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Introduction

The evolution of modern society is driven by decisions that affect the welfare
and choices of large groups of individuals. Of the scores of examples, a few will
illustrate the characteristics of decisionmaking that motivate our approach:

1. A new drug has been developed in the laboratories of a private firm over
a period of several years and at a cost of tens of millions of dollars. It has
been tested in animals, and in increasingly larger groups of human beings
in a succession of highly structured clinical trials. If the drug is approved
by the Food and Drug Administration (FDA), it will be available for all
licensed physicians to use at their discretion. The FDA must decide whether
to approve the drug.

2. Since the mid-1980s evidence from many different sources, taken together,
clearly indicates that the earth’s climate is warming. The evidence that this
warming is due to human activities, in particular the emission of carbon
dioxide, is not as compelling but becomes stronger every year. The economic
activities responsible for increases in the emission of carbon dioxide are
critical to the aspirations of billions of people, and to the political order that
would be needed to sustain a policy that would limit emissions. How should
the evidence be presented to political leaders who are able to make and
enforce decisions about emissions policy? What should their decision be?

3. A multi-billion-dollar firm is seeking to buy a firm of similar size. The
two firms have documented cost reductions that will be possible because
of the merger. On the other hand, joint ownership of the two firms will
likely increase market power, making it in the interests of the merged firm
to set higher price cost margins than did the two firms separately. How
should lawyers and economists—whether disinterested or not—document
and synthesize the evidence on both points for the regulatory authorities who
decide whether to permit the merger? How should the regulatory authorities
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2 INTRODUCTION

make their decision? If they deny the merger, the firms must decide whether
to appeal the decision to the courts.

4. A standard petroleum refining procedure produces two-thirds unleaded gaso-
line and one-third heating oil (or jet aviation fuel, its near equivalent).
Refinery management buys crude oil, and produces and sells gasoline and
heating oil. The wholesale prices of these products are volatile. Management
can guarantee the difference between selling and buying prices, by means
of futures contracts in which speculators (risk takers) commit to purchasing
specified amounts of gasoline or heating oil, and selling agreed-on amounts
of crude oil, at fixed prices. Should management lock in some or all of its
net return in this way? If some, then how much?

These decisions differ in many ways. The second and third will appear promi-
nently in the media; the first might, the last rarely will. The second is a matter
of urgent global public policy, and the last is entirely private. The other two are
mixtures; in each case the final decision is a matter of public policy, but in both the
matter is raised to the level of public policy through a sequence of private decisions,
in which anticipation of the ultimate public policy decision is quite important.

Yet these decisions have many features in common:

1. The decision must be made on the basis of less-than-perfect information.
By “perfect information” is meant all the information the decisionmaker(s)
would requisition if information were free, that is, immediately available at
no cost in resources diverted from other uses.

2. The decision must be made at a specified time. Either waiting is prohibited
by law or regulation (examples 1 and 3), is denied by the definition of the
decision (example 4), or “wait” amounts to making a critical choice that may
circumscribe future options (example 2).

3. The information bearing on the decision, and the consequences of the deci-
sion, are primarily quantitative. The relationship between information and
outcome, mediated by working hypotheses about the connection between the
two, is nondeterministic.

4. There are multiple sources of information bearing on each decision. Whether
the information is highly structured and derived from controlled experiments
(example 1), consists of numerous studies using different approaches and
likely reaching different conclusions (examples 2 and 3), or originates in
different time periods and settings whose relation to the decision at hand must
be assessed repeatedly (example 4), this information must be aggregated,
explicitly or implicitly, in the decision.

We will often refer to “investigators” and “clients,” terms due to Hildreth (1963).
The investigator is the applied statistician or econometrician whose function is to
convey quantitative information in a manner that facilitates and thereby improves
decisions. The client may be the actual decisionmaker, or—more often—another
scientist working to support the decision with information. The client’s identity
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and preferences may be well known to the investigator (example: an expert witness
hired by any interested party), or many clients may be unknown to the investigator
(example: the readers of a subsequently well-cited academic paper reporting the
investigator’s work).

The objective of this book is to provide investigators with understanding and
technical tools that will enable them to communicate effectively with clients, includ-
ing decisionmakers and other investigators. Several themes emerge:

1. Make all assumptions explicit.

2. Explicitly quantify all of the essentials, including the assumptions.

3. Synthesize, or provide the means to synthesize, different approaches and
models.

4. Represent the inevitable uncertainty in ways that will be useful to the client.

The understanding of effective communication is grounded in Bayesian inference
and decision theory. The grounding emerges not from any single high-minded
principle, but rather from the fact that this foundation is by far the most coherent
and comprehensive one that presently exists. It may eventually be superseded by
a superior model, but for the foreseeable future it is the foundation of economics
and rational quantitative decisionmaking.

The reader grounded in non-Bayesian methods need not take any of this for
granted. To these readers, the utility of the approach taken here will emerge as
successive real problems succumb to effective treatment using Bayesian methods,
while remaining considerably more difficult, if not entirely intractable, using non-
Bayesian approaches.

Simulation methods provide an indispensable link between principles and prac-
tice. These methods, essentially unavailable before the late 1980s, represent uncer-
tainty in terms of a large but finite number of synthetic random drawings from the
distribution of unobservables (examples: parameters and latent variables), condi-
tional on what is known (examples: data and the constraints imposed by economic
theory) and the model(s) used to relate unobservables to what is known. Algorithms
for the generation of the synthetic random drawings are governed by this represen-
tation of uncertainty. The investigator who masters these tools not only becomes a
more fluent communicator of results but also greatly expands the choices of con-
texts, or models, in which to represent uncertainty and provide useful information
to decisionmakers.

