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FLUID PROPERTIES

1.1 INTRODUCTION

This text addresses the science and technology of controllably transmitting
power using a pressurized fluid. As such, it is entirely appropriate to begin
by considering the fundamental properties that characterize fluids that are
typically used within hydraulic control systems. In this chapter the fluid prop-
erties that describe the condition of a liquid will be presented. Since imparting
velocity to a pressurized fluid is the means for transmitting power hydrau-
lically, it is important to consider the physical mechanisms that describe the
pressurization of the fluid and the fluid’s resistance to flow. In the presentation
that follows, the mass density of a liquid will be discussed with the bulk
coefficients that characterize the equation of state. These coefficients are ex-
panded on in subsequent sections dealing with the fluid bulk modulus of
elasticity and the coefficient of thermal expansion. Another important fluid
property of consideration is viscosity. This parameter is discussed because it
provides insight into the impedance of fluid flow and the ultimate generation
of heat associated with shearing hydraulic fluid. Other fluid property topics
of chemical composition, thermal conductivity, and fluid vapor pressure are
discussed. This chapter concludes with a summary of fluid types and offers
practical suggestions for the selection of various hydraulic fluids.

1.2 FLUID MASS DENSITY

1.2.1 Equation of State

The equation of state for any substance is used to describe the mass density
of that substance as it varies with exposed conditions such as pressure and
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temperature. For many substances, the equation of state is extremely complex
and difficult to describe exactly. An example of a relatively simple equation
of state is that of an ideal gas. In this case, the ideal gas law is used to relate
the pressure and temperature of the gas to the mass density using a determined
gas constant. This result is given by

P = o (1.1)

where p is the mass density of the gas, T is the absolute temperature of the
gas (expressed in Kelvin or Rankine), P is the absolute gas pressure, and R
is the universal gas constant that has been determined for the specific gas in
question. Unfortunately, for the case of liquids, the equation of state is not
so simple. However, since liquids are fairly incompressible, it may be as-
sumed that the mass density of a liquid will not change significantly with the
exposed conditions of temperature and pressure. In this case, a first-order
Taylor series approximation may be written to describe the small variations
in density that occur due to changes in pressure and temperature.* This result
is given by

ap ap
=p, +—| (P-P)+—| (T-T, 1.2
P=Pth ( ») oT ,,( ) (1.2)

o

where p,, P,, and T, represent a reference density, pressure, and temperature,
respectively. The equation of state may be more meaningfully expressed by
making the following definitions:

d 1 ap

= ——— 1.
and «a o oT" (1.3)

[eX)
SIS
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B p
where B is the isothermal fluid bulk modulus and « is the isobar fluid coef-
ficient of thermal expansion. Using Equation (1.3) with Equation (1.2) yields
the following equation of state for a liquid:

p= po[l " Bi (PP~ aT - TO)]. (1.4)

o

If the nearly incompressible assumption of this equation is correct, one may
infer that the fluid bulk modulus B is large and that the thermal coefficient
of expansion « is small. Indeed, this is the case for hydraulic fluids, as will
be shown in subsequent sections of this chapter.

*The Taylor series is discussed in Section 3.3.2 of Chapter 3.
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1.2.2 Density-Volume Relationship

To evaluate the relationship between fluid mass density and fluid volume,
consider a fluid element of mass M. This mass may be described as

M = pV, (1.5)

where p is the fluid mass density, and V is the volume of the fluid element.
An infinitesimal change in this mass would be described by

dM = p dV + V dp. (1.6)

Since the mass itself cannot be diminished or increased, the left-hand-side of
Equation (1.6) must be zero. Therefore, the following differential relationship
between the fluid density and the fluid volume may be expressed:

1 1
——dp = = dV. 1.
p dp VdV (1.7)

Integrating both sides of this equation between, say, condition 1 and condition
2, yields the following relationship between the fluid mass density and the
fluid volume:

p_ Vs (1.8)

P2 Vi

With Equation (1.5) it can be seen that this result simply states that the mass
at condition 1 must equal the mass at condition 2. These density and volume
relationships will be useful when considering the following discussion of the
fluid bulk modulus.

