into four
parts, and the capacitance of the cable serving into two parts. •

A three-core cable is represented as an equivalent single-core cable as described
above for durations of about {XT - XQ or longer (the quantities XT and XQ refer to
the whole cable). However, for very short transients (i.e., for durations up to the
value of the product XT • XQ, where XT and XQ now refer to the single core), the
mutual heating of the cores is neglected, and a three-core cable is treated as a sin-
gle-core cable with the dimensions corresponding to the one core. For durations be-
tween these two limits, XT • XQ for one core and {XT • XQ for the whole cable, the
transient is assumed to be given by a straight-line interpolation in a diagram with
axes of linear temperature rise and logarithmic times.

Van Wormer Coefficient for Transients Due to Dielectric Loss. In the preced-
ing sections, it has been assumed that the temperature rise of the conductor due to

Conductor
° Outside diameter

of insulation

Figure 1-2 Representation of the dielectric for times less than or equal to ̂ XT • XQ.

^ dx ^

: Q c
 + p*Qii (1-p*)Qi1+P*Qi2

(1-p*)Qi2
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Figure 1-3 Thermal network for model cable No. 4 with electrical analogy.

dielectric loss has reached its steady state, and that the total temperature at any time
during the transient can be obtained simply by adding the constant temperature val-
ue due to the dielectric loss to the transient value caused by the load current.

If changes in load current and system voltage occur at the same time, then an ad-
ditional transient temperature rise due to the dielectric loss has to be calculated
(Morello, 1958). For cables at voltages up to and including 275 kV, it is sufficient
to assume that half of the dielectric loss is produced at the conductor and the other
half at the insulation screen or sheath. The cable thermal circuit is derived by the
method given above with the Van Wormer coefficient computed from equations
and for long- and short-duration transients, respectively.

For paper-insulated cables operating at voltages higher than 275 kV, the dielec-
tric loss is an important fraction of the total loss and the Van Wormer coefficient is
calculated by (IEC 853-2, 1989)

[(3M3)]-K3)H(3H (129)

In practical calculations for all voltage levels for which dielectric losses are im-
portant, half of the dielectric loss is added to the conductor loss and half to the
sheath loss; therefore, the loss coefficients (1 + Aj) and (1 + Aj + A2) used to evalu-
ate thermal resistances and capacitances are set equal to 2.
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Figure 1-4 General ladder network representing a cable.
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Example 1.2
We will compute the Van Wormer coefficient for dielectric losses for cable No. 3
described in Appendix A. From Table Al, we have D} = 67.26 mm and dc = 41.45
mm. Hence,

\(6J^V (6T26\\ r /67.26\> 11767.26V 1
Pd L\41.45J 'n\41-45/J L l4L45"jJ 2^41457 l\

Pd~~ r / \ -ir / \-i =0.585

An example of the transient analysis with the voltage applied simultaneously
with the current is given in Example 5.4 in (Anders, 1997) •

1.3.3.2 Reduction of a Ladder Network to a Two-Loop Circuit CIGRE
(1972, 1976) and later IEC (1985, 1989) introduced computational procedures for
transient rating calculations employing a two-loop network with the intention of
simplifying calculations and with the objective of standardizing the procedure for
basic cable types. Even though with the advent and wide availability of fast desktop
computers the advantage of simple computations is no longer so pronounced, there
is some merit in performing some computations by hand, if only for the purpose of
checking sophisticated computer programs. To perform hand computations for the
transient response of a cable to a variable load, the cable ladder network has to be
reduced to two sections. The procedure to perform this reduction is described be-
low.

Consider a ladder network composed of v resistances and (v + 1) capacitances, as
shown in Figure 1-4. If the last component of the network is a capacitance, the last
capacitance Q^x is short-circuited. An equivalent network, which represents the ca-
ble with sufficient accuracy, is derived with two sections TAQA and TpQB, as shown
in Figure 1-5.

The first section of the derived network is made up of TA = Ta and QA = Qa with-
out modification, in order to maintain the correct response for relatively short dura-
tions.

The second section TpQB of the derived network is made up from the remaining
sections of the original circuit by equating the thermal impedance of the second de-

r / ^ \ 2 (67^26 \1 r / 67.26 YU 117 67.26 V 1

= 0.585PJ = ~ munm

Q,QvQv-iQYQP: Qa

T<x T P T y T v-1 T v
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TA

^ = Q «

T B

4=QC

Figure 1-5 Two-loop equivalent network.

Figure 1-6 Network diagram for cable No. 1 for short-duration transients.

(1-p*)QM+p*Qi2

0-P*)Qi2
(1-P')QJ

%

2T1 2 ^

Q C + P*QM

C1 R1 C2 R2 C3 R3 C4

rived section to the total impedance of the multiple sections. The resulting expres-
sions are then equal to (Anders, 1997)

TB=Tp+Ty+... + Tv (1.30)

I Ty+Ta+ ... + Tv\i I T8 + Te + . . . + Tv \i

e.=eg^r;+r;+.,,+r;jgy+(r;+r;+,,,+rjga+.--
+ \Tf3+Ty+... + Tj&

Even though formulas and are straightforward, a great deal of care is required
when the equivalent thermal resistances and capacitances are computed in the case
when sheath, armor, and pipe losses are present (IEC, 1985). This is because the lo-
cation of these losses inside the original network has to be carefully taken into ac-
count. The following example illustrates this point.

Example 1.3
We will construct a two-loop equivalent network for model cable No. 1 assuming
(1) a short-duration transient and (2) a long-duration transient.

1. Short-Duration Transient
From Table Al we observe that for this cable, short-duration transients are those

lasting half an hour or less. The diagram of the full network for a short-duration
transient is shown in Figure 1-6.

TB=Tp+Ty+... + Tv

( Ty + T8 + . . . + Tv V / T8 + Te + . . . + Tv \i

+ \Tf3+Ty+... + Tj&

(1.31)

%T3

+ Q A
+ P Q/qs

Tv
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The method of dividing insulation and jacket capacitances into parts is discussed
in Section 1.6.7. Before we apply the reduction procedure, we combine parallel ca-
pacitances into four equivalent capacitances. In the equivalent network, only con-
ductor losses are represented. Therefore, to account for the presence of sheath loss-
es, the thermal resistances beyond the sheath must be multiplied, and the thermal
capacitances divided by the ratio of the losses in the conductor and the sheath to the
conductor losses.7 By performing these multiplications and divisions, the time con-
stants of the thermal circuits involved are not changed. Thus,

Qi = Qc+P*Qn Qi = (1 ~P*)Qn +P*Qa

ft-o-fxa. e,=~^ e^Srf1

To compute numerical values, we will require expressions for Qn and Qi2. These
expressions are given in Section 1.6.7. The numerical values are as follows: Qn =
763 J/K • m, Qi2 = 453.9 J/K • m, and Qj = 394.8 J/K • m. With these values and
with the additional numerical values in Table Al, Dt, = 30.1 mm, dc = 20.5 mm, De

= 35.8 mm, and Ds = 31.4 mm, we have

l nU7 te/"1 20.5 20.5 '

Qx = 1035 + 0.468 • 763 = 1392.1 J/K • m

Q2 = (1 - 0.468)763 + 0.468 • 453.9 = 618.3 J/K • m

4 + 0.478 • 394.8
Q3 = (1 -0.468)453.9 = 241.5 J/K • m Q4= j - ^ = 176.8 J/K • m

(1-0.478)394.8
Q5 = ~ = 189-! J/K ' m

The final capacitance Q5 is omitted in further analysis because the transient for
the cable response is calculated on the assumption that the output terminals on the
right-hand side are short-circuited.

Since the first section of the network in Figure 1 -6 represents the conductor,
and in rating computations the conductor temperature is of interest, the equivalent

7These ratios are called sheath and armor loss factors and are defined in Sections 1.6.4 and 1.6.5, respec-
tively.
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Figure 1-7 Network diagram for a long-duration transient for model cable No. 1.

18 REVIEW OF POWER CABLE STANDARD RATING METHODS

network will have the first section equal to the first section of the full network;
that is,

TA = \TX and QA = 0, (1.33)

From Equation (1.30), we have

r/? = ̂ 1 +( l+A 1 )7 1
3 (1.34)

Thermal capacitance of the second part is obtained by applying Equation (1.31):

Q^Q^[-mw^\iQ3+Q4) (L35)

The sheath loss factor and thermal resistances for this cable are given in Table
Al as A, = 0.09, Tx = 0.214 K • m/W, and T3 = 0.104 K • m/W. Substituting numer-
ical values in Equations (1.33) to (1.35), we obtain

TA = 0.107 K • m/W QA = 1392.1 J/K • m

TB = 0.107 + 1.09 • 0.104 = 0.220 K • m/W

/ 1.09-0.104 \2
QB - 618.3 + ̂ Q 1 Q 7 + 1 Q 9 . Q 1 Q 4 j (241.5 + 176.8) = 729.4 J/K • m

2. Long-Duration Transients
Long-duration transient for this cable are those lasting longer than 0.5 h. The ap-

propriate diagram is shown in Figure 1-7. In this case, we have

TA = TX r/? = ( l+A1)r 3 (1.36)

The insulation and jacket are split into two parts with the Van Wormer coeffi-
cients given by Equations (1.24) and (1.25), respectively. Since the last part of the
jacket capacitance is short-circuited, QA and Qb are simply obtained as the sums of
relevant capacitances:

QA = Qc+pQi QB = (\-P)QI+ Q\\P
X

QJ (1-37)

T1 T 3
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Substituting numerical values, we obtain

2 1 nUJ U J \20.5y \20.5;

TA = 0.214 K • m/W &< = 1035 + 0.437 • 915.6 = 1435.1 J/K • m

TB= 1.09 • 0.104 = 0.113 K-m/W

4 + 0.478 • 394.8
QB = (\- 0.437)915.6 + j ~ ^ = 692.3 J/K • m •

1.4 RATING EQUATIONS—STEADY-STATE CONDITIONS

The current-carrying capability of a cable system will depend on several parame-
ters. The most important of these are:

1. The number of cables and the different cable types in the installation under
study

2. The cable construction and materials used for the different cable types
3. The medium in which the cables are installed

4. Cable locations with respect to each other and with respect to the earth surface
5. The cable bonding arrangement

For some cable constructions, the operating voltage may also be of significant im-
portance. All of the above issues are taken into account, some of them explicitly, the
others implicitly, in the rating equations summarized in this chapter. The lumped pa-
rameter network representation of the cable system is used for the development of
steady-state and transient rating equations. These equations are developed for a sin-
gle cable, either with one core or with multiple cores. However, they can be applied
to multicable installations, for both equally and unequally loaded cables, by suitably
selecting the value of the external thermal resistance, as discussed in Section 1.6.6.5 =

The development of cable rating equations is quite different for steady-state and
transient conditions. We will start with analysis of the steady-state conditions, which
could be a result of either constant or cyclic loading. We will present only the very
fundamental equations that will form the basis of the developments presented in the
subsequent chapters. The parameters appearing in these equations can occasionally
involve very complex calculations. We will review these calculations when a need
arises before introducing modifications that are the subject of this book.

1.4.1 Buried Cables

1.4.1.1 Steady-State Rating Equation without Moisture Migration.
Steady-state rating computations involve solving the equation for the ladder net-
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work shown in Figure 1-8. With reference to Figure 1-8, WC9 Wd9 Ws, and Wa (W/m)
represent conductor, dielectric, sheath, and armor losses, respectively, and n de-
notes the number of conductors in the cable. Tl9 T2, T3, and T4 (K • m/W) are the
thermal resistances, where Tx is the thermal resistance per unit length between one
conductor and the sheath, T2 is the thermal resistance per unit length of the bedding
between sheath and armor, T3 is the thermal resistance per unit length of the exter-
nal serving of the cable, and T4 is the thermal resistance per unit length between the
cable surface and the surrounding medium.

Since losses occur at several positions in the cable system (for this lumped para-
meter network), the heat flow in the thermal circuit shown in Figure 1-8 will in-
crease in steps. Thus, the total joule loss Wf in a cable can be expressed as

r = Wc +Ws+Wa= Wc(\ + A, + A2) (1.38)

The quantity k{ is called the sheath loss factor and is equal to the ratio of the to-
tal losses in the metallic sheath to the total conductor losses. Similarly, A2 is called
the armor loss factor and is equal to the ratio of the total losses in the metallic armor
to the total conductor losses. Incidentally, it is convenient to express all heat flows
caused by the joule losses in the cable in terms of the loss per meter of the conduc-
tor.