1.1 TWO EXAMPLES

This chapter is an overview of the chapters that follow. It provides much of what is
needed for the reader to be a knowledgeable client, that is, a receiver of information
communicated in the way just discussed. Being an effective investigator requires
the considerably more detailed and technical understanding that the other chapters
convey.
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1.1.1 Public School Class Sizes

The determination of class size in public schools is a political and fiscal decision
whose details vary from state to state and district to district. Regardless of the
details, the decision ultimately made balances the fact that, given the number of
students in the district, a lower student : teacher ratio is more costly, against
the perception that a lower student : teacher ratio also increases the quality of
education. Moreover, quality is difficult to measure. The most readily available
measures are test scores. Changes made in federal funding of locally controlled
public education since 2001 emphasize test scores as indicators of quality, and
create fiscal incentives for local school boards to maintain and improve the test
scores of students in their districts.

In this environment, there are several issues that decisionmaking clients must
address and in which Bayesian investigation is important:

1. What is the relationship between the student : teacher ratio and test scores?
Quite a few other factors, all of them measurable, may also affect test scores.
We are uncertain about how to model the relationship, and for any one model
there is uncertainty about the parameters in this model. Even if we were
certain of both the model and the parameters, there would still be uncertainty
about the resulting test scores. Full reporting and effective decisionmaking
require that all these aspects of uncertainty be expressed.

2. The tradeoff between costs, on one hand, and quality of education, on the
other hand, needs to be expressed. “Funding formulas” that use test scores
to determine revenues available to school administrators (the clients) express
at least part of this relationship quantitatively. In addition, a client may wish
to see the implications of alternative valuations of educational quality, as
expressed in test scores, for decisions about class size. Funding formulas may
be expressed in terms of targets that make this an analytically challenging
problem. The simulation methods that are an integral part of contemporary
Bayesian econometrics and statistics make it practical to solve such problems
routinely.

3. Another set of prospective clients consists of elected and appointed poli-
cymakers who determine funding formulas. Since these policymakers are
distinct from school administrators, any funding formula anticipates (at least
implicitly) the way that these administrators will handle tradeoffs between
the costs of classroom staffing and the incentives created in the funding for-
mulas. Depending on administrators’ behavior, different policies may incur
higher, or lower, costs to attain the same outcome as measured by test scores.

Bayesian analysis provides a coherent and practical framework for combining
information and data in a useful way in this and other decisionmaking situations.
Chapters 2 and 3 take up the critical technical steps in integrating data and other
sources of information and representing the values of the decisionmaking client.
Chapter 4 provides the simulation methods that make it practical and routine to
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undertake the required analysis. The remaining chapters return to this particular
decision problem at several points.

1.1.2 Value at Risk

Financial institutions (banks, brokerage firms, insurance companies) own a variety
of financial assets, often with total value in the many billions of dollars. They may
include debt issued by businesses, loans to individuals, and government bonds.
These firms also have financial liabilities: for example, deposit accounts in the
case of private banks and life insurance policies in the case of insurance companies.
Taken together, the holdings of financial assets or liabilities by a firm are known
as its “portfolio.”

The value of an institution’s portfolio, or of a particular part of it, is constantly
changing. This is the case even if the institution initiates no change in its holdings,
because the market price of the institution’s assets or liabilities change from day to
day and even minute to minute. Thus every such institution is involved in a risky
business. In general, the larger the institution, the more difficult it is to assess this
risk because of both the large variety of assets and liabilities and the number of
individuals within the institution who have authority to change specified holdings
in the institution’s portfolio.

Beginning about 1990 financial institutions, and government agencies with
oversight and regulatory responsibility for these institutions, developed measures
of the risk inherent in institutions’ portfolios. One of the simplest and most widely
used is value at risk. To convey the essentials of the idea, let pt be the market
value of an institution’s entire portfolio, or of a defined portion of it. In the former
case, pt is the net worth of the institution—what would remain in the hypothetical
situation that the institution were to sell all its assets and meet all of its liabilities.
In the latter case it might be (for example) the institution’s holding of conventional
mortgages, or of U.S. government bonds.

The value pt is constantly changing. This is in part a consequence of holdings
by the institution, but it is also a result of changes in market prices. Value at risk
is more concerned with the latter, so pt is taken to be the portfolio value assuming
that its composition remains fixed. “Value at risk” is defined with respect to a future
time period, say, t∗, relative to the current period t , where t∗ > t and t∗ − t may
range from less than a day to as long as a month. A typical definition of value at
risk is that it is the loss in portfolio value vt,t∗ that satisfies

P (pt − pt∗ ≥ vt,t∗) = .05. (1.1)

Thus value at risk is a hypothetical decline in value, such that the probability of an
even greater decline is 5%. The choice of .05 appears arbitrary, since other values
could be used, but .05 is by far the most common, and in fact some regulatory
authorities establish limits of vt,t∗ in relation to pt based on (1.1).

