
&CHAPTER 1

Trusting Logic

Boolean logic is a mathematical symbol system. There is a population of symbols

organized into a state space, a set of primitive function mappings, a logic expression

specifying a progression of primitive function mappings, and a set of rules of beha-

vior to coordinate the flow of symbols from the state space through the progression

of function mappings to resolve the logic expression. This passive symbol system is

enlivened by an active agent that can manipulate the symbols in accordance with the

rules, traditionally a mathematician with a pencil.

When a logic expression such as Figure 1.1 is enlivened by a mathematician, the

logic expression and the mathematician form a complete expression that properly

resolves. The mathematician, understanding the rules of behavior, coordinates the

behavior of the symbolic expression with her pencil. She animates the symbols

moving them from function to function, instantiating functions in the proper order

when their input symbols are available. This coordination behavior is embodied

in the mathematician’s understanding of the rules of interpretation and is not explicit

in the logic expression itself.

A function mapping simply specifies a mapping from input symbols to output

symbols. Nothing is expressed about the presentation of symbols or about instantia-

tion of the function. A logical expression specifies the dependency relationships

among the input and output symbols of functions but expresses nothing about

coordination behavior among the functions. On its own expressional merits, without

the mathematician, a Boolean logic expression is an incomplete expression that

cannot be trusted.

1.1 MATHEMATICIANLESS ENLIVENMENT OF LOGIC
EXPRESSION

How the missing expressivity of the absent mathematician is restored to form a suf-

ficiently complete expression is the crux of the matter. One can create a machine to

emulate the mathematician. One can supplement the Boolean logic expression with

1

Logically Determined Design: Clockless SystemDesign with NULL Convention LogicTM, by Karl M. Fant
ISBN 0-471-68478-3 Copyright # 2005 John Wiley & Sons, Inc.



some other form of expression. Or one can define a logic that is sufficiently expres-

sive in its own terms to fully characterize reliable behavior.

1.2 EMULATING THE MATHEMATICIAN

One might suggest that the mathematician can be replaced by building the rules of

coordination into an interpreting machine to properly resolve the logic expression.

The logic expression remains a passive symbolic expression that is enlivened by the

activity of the interpreter. This is a viable approach for all levels of abstraction

except the most primitive. There must be an expression of a most primitive interpreter

that cannot itself be interpreted. The logical expression of this last interpreter must

behave spontaneously and autonomously on its own merits. The missing expressivity

of the absentmathematician cannot ultimately be restoredwith an interpretingmachine.

1.3 SUPPLEMENTING THE EXPRESSIVITY OF BOOLEAN LOGIC

Since the expression of the symbols, the function mappings, and the dependency

relationships among functions express no boundaries of instantiation, mapping the

logic expression to continuously acting spontaneous behaviors is a valid enliven-

ment of the symbolic expression. The functions can be represented such that

they spontaneously and continuously transform symbols that spontaneously and

continuously flow along the dependency relationships among functions. While

these continuous behaviors faithfully enliven the logic expression itself, they do

not encompass the coordinating expressivity of the missing mathematician.

1.3.1 The Expressional Insufficiency of Boolean Logic

When a new input is presented to a continuously behaving Boolean combinational

expression, a stable wavefront of correct result transitions flows from the input through

the network of logic functions to the output. Since Boolean functions are continuously

responsive to freely flowing symbols and since some functions and signal paths are

Figure 1.1 A Boolean logic expression.

2 TRUSTING LOGIC



faster than others, a chaos of invalid and indeterminate result transitions may rush

ahead of the stable wavefront of valid transitions. Such chaotic behavior causes the

output of the expression to assert a large number of invalid results before the stable

wavefront of correct results reaches the output and the expression as a whole stabilizes

to the correct resolution of the presented input. A Boolean logic combinational

expression cannot, on its own terms, avoid this indeterminate behavior.

But even if indeterminate transitions could be avoided, there is still no means to

determine from the behavior of the expression itself when the output of the

expression has stabilized to the correct result. If the current input state happens to

be identical to the previous input state, the expression exhibits no transition behavior

at all, correct or incorrect. Being unable to express its own boundaries of behavior a

Boolean combinational expression cannot coordinate its own successive instantia-

tions nor can it coordinate instantiations with other combinational expressions.

These coordination behaviors must be expressed in some other way.