Referring now to the diagram in Figure 1-8, and remembering the analogy be-
tween the electrical and thermal circuits, we can write the following expression for
A0, the conductor temperature rise above the ambient temperature:

i = (Wc + \Wd)Tx + [Wc(l + A,) + Wd]nT2 + [Wc{\ + A, + A2) + Wd]n(T3 + T4) (1.39)

(a)

(b)

Figure 1-8 The ladder diagram for steady-state rating computations, (a) Single-core cable,
(b) Three-core cable.

Ti T2 T3 T4

W s W a
kWd^Wd
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where Wd, Wc, Ab and A2 are defined above, and n is the number of load-carrying
conductors in the cable (conductors of equal size and carrying the same load). The
ambient temperature is the temperature of the surrounding medium under normal
conditions at the location where the cables are installed, or are to be installed, in-
cluding any local sources of heat, but not the increase of temperature in the immedi-
ate neighborhood of the cable due to the heat arising therefrom.

The unknown quantity is either the conductor current / or its operating tempera-
ture 6C (°C). In the first case, the maximum operating conductor temperature is giv-
en, and in the second case, the conductor current is specified. The permissible cur-
rent rating is obtained from Equation (1.39). Remembering that Wc = PR, we have

[ M-WA0.5Tx+n(T2 + Ti + TA)\ ]o.5
[ RTy + nR(\ + \X)T2 + nR{\ + \{ + X2)(T3 + T4) J

 {lAU)1 =

where R is the ac resistance per unit length of the conductor at maximum operating
temperature.

Equation (1.40) is often written in a simpler form that clearly distinguishes be-
tween internal and external heat transfers in the cable. Denoting

r = ZL + ( i + Al)r2 + (i + A1 + A2)r3

T (i.4i)

Equation (1.40) becomes

&0 = n(WcT+ WtT4+WdTd) (1.42)

where Wt are the total losses generated in the cable defined by:

Wt=Wf+ Wd= Wc{\ + A! + A2) + Wd (1.43)

and T computed from Equation (1.41) is an equivalent cable thermal resistance.
This is an internal thermal resistance of the cable, which depends only on the cable
construction. The external thermal resistance, on the other hand, will depend on the
properties of the surrounding medium as well as on the overall cable diameter, as
shown below.

The last term in Equation (1.42) is the temperature rise caused by dielectric loss-
es. Denoting it by A0ch

HBd = nWdTd (1.44)

1.4.1.2 Steady-State Rating Equation with Moisture Migration. The
laying conditions examined in this book are particularly conducive to the formation
of a dry zone around the cable. Under unfavorable conditions, the heat flux from the
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cable entering the soil may cause significant migration of moisture away from the
cable. A dried-out zone may develop around the cable, in which the thermal con-
ductivity can be reduced by a factor of three or more over the conductivity of the
bulk. The drying-out conditions may occur in both regions of the route, but particu-
larly in the region of high thermal resistivity.

The modeling of the dry zone around the cable is discussed in Anders (1997).
For completeness, we will start by recalling the basic developments presented there.
This will be followed by the modification of the expression for the conductor tem-
perature, taking into account the drying-out conditions in the unfavorable region in
Chapter 2 and in cable crossings in Chapter 3.

The current-carrying capacity of buried power cables depends to a large extent
on the thermal conductivity of the surrounding medium. Soil thermal conductivity
is not a constant, but is highly dependent on its moisture content. Under unfavor-
able conditions, the heat flux from the cable entering the soil may cause significant
migration of moisture away from the cable. A dried-out zone may develop around
the cable, in which the thermal conductivity is reduced by a factor of three or more
over the conductivity of the bulk. This, in turn, may cause an abrupt rise in temper-
ature of the cable sheath, which may lead to damage to the cable insulation. The
likelihood of soil drying out is even greater when the route of the rated cable is
crossed by another heat source.

In order to give some guidance on the effect of moisture migration on cable rat-
ings, CIGRE (1986) has proposed a simple two-zone model for the soil surrounding
loaded power cables, resulting in a minor modification of the steady-state rating
equation (Anders, 1997). Subsequently, this model has been adopted by the IEC as
an international standard (IEC, 1994). We will further extend this model to account
for heat sources crossing the rated cable.

The concept on which the method proposed by CIGRE relies can be summarized
as follows. Moist soil is assumed to have a uniform thermal resistivity, but if the
heat dissipated from a cable and its surface temperature are raised above certain
critical limits, the soil will dry out, resulting in a zone that is assumed to have a uni-
form thermal resistivity higher than the original one. The critical conditions, that is,
the conditions for the onset of drying, are dependent on the type of soil, its original
moisture content, and temperature.

Given the appropriate conditions, it is assumed that when the surface of a cable
exceeds the critical temperature rise above ambient, a dry zone will form around it.
The outer boundary of the zone is on the isotherm related to that particular tempera-
ture rise. An additional assumption states that the development of such a dry zone
does not change the shape of the isothermal pattern from what it was when all the
soil was moist, only that the numerical values of some isotherms change. Within the
diy zone, the soil has a uniformly high value of thermal resistivity, corresponding to
its value when the soil is "oven dried" at not more than 105°C. Outside the diy
zone, the soil has uniform thermal resistivity corresponding to the site moisture
content. The essential advantages of these assumptions are that the resistivity is uni-
form over each zone, and that the values are both convenient and sufficiently accu-
rate for practical purposes.
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The method presented below assumes that the entire region surrounding a cable
or cables has uniform thermal characteristics prior to diying out; the only nonuni-
formity being that caused by drying. As a consequence, the method should not be
applied without further consideration to installations where special backfills with
properties different from the site soil are used.

Let 6e be the cable surface temperature corresponding to the moist soil thermal
resistivity pL. Within the area between the cable surface (assumed to be isothermal)
and the critical isotherm, the heat transfer equation remains the same, the only
change from the uniform soil condition being the thermal resistivity of the dry zone.

Without moisture migration, we obtain the following relations, remembering
that the soil thermal resistance is directly proportional to the value of resistivity:

H y f = A ^ = ( g « - g * > + <»*-fl»*> (1.45)

and

ee - 0Y

nWt=~^f- (1.46)

where C is a constant, n is the number of cores in the cable, T4 is the cable external
thermal resistance when the soil is moist, and Wt is the total losses in a single core.
6amh and 6X are ambient temperature and the temperature of an isotherm at distance
x, respectively.

If we now assume that the region between the cable and the 6X isotherm dries out
so that its resistivity becomes p2, and that the power losses Wt remain unchanged,
we have

nw,=^r (L47)

where O'e is the cable surface temperature after moisture migration has taken place.
Combining Equations (1.46) and (1.47), we obtain the following form of Equa-

tion (1.45):

K- o* = %-We- Ox) = ~r[(Qe - eamb) - (ox- eamb)] (1.48)

(1.49)

(1.50)

After rearranging the

where

last

K-

v — •

equation, we

— and
Pi

obtain

T4)-(v-

A0V=6

1) A0T

Qam
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The rating Equation (1.40) takes the form

r= \ 0* ~ 6 ^ ~ W^0-5Tl + <T2 + ^3 + VT4)] + (V - l)Mx ]0-5
1 [ RTl+nR(\+\l)T2 + nR(\+\l + A2)(T3 + vT4) J U ' M )

We can observe that Equation (1.40) has been modified by the addition of the
term (v - 1)A0X in the numerator, and the substitution of vT4 for T4 in both the nu-
merator and the denominator.

1.4.2 Cables in Air

When cables are installed in free air, the external thermal resistance now accounts
for the radiative and convective heat loss. For cables exposed to solar radiation,
there is an additional temperature rise caused by the heat absorbed by the external
covering of the cable. The heat gain by solar absoiption is equal to (JDJH, with the
meaning of the variables defined below. In this case, the external thermal resistance
is different than for shaded cables in air, and the current rating is computed from the
following modification of Equation (1.40) (IEC 60287, 1994).

f Afl- WJj0.5Tx + n(T2 + T3 + T%] + aD*HTj ]o.5
[ RTX + nR{\ + \X)T2 + nR(\ + \x + A2)(T3 + T%) J ( '

where
£>J= external diameter of the cable, m
a = absorption coefficient of solar radiation for the cable surface
H = intensity of solar radiation, W/m2

T% = external thermal resistance of the cable in free air, adjusted to take account of
solar radiation, K • m/W

1.5 RATING EQUATIONS—TRANSIENT CONDITIONS

The procedure to evaluate temperatures is the main computational block in transient
rating calculations. This block requires a fairly complex programming procedure to
take into account self- and mutual heating, and to make suitable adjustments in the
loss calculations to reflect changes in the conductor resistance with temperature.

Transient rating of power cables requires the solution of the equations for the
network in Figure 1-6. The unknown quantity in this case is the variation of the con-
ductor temperature rise with time,8 6{t). Unlike in the steady-state analysis, this
temperature is not a simple function of the conductor current /(/). Therefore, the
process for determining the maximum value of I(t) so that the maximum operating
conductor temperature is not exceeded requires an iterative procedure. An excep-

8Unless otherwise stated, in this section we will follow the notation in IEC (1989) and we will use the
symbol 6 to denote temperature rise, and not Ad as in other parts of the book and in IEC (1994).
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tion is the simple case of identical cables carrying equal current located in a uni-
form medium. Approximations have been proposed for this case, and explicit rating
equations developed. We will discuss this case first and then we will extend the dis-
cussion to multiple cable types.

1.5.1 Response to a Step Function

1.5.1.1 Preliminaries. Whether we consider the simple cable systems men-
tioned above, or a more general case of several cable circuits in a backfill or duct
bank, the starting point of the analysis is the solution of the equations for the net-
work in Figure 1-6. Our aim is to develop a procedure to evaluate temperature
changes with time for the various cable components. As observed by Neher (1964),
the transient temperature rise under variable loading may be obtained by dividing
the loading curve at the conductor into a sufficient number of time intervals, during
any one of which the loading may be assumed to be constant. Therefore, the re-
sponse of a cable to a step change in current loading will be considered first.

This response depends on the combination of thermal capacitances and resis-
tances formed by the constituent parts of the cable itself and its surroundings. The
relative importance of the various parts depends on the duration of the transient be-
ing considered. For example, for a cable laid directly in the ground, the thermal ca-
pacitances of the cable, and the way in which they are taken into account, are im-
portant for short-duration transients, but can be neglected when the response for
long times is required. The contribution of the surrounding soil is, on the other
hand, negligible for short times, but has to be taken into account for long transients.
This follows from the fact that the time constant of the cable itself is much shorter
than the time constant of the surrounding soil.

The thermal network considered in this work is a derivation of the lumped para-
meter ladder network introduced early in the history of transient rating computa-
tions (Buller, 1951; Van Wormer, 1955; Neher, 1964; CIGRE, 1972; IEC 1985,
1989). For computational purposes, Baudoux et al. (1962) and then Neher (1964)
proposed to represent a cable in just two loops. Baudoux et al. provided procedures
for combining several loops to obtain a two-section network, which was latter
adopted by CIGRE WG 02 and published in Electra (CIGRE, 1972). However,
transformation of a multiloop network into a two-loop equivalent not only requires
substantial manual work before the actual transient computations can be performed,
but also inhibits the computation of temperatures at parts of the cable other than the
conductor. A procedure is given below for analytical solution of the entire network.
Generally, the network will be somewhat different for short- and long-duration
transients, and, usually, the limiting duration to distinguish these two cases can be
taken to be 1 h. Short transients are assumed to last at least 10 min. A more detailed
time division between short and long transients can be found in Table 1 -1 presented
later in this Chapter.

The temperature rise of a cable component (e.g., conductor, sheath, jacket, etc.)
can be represented by the sum of two components: the temperature rise inside and
outside the cable. The method of combining these two components, introduced by
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Morello (Morello, 1958; CIGRE, 1972; IEC, 1985, 1989), makes allowance for the
heat that accumulates in the first part of the thermal circuit and which results in a
corresponding reduction in the heat entering the second part during the transient.
The reduction factor, known as the attainment factor, a(t), of the first part of the
thermal circuit is computed as a ratio of the temperature rise across the first part at
time t during the transient to the temperature rise across the same part in the steady
state. Then, the temperature transient of the second part of the thermal circuit is
composed of its response to a step function of heat input multiplied by a reduction
coefficient (variable in time) equal to the attainment factor of the first part. Evalua-
tion of these temperatures is discussed below.

1.5.1.2 Temperature Rise in the Internal Parts of the Cable. The inter-
nal parts of the cable encompass the complete cable including its outermost serving
or anticorrosion protection. If the cable is located in a duct or pipe, the duct and
pipe (including pipe protective covering) are also included. For cables in air, the ca-
ble extends as far as the free air.