The precise notion of probability in (1.1) is important. Models for establishing
value at risk provide a distribution for pt∗ , conditional on pt and, perhaps, other
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information available at time t . From this distribution we can then determine vt,t∗ .
Most models used for this purpose are formulated in terms of the period-to-period
return on the portfolio

rt = (pt − pt−1)/pt−1,

and statistical modeling usually directly addresses the behavior of the time series

yt = log(1 + rt ) = log(pt/pt−1). (1.2)

One of the simplest models is

yt ∼ N(µ, σ 2). (1.3)

Even this simple model leaves open a number of questions. For example, is it really
intended that the same model (including the same mean and variance) pertains today
for “high tech” stocks as it did in 1999, before the rapid decline in their value? In
any event, the parameters µ and σ 2 are unknown, so how is this fact to be handled
in the context of (1.1)? This problem is especially vexing if µ and σ 2 are subject
to periodic changes, as the high-tech example suggests at least sometimes must be
the case if we insist on proceeding with (1.3).

One of the biggest difficulties with (1.3) is that it is demonstrably bad as a
description of returns that are relatively large in absolute value, at least with fixed
µ and σ 2. If we take as the fixed values of µ and σ 2 their conventional estimates
based on daily stock price indices for the entire twentieth century, then the model
implies that “crashes” like the one that occurred in October 1987, are events that
are so rare as to be impossible for all practical purposes. [For the daily Standard
and Poors 500 stock returns for January 3, 1928–April 30, 1991, from Ryden et al.
(1998) used in Sections 7.3 and 8.3, the mean is .000182, the standard deviation
is .0135, and the largest return in absolute value is −.228, which is 16.9 standard
deviations from the mean. If z ∼ N(0,1) then P (z ≤ −16.9) = 2.25 × 10−64. The
inverse of this probability is 4.44 × 1063. Dividing by 260 trading days in the year
yields 1.71 × 1061 years. The estimated age of the universe is 1.2 × 1010 years.
Chapter 8 takes up Bayesian specification analysis, which is the systematic and
constructive assessment of this sort of incongruence of a model with reality.] This,
of course, makes explicit the fact that we are uncertain about more than just the
unknown parameters µ and σ 2 in (1.3). In fact we are also uncertain about the
functional form of the distribution, and our notion of “probability” in (1.1) should
account for this, too.

Section 1.4 introduces an alternative to (1.3), which is developed in detail in
Section 7.3. An important variant on the value at risk problem arises when a
decisionmaker (say, a vice president of an investment bank) selects the value .05,
as opposed to some other probability, in (1.1). This integration of behavior with
probability is the foundation of Bayesian decision theory, as well as of important
parts of modern economics and finance. We shall return to this theme repeatedly,
for example, in Sections 2.4 and 4.1.
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1.2 OBSERVABLES, UNOBSERVABLES, AND OBJECTS OF INTEREST

A model is a simplified description of reality that is at least potentially useful in
decisionmaking. Since models are simplified, they are never literally true; what-
ever the “data-generating process” may be, it is not the model. Since models are
constructed for the purpose of decisionmaking, different decision problems can
appropriately lead to different models despite the fact that the reality they simplify is
the same. A well-known example is Newtonian physics, which is inadequate when
applied to cosmology or subatomic interactions but works quite well in launching
satellites and sending people to the moon. In the development of positron emission
tomography and other kinds of imaging based on the excitation of subatomic par-
ticles, on other hand, quantum mechanics (a different model) functions quite well
whereas Newtonian mechanics is inapplicable.

All scientific models have certain features in common. One is that they often
reduce an aspect of reality to a few quantitative concepts that are unobservable but
organize observables in a way that is useful in decisionmaking. The gravitational
constant or the charge of an electron in physics, and the variance of asset returns or
the equation of a demand function in the examples in the previous section are all
examples of unobservables. Observables can be measured directly; the acceleration
of an object when dropped, the accumulation of charge on an electrode, average
test scores in different school districts, and sample means of asset returns are all
examples.

A model posits certain relationships between observables and unobservables;
without these relationships the concepts embodied in the unobservables would be
vacuous. A scientific model takes the form “Given the values of the unobservables,
the observables will behave in the following way.” The relationship may or may
not be deterministic. Thus a model may be cast in the form

p(y | θ),

in which θ is a vector of unobservables and y is a vector of observables. The
unobservables θ are typically parameters or latent variables. It is important to
distinguish between the observables y, a random vector, and their values after
they are observed, which we shall denote yo and are commonly called “data.”
The functional form of the probability density p gives the model some of its
content. In the simple example of Section 1.1.1 the observables might be pairs of
student : teacher ratios and test score averages in a sample of school districts, and
the unobservables the slope and intercept parameters of a normal linear regression
model linking the two. In the simple example of Section 1.1.2, the observables
might be asset returns y1, . . . , yT , and the unobservable is σ 2 = var(yt ).

The relationship p(y | θ) between observables and unobservables is central, but
it is not enough for decisionmaking. The relationship between the gravitational
constant g and the acceleration that results when a force is applied to a mass is
not enough to deliver a communications satellite into orbit—we had better know
quite a lot about the value of g. Likewise, in assessing value at risk using the
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simplified model of Section 1.1.2, we must know something about σ 2. In general,
the density p(y | θ) may restrict the behavior of y regardless of θ (e.g., when
dropped, everyday objects accelerate at rates that differ negligibly with their mass)
but for decisionmaking we must know something about θ . (An object will fall
about how many meters per second squared at sea level?) A very general way to
represent knowledge about θ is by means of a density p(θ). Formally, we may
combine p(θ) and p(y | θ) to produce information about the observables:

p(y) =
∫

p(θ)p(y | θ) dθ .