1.3 FLUID BULK MODULUS

1.3.1 Definitions

The isothermal fluid bulk modulus describes the elasticity, or “‘stretchiness,”
of the fluid at a constant temperature. This property is determined experi-
mentally using a stress-strain test in which the volume of fluid is decreased
while keeping the mass constant. During this process, the stress of the fluid
is measured by measuring the fluid pressure. A plot of the fluid pressure
versus the fluid strain is then generated, and the slope of this plot is used to
describe the elasticity of the fluid. This slope generally is referred to as the
Sfluid bulk modulus. Figure 1-1 shows a plot of the stress-strain curve for a
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Figure 1-1. The stress-strain curve for a liquid showing the secant bulk modulus K and the
tangent bulk modulus B.

liquid. As shown in this figure, the stress-strain curve is not linear because
its slope is shown to vary in magnitude with pressure. In Figure 1-1, both the
secant bulk modulus K and the tangent bulk modulus B are shown.

Using Figure 1-1, it can be seen that the secant bulk modulus is defined
as

AP

K =22
Ag’

1.9)

where P is the fluid pressure, and ¢ is the fluid strain. For the secant bulk
modulus, the fluid strain is defined by

AV Vv
\% v,

o o

e =

(1.10)

where V, is the fluid volume at atmospheric pressure, and V is the fluid

volume at another point of interest. From Figure 1-1 and Equation (1.10) it
may be shown that
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AP =P - P, and Ae = . (1.11)

Substituting Equation (1.11) into Equation (1.9) yields the following result
for the secant bulk modulus:

_V(p-P)

K
vV, -V

(1.12)

By convention, the reference pressure and volume for the calculation of the
secant bulk modulus is given by P, = 0 and V, = V,. Notice that with this
convention, gauge pressures are assumed. Substituting these reference values
into Equation (1.12) yields the following conventional expression for the se-
cant fluid bulk modulus:

K = VP _ pP.
Vo=V p—0p,

(1.13)

In this result, we have used the relationship between the fluid volume V and
the fluid density p, as shown in Equation (1.8).

The tangent fluid bulk modulus is defined by the slope of a line that is
anywhere tangent to the stress-strain curve shown in Figure 1-1. This quantity
is expressed mathematically by the following limit:

. AP dP
B =lim —=

Aemo Ag de’

(1.14)

The fluid strain for the calculation of the tangent bulk modulus is defined by

e = —1n<7>. (1.15)

At this point the reader may note that the fluid strain for the tangent bulk
modulus has been defined differently than it was for the secant bulk modulus.
See Equation (1.10). In fact, one might argue that the strain definition for the
secant bulk modulus is more typical and expected than the strain definition
presented in Equation (1.15). This, of course, would be true especially from
a perspective of solid mechanics, where the definition of material strain is
very similar in form to that of the secant bulk modulus. The use of Equation
(1.15) for describing the strain of the tangent bulk modulus is more an issue
of convention rather than principle; however, it may give the reader comfort
to recognize that for values of V/V, = 1, Equation (1.15) may be linearly
approximated as the secant bulk modulus just as it has been presented in
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Equation (1.10). Since liquid is fairly incompressible, this approximation is
easily justified, and the two strain definitions can be viewed as essentially the
same. Using Equation (1.15), it may be shown that

1
de = —— dV. 1.16
s v V. ( )

Therefore, the tangent fluid bulk modulus may be expressed more explicitly
as

dP dP

B=- ﬁzpd—p- (1.17)

Note: In this result we have used the relationship between the fluid volume
V and the fluid density p, as shown in Equation (1.7).

1.3.2 Effective Bulk Modulus

General Equations. The fluid bulk modulus has been used to describe the
elasticity of a fluid as it undergoes a volumetric deformation. This elasticity
describes a spring effect that is often attributed to high-frequency resonance
within hydraulic control systems. High-frequency resonance can create irri-
tating noise problems and premature failures of vibrating parts; however, it
usually does not present a control problem because the resonance occurs at
a much higher frequency than the dominant natural frequency of the typical
device being controlled. If, on the other hand, the effective spring rate of the
hydraulic system becomes soft due to entrained air within the system or a
large volume of compressed fluid or an overly compliant fluid container, the
resonating frequency of the hydraulic system will become much lower, and
a potential for control difficulties will exist.