Analyses of linear networks, such as the one in Figure I-6, involve the determi-
nation of the expression for the response function caused by the application of a
forcing function. In our case, the forcing function is the conductor heat loss and the
response sought is the temperature rise above the cable surface at node i. This is ac-
complished by utilizing a mathematical quantity called the transfer function of the
network. It turns out that this transfer function is the Fourier transform of the unit-
impulse response of the network. The Laplace transform of the network's transfer
function is given by a ratio

P(s)
H(s) = WJ (L53)

P(s) and Q(s) are polynomials, their forms depending on the number of loops in
the network. Node / can be the conductor or any other layer of the cable. In terms of
time, the response of this network is expressed as (Van Valkenburg, 1964)9

n

ei{t)=WcXT0{\-e
pJt) (1.54)

where:
Oj(t) = temperature rise at node / at time t, °C
Wc = conductor losses including skin and proximity effects, W/m
Tu = coefficient, °Cm/W
Pj = time constant, s~l

t = time from the beginning of the step, s
n = number of loops in the network

9Unless otherwise stated, in the remainder of this section all the temperature rises are caused by the joule
losses in the cable.
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/ = node index
j = index from 1 to n.

The coefficients Ttj and the time constants Pf- are obtained from the poles and ze-
ros of the equivalent network transfer function given by Equation (1.53). Poles and
zeros of the function H(s) are obtained by solving equations Q(s) = 0 and P(s) = 0,
respectively. From the circuit theory, the coefficients TfJ are given by

U(zki-Pj)
7V = - % ^ - ^ (1.55)

• k=\

where
a{n-i)i= coefficient of the numerator equation of the transfer function
bn = first coefficient of the denominator equation of the transfer function
Zki = zeros of the transfer function
Pj = poles of the transfer function.

An algorithm for the computation of the coefficients of the transfer function
equation is given in Appendix B of Anders (1997).

Example 1.4
A simple expression of Equation (1.54) is obtained for the case of n = 2. Construc-
tion of such a network is discussed in Section 1.3.3.2 and the network is shown in
Figure 1-5.

In this simple case, the time-dependent solution for the conductor temperature
can easily be obtained directly. However, to illustrate the procedure outlined above,
we will compute this temperature from Equations (1.53)—(1.55).

The transfer function for this network is given by

(TA + TB)sTATBQB
H{s) = T + s(TAQA + TBQB + TBQA) + s2TAQATBQB

 ( L 5 6 )

Since we are interested in obtaining conductor temperature, / = 1 andy = 1, 2. To
simplify the notation, we will use the following substitutions:

Ta=Tn Tb=Tl2 M0 = 0.5(TAQA + TBQB+TBQA) N0=TAQATBQB (1.57)

The zeros and poles of the transfer function are easily obtained as follows:

_ TA + TB __ P - h
z n ~ T T n r i — a r 2 — °

where

a = W b = w (1.58)
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From Equation (1.56),

0(2-ui = TATBQB b2 = TATBQAQB

Thus,

flu = 1

b2 QA

From Equation (1.55), we have

TA + TB

1 TATBQB + a 1 / 1 TA + TB
Ta " " 2 7 -*H> + *) " ^ M ~ Q A " aTATBQAQB

but

1
afe =

Hence,

r f l = - ^ ^ - 6 ( 7 ^ + 7i)j and Tb=TA + TB-Ta (1.59)

Finally, the conductor temperature as a function of time is obtained from Equa-
tion (1.54):

0,(0 - W « O - e~af) + ^ ( 1 - ^ ) ] (1-60)

where fTc is the power loss per unit length in a conductor based on the maximum
conductor temperature attained. The power loss is assumed to be constant during
the step of the transient. Further,

a « = WC{TA + TB) <L61>

Because the solution of network equations for a two-loop network is quite sim-
ple, IEC publications 853-1 (1985) and 853-2 (1989) recommend that this form be
used in transient analysis. The two-loop computational procedure was published at
a time when access to fast computers was very limited (CIGRE, 1972). Today, this
limitation is no longer a problem and a full network representation is recommended
in transient analysis computations. This recommendation is particularly applicable
in the case when temperatures of cable components, other than the conductor, are of
interest.
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1.5.1.3 Second Part of the Thermal Circuit—Influence of the Soil. The
transient temperature rise 0e(t) of the outer surface of the cable can be evaluated ex-
actly in the case when the cable is represented by a line source located in a homoge-
neous, infinite medium with uniform initial temperature. However, for practical ap-
plications, we have to use another hypothesis, namely, the hypothesis of Kennelly,
which assumes that the earth surface must be an isotherm. Under this hypothesis, the
temperature rise at any point M in the soil is, at any time, the sum of the temperature
rises caused by the heat source Wt and by its fictitious image placed symmetrically
with the earth surface as the axis of symmetry and emitting heat ~Wt (see Figure 1 -9).

The temperature rise at the cable outside surface is then given by

P. I I Df\ I L*2

'477 165// »
(1.62)

where:
D* = external surface diameter of cable, m
L* = axial depth of burial of the cable, m
8 = soil diffusivity, m2/s

The expression

f °° e~l

~Ei(~x)= —dv
Jx 0

is called the exponential integral. The value of the exponential integral can be de-
veloped in the series

x2 x3

-Ei(-x) =-0.577 -Inx + x- Y^T + "3T3T ' ' '

-Win

\ r '

W.<

>M

Soil surface

Figure 1-9 Illustration of Kennelly's hypothesis.

L

L

r
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When* < 0.1,

-Ei(-x) = -0.577 - In x + x

to within 1% accuracy. For large x,

e~x ( 1 2! 3! \
-Ei(-x) = - — 1 - — + — - — + • • •

V J X \ X XZ X5 )

The National Bureau of Standards published in 1940 Tables of Exponential Inte-
grals, Vol. 1, in which values of -Ei(-x) can be found. IEC has also published
nomograms from which —Ei(—x) can be obtained (IEC 853-2, 1989).

Under steady-state conditions, t —» °° and x approaches zero. In this case, Equa-
tion (1.62) becomes

0eM=Wt^r\n-^ (1.63)

From this equation, we can define the external thermal resistance in the steady-
state calculations as

Ps 4L*
T4=£lnW (1-64)

For cables in air it, is unnecessary to calculate a separate response for the cable
environment. The complete transient 6(t) is obtained from Equation (1.62) but the
external thermal resistance T4, computed as described in Section 1.6.6.5, is included
in the cable network.

1.5.1.4 Groups of Equally or Unequally Loaded Cables. In a typical in-
stallation, several power cables are laid in a trench. The mutual heating effect re-
duces the current-carrying capacity of the cables, and this effect must be taken into
account in rating computations. For groups of cables, the temperature for each cable
is obtained at each point in time by adding to its own temperature the temperature
rise caused by other nearby cables. To achieve better accuracy in calculations with
multiple time steps, the effect of other cables should be added at each time step so
that their effect can be included with that caused by the temperature rise of the cable
itself. Thus, the temperature rise in the cable of interest "/?" due to one other adja-
cent cable "/c" can be computed from:

o \ I d*2 \ I d*'2 \1

<wo=**-&[-*{- i t rE{-ft)\ <'-65>
in which WIk is the total joule losses in cable k, and d*k and d*k'(m) denote the dis-
tance from the center of cable p to the center of cable k and its image, respectively,
as shown in Figure 1-10.



1.5.1.5 Total Temperature Rise. The total transient temperature rise of a ca-
ble at any time is the sum of the rise due to its own losses, given by its own net-
work, and the rises due to mutual heating given by the networks of other cables and
image sources, as appropriate. Thus, the final temperature rise at any layer of the
cable of interest (that is, at any node of the equivalent network) at time t after the
beginning of the load step is obtained from

8pUt) = m + <x(t)0e(0 + BJit) + a{t)J\epk{i) + 0pdk(t)] (1.66)
k=\

where a(t) is the attainment factor for the transient temperature rise between the
conductor and outside surface of the cable and N is the number of cables. 0pdk{i) is
the temperature rise in cable p caused by the dielectric losses in cable k and it is
multiplied by a(t) only if cable k is energized at time t = 0. 9Jit) is the internal tem-
perature rise caused by the dielectric losses in cable/?. In Equation (1.66), 9ptot is
defined for any layer of the cable, and in the above formulation, only 0,(t) is differ-
ent for each layer.

The attainment factor varies in time, and a reasonable approach for obtaining
a(t) is to use (Morello, 1958)

Temperature across cable at time t
a^ ' Steady-state temperature rise across the cable ' '

The conductor attainment factor is computed from this definition using Equa-
tions (1.54) and (1.42):
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^ Image

.o ®P'
m ^ {

i

i

Air /
/ v v v v v v v v v v v v v v v v v v vfv v v v v v v v v

Soil /

o
m / d 'kp

kC^pk

Figure 1-10 Example of cable configuration and image cables.
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WcfjTCJ(\~epJ') f^T^-eff)

*> - -m - ~^wj—=^-r— <••«>

The attainment factor associated with dielectric losses is obtained from a similar
equation with the network parameters reflecting the presence of dielectric loss only.

1.5.2 Transient Temperature Rise under Variable Loading

In order to perform computations for variable loading, a daily load curve is divided
into a series of steps of constant magnitude. For different successive steps, the com-
putations are done repeatedly, and the final result is obtained using the principle of
superposition. The temperature rise above ambient at time r can be represented as

0(T)-0(T-\) (1.69)

1.5.3 Conductor Resistance Variations during Transients

Since the conductor electrical resistance, as well as the resistance of other metallic
parts of the cable, changes with temperature, the effect of these changes should be
taken into account when computing conductor and sheath losses. Goldenberg
(1967, 1971) developed a technique for obtaining arbitrarily close upper and lower
bounds for the temperature rise of the conductor, taking into account the changes of
the resistance of metallic parts with temperature. His upper-bound formula has been
adopted by CIGRE (1972, 1976) and IEC (1989) and is given by the following
equation:

where:
6{t) = conductor transient temperature rise above ambient without correction for

variation in conductor loss, and is based on the conductor resistance at the end of
the transient

0(oo) = conductor steady-state temperature rise above ambient
a = temperature coefficient of electrical resistivity of the conductor material at the

start of the transient, a = l/[/3 + 0(0)], with /3 being a reciprocal of temperature
coefficient at 0°C and 0(0) is the conductor temperature at the start of the tran-
sient

1.5.4 Cyclic Rating Factor

The complexity of cyclic rating computations varies depending on the shape of the
load curve and the amount of detail known for the load cycle. If only the load-loss
factor or a daily load factor is known, a method proposed by Neher and McGrath
(1957) can be used. This method involves modification of the cable external thermal
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resistance as discussed in Anders (1997) and in Section 1.6.6.5. This modified value
is then used in Equation (1.51). Neher and McGrath's approach continues to be the
basis for the majority of cyclic loading computations performed in North America.

If a more detailed analysis is required, the algorithm introduced by Goldenberg
(1957, 1958) and later adopted by the IEC (1985, 1989) can be used. This approach,
applicable to a single cable or a cable system composed of identical, equally loaded
cables located in a uniform medium, requires computation of a cyclic rating factor
M by which the permissible steady-state rated current (100% load factor) may be
multiplied to obtain the permissible peak value of current during a daily (24 h) cy-
cle such that the conductor temperature attains, but does not exceed, the standard
permissible maximum temperature during the cycle. A factor derived in this way
uses the steady-state temperature, which is usually the permitted maximum temper-
ature, as its reference. The cyclic rating factor depends only on the shape of the dai-
ly cycle and is independent of the actual magnitudes of the current.

Several sections in this book address the issue of cyclic rating computations un-
der various circumstances. Therefore, the procedure for the calculation of this fac-
tor is reviewed below and Chapter 6 presents a complete discussion of the relevance
of the load-loss factor used in time-dependent rating calculations.

First, we will consider a single cable and then extend the analysis to a group of
identical cables. The details of the development of the equations presented here can
be found in Anders (1997). We will ignore the variation of the conductor resistance
with temperature. This is consistent with the IEC approach for cyclic loading calcu-
lations. Following the IEC standard approach, only the six hourly steps before the
time when the temperature reaches its highest value are involved; the remaining
hourly steps being represented by a representative load, as illustrated in Figure 3-13.