How we obtain information about θ , and how p(θ) changes in response to new
information are two of the central topics of this book. In particular, we shall turn
shortly to the question of how information about θ changes when y is observed.

In any decision there is typically more than one model at hand that is at least
potentially useful. In fact, much of the work of actual decisionmakers lies in sorting
through and weighing the implications of different models. To recognize this fact,
we shall further index the relation between observables and unobservables by A to
denote the model: p(y | θ) becomes p(y | θA, A), and p(θ) becomes p(θA | A).
The vector of unobservables (in many cases, the parameters of the model A) θA

belongs to the set �A ⊆ R
kA . Alternative models will be denoted A1, A2, . . . . Note

that the unobservables need not be the same in the models, but the observables
y ∈ Y are. When several models have the same set of observables, and then we
obtain observations (which we call “data”), it becomes possible to discriminate
among models. We shall return to this topic in Section 1.5, where we will see
that with a bit more effort we can actually use the data to assign probabilities to
competing models.

More generally, however, the models relevant to the decision at hand need not all
have the same set of observables. A classic example is the work of Friedman (1957)
on the marginal propensity to consume. One model (A1) used aggregate time series
data on income and consumption, while another model (A2) used income and con-
sumption measures for different households at the same point in time. The sets of
models addressed the same unobservable—marginal propensity to consume—but
reached different conclusions. Friedman’s contribution was to show that the models
A1 and A2 did, indeed, have different unobservables (θA1 and θA2), and that the
differences in θA1 and θA2 were consistent with a third, more appropriate, concept
of marginal propensity to consume. We shall denote the object of interest on which
decisionmaking depends, and which all models relevant to the decision have some-
thing to say, by the vector ω. We shall denote the implications of model A for ω

by p(ω | y, θA, A). The models at hand must specify this density; if they do not,
then they are not pertinent to the decision at hand.

We can apply this idea to the two examples in the previous section. In the
case of the class size decision, ω might be a q × 1 vector of average test scores
conditional on q alternative decisions that might be made about class size. In the
case of value at risk, ω might be a 5 × 1 vector, the value of the portfolio at the
end of each of the next 5 business days.
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In summary, we have identified three components of a complete model, A,
involving unobservables (often parameters) θA, observables y, and a vector of
interest ω:

p(θA | A), (1.4)

p(y | θA, A), (1.5)

p(ω | y, θA, A). (1.6)

The ordering of (1.4)–(1.6) emphasizes the fact that the model A specifies the joint
distribution

p(θA, y, ω | A) = p(θA | A)p(y | θA, A)p(ω | y, θA, A). (1.7)

It is precisely this joint distribution that makes it possible to use data to inform deci-
sions in an internally consistent manner, and—with more structure to be introduced
in Section 1.6—addresses the question of which decision would be optimal.

Exercise 1.2.1 Conditional Probability. A test for the presence of a disease can
be administered by a nurse. A result “positive” (+) indicates disease present; a
result “negative” (−) indicates disease absent. However, the test is not perfect. The
sensitivity of the test is the probability of a “positive” result conditional on the
disease being present; it is .98. The specificity of the test is the probability of a
“negative” result conditional on the disease being absent; it is .90. The incidence
of the disease is the probability that the disease is present in a randomly selected
individual; it is .005.

Denoting specificity by p, sensitivity by q, incidence by π , and test outcome by
+ or −, develop an expression for the probability of disease conditional on a “pos-
itive” outcome and one for the probability of disease conditional on a “negative”
outcome, if the test is administered to a randomly selected individual. Evaluate
these expressions using the values given above.

Exercise 1.2.2 Non-Bayesian Statistics. Suppose the model A is y ∼ N(µ, 1),
µ ≥ 0, and the sample consists of a single observation y = yo.

(a) Show that S = (max(y − 1.96, 0), max(y + 1.96, 0)) is a 95% classical
confidence interval for µ, that is, P (µ ∈ S | µ, A) = .95.

(b) Show that if yo = −2.0 is observed, then the 95% classical confidence inter-
val is the empty set.

Exercise 1.2.3 Ex Ante and Ex Post Tests. Let y have a uniform distribution
on the interval (θ, θ + 1), and suppose that it is desired to test the null hypothesis
H0 : θ = 0 versus the alternative hypothesis H1 : θ = 0.9 (which are the only two
values of θ that are possible). A single observation x is available. Consider the test
that rejects H0 if y ≥ 0.95, and accepts H0 otherwise.

(a) Calculate the probabilities of type I and type II errors for this test.
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(b) Explain why it does not make common sense, for decisionmaking purposes,
to accept mechanically the outcome of this test when the observed yo lies
in the interval (0.9, 1.0).

1.3 CONDITIONING AND UPDATING

Because a complete model provides a joint density p(θA, y, ω | A), it is in prin-
ciple possible to address the entire range of possible marginal and conditional
distributions involving the unobservables, observables, and vector of interest. Let
yo denote the actual value of the observable—the data, “y observed.” Then with the
data in hand, the relevant probability density for a decision based on the model A

is p(ω | yo, A). This is the single most important principle in Bayesian inference in
support of decisionmaking. The principle, however, subsumes a great many details
taken up in subsequent chapters.