Figure 1-2 shows a schematic of a flexible container filled with a fluid
mixture of liquid and air. A piston is moved to the left to compress the fluid
while the structural volume of the container also is expanded in a radial
direction. For the analysis that follows, container deflection in the axial di-
rection is neglected. The total volume of the chamber is given by

V=V, +V,—Ax=V,+ V, (1.18)

where V, is the initial volume of the container, V; is an additional volume
that results from expanding the chamber, A is the cross-sectional area of the
piston, x is the piston displacement, V, is the volume of liquid within the
chamber, and V, is the volume of air within the chamber. By subtracting the
deflection volume V; from each side of Equation (1.18), an effective volume
may be calculated as
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Figure 1-2. A pressurized flexible container filled with a fluid mixture of liquid and air.

V.=V, —Ax=V,+V, -V, (1.19)

This definition for the effective volume is useful because it represents a
quantity that may be calculated easily without knowing the deformation char-
acteristics of the chamber. The change in the effective volume is expressed
differentially as

dV, = av, + dv, — dV, (1.20)

Using the general form of Equation (1.17), the effective fluid bulk modulus
for the device shown in Figure 1-2 may be expressed as

1 14V,
5=V ap (1.21)

where B, is the effective fluid bulk modulus, V, is the effective volume that
undergoes deformation, and P is the fluid pressure within the hydraulic sys-
tem. Substituting Equation (1.20) into Equation (1.21) produces the following
result for the effective fluid bulk modulus:

1 v,( 1av\ Vv,( 14av)\ 1 av,
L_V(_ 1dvy_ V,( 14V, 14dV, 1.22
. ve< v,dP> Ve< v, dP> v, dp (122

By definition, the bulk moduli for liquid and air, respectively, are given as
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L_ 14y, 1__lay,
Bz_ V. dp and Ba_ V. P (1.23)

It is also useful to define the bulk modulus of the container with respect to
the effective fluid volume as

—=——"\ (1.24)

Notice that this definition is a different form from that of Equation (1.23)
because the volume and differential volume terms are based on different vol-
ume quantities; however, the details of these differences will be addressed
later. Substituting Equations (1.23) and (1.24) into Equation (1.22) yields the
following result for the effective fluid bulk modulus of the system shown in
Figure 1-2:

1 Vv, 1 v,
_ = —k + 1
V.

Be - Ve Bl

1 1
— 4+ —. (1.25)
B. B.

The volumetric ratios within this expression describe the fractional volume
content of liquid and air. Equation (1.19) may be used with Equation (1.25)
to show that

1 _ Vs 1 _B)\V.1 1
Be_(1+V> +< &)Veﬁﬁﬁg (1:26)

e

Recognizing that V, >> V; and B, >> B, Equation (1.26) may be closely
approximated as

1 1

v, 1
R J— + P——
V.

1
— 4+ —. 1.27
B. B. (127

Be Bl

Equation (1.27) is a useful expression for describing the effective fluid
bulk modulus within the flexible container shown in Figure 1-2; however,
there are several unknowns in this equation that must be discussed further. In
particular, useful expressions for the bulk moduli must be developed, and the
fractional content of air must be discussed.

An Equivalent Spring System. Figure 1-3 shows a spring system that is
equivalent to the pressurized chamber shown in Figure 1-2. The equivalent
spring system is useful for showing the effective spring rate of the hydraulic
system and for lending insight into the reduction of natural frequencies of
oscillation. In the top portion of Figure 1-3, a cylinder is shown with internal
pistons that are separated by springs. The right-hand spring is intended to
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Figure 1-3. An equivalent spring system illustrating the compressibility effects of the liquid,
the air, and the container.

model the spring rate of the air within the system, the middle spring is used

to model the spring rate of the liquid, and the left-hand spring is used to

simulate the spring rate of the container. The pistons are free to slide within

the cylinder and may change their location depending on the input force F.
From an overall system view, the input force may be described as

F = xk,, (1.28)

e

where x is the displacement of the first piston, and k, is the effective spring
rate of the overall system. From a static analysis of the spring system it may
be shown that the input force is also described by
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F=x—x)k, = (x; — 0k, = xk, (1.29)

where k,, k;, and k_ are the spring rates of the air, the liquid, and the container,
respectively. From Equation (1.29) it may be shown that

L _F
2 kc’
rF F F
— Xy = 1.30
xl 'x2 k[ kc kl ( )
X =x +E—E+I—:+E
! ka kc kl ka.