The cyclic rating factor for uniform soil conditions is defined as (Anders, 1997;
IEC, 1989)

1
M = = / r „ , ~ i 5 r „ ,.f^ O-?!)

/ [i ^(6 ) l + V v K 0 ' + 1 ) Up]
V L 0*(°°)J Ul °RW 0*(°°)J

with the following notation, where the subscript R corresponds to the steady state
rated current:

ML=[l-k + kftt)]<*(t) fori>l
tW00) (i.72)

0*(O) = o

0e(°°) _ 077*4

°®-W) (L74)
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_ £ , j ^ w <•«
\ 6 t 8 j \ t - S

m= -yJ4L*\ (L75)

where
D* = external diameter of the cable or duct, m
L* = depth of laying, m
Wf = the total joule loss in the cable, W/m
8 = soil thermal diffusivity, m2/s
T= internal thermal resistance of the cable K • m/W
fjL = load loss factor

If the hourly load values are denoted by /,, / = 1,. . ., 24, then the load-loss factor
is defined by:

i %'< i £
^ 7max ^ /=0

(See more discussion on the definition of the load-loss factor in Chapter 6.)
Calculations are simplified considerably when the conductor attainment factor

can be assumed to be equal to one. In this case, Equation (1.71) takes the form

1
M= V(\-k)Y0 + k{B + tL[\-P(6)]} ( L 7 7 )

where:
5

B = X Y&A *„, = /3(m + 1) - ftm) (1.78)
/=0

IEC (1989) identifies the following cases when the internal cable capacitances can
be neglected. If the period from the initiation of the thermal transient is longer than

1. 12 h for all cables,
2. The product XT • Xg; when dealing with fluid-pressure, pipe-type cables and

all types of self-contained cables where the product XT - XQ ^ 2 h
3. The product 2XT • XQ; when dealing with gas-pressure, pipe-type cables and

all types of self-contained cables where the product XT • XQ > 2 h

where STand XQ are the total internal thermal resistance (simple sum of all resis-
tances) and capacitance (simple sum of all capacitances), respectively, of the cable.

Table 1-1, based on design values commonly used at present for the determina-
tion of cable dimensions, shows when cases 2 and 3 apply (IEC, 1989).

We will now consider groups of TV cables with equal losses; the cables or ducts
do not touch. In this case, 6R(i) is the conductor temperature rise of the hottest cable



1.5 RATING EQUATIONS—TRANSIENT CONDITIONS 3 5

Table 1-1 Cases when the attainment factor can be assumed to be equal to 1

Type of cable Case b) Case c)

Fluid-filled cables 1) All voltages < 220 kV 1) 220 kV, sections > 150 mm2

2) 220 kV, sections < 150 mm2 2) All voltages > 220 kV

Pipe-type, fluid-pressure 1) All voltages < 220 kV 1) 220 kV, sections > 800 mm2

cables

Pipe-type, gas-pressure
cables

Cables with extruded
insulation

2) 220 kV, sections < 800 mm2 2) All voltages > 220 kV

l ) < 2 2 0 k V
2) Sections < 1000 mm2

1) All voltages < 60 kV
2) 60 kV, sections < 150 mm2

1) 60 kV, sections > 150 mm2

2) All voltages > 60 kV

in the group. The external thermal resistance of the hottest cable in Equations (1.73)
and (1.75) will now include the effect of the other (N- 1) cables and will be denot-
ed by T4 + AT4. We now obtain the following new form of Equation (1.75):

-Ei

/3i(0 = 4v
k=/tp

\6t8 t8 At8 1 4t8

(T4 + AT4)
(1.79)

The value of AT4 is equal to (Anders, 1997)

ftlnF
Ar4 =

where

F:_ d'pl • dp2

2TT

'dpk_
dpX • dpl • . . . • dpk • dj

' d'pN

lpN

(1.80)

(1.81)

with factor d'ppldpp excluded, leaving (N - 1) factors in Equation (1.81). The dis-
tances dpv and dpv represent the distance between cables/? and v and between the ca-
ble v and the image of cable p, respectively.

Introducing the notation

df=
4 1 *

Equation (1.79) can be approximated by

(1.82)

-Ei

Pi(f)=-

D*2

\6t8
+ Ei

L*2\
i8-r(N-lrE\Tts)+E\-rs

di L*1

2 In
4L*F (1.83)
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Also, Equation (1.73) becomes

Wj(T4 + AT4)
k{ WcT+Wj(TA + W4)

 ( L 8 4 )

The cyclic rating factor is given by Equation (1.71) with

- ^ = [l-*,+*,i8i(0H0 (1-85)

1.6 EVALUATION OF PARAMETERS

Rating equations discussed in the previous sections contain many different parame-
ters whose values need to be estimated first before ampacity calculations can pro-
ceed. For some of the parameters, analytical expressions can be derived; for others,
empirical equations or curves have been proposed. In this section, we will summa-
rize the calculation of the important parameters. For a detailed discussion on their
derivation, the reader is referred again to Anders (1997).

We will start with a list of the symbols used in various expressions presented
below. To facilitate the presentation, we will divide all the symbols into logical
groups related to cable construction and laying conditions. This will be followed
by a series of equations, tables, and charts that are needed for ampacity calcula-
tions. The order of the presentation follows the usual steps in cable rating calcu-
lations.

1.6.1 List of Symbols

1.6.1.1 General Data
/(Hz) = system frequency
U (V) = cable operating voltage (phase-to-phase)
LF = daily load factor
6 = conductor temperature10

6amb = ambient temperature

1.6.1.2 Cable Parameters

Conductor
S (mm2) = cross-sectional area of conductor
De (mm) = external diameter of cable, or equivalent diameter of a group of cores in

pipe-type cable
D*(m) = external diameter of cable, or equivalent diameter of cable (cables in air)
dc (mm) = external diameter of conductor

'Subscripts /, s, and a will be used to denote tape, sheath, and armor, respectively.
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d'c (mm) = conductor diameter of equivalent solid conductor having the same cen-
tral oil duct

dt (mm) = conductor inside diameter
n = number of conductors in a cable

Three-conductor cables
dx (mm) = Diameter of an equivalent circular conductor having the same cross-sec-

tional area and degree of compactness as the shaped one
c (mm) = Distance between the axes of conductors and the axis of the cable for

three-core cables (= 0.55 rx + 0.29 t for sector-shaped conductors)
rx (mm) = Circumscribing radius of three-sector shaped conductors in three-con-

ductor cable

Insulation
Dt (mm) = diameter over insulation
tx (mm) = insulation thickness between conductors and sheath
p (K • m/W) = thermal resistivity of the material11

Three-conductor cables
t (mm) = insulation thickness between conductors
tt (mm) = thickness of core insulation, including screening tapes plus half the thick-

ness of any nonmetallic tapes over the laid-up cores

Sheath
Ds (mm) = sheath diameter
d (mm) = sheath mean diameter
ts (mm) = sheath thickness

Pi = ratios of minor section lengths, where minor section lengths are: a, p2a, and
J q2a, and a is the shortest section

= electrical resistivity of sheath material at operating temperature

Armor or reinforcement
A (mm2) = cross-sectional area of the armor
Da (mm) = external diameter of armor
da (mm) = mean diameter of armor
dj (mm) = diameter of armor wires
d2 (mm) = mean diameter of reinforcement
na = number of armor wires
nt = number of tapes
£a (mm) = length of lay of a steel wire along a cable
€T (mm) = length of lay of a tape
tt (mm) = thickness of tape
wt (mm) = width of tape

nThe same symbol is used for thermal resistivity of various materials. The appropriate numerical value
will correspond to the material considered.
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Jacket/Sewing
tj (mm) = thickness of the jacket
t3 (mm) = thickness of the serving

Pipe-type cables
Dd (mm) = external diameter of the pipe
Do (mm) = external diameter of pipe coating
Dsm (mm) = moisture barrier mean diameter
Dsw (mm) = diameter of skid wire
Dt (mm) = diameter of moisture barrier assembly
dd (mm) = internal diameter of pipe
nsw = number of skid wires
nt = number of moisture barrier metallic tapes
fsw (mm) = lay of length of skid wires
fT (mm) = lay of moisture barrier metallic tapes
/3 (mm) = thickness of pipe coating
tt = thickness of moisture barrier metallic tape in pipe-type cable
wt (mm) = width of moisture barrier metallic tape

1.6.1.3 Installation Conditions

Cables in Air
H (W/m2) = solar radiation

Buried Cables
L (mm) = depth of burial of cables
Dx (mm) = fictitious diameter at which effect of loss factor commences
ps (K • m/W) = thermal resistivity of soil
s (mm) = spacing between conductors of the same circuit
s2 (mm) = axial separation of cables; for cables in flat formation, s2 is the geometric

mean of the three spacings

Duct Bank/Thermal Backfill
LG (mm) = distance from the soil surface to the center of a duct bank
x, y (mm) = sides of duct bank/backfill (y > x)
N= number of loaded cables in a duct bank/backfill
pc (K • m/W) = thermal resistivity of concrete used for a duct bank or backfill
pe (K • m/W) = thermal resistivity of earth surrounding a duct bank/backfill

Cables in Ducts
Dd (mm) = internal diameter of the duct
Do (mm) = external diameter of the duct
0m (°C) = mean temperature of duct filling medium

1.6.2 Conductor ac Resistance

Conductor resistance is calculated in two stages. First, the dc value R' (ohm/m) is
obtained from the following expression:
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1.02- 106p20
R'= ^ — ^ [ l + a 2 o ( O - 2 O ) ]

In the second stage, the dc value is modified to take into account the skin and prox-
imity effects. The resistance of a conductor when carrying an alternating current is
higher than that of the conductor when carrying a direct current. The principal rea-
sons for the increase are: skin effect, proximity effect, hysteresis and eddy current
losses in nearby ferromagnetic materials, and induced losses in short-circuited non-
ferromagnetic materials nearby. The degree of complexity of the calculations that
can economically be justified varies considerably. Except in very high voltage ca-
bles consisting of large segmental conductors, it is common to consider only skin
effect, proximity effect, and in some cases, an approximation of the effect of metal-
lic sheath and/or conduit. The relevant expressions are:

R=R\\+ys+yp)

For cables in magnetic pipes and conduits:

R=Rl\ + \.5(ys+yp)\

Material properties and the expressions for the skin and proximity factors are:

Resistivity (p2o)' 10~8 Temperature coefficient
Material ft • m at 20°C (a20) • 10~3 per K at 20°C

Copper 1.7241 3.93
Aluminum 2.8264 4.03

Skin and proximity factors are computed from the following expressions:

Y4

_ xs

y*~ 192 + 0.84

where
_ Sa)f' 10~7

xs - Fk ' K Fk - jp

The proximity factor is obtained from

y p = ^ ( T ) 1 0 - 3 1 2 ( T ) 2 + - F ^ h n ] *}=F* •k" F» = i92+Luj
For sector-shaped conductors:

s = dx + t

dc = dx

yP = 2yp/3
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For oval conductors:

uc V " c m inor ^cmajor

The above expressions apply whenx^ < 2.8 (a majority of the cases). Otherwise,
Equations (7.26) or (7.27) in Anders (1997) should be used.

Constants ks and kp are given in Table 1-2 (IEC 60287, 1994).

1.6.3 Dielectric Losses

When paper and solid dielectric insulations are subjected to alternating voltage,
they act as large capacitors and charging currents flow in them. The work required
to effect the realignment of electrons each time the voltage direction changes (i.e.,
50 or 60 times a second) produces heat and results in a loss of real power that is
called dielectric loss, which should be distinguished from reactive loss. For a unit
length of a cable, the magnitude of the required charging current is a function of the
dielectric constant of the insulation, the dimensions of the cable, and the operating
voltage. For some cable constructions, notably for high-voltage, paper-insulated ca-
bles, this loss can have a significant effect on the cable rating. The dielectric losses
are computed from the following expression:

Table 1-2 Values of skin and proximity factors

Type of conductor

Copper
Round, stranded
Round, stranded
Round, compact
Round, compact
Round, segmental
Hollow, helical stranded

Sector-shaped
Sector-shaped

Aluminum
Round, stranded
Round, 4 segment
Round, 5 segment
Round, 6 segment
Segmental with peripheral strands

Whether dried and
impregnated or not

Yes
No
Yes
No

Yes

Yes
No

either
Either
Either
Either
Either

ks

1
1
1
1
0.435
Eq. (7.12) in

Anders (1997)
1
1

1
0.28
0.19
0.12
Eq. (7.17) in

Anders (1997)

K

0.8
1
0.8
1
0.37

0.8
0.8
1

* Since there are no accepted experimental results dealing specifically with aluminum stranded conduc-
tors, IEC 60287 recommends that the values of kp given in this table for copper conductors also be ap-
plied to aluminum stranded conductor of similar design as the copper ones.
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Wd = 2vf-C- U2
o-tan8

where the electrical capacitance and the phase-to-to-ground voltage are obtained
from

C =
18 Inl A

10i -9 U = u
° V3

The dielectric constant s and the loss factor tan 8 are taken from Table 1-3.