It is useful to break up the process of obtaining p(ω | yo, A) into a number of
steps, and to introduce some more terminology. The distribution corresponding to
the density p(θA | A) is usually known as the prior distribution and that corre-
sponding to p(y | θA, A), as the observables distribution. The distribution of the
unobservable θA, conditional on the observed yo, has density

p(θA | yo, A) = p(θA, yo | A)

p(yo | A)
= p(θA | A)p(yo | θA, A)

p(yo | A)
(1.8)

∝ p(θA | A)p(yo | θA, A).

Expression (1.8) is usually called the posterior density of the unobservable θA. The
corresponding distribution is the posterior distribution.

The distinction between the prior and posterior distributions of θA is not quite
as tidy as this widely used notation and terminology suggests, however. To see
this, define Y′

t = (y′
1, . . . , y′

t ), for t = 0, . . . , T with the understanding that
Y0 = {∅}, and consider the decomposition of the probability density of the observ-
ables y = YT :

p(y | θA, A) =
T∏

t=1

p(yt | Yt−1, θA, A). (1.9)

In fact, densities of observables are usually constructed in exactly this way, because
when there is dependence between observations, a recursive model is typically the
natural representation.

Suppose that Yo′
t = (yo′

1 , . . . , yo′
t ) is available but (yo′

t+1, . . . , yo′
T ) is not. (If “t”

denotes time, then we are between periods t and t + 1). Then

p(θA | Yo
t , A) ∝ p(θA | A)p(Yo

t | θA, A)

= p(θA | A)

t∏
s=1

p(yo
s | Yo

s−1, θA, A).
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When yo
t+1 becomes available, then

p(θA | Yo
t+1, A) ∝ p(θA | A)

t+1∏
s=1

p(yo
s | Yo

s−1, θA, A)

∝ p(θA | Yo
t , A)p(yo

t+1 | Yo
t , θA, A). (1.10)

The change in the distribution of θA brought about by the introduction of yo
t+1,

made clear in (1.10), is usually known as Bayesian updating. Comparing (1.10)
with (1.8), note that p(θA | Yo

t , A) plays the same role in (1.10) as does the prior
density p(θA | A) in (1.8), and that p(yo

t+1 | Yo
t , θA, A) plays the same role in

(1.10) as does p(yo | θA, A) in (1.8). Indeed, from the perspective of what happens
at “time” t + 1, p(θA | Yo

t , A) is the prior density of θA, and p(θA | Yo
t+1, A) is

the posterior density of θA. This emphasizes the fact that “prior” and “posterior”
distributions (or densities, or moments, or other properties of unobservables) are
always with respect to an incremental information set. In (1.8) this information is
the entire data set yo = Yo

T , whereas in (1.10) it is yo
t+1.

From the posterior density (1.8), the density relevant for decisionmaking is

p(ω | yo, A) =
∫

�A

p(θA | yo, A)p(ω | θA, yo, A) dθA. (1.11)

It is important to acknowledge that we are proceeding in a way that is different
from most non-Bayesian statistics, generally termed “classical” statistics. The key
difference between Bayesian and non-Bayesian statistics is, in fact, in conditioning.
Likelihood-based non-Bayesian statistics conditions on A and θA, and compares the
implication p(y | θA, A) with yo. This avoids the need for any statement about the
prior density p(θA | A), at the cost of conditioning on what is unknown. Bayesian
statistics conditions on yo, and utilizes the full density p(θA, y, ω | A) to build up
coherent tools for decisionmaking, but demands specification of p(θA | A).

The strategic advantage of Bayesian statistics stems from the fact that its con-
ditioning is driven by the actual availability of information and by its complete
integration with the theory of economic behavior under uncertainty, achieved by
Friedman and Savage (1948, 1952). We shall return to this point in Section 1.6 and
subsequently in this book.

Two additional matters need to be addressed, as well. The first is that (1.8) and
(1.11) are mere formalities as stated; actually representing the densities p(θA | yo, A)

and p(ω | yo, A) in practical ways for decisionmaking is a technical challenge of high
order. Indeed, the principles stated here have been recognized since at least the mid-
1950s, but it was not until the application of simulation methods in the 1980s that
they began to take on the practical significance that they have today. We return to
these developments in Section 1.4 and Chapter 4.

The other matter ignored is explicit attention to multiple models A1, . . . , AJ . In
fact, it is not necessary to confine attention to a single model, and the developments
here may be extended to several models simultaneously. We do this in Section 1.5.
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Exercise 1.3.1 A Simple Posterior Distribution. Suppose that y ∼ N(µ, 1) and
the sample consists of a single observation yo. Suppose that an investigator has a
prior distribution for µ that is uniform on (0, 4).

(a) Derive the investigator’s posterior distribution for µ.

(b) Suppose that yo = −2. Find an interval (µ1, µ2) such that

P [µ ∈ (µ1, µ2) | yo] = 0.95.

(The answer consists of a pair of real numbers.)

(c) Do the same for the case yo = 1.

(d) Are your intervals in (b) and (c) the shortest possible in each case? (You
need not use a formal argument. A sketch is enough.)

Exercise 1.3.2 Applied Conditioning and Updating. On a popular, nationally
televised game show the guest is shown three doors. Behind one door there is a
valuable prize (e.g., a new luxury automobile), and behind the other two doors there
are trivial prizes (perhaps a new toaster). The host of the game show knows which
prizes are behind which doors. The guest, who cannot see the prizes, chooses one
door for the host to open. But before he opens the door selected by the guest, the
host always opens one of the two doors not chosen by the guest, and this always
reveals a trivial prize. (The guest and the television audience, having watched the
show many times, know that this always happens.) The guest is then given the
opportunity to change her selected door. After the guest makes her final choice,
that door is opened and the guest receives the prize behind her chosen door.