1.3.2 Supplementing the Logical Expression

A continuously behaving Boolean combinational expression can be relied on to

eventually settle to a stable correct result of a stably presented input. After presen-

tation of a new instance of input to a Boolean expression, it is necessary and suffi-

cient to wait an appropriate time interval, characterized by the slowest propagation

path in the expression, to ensure that the wavefront of stable results has propagated

through the expression and the output of the expression has stabilized to the correct

resolution of the presented input data. During the time interval all the erroneous tran-

sitions due to the racing wavefronts can be ignored, and at the end of the interval the

correct result can be sampled. Thus the boundaries of instantiation and resolution

can be expressed by supplementing the logic expression with an expression of a

time interval. This time interval, however, is a nonlogical expression that must be

associated with and coordinated with every Boolean combinational logic expression

and that is specific to each implementation of a logic expression.

1.3.3 Coordinating Combinational Expressions

A combination logic expression will receive a succession of inputs to resolve and

combinational logic expressions will pass results among themselves to resolve.

For a given logic expression, each instance of resolution must be completed and

stable before it can be passed on, and the result must be passed on before the

given logic expression can accept a new input to resolve. These boundaries of

behavior are expressed by the time interval associated with each combinational

expression, so the coordination of behavior among combinational expressions

must be expressed in terms of these associated time intervals. This coordination is

accomplished with a state-holding element between each combinational logic

expression that ignores transition behavior during an interval, samples the output

of each logic expression at the end of each interval, and stably presents the sampled

output as input to a successor combinational expression.

1.3 SUPPLEMENTING THE EXPRESSIVITY OF BOOLEAN LOGIC 3



A system consists of multiple combinational expressions, each with an associated

time interval and coordinated among themselves in terms of these time intervals.

This coordination is most conveniently expressed when all the time intervals are

the same duration and are in phase. All logic expressions present valid output and

become ready for new input simultaneously, in phase with a common interval

expression beating the cadence of successive instantiations.

While the coordinating expressivity of the mathematician has not been restored at

the function level, it is sufficiently restored at the level of the time interval to enable

practical application.

1.3.4 The Complexity Burden of the Time Interval

Supplementing Boolean logic with an expression of time compounds the complexity

of the expression. The structure of the logical expression must be specified. The

structure of the time expression must be specified. The delay behavior of the

logic in a particular implementation must be determined. The behavior of the

time expression in the particular implementation must be determined. The logic

expression and the time expression must be integrated. The behavior of the com-

bined expressions must be verified.

There can be no first-order confidence in the behavior of the combined

expression. Confidence can only be gained in terms of exhaustive observation of

its behavior. At the granularity of the time interval the combined expression gener-

ates a sequence of stable states that can be sampled and compared to a theoretically

derived enumeration of states to verify correct behavior.

1.3.5 Forms of Supplementation Other Than the Time Interval

There have been ongoing attempts to provide supplemental forms of expression for

continuously acting Boolean logic expressions other than the time interval called

‘asynchronous design research.’ The expressional insufficiency of Boolean logic

was recognized by Muller in 1962 [35] who introduced two supplementary forms

of expression.

The first supplement, called a C-element, could enhance Boolean expressions to

avoid indeterminate output. A C-element is a state-holding operator that transitions

its output to 1 only when both inputs are 1 and transitions its output to 0 only when

both inputs are 0, and for 01 and 10 inputs does not transition its output but holds its

current state. The C-element has to be an indivisible primitive operator in its own

right. It cannot be implemented in terms of Boolean logic functions. But the

C-element, added to Boolean logic, creates a heterogeneous logic that is difficult

to formalize, analyze, and synthesize and that still has subtle timing issues [31,1,8].

The second supplement was dual-rail encoding of binary data, in which binary

symbols are represented with two wires: 01 represents FALSE and 10 represents

TRUE; 00 represents the absence of data and 11 is illegal. Dual-rail encoding can

express the absence of data and the presence of data, providing a logical expression

of the boundaries of successive data presentations.

4 TRUSTING LOGIC



The C-element and dual-rail encoding remain standard elements of asynchronous

design. The general approach has been to compose Boolean logic expressions

enhanced with C-elements, timing assumptions (e.g., wires with zero delay or

detailed timing coordination of specific signals within a logic expression) and

dual-rail encoding. While this can be achieved to a certain degree, the heterogeneous

nature of the expression results in arcane logic structures with subtle modes of beha-

vior including critical timing relationships [4,33,58,59].