1.6.4 Sheath Loss Factor

Sheath losses are current dependent, and can be divided into two categories accord-
ing to the type of bonding. These are losses due to circulating currents that flow in
the sheaths of single-core cables if the sheaths are bonded together at two points,
and losses due to eddy currents, which circulate radially (skin effect) and az-
imuthally (proximity effect). Eddy current losses occur in both three-core and sin-
gle-core cables, irrespective of the method of bonding. Eddy current losses in the
sheaths of single-core cables, which are solidly bonded are considerably smaller

Table 1-3 Values of the dielectric constant and the loss factor

Type of cable

Cables insulated with impregnated paper
Solid type, fully impregnated, preimpregnated,

or mass-impregnated nondraining
Oil-filled, low-pressure

up to Uo = 36 kV
up to Uo = 87 kV
upto t / o = 160 kV
up to Uo = 220 kV

Oil-pressure, pipe-type
Internal gas-pressure
External gas-pressure

Cables with other kinds of insulation
Butyl rubber
EPR, up to 18/30 kV
EPR, above 18/30 kV
PVC
PE (HD and LD)
XLPE up to and including 18/30 (36) kV, unfilled
XLPE above 18/30 (36) kV, unfilled
XLPE above 18/30 (36) kV, filled
Paper-polypropylene-paper (PPL)

s

4

3.6
3.6
3.5
3.5
3.7
3.4
3.6

4
3
3
8
2.3
2.5
2.5
3
2.8

tan 8

0.01

0.0035
0.0033
0.0030
0.0028
0.0045
0.0045
0.0040

0.050
0.020
0.005
0.1
0.001
0.004
0.001
0.005
0.001
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than circulating current losses, and are ignored except for cables with large segmen-
tal conductors.

Losses in protective armoring also fall into several categories depending on the
cable type, the material of the armor, and installation methods. Armored single-core
cables without a metallic sheath generally have a nonmagnetic armor because the
losses in steel-wire or tape armor would be unacceptably high. For cables with non-
magnetic armor, the armor loss is calculated as if it were a cable sheath, and the cal-
culation method depends on whether the armor is single-point bonded or solidly
bonded. For cables having a metallic sheath and nonmagnetic armor, the losses are
calculated as for sheath losses, but using the combined resistance of the sheath and
armor in parallel and a mean diameter equal to the rms value or the armor and
sheath diameters. The same procedure applies to two- and three-core cables having
a metallic sheath and nonmagnetic armor. For two- and three-core cables having
metallic sheath and magnetic wire armor, eddy current losses in the armor must be
considered. For two- and three-core cables having steel-tape armor, both eddy cur-
rent losses and hysteresis losses in the tape must be considered together with the ef-
fect of armor on sheath losses.

Submarine cables require special consideration. Single-core ac cables for sub-
marine power connections differ in many respects from underground cables, buried
directly or in ducts. In fact, submarine cables are generally armored, can be manu-
factured in very long lengths, and are laid with a very large distance between them.
For these reasons, calculation methods described in the IEC 60287 (1994) must be
supplemented and modified in some points.

1.6.4.1 Sheath Bonding Arrangements. Sheath losses in single-core ca-
bles depend on a number of factors, one of which is the sheath bonding arrange-
ment. In fact, the bonding arrangement is the second most important parameter in
cable ampacity computations after the external thermal resistance of the cable. For
safety reasons, cable sheaths must be earthed, and hence bonded, at least at one
point in a run. There are three basic options for bonding sheaths of single-core ca-
bles. These are: single-point bonding, solid bonding, and cross bonding (ANSI/
IEEE, 1988).

In a single-point-bonded system, the considerable heating effect of circulating
currents is avoided, but voltages will be induced along the length of the cable.
These voltages are proportional to the conductor current and length of run, and in-
crease as the cable spacing increases. Particular care must be taken to insulate and
provide surge protection at the free end of the sheath to avoid danger from the in-
duced voltages.

One way of eliminating the induced voltages is to bond the sheath at both ends
of the run (solid bonding). The disadvantage of this is that the circulating currents
that then flow in the sheaths reduce the current-carrying capacity of the cable.

Cross bonding of single-core cable sheaths is a method of avoiding circulating
currents and excessive sheath voltages while permitting increased cable spacing
and long run lengths. The increase in cable spacing increases the thermal indepen-
dence of each cable and, hence, increases its current-carrying capacity. The cross
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bonding divides the cable run into three sections, and cross connects the sheaths in
such a manner that the induced voltages cancel. One disadvantage of this system is
that it is very expensive and, therefore, is applied mostly in high-voltage installa-
tions. Figure 1-11 gives a diagrammatic representation of the cross connections.

The cable route is divided into three equal lengths, and the sheath continuity is
broken at each joint. The induced sheath voltages in each section of each phase are
equal in magnitude and 120° out of phase. When the sheaths are cross connected, as
shown in Figure 1-11, each sheath circuit contains one section from each phase
such that the total voltage in each sheath circuit sums to zero. If the sheaths are then
bonded and earthed at the end of the run, the net voltage in the loop and the circu-
lating currents will be zero and the only sheath losses will be those caused by eddy
currents.

Cable conductors Cable sheaths Cable sheaths

Total voltage in each sheath circuit = e + ae + a2e = 0
(where a indicates phase rotation through 120°)

(a)

Sheath sectionalizing insulators

Joints Transposition of cablesY Sheaths solidly bonded and earthed 4^

(b)

Figure 1-11 Diagrammatic representation of a cross bonded cable system, (a) Cables are
not transposed, (b) Cables are transposed.
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This method of bonding allows the cables to be spaced to take advantage of im-
proved heat dissipation without incurring the penalty of increased circulating current
losses. In practice, the lengths and cable spacings in each section may not be identi-
cal, and, therefore, some circulating currents will be present. The length of each sec-
tion and cable spacings are limited by the voltages that exist between the sheaths and
between the sheaths and earth at each cross-bonding position. For long runs, the route
is divided into a number of lengths, each of which is divided into three sections. Cross
bonding as described above can be applied to each length independently.

The cross-bonding scheme described above assumes that the cables are arranged
symmetrically; that is, in a trefoil pattern. It is usual that single-core cables are laid
in a flat configuration. In this case, it is a common practice in long-cable circuits or
heavily loaded cable lines to transpose the cables as shown in Figure 1 -11 b so that
each cable occupies each position for a third of the run.

All of the equations for sheath loss factors given in this section assume that the
phase currents are balanced. The equations also require knowledge of the tempera-
ture of the sheath, which cannot be calculated until the cable rating is known, and,
therefore, an iterative process is required. For the first calculation, the sheath tem-
perature must be estimated; this estimate can be checked later after the current rat-
ing has been calculated. If necessary, the sheath losses, and, hence, the current rat-
ing, must be recalculated with the revised sheath temperature.

As discussed above, the power loss in the sheath or screen (Aj) consists of losses
caused by circulating currents (A [) and eddy currents (Af). Thus,

A^Af + A," (1.86)

The loss factor in armor is also composed of two components: that due to circu-
lating currents (A £) and, for magnetic armor, that caused by hysteresis (A^O- Thus,

A2 = Â  + A^ (1.87)

As mentioned above, for single-core cables with sheaths bonded at both ends of
an electrical section, only losses caused by circulating currents are considered. An
electrical section is defined as a portion of the route between points at which the
sheaths or screens of all cables are solidly bonded. Circulating current losses are
much greater than eddy current losses, and they completely dominate the calcula-
tions. Of course, there are no circulating currents when the sheaths are isolated or
bonded at one point only.

The first step in computing the sheath loss factor is to obtain the sheath resis-
tance and reactance. If the sheath is reinforced with a nonmagnetic tape or tapes, a
parallel combination of both resistances is required. Once the sheath resistance is
obtained, the sheath reactance needs to be computed. The appropriate formulae for
the calculation of the sheath reactance are as follows.

For single-conductor and pipe-type cables:
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For single-conductor cables in flat formation, regularly transposed, sheaths
bonded at both ends:

jr,=477f-10-Mn[2-^2(^)]

For single-conductor cables in flat configuration with sheaths solidly bonded at
both ends, the sheath loss factor depends on the spacing. If it is not possible
to maintain the same spacing in the electrical section (i.e., between points at
which the sheaths of all cables are bonded), the following allowances should be
made.

1). If the spacings are known, the value of Xis computed from

laXa + lbXb + . . . l J C n

where
la, lb,. . . , /„ are lengths with different spacing along an electrical section
Xa, Xb, . . . ,Xn are the reactances per unit length of cable, given by equations for X

and Xx, where appropriate values of spacing sa, sb,. . . , sn are used
2. If the spacings are not known, the value of A \ calculated below should be in-

creased by 25%:

Am = 8.71-10-7-/

The following equations provide sheath loss factors for various bonding arrange-
ments and cable configurations.

f .6.4.2 Loss Factors for Single-Conductor Cables

1. Sheath bonded both ends, triangular configuration:

A ' - Rs l A " - n

2. Sheath bonded both ends, flat configuration, regular transposition:

w - ^ 1
 A / / - 0

R ••(#•

3. Sheath bonded both ends, flat configuration, no transposition. Center cable
equidistant from other cables:
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1

x> - R <
\Q2

• +

^P2

4 2RsPQXm

R2 + Q2 R2 + P2 V3(R2 + Q2)(R2 + P2)

Rs Q2

in the leading phase

A / R R2
S + Q2 in the middle cable

R.
\ / _ s

Xi2~~R

w 4F 2RsPQXm
in the lagging phase

R] + Q2 R] + P2 V3(R2
S + Q2){R2

S + P2)

Ar=0

where P and g are defined by

P=Xm+X Q=X--~

Ratings for cables in air should be calculated using Afj.

Large Segmental Conductors. When the conductor proximity effect is reduced,
for example, by large conductors having insulated segments, A" cannot be ignored
and is calculated by multiplying the value of the eddy current sheath loss factor cal-
culated below by F:

F =
4A42N2 + (M + AO2

4(M2+ 1 )(7V2 + 1)

where

M = N = X

for cables in trefoil formation, and

M =
R.

x + xm
N = Rs

x - x,n

for cables in flat formation with equidistant spacing.

Sheaths Single-Point Bonded or Cross Bonded. The sheath loss factor is ob-
tained in this case from the following formula:

Ar=^LA0(l+A l+A2)+%^.10-12
R 12
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and the parameters in this expression depend on the cable arrangement, as follows.
For lead-sheathed cables.

ft=0 gs=\

For corrugated sheaths, the mean outside diameter should be used:

a) = lirf

( ts V-74

— T ? •»-
I fm<0.1, A,=0, A2 = 0

Three Single-Conductor Cables in Triangular Configuration
( d \l m2 ^ AC Id \0.92w+1.66

^ \ i s ) TTW A,=(1.4W^ + 0.33)(2jj A2 = 0
Three Single-Conductor Cables in Flat Configuration

1. Center cable:

I d \2 m2 , 1 d V-4'»+0-7

A o = 6 T " 14- -> A! = 0 . 8 6 m 3 0 8 U - A2 = 0
u \ 2s) 1 + ml [ \ 2s J l

2. Outer cable leading phase:

( d \ l m2 _ / d \0.16w+2 / d \l.47/w+5.06

Ao= 1.5 U - T — — A1=4.7m07 [-=-] A2 = 21m3-3U-
u \ 2s j 1 + /?r [ \ 2s) l \ 2s)

3. Outer cable lagging phase:

/ d \2 m2 0.74(/w + 2)m05 / J \/|I+1 ,7/ d \m+2

Ao = 1.5\-^-) -T——T ki = -nr? 7r^2-\-T- A2 = 0.92m3-7 ^~
u \ 2^ / 1 + w2 l 2 + (m - 0.3)^ V 2s j l \ 2s j

Sheaths Cross Bonded. The ideal cross-bonded system will have equal lengths
and spacing in each of the three sections. If the section lengths are different, the in-
duced voltages will not sum to zero and circulating currents will be present. These
circulating currents are taken account of by calculating the circulating current loss

Three Single-Conductor Cables in Triangular Configuration

Ifm<0.1, A,=0, A2 = 0

- % • » '

2nf

I U V- 7 4

a) = lirf

I ATTOJ

^1 = V H ^

(/?,£>, x 10"3 - 1.6)& = 1 +

A2 = 0

10-7m =
K

7+1.66
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factor A/, assuming the cables were not cross bonded, and multiplying this value by
a factor to take account of the length variations. This factor Fc is given by12

= Pi + ql+i-Pi-Piqi-qi

where:
p2a = length of the longest section
q2a = length of the second longest section
a = length of the shortest section

This formula deals only with differences in the length of minor sections. Any de-
viations in spacing must also be taken into account.