If you were the guest, would you change your door selection when given the
opportunity to do so? Would you be indifferent about changing your selection?
Defend your answer with a formal probability argument.

Exercise 1.3.3 Prior Distributions. Two graduate students play the following
game. An amount of money W is placed in a sealed envelope. An amount 2W is
placed in another sealed envelope. Student A is given one envelope, and student
B is given the other envelope. (The assignment of envelopes is random, and the
students do not know which envelope they have received.) Before student A opens
his envelope and keeps the money inside, he may exchange envelopes with student
B, if B is willing to do this. (At this point, B has not opened her envelope,
either; the game is symmetric.) In either case, each student keeps the money in the
envelope finally accepted. Both students are rational and risk-neutral; that is, they
behave so as to maximize the expected value of the money they keep at the end
of the game.

Student A reasons as follows. “There is an unknown amount of money, x, in
my envelope. It is just as likely that B’s envelope has 2x as it is that it has x/2.
Conditional on x, my expected gain from switching envelopes is .5(2x + .5x) −
x = .25x. Since this is positive for all x, I should offer to switch envelopes.”

Student B says that the expected gain from switching envelopes is zero.
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Explain the fallacy in A’s argument, and provide the details of B’s argument.
In each case use the laws of probability carefully.

1.4 SIMULATORS

Decisionmaking requires specific tasks involving posterior distributions. The finan-
cial manager in Section 1.1.2 is concerned about the distribution of values of an
asset 5 days from now ω = pT +5 = pT exp(

∑5
s=1 yT +s). She has at hand observa-

tions on returns through the present time period, T , of the form yo = (yo
1 , . . . , yo

T )′,
and is using a model with a parameter vector θA. The value at risk she seeks to
determine is the number c with the property

∫ pT −c

−∞
p(ω | yo, A) dω = 0.05.

The manager might recognize that she can decompose this problem into two
parts. First, if she knows the value of θA —or, more precisely, if the model A

specifies the value of θA with no uncertainty—then finding c amounts to deriving
the inverse cumulative distribution function (cdf) of ω from p(yT +1, . . . , yT +5 |
yo, θA, A). This task can be completed analytically for the model (1.3) with known
µ and σ 2, but for realistic models with uncertainty about parameters this is at best
tedious and in general impossible.

At this point the financial manager, or one of her staff, might point out that it is
relatively easy to simulate most models of financial time series. One such model is
the Markov mixture of normals model, discussed in more detail in Section 7.3, in
which each yt is drawn from one of L alternative normal distributions N(µj , σ 2

j ).
Each day t is characterized by an unobserved state variable st that assumes one of
the values 1, 2, . . . or L, and then

st = j ⇒ yt ∼ N(µj , σ 2
j ). (1.12)

The state variables themselves obey a first-order Markov process in which

P (st = j | st−1 = i) = pij . (1.13)

In applications to financial modeling it is reasonable that the values of σ 2
j vary

substantially depending on the state, for example, σ 2
1/σ

2
2 ≈ 3, and the state variable

is persistent as indicated by pii � ∑
j �=i pij . Such a structure gives rise to episodes

of high and low volatility, a feature seen in most financial returns data.
Widely available mathematical applications software makes it easy to simulate

this and many other models. Given the current state st = i, the next period’s state
is drawn from the distribution (1.13), and then yt+1 is drawn from the selected
normal distribution in (1.12). Our firm manager can exploit this fact if she knows
the parameters of the model and the current state sT = j . She repeatedly simulates
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the model forward from the current day T , obtaining in simulation m the returns
y

(m)
T +s (s = 1, . . . , 5) and the corresponding simulated asset price 5 days hence,

ω(m) = po
T exp(

∑5
s=1 y

(m)
T +s). At the end she can sort the M simulations of ω, and

find a number c(M) such that 5% of the draws are below and 95% are above
po

T − c(M). It turns out that c(M) a.s.→ c as M increases.
This solves only part of the manager’s problem. The model, in fact, has many

unobservables, not only the unknown parameters µj , σ 2
j and pij but also the

states st . Together they constitute the unobservables vector θA in this model. The
simulation just described requires all of the parameters and the current state sT .
Noting that

p(ω | yo, A) =
∫

�A

p(ω | yo, θA, A)p(θA | yo, A) dθA, (1.14)

the manager might well recognize that if she could simulate

θ
(m)
A � p(θA | yo, A) (1.15)

and next apply the algorithm just described to draw

ω(m) � p(ω | yo, θ
(m)
A , A), (1.16)

then the distribution of ω(m) would be that corresponding to the density (1.14).
This strategy is valid, but producing the draws in (1.15) is much more challeng-

ing than was developing the algorithm behind (1.16). The latter simulation was
relatively easy because it corresponds to the recursion in the natural expression of
the model; recall (1.4)–(1.6). Given θA, the model tells us how y1, then y2, and
so on, are produced, and as a consequence simulating into the future is typically
straightforward. The distribution (1.15), on the other hand, asks us to reverse this
process: given that a set of observables was produced by the model A, with prior
distribution p(θA | A) and observables distribution p(y | θA,A), make drawings
from the distribution with posterior density p(θA | yo, A). The formal definition
(1.8) is not much help in this task.