Some asynchronous design methodologies pursue the minimal expression of timing

relationships. Muller’s modules [35], Delay-Insensitive Minterm Synthesis [53], and

Martin’s methodology [29,30] have approached logically determined design but have

not presented a coherent, easily understandable, and adoptable conceptual foundation.

Other methodologies pursue maximum speed and minimum size by minimizing

the expression of logical relationships and simply embracing the increased critical

timing relationships as an integral part of the design methodology [55,56,54].

The bundled data/micropipeline approach splits the difference. It uses a standard

timed Boolean data path and an asynchronous control substrate that expresses the

intervals as local clocks to the data path registers using a matched delay element

associated with each combinational expression [57,15].

1.3.6 The Complexity Burden of Asynchronous Design

While the C-element and dual-rail encoding were steps in the right direction, they did

not step far enough. Boolean logic was retained as a primary form of expression. The

result was a heterogeneous expression methodology with subtle logic structures and

complex behavior modes that neither enlightened understanding nor enabled practice.

The primary question of asynchronous design—How can Boolean logic be made

to work without a clock?—is the wrong question. Boolean logic does not provide an

adequate conceptual foundation and simply confuses the issues. The reliance on

Boolean logic as a fundamental form of expression is a primary reason that asyn-

chronous design is difficult, is distrusted, and has not been adopted.

1.3.7 The Cost of Supplementation

As logic expression becomes more complex, supplementary expression simply com-

pounds the complexity of expression. Clearly, one should strive to avoid the neces-

sity of supplementary expression.

1.4 DEFINING A SUFFICIENTLY EXPRESSIVE LOGIC

What if a sufficiently expressive logic were available, a logic that could completely

express the behavior of a system solely in terms of logical relationships? There

would be no need for any supplementary expression with its compounding complex-

ity. Such a logic must symbolically express the boundaries of data presentation, and

its operators must appreciate the expressed boundaries.

1.4 DEFINING A SUFFICIENTLY EXPRESSIVE LOGIC 5



1.4.1 Logically Expressing Data Presentation Boundaries

First, the representation of the data must include an explicit symbolic expression of ‘not

data’. A symbol that explicitly means ‘not data’ is added to the ‘data’ symbols, and the

input presented to the logic operators transition monotonically between ‘completely

not data’ and ‘completely data’, as shown in Figure 1.2. The transition of the input

from ‘completely not data’ to ‘completely data’, called a ‘data’ wavefront, expresses

a new data presentation and the beginning of an instance of resolution. The transition

of the input from ‘completely data’ to ‘completely not data’, called a ‘not data’ wave-

front, expresses the end of an instance of resolution and the boundary between instan-

tiations. Dual-rail encoding is a specific instance of such a representation.

1.4.2 Logically Recognizing Data Presentation Boundaries

To logically appreciate the presentation boundaries the logic operators must respond

only to completeness relationships at their inputs in contrast to continuously

responding to all possible inputs.

If input is:

. ‘completely data’, then transition output to the correct ‘data’ resolution of

input,

. ‘completely not data’, then transition output to ‘not data’,

. neither ‘completely data’ nor ‘completely not data’ do not transition output.

Example operators are shown in Figure 1.3. T and F are the ‘data’ symbols and N

is the ‘not data’ symbol. The dash means that the output of the operator does not

transition.

data

data
wavefront

data
wavefront

data
wavefront

not data
wavefront

not data
wavefront

not data
wavefront

completely
not data

completely
not data

data data

completely
not data

completely
not data

completelycompletelycompletely

Figure 1.2 Monotonically alternating wavefronts of completely data and completely not data.

T

N

F

NFT

-FT

-FF

N--

T

N

F

NFT

-T

-T

N--

T

N

F

F

T

N

T

N

F

NFT

-TF

-FT

N--

Figure 1.3 Logic operators that recognize ‘data’ from ‘not data’.

6 TRUSTING LOGIC



Each logic operator, responding only to completeness of input relationships,

coordinates its own behavior with the completeness behavior of the presented

input. When the output of a logic operator monotonically transitions to ‘completely

data’, it means that the input is ‘completely data’ and the data output is the correct

result of the presented input. When the output of a logic operator monotonically

transitions to ‘completely not data’, it means that the input is ‘completely not

data’ and the ‘not data’ output is the correct result of the presented input. The

C-element is a specific instance of such a logic operator.