Where lengths of the minor sections are not known, IEC 287-2-1 (1994) recom-
mends that the value for A [ based on experience with carefully installed circuits be

A [ = 0.03 for cables laid directly in the ground

A[ = 0.05 for cables installed in ducts

1.6.4.3 Three-Conductor Cables. The sheath loss factor depends in this case
on the value of the sheath resistance as follows.

Round or Oval Conductors in Common Sheath, No Armor

Rs< 100/xO/m

3^17 2c \2 1 (2c\4 1
R U ; 1+/^ion2"+y ^; YT^prio7^

Rs> 100 /xXl/m

32(o2 (2c\2
A > / = i w r W 10"14

Sector-Shaped Conductors

\"-0D4R'(2ri + ')2 , l

\ * )

Three-Conductor Cables with Steel-Tape Armor. The value for A{ calculated
above should be multiplied by the factor Ft:

12This formula is somewhat different from the one appearing in the latest IEC Standard 60287 from
1994. It was developed recently in EDF and will be introduced into the standard during the next mainte-
nance cycle.
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r - [ u ( d y i 1 «_ A

0̂ _
/x is usually taken as 300.

Cables with Separate Lead Sheath (SL Type) with Armor

,,__RS 1-5

1.6.4.4 Pipe-Type Cables. Nonmagnetic core screens, copper or lead, of
pipe-type cables will carry circulating currents induced in the same manner as in the
sheaths of solidly bonded single-core cables. As with SL type cables, there is an in-
crease in screen losses due to the presence of the steel pipe. The loss factor is given
by:

If additional reinforcement is applied over the core screens, the above formula is
applied to the combination of sheath and reinforcement. In this case, Rs is replaced
by the resistance of the parallel combination of sheath and reinforcement, and the
diameter is taken as the rms diameter d\ where

d V"2~
with
d = mean diameter of the screen or sheath, mm
d2 = mean diameter of the reinforcement, mm

1.6.5 Armor Loss Factor

Armored single-core cables for general use in ac systems usually have nonmagnetic
armor. This is because of the very high losses that would occur in closely spaced
single-core cables with magnetic armor. On the other hand, when magnetic armor is
used, losses due to eddy currents and hysteresis in the steel must be considered.

The armoring or reinforcement on two-core or three-core cables can be either
magnetic or nonmagnetic. These cases are treated separately in what follows. Steel
wires or tapes are generally used for magnetic armor.

When nonmagnetic armor is used, the losses are calculated as a combination of
sheath and armor losses. The equations set out above for sheath losses are applied,
but the resistance used is that of the parallel combination of sheath and armor, and
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the sheath diameter is replaced by the mis value of the mean armor and sheath di-
ameters.

For nonmagnetic tape reinforcement where the tapes do not overlap, the resis-
tance of the reinforcement is a function of the lay length of the tape. The advice
given in IEC 60287 to deal with this is as follows.

1. If the tapes have a veiy long lay length, that is, are almost longitudinal tapes,
the resistance taken is that of the equivalent tube, that is, a tube having the
same mass per unit length and the same internal diameter as the tapes.

2. If the tapes are wound at about 54° to the axis of the cable, the resistance is
taken to be twice the equivalent tube resistance.

3. If the tapes are wound with a very short lay, the resistance is assumed to be
infinite; hence, the reinforcement has no effect on the losses.

4. If there are two or more layers of tape in contact with each other and having a
very short lay, the resistance is taken to be twice the equivalent tube resis-
tance. This is intended to take account of the effect of the contact resistance
between the tapes.

The loss factor is then given by the following expressions.

1.6.5.1 Single-Conductor Cables

With Nonmagnetic Wire Armor

where

RvRAi

X =
(RS + RA)2

With Magnetic Wire Armor. The armor losses are lowest when the armor and
sheath are bonded together at both ends of a run; thus, this condition is selected for
the calculations below. The method gives a combined sheath and armor loss for ca-
bles that are very widely spaced (greater than 10 m). It has been applied for subma-
rine cables where the cable spacing may be very wide and there is a need for the
mechanical protection provided by the steel wire armor. The following method does
not take into account the possible influence of the surrounding media, which may
be appreciable, in particular for cables laid under water. It gives values of sheath
and armor losses that are usually higher than the actual ones, so that ratings are on
the safe side.

The ac resistance of the armor wires will vary between about 1.2 and 1.4 times
its dc resistance, depending on the wire diameter, but this variation is not critical
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because the sheath resistance is generally considerably lower than that of the armor
wires. For magnetic wire, the armor loss factor is obtained from

Re\ B\ + B\+RJ32
X{-^~ R[(Re + B2Y + B\

where

Bx = co(Hs + Hx + H3) B2 = a>H2

and

2*2 \ Tr (nj}
Hs = 2x lO"7 lnl -f\ Hx = TT/XJ -ff- llO"7 sin p cos y

Hi = 7 7 ^ ( ^ 7 ) 1 0 " 7 s i n P s i n ^ ^3 = 0.4(^ cos2 ]8 - l ) ( - ^ ) l ^

Average values for magnetic properties of amior wires with diameters in the
range of 4-6 mm and tensile strengths on the order of 40 Mpa:

\ie = 400

fit = 10 for armor wires in contact

jjit = 1 for armor wires that are spaced
y=ir/4

1.6.5.2 Three-Conductor Cables, Steel-Wire Armor. The loss factor de-
pends on the armor construction as follows.

Round Conductor Cable

RA ( 2c \2
A, = 1.23-^-'

R\daJ (2J7RAl0*\2 + 1

For the SL type cables, A2 calculated above should be multiplied by (1 - A[), where
A [ is calculated in the section on the sheath loss factor for SL type cables.

Sector-Shaped Conductors

RA ( 2rx y 1

A2 - O . 3 5 8 X ^ j (2j7RAiQ6y+ i

CO
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1.6.5.3 Three-Conductor Cables, Steel-Tape Armor or Reinforce-
ment. The two components of the armor loss factor are computed as follows:

s2k2\0-7
 ff_ 2.23s2PS0 l0-8

A9 ~~ n J c A? —1 2 Rda80
 A 2 Rda

with

/xS0

JJL is usually taken as 300.
Finally,

1.6.5.4 Pipe-Type Cables In Steel Pipe, Pipe Loss Factor. For a pipe
type cable, the loss factor in the metallic pipe depends on the cable arrangement in
the pipe. The loss factor is given by

/ \-5( A s+B -dd

60 j I RA2 - I ~ZK I I n 11U

where constants A and B are taken from Table 1-4.

1.6.6 Thermal Resistances

The internal thermal resistances and capacitances are characteristics of a given ca-
ble construction and were defined in Section 1.3. Without loss of accuracy, we will
assume that these quantities are constant and independent of the component temper-
ature. Where screening layers are present, we will also assume that for thermal cal-
culations, metallic tapes are part of the conductor or sheath, whereas semiconduct-
ing layers (including metallized carbon-paper tapes) are part of insulation.

The units of the thermal resistance are K/W for a specified length. Since the
length considered here is 1 m, the thermal resistance of a cable component is ex-
pressed in K/W per meter, which is most often written as K • m/W. This should be

Table 1-4 Constants for loss factor calculations in pipe-type cables

Configuration A B

Cradled
Triangular bottom of pipe
Mean between trefoil and cradled
Three-core cable

0.00438
0.0115
0.00794
0.0199

0.00226
-0.001485

0.00039
-0.001485

A2 = A^ + A2'

So =
A- * (f\

I-5

1-7

A 1 /

B-

k =
irda 1 +

X
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distinguished from the unit of thermal resistivity, which is also expressed as K •
m/W. In transient computations discussed in Section 1.5, thermal capacitances as-
sociated with the same parts of the cable were identified. The unit of thermal capac-
itance is J/K • m and the unit of the specific heat of the material is J/K • m3. The
thermal resistivities and specific heats of materials used for insulation and for pro-
tective coverings are given in Table 1-5.

Table 1-5 Values of thermal resistivity and capacity for cable materials (IEC 60287, 1994)

Material

Insulating materials*
Paper insulation in solid-type cables
Paper insulation in oil-filed cables
Paper insulation in cables with external gas pressure
Paper insulation in cables with internal gas pressure

a) preimpregnated
b) mass impregnated

PE
XLPE
Polyvinyl chloride

up to and including 3 kV cables
greater than 3 kV cables

EPR
up to and including 3 kV cables
greater than 3 kV cables

Butyl rubber
Rubber
Paper-polypropylene-paper (PPL)

Protective coverings
Compounded jute and fibrous materials
Rubber sandwich protection
Polychlroprene
PVC

up to and including 35 kV cables
greater than 35 kV cables

PVC/bitumen on corrugated aluminum sheaths
PE

Materials for duct installations
Concrete
Fiber
Asbestos
Earthenware
PVC
PE

Thermal
resistivity (p)

(K • m/W)

6.0
5.0
5.5

6.5
6.0
3.5
3.5

5.0
6.0

3.5
5.0
5.0
5.0
6.5

6.0
6.0
5.5

5.0
6.0
6.0
3.5

1.0
4.8
2.0
1.2
6.0
3.5

Thermal
capacity (c • 10~6)

[J/(m3 • K)]

2.0
2.0
2.0

2.0
2.0
2.0
2.0

1.7
1.7

2.0
2.0
2.4
2.4
2.0

2.0
2.0
2.0

1.7
1.7
1.7
2.4

2.3
2.0
2.0
1.8
1.7
2.4

*For the purpose of current rating computations, the semiconducting screening materials are assumed to
have the same thermal properties as the adjacent dielectric materials.
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The thermal resistances of the insulation and the external environment of a cable
have the greatest influence on cable rating. In fact, for the majority of buried cables,
the external thermal resistance accounts for more than 70% of the temperature rise
of the conductor. For cables in air, the external thermal resistance has a smaller ef-
fect on cable rating than in the case of buried cables.

The calculation of thermal resistances of the internal components of cables for
single-core cables, whether based on rigorous mathematical computations or empir-
ical investigations, is straightforward. For three-core cables the calculations are
somewhat more involved. Also, the calculation of the external thermal resistance
requires particular attention. The relevant formulae are given below.

1.6.6.1 Thermal Resistance of the Insulation

Single-Conductor Cables. The thermal resistance between one conductor and
the sheath is computed from

r, = -£- In 1 + - r 1

1
 2TT \ dc

For oval-shaped conductors, the diameter over the insulation is the geometric
mean of the minor and major diameters over the insulation.

For corrugated sheaths, t{ is based on the mean internal diameter of the sheath
which is equal to [(£>„ + Doc)/2] - ts.

The dimensions of the cable occur in ln[l + (2txldc)\ and, therefore, this expres-
sion plays the role of a geometric factor or shape modulus, and has been termed the
geometric factor.

Three-Conductor Belted Cables. The computation of the internal thermal resis-
tance of three-core cables is more complicated than for the single-core case. Rigor-
ous mathematical formulas cannot be determined, although mathematical expres-
sions to fit the conditions have been derived either experimentally or numerically.
The general method of computation employs geometric factor (G) in place of the
logarithmic term in the equation given above; that is,

The value of G is obtained from Figure 1-12.
For cables with sector-shaped conductors,

G = F , l n ( ^ ) and p ^ + ^ ^ L - -

Also, da = external diameter of the belt insulation, mm.
All three-core cables require fillers to fill the space between insulated cores and

the belt insulation or a sheath. In the past, when impregnated paper was used to in-

<-p p
G

2ir
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sulate the conductors, the resistivity of the filler material very closely matched that
of the paper (around 6 K • m/W). Because polyethylene insulation has much lower
thermal resistivity (3.5 K • m/W), the higher thermal resistivity of the filler may
have a significant influence on the overall value of Tx and, hence, on the cable rat-
ing. For these cables, the following approximating formula is applied:

where pj and pt are the thermal resistivities of filler and insulation, respectively, and
G is the geometric factor obtained from Figure 1-12, assuming pf= pv

Three-Conductor Shielded Cables. Screening reduces the thermal resistance of a
cable by providing additional heat paths along the screening material of high thermal

G
3.0

2.5 -

2.0 -

1.5 ~

1.0 -

0.5

J
1/ t =

/ t1

/ dc

A { °-9

/// 0.8
/ / / / 0 7

/ / / / / 0 6

/ / / / / / 0.5

/

= thickness of insulation
between conductors

= thickness of insulation
between conductor
and sheath

= diameter of conductor
(circular)

i i i

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 1-12 Geometric factor for three-core belted cables with circular conductors (IEC
60287, 1994).
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conductivity, in parallel with the path through the dielectric. The thermal resistance of
the insulation is thus obtained in two steps. First, the cables of this type are considered
as belted cables for which txlt = 0.5. Then, in order to take account of the thermal con-
ductivity of the metallic screens, the results are multiplied by a factor K, called the
screening factor, values of which are obtained from Figure 1-13. Thus, we have

As discussed above, filler resistivity may have a significant influence on the val-
ue of T{ for plastic-insulated cables. However, for screened cables, IEC advises that
no additional modifications of the above formula be taken.