This impasse is typical if we attempt to use simulation to unravel the actual
distribution corresponding to p(ω | yo, A) in a useful way. Until the late 1980s
this problem had succumbed to solution in only a few simple cases, and these did
not go very far beyond the even smaller set of cases that could be solved analyt-
ically from start to finish. Geweke (1989a) pointed out that importance sampling
methods described in Hammersly and Handscomb (1964) could be used together
with standard optimization methods to simulate θ

(m)
A � p(θA | yo, A). The follow-

ing year Gelfand and Smith (1990) published their discovery that methods then
being used in image reconstruction could be adapted to construct a Markov chain
G such that if

θ
(m)
A � p(θA | θ

(m−1)
A , yo, G)
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then θ
(m)
A

d−→ p(θA | yo, A). This work in short order burgeoned into an even more
general set of procedures, known as Markov chain Monte Carlo (MCMC), which
achieves the same result for almost any complete model. Section 7.3 shows how to
apply these methods to the Markov mixture of normals model used in this example.

All of these methods, including importance sampling, produce what are known
as posterior simulators. These algorithms make it practical to address quantitative
decisionmaking problems, using a rich variety of models. Posterior simulators are
the focus of Chapter 4.

1.5 MODELING

To this point we have taken the complete model (1.4)–(1.6) as given. In fact, the
investigator begins with much less. Typically the vector of interest ω is specified (at
least implicitly) by the client making the decision. The composition of the observ-
ables vector is sometimes obvious, but in general the question of which observables
are best used to inform quantitative decisionmaking is itself an important, interest-
ing, and sometimes difficult question.

This leaves almost all of (1.4)–(1.6) to be specified by the investigator. There
is, of course, no algorithm mapping reality into models. The ability to isolate the
important features of an actual decision problem, and organize them into a model
that is workable and brings to bear all the important features of the decision is an
acquired and well-rewarded skill. However this process does involve some spe-
cific technical steps that themselves can be cast as intermediate decision problems
addressed by the investigator.

One such step is to incorporate competing models A1, A2, . . . , AJ in the process
of inference and decisionmaking. In Section 1.2 we constructed a joint probability
distribution for the unobservables θA, the observables y, and the vector of interest
ω, in the context of model A. Suppose that we have done that for each of models
A1, . . . , AJ and that the vector of observables is the same for each of these models.
Then we have

p(θAj
| Aj), p(y | θAj

, Aj ), p(ω | θAj
, y, Aj ) (j = 1, . . . , J ).

If we now provide a prior probability p(Aj ) for each model, with
∑J

j=1
p(Aj ) = 1, there is a complete probability distribution over models, unobserv-
ables, observables, and the vector of interest. Let A = ⋃J

j=1 Aj . In each model the
density (1.14), built up from (1.8) and (1.6), provides p(ω | yo, Aj ). Then

p(ω | y, A) =
J∑

j=1

p(ω | y, Aj )p(Aj | y, A). (1.17)

The posterior density of ω is given by (1.17) with the data yo replacing the observ-
able y. It is a weighted average of the posterior densities of ω in the various models;
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indeed, (1.17) is sometimes called model averaging. The weights are

p(Aj | yo, A) = p(Aj )p(yo | Aj)

p(yo | A)
= p(Aj )p(yo | Aj)∑J

j=1
p(Aj )p(yo | Aj)

. (1.18)

The data therefore affect the weights by means of

p(yo | Aj) =
∫

�Aj

p(θAj
, yo | Aj) dθAj

=
∫

�Aj

p(θAj
| Aj)p(yo | θAj

, Aj ) dθAj
. (1.19)

The number p(yo | Aj) is known as the marginal likelihood of model Aj . The
technical obstacles to the computation, or approximation, of p(yo | Aj) are at least
as severe as those for simulating θA, but rapid progress on this problem was made
during the 1990s, and this is becoming an increasingly routine procedure.

For any pair of models (Ai, Aj ), we obtain

p(Ai | yo)

p(Aj | yo)
= p(Ai)

p(Aj )
· p(yo | Ai)

p(yo | Aj)
. (1.20)

Note that the ratio is independent of the composition of the full complement of
models in A. It is therefore a useful summary of the evidence in the data yo about
the relative posterior probabilities of the two models. The left side of (1.20) is
known as the posterior odds ratio, and it is decomposed on the right side into the
product of the prior odds ratio and the Bayes factor. Expressions (1.17) and (1.18)
imply that providing the marginal likelihood of a model is quite useful for the
subsequent work, including decisionmaking, with several models.

Expression (1.19) for the marginal likelihood makes plain that the bearing of a
model on decisionmaking—its weight in the model averaging process (1.17)—
depends on the prior density p(θAi

| Ai) as well as the observables density
p(y | θAi

, Ai). In particular, a model Ai may be an excellent representation of
the data in the sense that for some value(s) of θAi

, p(yo | θAi
, Ai) is large rela-

tive to the best fit p(yo | θAj
, Aj ) in other models, but if p(θAi

| Ai) places low
(even zero) probability on those values, then the posterior odds ratio (1.20) may
run heavily against model Ai .