This completeness behavior of the logic operator scales up for any acyclic

combination of logic operators. Consider the combinational expression shown in

Figure 1.4. Circles are logic operators and they are acyclically connected from

input to output. Divide the network arbitrarily into N ranks of operators ordered pro-

gressively from input to output, with all inputs before the first rank and all outputs

after the last rank. The rank boundaries are shown in Figure 1.4 with vertical lines

labeled alphabetically in rank order from input to output. Consider that the

expression is in a completely ‘not data’ state and a ‘data’ wavefront is presented.

The ‘data’ wavefront will transition the inputs to ‘data’ as the input monotonically

transitions to ‘all data’.

. For the symbols crossing E to be all data all of the symbols crossing D must be

data.

. For the symbols crossing D to be all data all of the symbols crossing C must be

data.

. For the symbols crossing C to be all data all of the symbols crossing B must be

data.

. For the symbols crossing B to be all data all of the symbols crossing A must be

data.

. Therefore, for all the symbols after E to be data, all the symbols before A must

be data.

output
state

A B C D E

1

5

4

3

2

6

8
11

7

10

9

input
state

B

input
state

A

Figure 1.4 The completeness criterion for a combinational expression as a whole.

1.4 DEFINING A SUFFICIENTLY EXPRESSIVE LOGIC 7



These considerations are also true for the ‘not data’ wavefront presented when the

expression is in a ‘completely data’ state. Simply substitute ‘not data’ for ‘data’ in

the text above.

The output of the combinational expression as a whole maintains the monotonic

behavior of the input. When the output transitions to ‘completely data’, it means the

input has transitioned to ‘completely data’ and the output is the correct resolution of

the input. When the output transitions to ‘completely not data’, it means the input

has transitioned to ‘completely not data’ and the output is the correct resolution

of the input.

Given the monotonic behavior of the input, it does not matter when or in what

order transitions occur at the input of the expression. Nor does it matter what the

delays might be internal to the expression. Consider operator 7 in Figure 1.4. It

does not matter how long the ‘data’ symbols (‘not data’ symbols) take to propagate

through other operators and over signal paths to the input of operator 7, its output

will not transition until all symbols are ‘data’ (‘not data’) at the input of the operator.

For each wavefront, each logic operator synchronizes its input and switches its

output exactly once coordinating the orderly propagations of monotonic transitions

to correct result symbols through the combinational expression until the output of

the expression as a whole is complete. There are no races, no hazards, and no spur-

ious result symbols during the propagation of the monotonic wavefront of correct

results through the combinational expression.

The behavior of the combinational expression is expressed entirely in terms of

logical relationships. No expression of any time relationship or any other nonlogical

relationship is necessary to fully characterize the behavior of the expression. The

behavior of the combinational expression is completely logically determined.

1.4.3 Logically Coordinating the Flow of Data

Now that the boundaries of presentation and resolution can be expressed logically in

terms of completeness relationships, the flow of presentation wavefronts among

expressions can be coordinated in terms of these same completeness relationships.

When a combinational expression detects completeness on its output it generates

an acknowledge signal in the inverse domain from the detected completion. For

‘completely data’ output the acknowledge signal transitions to ‘not data’. For ‘com-

pletely not data’ output the acknowledge signal transitions to a ‘data’ symbol.

Each combinational expression includes an acknowledge signal as an integral

part of its input completeness relation. When the acknowledge signal presented to

a combinational expression transitions from ‘not data’ to ‘data’, the input of the

combinational expression will become completely data and a data wavefront will

be enabled to propagate to the output of the combinational expression. As long as

the input acknowledge signal remains ‘data’ the combinational expression will

stably maintain its ‘data’ output symbols even if a ‘not data’ wavefront is presented

on the data path. When the acknowledge signal transitions from ‘data’ to ‘not data’,

a ‘not data’ wavefront will be enabled to flow through the combinational expression.

As long as the input acknowledge signal remains ‘not data’, a combinational

8 TRUSTING LOGIC



expression will stably maintain its ‘not data’ output symbols even if a ‘data’ wave-

front is presented on the data path.