Screening
factor K

3.0

p T = thermal resistivity of insulation

d c = diameter of conductor (circular)

= thickness of insulation between

conductor and screen

p m = thermal resistivity of screening

27 x 10~4 K-m/W for copper

48 x 10"4 K-m/W for aluminum

0 0.5 1.0 1.5 2.0 2.5 3.0 d x x P m

Figure 1-13 Thermal resistance of three-core screened cables with circular conductors
compared to that of a corresponding unscreened cable (IEC 287, 1994).
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For cables with sector-shaped conductors,

G=F,ln(^) and ^ = 3+ £

The screening factor is obtained from Figure 1-14.

Oil-Filled Cables with Round Conductors and Round Oil Ducts Between
Cores. In cables of this construction, oil ducts are provided by laying up an open
spiral duct of metal strip in each filler space. The expression for the thermal resis-
tance between one core and the sheath was obtained experimentally:

Screening
factor K

1.0

0.9

0.8 -

0.7 -

0.6 -

0.5

I 51
I PT
I dx

I 1

= thickness of screen

= thermal resistivity of insulation

= diameter of circular conductor

having the same section and

compaction

= thickness of insulation between

conductor and screen

\ p m = thermal resistivity of screening

v\ material:

- \V 27 x10"4K.m/W for copper

V \ 48 x 10"4 K-m/W for aluminum

I I I I !

1.0

0.6

0.2

10 15 20 25 30
5i*pT
dxxPm

Figure 1-14 Thermal resistance of three-core screened cables with sector-shaped conduc-
tors compared to that of a corresponding unscreened cable (IEC 287-2-1, 1994).
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where t( (mm) is the thickness of core insulation, including carbon black and metal-
lized paper tapes plus half of any nonmetallic tapes over the three laid-up cores.
This equation assumes that the space occupied by the metal ducts and the oil inside
them has a very high thermal conductance compared with that of the insulation; the
equation, therefore, applies irrespective of the metal used to form the duct or its
thickness.

Three-Core Cables with Circular Conductors and Metal-Tape Core Screens
and Circular Oil Ducts between the Cores. The thermal resistance between one
conductor and the sheath is

7^=0.35^0.923-^)

where tf (mm) is the thickness of core insulation, including the metal screening
tapes plus half of any nonmetallic tapes over the three laid-up cores.

SL Type Cables. In SL type cables the lead sheath around each core may be as-
sumed to be isothermal. The thermal resistance T{ is calculated the same way as for
single-core cables.

1.6.6.2 Thermal Resistance between Sheath and Armor, T2

Single-Core, Two-Core, and Three-Core Cables Having a Common Metallic
Sheath. The thermal resistance between sheath and armor is obtained from Equa-
tion (1.14), representing thermal resistance of any concentric layer. With the nota-
tion applicable to this part of the cable, we have

T
 p i (y _u 2tA

SL-Type Cables. In these cables, the thermal resistance of the fillers between
sheaths and armoring is given by

T — " 7̂

where G is the geometric factor given in Figure 1-15.

1.6.6.3 Thermal Resistance of Outer Covering (Serving), T3. The exter-
nal servings are generally in the form of concentric layers, and the thermal resis-
tance T3 is given by

T^^^{i~hr)

2TT
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G
0.8

0.7

0.6

0.5

0.4

Sheaths touching

Equal thicknesses of material
between sheaths and between
sheaths and armor

0.05 0.10 0.15

Thicknesses of material between sheaths and
armor expressed as a fraction of the outer
diameter of the sheath

Figure 1-15 Geometric factor for obtaining the thermal resistances of the filling material
between the sheaths and armor of SL-type cables (IEC 287-1-1, 1994).

P / 2h
2TT

For corrugated sheaths,

T3 = -~~ In

D'

Doc+ 2*3

Doc + Du
+ U

1.6.6-4 Pipe-Type Cables. For these three-core cables, the following compu-
tational rules apply:

0.2

0.1

0
i0
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1. The thermal resistance Tx of the insulation of each core between the conduc-
tor and the screen is calculated from the equation for single-core cables.

2. The thermal resistance T2 is made up of two parts:
(a) The thermal resistance of any serving over the screen or sheath of each

core. The value to be substituted for part of T2 in the rating equation is
the value per cable; that is, the value for a three-core cable is one-third of
the value of a single core. The value per core is calculated by the method
given in Section 1.6.6.2 for the bedding of single-core cables. For oval
cores, the geometric mean of the major and minor diameters V'dMdm is
used in place of the diameter for a circular core assembly.

(b) The thermal resistance of the gas or liquid between the surface of the
cores and the pipe. This resistance is calculated in the same way as part
T4, which is between a cable and the internal surface of a duct, as given in
Section 1.6.6.5. The value calculated will be per cable and should be
added to the quantity calculated in (a) above, before substituting for T2 in
the rating equation.

3. The thermal resistance T3 of any external covering on the pipe is dealt with as
in Section 1.6.6.3. The thermal resistance of the metallic pipe itself is negligi-
ble.

f .6.6.5 External Thermal Resistance. The current-carrying capability of ca-
bles depends to a large extent on the thermal resistance of the medium surrounding
the cable. For a cable laid underground, this resistance accounts for more than 70%
of the temperature rise of the conductor. For underground installations, the external
thermal resistance depends on the thermal characteristics of the soil, the diameter of
the cable, the depth of laying, mode of installation (e.g., directly buried, in thermal
backfill, in pipe or duct, etc.), and on the thermal field generated by neighboring ca-
bles. For cables in air, the external thermal resistance has a smaller effect on the ca-
ble rating. For aerial cables, the effect of installation conditions (e.g., indoors or out-
doors, proximity of walls and other cables, etc.) is an important factor in the
computation of the external thermal resistance. In the following sections, we will de-
scribe how the external thermal resistance of buried and aerial cables is computed.

External Thermal Resistance of Buried Cables—Directly Buried Cables. For
buried cables, two values of the external thermal resistance are calculated: T4, cor-
responding to dielectric losses (100% load factor); and T4/JL, the thermal resistance
corresponding to the joule losses, where allowance is made for the daily load factor
(LF) and the corresponding loss factor /x (a more detailed discussion about the load
loss factor is offered in Chapter 5):

/n = 0.3 • (LF) + 0.7 • (LF)2

The effect of the loss factor is considered to start outside a diameter DX9 defined
as Dx = 61200V6(length of cycle in hours) where 8 is soil diffusivity (m2/h). For a
daily load cycle and typical value of soil diffusivity of 0.5 x 10~6 m2/s, Dx is equal
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to 211 mm (or 8.3 in). The value of Dx is valid even when the diameter of the cable
or pipe is greater than Dx.

The following expressions are used to calculate the external thermal resistance
of a single cable or a group of equally loaded identical cables:

T7 =
Ps

2TT
In

\L -F
~D7 T^iJi ~

Ps
2TT

In y p + /x • In
4LF

For cables in pipes, one should use Do in place of De in the above formulas.
A factor F accounts for the mutual heating effect of the other cables or cable

pipes in a system of equally loaded, identical cables or cable pipes. For several
loaded cables placed underground, we must deal with superimposed heat fields.
The principle of superposition is applicable if we assume that each cable acts as a
line source and does not distort the heat field of the other cables. Therefore, in the
following subsections, we will assume that the cables are spaced sufficiently apart
so that this assumption is approximately valid. The axial separation of the cables
should be at least two cable diameters. The case in which the superposition princi-
ple is not applicable is discussed in Section 9.6.3 of Anders (1997).

The distances needed to compute factor F are defined in Figure 1-16. These are
center-to-center distances.

For cable/?:

"pq

Cable No. 1

Figure 1-16 Illustration of the development of an equation for the external thermal resis-
tance of a single cable buried under an isothermal plane.
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There are (q - 1) terms, with the term dppldpp excluded. The rating of the ca-
ble system is determined by the rating of the hottest cable or cable pipe, usually
the cable with the largest ratio, L/Do. For a single isolated cable or cable pipe, F
— 1

When the losses in the sheaths of single-core cables laid in a horizontal plane are
appreciable, and the sheaths are laid without transposition and/or are bonded at all
joints, the inequality of losses affects the external thermal resistance of the cables.
In such cases, the value of the F factor used to calculate T4 and T4fJL is modified by
first computing the sheath factor (SHF):

1 + 0.5(A1
/
1 + A^)

and then calculating

f ' = fiSHT)

External Thermal Resistance of Buried Cables—Cables or Cable Pipes
Buried in Thermal Backfill. In many North American cities, medium- and low-
voltage cables are often located in duct banks in order to allow a large number of
circuits to be laid in the same trench. The ducts are first installed in layers with the
aid of distance pieces, and then a bedding of filler material is compacted after each
layer is positioned. Concrete is the material most often used as a filler. High- and
extra-high-voltage cables are, on the other hand, often placed in an envelope of
well-conducting backfill to improve heat dissipation. What both methods of instal-
lation have in common is the presence of a material that has a different thermal re-
sistivity from that of the native soil. The first attempt to model the presence of a
duct bank or a backfill was presented by Neher and McGrath (1957) and later
adopted in IEC Standard 60287 (1982). Later, the basic method of Neher and Mc-
Grath was extended to take into account backfills and duct banks of elongated rec-
tangular shapes, and to remove the assumption that the external perimeter of the
rectangle is isothermal.

The application of a thermal backfill is discussed in some detail in Chapter 4 of
this book. The formulae presented below and used in Chapter 4 apply to the case in
which the longer to shorter length ratio is smaller than 3.

When the cables are installed in a backfill or duct bank, the following modifica-
tion of the expressions for the external thermal resistance are applied:

pc 4L-F N
^ ~ I ¥ I n ~D7~ + ~2^(Pe-Pc)Gb

pc I Dx 4LF\ N
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where

G, = ln[ii + V ( ? = l ) ] u = ^~ and \nrb= ~j[^ - y)ln(l + £ ) + In f

External Thermal Resistance of Buried Cables—Cables in Ducts and Pipes.
This section deals with the external thermal resistance of cables in ducts or pipes
filled with air or a liquid. Cables in ducts that have been completely filled with a
pumpable material having a thermal resistivity not exceeding that of the surround-
ing soil, either in the dry state or when sealed to preserve the moisture content of the
filling material, may be treated as directly buried cables.

The external thermal resistance of a cable in duct or pipe consists of three parts:

1. The thermal resistance of the air or liquid between the cable surface and the
duct internal surface, T'4.

2. The thermal resistance of the duct itself, T4 The thermal resistance of a met-
al pipe is negligible.

3. The external thermal resistance of the duct, T4

The value of T4 to be substituted in the current rating equation will be the sum of
the individual parts; that is:

T4-I4+T4 + T4 T4/x - T4 + T4 + THl

The constituent thermal resistances are computed from the following formulae:

u \+0.l(V+Y6m)De

Constants U, V, and Fare read from Table 1-6.

Table 1-6 Values of contants U, V, and Y (IEC 60287, 1994)

Installation condition

In metallic conduit
In fiber duct in air
In fiber duct in concrete
In asbestos cement

duct in air
duct in concrete

Earthenware ducts
Gas pressure cable in pipe
Oil-pressure, pipe-type cable

U

5.2
5.2
5.2

5.2
5.2
1.87
0.95
0.26

V

1.4
0.83
0.91

1.2
1.1
0.28
0.46
0.0

Y

0.011
0.006
0.010

0.006
0.011
0.0036
0.0021
0.0026

4
7T

4

u
4 1
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T"- P In D°

where p is the thermal resistivity of duct material. For metal ducts, VI — 0 and

Pc I Dx 4L-F\ N

External Thermal Resistance of Buried Cables—Unequally Loaded or Dis-
similar Cables. The method suggested for the calculation of ratings of a group of
cables set apart is to calculate the temperature rise at the surface of the cable under
consideration caused by the other cables of the group, and to subtract this rise from
the value of A0 used in Equation (1.40) for the rated current. An estimate of the
power dissipated per unit length of each cable must be made beforehand, and this
can be subsequently amended as a result of the calculation where it becomes neces-
sary.

For cabley, the losses are

^• = /i[///?/l+A1+A2)/iy.+ )^.]