The investigator’s problem in specifying p(θAi
| Ai) is no more (or less) difficult

than that of designing the observables density p(y | θAi
, Ai). The two are inseparable:

p(θAi
| Ai) has no implications for observables without p(y | θAi

, Ai), and p(y |
θAi

, Ai) says little about p(y | Ai) until we have p(θAi
| Ai) in hand. The first two

components of any complete model, (1.4) and (1.5), combined with some relatively
simple simulation, can help in these steps of the investigator’s problem. Suppose that
one or more aspects of the observables y, which we can represent quite generally as
g(y), are thought to be important aspects of reality bearing on a decision, that therefore
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should be well represented by the model. In the case of our financial decisionmaker
from Section 1.1.2, one concern might focus on the model’s stance on “crashes” in
the value of financial assets like the one day return of worse than −20% experienced
during October 1987, for many assets; then g(y) = 1 if y exhibits such a day and
g(y) = 0 if not. For any specified prior and observables densities, it is generally
straightforward to simulate

θ
(m)
A � p(θA | A), y(m) � p(y | θ

(m)
A , A)

and then construct g(y(m)). The resulting g(y(m)) (m = 1, . . . , ) is an independent
identically distributed (i.i.d.) sample from p[g(y) | A].

This process enables the investigator to understand key properties of a model
A before undertaking the more demanding task of developing a posterior sim-
ulator θ

(m)
A � p(θA | yo, A). It provides guidance in choosing the prior density

p(θA | A) corresponding to p(y | θA, A), and can reveal that an observables density
p(y | θA, A) fails to capture important aspects of reality no matter what the value of
θA. These tasks are all part of what is generally referred to as “model specification”
in econometrics. We shall return to them in detail in Chapter 8.

1.6 DECISIONMAKING

The key property of the vector of interest ω is that it mediates aspects of real-
ity that are relevant for the decision that motivates the econometric or statistical
modeling in the first place. To illustrate this point, return again to the decision
of school administrators about the class sizes described in Section 1.1.1. School
administrators prefer certain outcomes to others; for example, it is quite likely that
they prefer high test scores and small teaching budgets to low test scores and large
expenditures for teachers’ salaries. Suppose, for sake of simplicity, that the teach-
ing budget can be controlled with certainty by hiring more or fewer teachers. In
Bayesian decision theory such a decision is known as an action, and represented
generically by a vector a. The vector of interest ω includes all the uncertain fac-
tors that matter to administrators in evaluating the outcome; it could be a single
summary of test scores, or it might disaggregate to measure test outcomes for
different groups of students. The expected utility paradigm, associated with von
Neumann and Morgenstern (1944), states that decisions are made so as to max-
imize the expected value of a utility function U(a, ω) defined over all possible
outcomes and decisions. The term “utility” is universal in economics, whereas in
Bayesian decision theory the concept of “loss” prevails; the loss function L(a, ω)

is used in place of the utility function U(a, ω). The only distinction is that the
decisionmaker seeks to minimize, not maximize, E[L(a, ω)]. We can always take
L(a, ω) = −U(a, ω).

This paradigm fits naturally into the relationship between the model A with
parameter vector θA, the observable vector y, and the vector of interest ω. Expres-
sion (1.11) provides the distribution relevant to the decision in the use of a single
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model A—that is, the distribution relevant for the expectation E[L(a, ω)], which
therefore may be written

E[L(a, ω) | yo, A] =
∫

�A

L(a, ω)p(ω | yo, A) dω

=
∫

�

∫
�A

L(a, ω)p(θA | yo, A)p(ω | θA, yo, A) dθA dω.

Section 1.4 outlines how, in principle, we might obtain drawings ω(m) from
(1.11). Typically those drawings can be used to solve the formal decision problem.
In the simplest case, there are only two possible actions (a = 0, a = 1), and the
drawings ω(m) are i.i.d. Then, so long as E[L(0, ω)] and E[L(1, ω)] both exist—a
requirement for the expected utility paradigm to be applicable—the strong law of
large numbers implies

M−1
M∑

m=1

L(a, ω(m))
a.s.→ E[L(a, ω) | yo, A]

for a = 0 and a = 1. More generally, if a is continuous and E[L(a, ω)] is twice
differentiable, then typically

M−1
M∑

m=1

∂L(a, ω(m))/∂a
a.s.→ ∂E[L(a, ω) | yo, A]/∂a

and this feature may be exploited to solve for the value a = â that minimizes
expected loss, using a steepest-descent algorithm. More often, the draws ω(m) from
(1.11) are serially dependent, but this complication turns out not to be essential.
We revisit these issues at the level of technical detail required for their application
subsequently in Chapter 4. This formalization of the decisionmaking process can
be extended to the case of several competing models, using the setup developed in
Sections 2.6 and 8.2.

Decisionmaking plays, or should play, an important role in modeling and infer-
ence. It focuses attention, first, on the vector of interest ω that is relevant to the
decision problem—namely, the unobservables that will ultimately drive the sub-
jective evaluation of the decision ex post. Given ω, we may then consider the
observables y that are most likely to be useful in providing information about
ω before the decision is made. The observables then govern consideration of the
relevant models A, their vectors of unobservables θA, and the associated prior
densities p(θA | A). Note that this amounts to stepping backward through the
marginal–conditional decomposition (1.7), a process that is often informal.

In practice, formal decisionmaking is most useful for the structure that it places
on the research endeavor from start to finish. Rarely, if ever, do decisionmakers
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think and talk about decisions entirely and explicitly within the formal frame-
work we have laid out here. However, the discipline of formal decision theory
combined with Bayesian inference can, when well executed, earn the respect of
real decisionmakers, and therefore a “seat at the table.” In many ways, this is the
ultimate goal of Bayesian inference, and achieving it is a high reward to applied
econometrics and statistics.