When a combinational expression detects completeness on its output, it means

that a wavefront has been enabled through it by the acknowledge signal and that

it is stably maintaining the output wavefront. Upon output completeness it can

inform, via the acknowledge signal, each combinational expression whose output

provided input to it that they need no longer maintain their output and that they

can allow a new input wavefront to propagate. This relationship is illustrated in

Figure 1.5. Stably maintained wavefronts flow through the system passed from com-

binational expression to combinational expression fully coordinated in terms of

completeness relationships.

1.4.4 Mathematicianless Completeness of Expression

Symbols move from function to function, instantiating in the proper order as their

input symbols are available. Wavefronts flow from expression to expression and

instantiate in the proper order when their inputs are complete. This coordination

behavior is explicit in the logic itself. The expressivity of the absent mathematician

has been fully restored in the expressivity of the logic.

A logic expression can be complete and sufficient in itself. No supplementary

expression is required.

1.5 THE LOGICALLY DETERMINED SYSTEM

A logically determined system is a structure of logical relationships whose behavior

is completely and unambiguously determined by those logical relationships. Wave-

fronts spontaneously flow through combinational expressions fully coordinated by

logical relationships. One might try to imagine the flowing wavefronts in terms of

a single collective state, but this imagined collective state is subject to concurrent

transitions coordinated solely by logical relationships with no consideration for

any time relationships. The behavior of the collective state in relation to time is

Domain Inversion

combinational
expression

detect
completeness

Domain Inversion

combinational
expression

detect
completeness

Figure 1.5 Coordination among combinational expression in terms of completeness

relationships.

1.5 THE LOGICALLY DETERMINED SYSTEM 9



simply indeterminate. There is no way of sampling a stable configuration of the col-

lective state that at any chosen instant might be in transition. The familiar method-

ology of understanding, and acquiring confidence by enumerating and comparing

sequences of a collective state, is not applicable to a logically determined system.

1.6 TRUSTING THE LOGIC: A METHODOLOGY OF
LOGICAL CONFIDENCE

Behavior that appears chaotic, undetermined, unknowable, and untrustable in the

context of a collective state appears orderly, completely determined, directly know-

able, and trustable in the context of logic relationships. The only path to understand-

ing and trusting the behavior of a logically determined system is in terms of the logic

relationships.

The behavior of a first logical expression can be understood locally in terms of its

direct neighbor expressions. As the neighbor expressions are understood, their beha-

vior neighborhood includes the first logical expression. As understanding progresses

logical expression by logical expression, a tapestry of logically determined behavior

is woven of overlapping behavior neighborhoods, Confidence in system behavior is

progressively approached in humanly graspable steps.

1.7 SUMMARY

Boolean logic is insufficiently expressive on its own terms and must be sup-

plemented with an expression of a mathematician or an expression of time or an

expression of non-Boolean operators. The supplemental expression compounds

the inherent complexity of the logical expression. The behavior of a supplemented

expression cannot be directly trusted, so confidence in system behavior is found in

exhaustive correspondence with enumerated states.

While the C-element and dual-rail encoding were steps toward sufficient expres-

sivity, they did not step far enough. The C-element prefigures the importance of

completeness behavior and dual-rail encoding prefigures the more general concept

of monotonic transitioning between ‘data’ and ‘not data’. The halter limiting the

steps was the continuing reliance on Boolean logic as a primary form of expression.

Stepping far enough leads to a coherent logic that is sufficiently expressive to

completely and unambiguously express the behavior of a system solely in terms

of logical relationships. There is no need for any supplemental form of expression.

A system operating solely in terms of logical relationships behaves generally

concurrently. There is no temporal synchronization of state transitions and, hence,

no collective state that is reliably and meaningfully samplable. What appears to

be chaotic and disorderly from the point of view of the state behavior is fully deter-

mined and orderly from the point of view of the logic. Confidence in system

behavior requires a new rationale grounded in trusting the logic. A quite different

regime of design, behavior, and rationale of confidence emerges. Since the behavior

10 TRUSTING LOGIC



of a design is completely determined by the logical relationships, the logic can and

must be trusted.

1.8 EXERCISES

1.1. Discuss the philosophical implications of a concept which is considered a

primitive characterization but which must be supplemented to fulfill its

mission of primitivity.

1.8 EXERCISES 11