The thermal resistance between cable j and cable /, the cable being studied, is

Ps dj;
Ttj = -«— In -j- for directly buried cables

Pc d'u N
Tjj = y— In —r- + ~y~(Pe - Pc)Gb for cables in backfill or duct bank

The temperature rise at the surface of cable / due to the losses in cable j is given
by

Mtj=Wj-Tu

and the temperature rise at the surface of cable / due to all other cables in the group
is computed from

7=1

External Thermal Resistance of Cables in Air—Simple Configurations. Heat
transfer phenomena are more complex for cables installed in free air than for those
located underground. The external thermal resistance of cables in air can be written
as
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j1 _
4 <7TD*ht

where ht is the total heat transfer coefficient defined in Equation (1.21). This coeffi-
cient is a nonlinear function of the cable surface temperature and one approxima-
tion, proposed in IEC 60287 (1994), is

T4= TTD*eh(&0s)
m

where h (W/m2K5/4) is the heat transfer coefficient embodying convection, radia-
tion, conduction, and mutual heating and is given by the following analytical ex-
pression:

Z
h = h Fn {Dff

Constants Z, E, and g are given in Table 1-7. Served cables and cables having a
nonmetallic surface are considered to have a black surface. Unserved cables, either
plain lead or armored, should be given a value of h equal to 88% of the value for the
black surface.

The cable surface temperature rise is obtained iteratively from the following
equation:

1/4 _ [ &0+A0d ll/4

The iterations are started by setting the initial value of (A05)
1/4 = 2 and reiterating

until ( A ^ ) ^ - ( A ^ ) : / 4 < 0.001.
The variable KA is defined as

irD*h \ r, 1

A0rf is the temperature rise caused by dielectric losses and is obtained from
Equations (1.41) and (1.44) as

17 1 1 \ n\2T2 ]

If the dielectric losses are neglected, A6d = 0.
When the cable is exposed to solar radiation, the following expression applies:

i/4 [ A0 + A^+offl^/7r/t]i/4
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Table 1-7 Values for constants Z, E, and g for black surfaces of cables

No. Installation Z E G Mode

1 Single cable* 0.21 3.94 0.60 —•] |^— > 0.3 D*e

2 Two cables touching, horizontal 0.21 2.35 0.50 —•[ \**—> 0.5 D*e

fa
3 Three cables trefoil pattern 0.96 1.25 0.20 - ^ | \*+- ^ 0.5 D*e

fa
4 Three cables touching, horizontal 0.62 1.95 0.25 —•( \*+- ̂  0.5 D*e

/|ooo
5 Two cables touching, vertical 1.42 0.86 0.25 —•( | ^ — > 0.5 D*e

6 Two cables spaced De*, vertical 0.75 2.80 0.30 —•[ |̂— ^ 0.5 D*e

7 Three cables touching, vertical 1.61 0.43 0.20 ~^\ | ^ ~ ^ 1 -0 D*e

8 Three cables spaced D*, vertical 1.31 2.00 0.20 ~*1 |^— - 1 -° D*e

yo—*
9 Single cable 1.69 0.63 0.25 A

10 Three cables in trefoil 0.94 0.79 0.20 / L Q k

"Values for a "single cable" also apply to each cable of a group when they are spaced horizontally with a
clearance between cables of at least 0.75 times the cable overall diemeter.
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The solar absorption coefficients for various covering materials are given in
Table 1-8.

Plain lead or unarmored cables should be assigned a value of h equal to 80% of
the value for a cable with a black surface.

Ambient temperature should be increased by A6sn where

&0sr=crD*HT4

External Thermal Resistance of Cables in Air—Derating Factors for Groups
of Cables in I EC 601042 (1991). An approach to dealing with groups of identical
cables in air, shown in Figure 1-17, is presented in IEC60287-2-2 (1995) and dis-
cussed in Anders (1997). The following limitations apply in this case:

1. A maximum of nine cables in a square formation (the last arrangement in
Figure 1-17a)

2. A maximum of six circuits, each comprising three cables mounted in a trefoil
pattern, with up to three circuits placed side by side or two circuits placed one
above the other (the last arrangement in Figure 1 -17b)

3. Cables for which dielectric losses can be neglected (usually, only lower volt-
age polymeric cables are installed in groups).

When cables are installed in groups as shown in Figure 1-17, the rating of the
hottest cable will be lower than in the case when the same cable is installed in isola-
tion. This reduction is caused by mutual heating. A simple method to account for
this mutual heating effect is to calculate the rating of a single cable or circuit using
the method described in the previous section and apply a reduction factor. This is
defined as follows:

where
Ig = rating of the hottest cable in the group, A
Ix = rating of the same cable or circuit isolated, A
F = group reduction factor

Table 1-8 Absorption coefficient of solar
radiation values for cable surfaces

Material

Bitumen/jute serving
Polychloroprene
PVC
PE
Lead

cr

0.8
0.8
0.6
0.4
0.6

Ig
=F*-'l
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(a)

(b)

Figure 1-17 Typical groups of (a) multicore cables, and (b) trefoil circuits.

The reduction in current is a result of an increase in the external thermal resis-
tance of a cable or circuit in a group as compared to the case in which the cable or
circuit is installed in isolation. A basic criterion is that the temperature rise above
ambient of the conductor be the same for the grouped and isolated cases.

The reduction factor is computed from

Fa =
1

* V \-kx+kx{TAgITAI)

where

* i =

Wt-TAI

uc - Vamb

and
T4g = external thermal resistance of the hottest cable in the group, K • m/W
T4I = external thermal resistance of one cable, assumed to be isolated, used to com-

pute the rated current /, K • m/W
Wt= power loss from one multicore cable or one single-core cable mounted in a tre-

foil pattern, assumed to be isolated, when carrying the current Iu W/m

The term T4g/T4l can be calculated from the ratio (hj/hg) by using the iterative re-
lationship
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\r4/yU AgL(Vr4/)B 'J

and starting with (T4gJT41i)x = (h/hg). The above equation converges quickly, and
one iteration with (T4g/T4I)x = (hjhg) is usually sufficient. Alternatively, when
(h/hg) is less than 1.4, it is sufficient to substitute (hjhg) for (T4g/T4f) in the equation
for Fg.

Values for the ratio (h/hg) have been obtained empirically and are given in of
Table 1-9 (IEC 1042, 1991).

If a clearance exceeding the appropriate value given in column 2 of Table 1-9
cannot be maintained with confidence throughout the length of the cable, the reduc-
tion coefficient is determined as follows.

1. For horizontal clearances, we assume that the cables are touching each other
or the vertical surface. Appropriate values are given in column 4 of Table 1-
9.

2. For vertical clearances, the reduction coefficient due to grouping is derived
according to the value of the expected clearance:
a) Where the clearance is less than the appropriate value given in column 2 of

Table 1-9, but can be maintained at a value equal or exceeding the mini-
mum given in column 3, the appropriate value ofQiJhg) is obtained from
the formula in column 4.

b) Where the clearance is less than the minimum given in column 3, we as-
sume that the cables are touching each other. Suitable values of (hj/hg) are
provided in column 4 of Table 1-9.

The values in column 4 are the average values for cables having diameters from
13 to 76 mm. More precise values for multicore cables may be evaluated for a spe-
cific cable diameter, both inside and outside this range, by consulting Table 1-7.

1.6.7 Thermal Capacitances

In Section 1.3.1.2, thermal capacitance was defined as the product of the volume of
the material and its specific heat. In the following section, formulas for special and
concentric layers are presented. In all formulas, Q is the thermal capacitance (J/K •
m) and c is the specific heat of the material (J/K • m3).

1.6.7.1 Oil in the Conductor. The thermal capacitance of oil inside the con-
ductor is obtained from

/ m/f \
Qo = [-^-+S-F)c

where F is a factor representing the unfilled cross section (usually 0.36).
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Table 1-9 Data for calculating reduction factors for grouped cables

Thermal Thermal proximity
proximity effect e f f e c t i s n o t n e g l i g i b l e

is negligible

Arrangement of cable
if e/De is greater If e/De is Average value
then or equal to: less then of hjh a.b

Side by Side

2 multicore

3 multicore

2 trefoils

3 trefoils

One above the other

2 multicore

0.5

0.75

1.0

1.5

0.5

1.5

1.41

0.75 1.65

1.0 1.2

1.25

2 or 0.5 1.085 (e/De)"

3 multicore
or 1.35

4 or 0.5 1.19 (e/De)"0-136

2 trefoils

Near to a vertical
surface or to a
horizontal surface
below the cable

0.5

or 1.57
4 or 0.5 1.106 (e/Der

0078

0.5
or 1.39

1.23

"The formulae for (h/hg) given in column 4 of this table shall not be used for values of e/De less than 0.5 or
greater than the appropriate values given in column 1.
6Average values for cables having diameter from 13 mm to 76 mm. More precise values of (hj/hg) for multicore
cables may be evaluated for a specific cable diameter, both inside and outside this range, by consulting Table V
ofIEC287.
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1.6.7.2 Conductor. The thermal capacitance of the conductor is given by

Qc = s-c

1.6.7.3 Insulation. Representation of the capacitance of the insulation de-
pends on the duration of the transient. For transients lasting longer than about 1 h,
the capacitance of the insulation is divided between the conductor and the sheath
positions according to a method given by Van Wormer (1955) (see Section
1.3.1.2). This assumes logarithmic temperature distribution across the dielectric
during the transient, as in the steady state. The total thermal capacitance is ob-
tained as

The portion/?Q, is placed at the conductor and the portion (1 -p)Qt at the sheath,
where/? is the Van Wormer coefficient, defined in Equation (1.24) as

1 1

'-><%)-(It-1

From the thermal point of view, the thickness of the dielectric includes any non-
metallic semiconducting layer either on the conductor or on the insulation.

For shorter durations (less than 1 h), it has been found necessary to divide the in-
sulation into two portions having equal thermal resistances. The thermal capaci-
tance of each portion of the insulation is then assumed to be located at its bound-
aries, using the Van Wormer coefficient to split the capacitances as shown in Figure
1-2. The thermal capacitance of the first part of the insulation is given by

Qn=j(Df'd*-d*2)c

This capacitance is split into two parts using the Van Wormer coefficient as fol-
lows:

fl-i =p*Qn, Qa = 0 -p*)Qn p* = —w - ~n
In ' ' 1

dc dc

The total thermal capacitance of the second part is given by

Qi2=^(Df2-Df-d?)c

The total thermal capacitance of the second part is given by

Qn=^(Df-d*-df-)c

Q,= %(Dr2-d*2)c

dc dc
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which leads to the third and fourth part of the thermal capacitance of the insulation,
defined as

Qi3=P*Ql2, Qi4 = V-p*)Ql2

In the case of dielectric losses, the cable thermal circuit is the same as shown in
Figure 1 -2, with the Van Wormer coefficient apportioning to the conductor a fraction
of the dielectric thermal capacitance given by Equation (1.24). For cables at voltages
higher than 275 kV, the Van Wormer coefficient is given by Equation (1.29).

1.6.7A Metallic Sheath or Any Other Concentric Layer. The thermal ca-
pacitance of all other concentric layers of cable components such as sheath, armor,
jacket, armor bedding, or serving is computed by using Equation (1.23). However,
one should remember that the thermal capacitances of nonmetallic layers have to be
divided into two parts using the Van Wormer factor given by Equation (1.25). The
appropriate dimensions for the inner and outer diameters must be used in order to
attain sufficient accuracy for short-duration transients.

1.6.7.5 Reinforcing Tapes. The thermal capacitance of the reinforcing tapes
over the sheath is

QT=nt(w*t*^{f + (iTd%Y)c

1.6.7.6 Armor. The thermal capacitance of the armor is obtained from

1.6.7.7 Pipe-Type Cables. The thermal capacitances of cable components are
computed as described above, and the thermal capacitance of the oil in the pipe is
obtained from

Qop=^(D*2
d-3D*$)c

The capacitance of the oil is divided into two equal parts.
The thermal capacitance of the skid wires is generally neglected, but may be

computed using the equation for the capacitance of the armor, if needed. The ther-
mal capacitance of the metallic pipe and of the external covering are computed us-
ing Equation (1.23).

1.7 CONCLUDING REMARKS

The rating calculations described in this chapter will serve as a basis for the new
developments presented in the following chapters. In many applications discussed
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further, the external thermal resistance of the cable will be modified. In Chapter 2,
we will distinguish the thermal properties of two different regions through which
the cable route may pass, whereas in Chapter 3 we will look at the mutual thermal
resistance between the rated cable and an external heat source. The probabilistic
nature of the external thermal resistivity of buried cables will be explored in
Chapter 4. In the same chapter, we will investigate the optimal dimensions of a
thermal backfill. The calculation of the load loss factor appearing in the equation
for the external thermal resistance with a nonunity load factor is addressed in
Chapter 5. For cables in air, discussed in Chapter 6, several alternative approach-
es to the computation of the convective and radiative heat transfer coefficients will
be introduced.
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