From Equation (1.28) it can be seen that x = F/k,. Substituting this expression
into the bottom result of Equation (1.30) yields the following equation for
the effective spring rate of the system:

1_1.
k, k.

e

[ —

1
+ —. .
. (1.31)

=~

1

This is the classic expression that is used to describe the effective spring rate
for a group of springs placed in series with respect to one another.

The bottom portion of Figure 1-3 is shown with certain springs removed,
and now the spaces between pistons have been filled with liquid and air. The
spring associated with the container remains because this is the best model
for the effect of deforming a solid material. From the bottom portion of Figure
1-3 it can be seen that the input force is statically equivalent to the pressure
of the air (or liquid) times the cross-sectional area of a single piston. This
force is simply expressed by

F = PA. (1.32)

From the definition of the effective fluid bulk modulus given in Equation
(1.21), it can be seen that the pressure within the system is described by the
differential expression

dP=—@%d%, (1.33)

e

where B, is the effective fluid bulk modulus, and V, is the effective volume
of the fluid. Solving Equation (1.33) produces the following result for the
fluid pressure:
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Vo 1) =pg(¥e_
P—Beln(z 1) B€<Ve 1), (1.34)

where V, is the volume of the fluid when the pressure is zero. Note: The
right-hand side of Equation (1.34) assumes that V, = V,, which means that
the changes in the fluid volume are small. Using Equation (1.34) with Equa-
tion (1.32) yields the following result for the input force to the equivalent
spring system:

F=8 (— - 1>A (1.35)

e

Setting Equation (1.35) equal to Equation (1.28) yields the following result
for the effective spring rate of the system:

1

1
" E (1.36)

e

> SIS

In this result it has been recognized from Equation (1.19) that V, = V| — Ax.
Since the definitions of the effective fluid bulk modulus and the bulk modulus
for air and liquid are similar in form [compare Equations (1.21) and (1.23)],
a rerun of the previous analysis may be done for the columns of air and liquid
shown in Figure 1-3. This analysis produces the following results for the
spring rate of air and the spring rate of liquid:

v, 1 1V,
S and et (1.37)

1_1
ka Ba

From the static analysis of Figure 1-3, it may be shown that
k.x, = PA. (1.38)

Equation (1.24) presents the definition of the container bulk modulus and can
be used to develop an equivalent expression for the fluid pressure within the
system. This expression is determined by rearranging Equation (1.24) as fol-
lows:

1
v

e

dP = B, —dV, (1.39)

Solving this equation yields
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1
v

e

Sy (1.40)

P=B(' VSZB(‘V

where it has been recognized that V5 = Ax,. Substituting Equation (1.40) into
Equation (1.38) yields the following result for the spring rate of the container:

L1V,
ke B

S NS

(1.41)

By substituting the results of Equations (1.36), (1.37), and (1.41) into Equa-
tion (1.31), the effective fluid bulk modulus for the system may be expressed
as

1 V, 1 V., 1 1
— =2t 4 Ya__ 1.42
AR (142)

which is the exact same expression presented in Equation (1.25). Note: Mak-
ing the appropriate simplifications, this result may be reduced further to the
form of Equation (1.27).

All this discussion has been used to show that the compressibility effects
within a hydraulic system may be considered as a series of springs that de-
scribe the stiffness of the liquid, the air, and the container itself. Since these
springs are arranged in series, the overall stiffness of the system will never
exceed the stiffness of any one spring. The spring rate of each substance
depends on geometry and the bulk modulus property. In the paragraphs that
follow, the bulk modulus of the liquid, the air, and the container will be
considered in their turn.

Bulk Modulus of Liquid. From experiments it has been determined that over
a limited pressure range the secant bulk modulus of all liquids increases
linearly with pressure. This is to say,

K = K, + mP, (1.43)

where K is the secant bulk modulus of the liquid at zero gauge pressure, and
m is the slope of increase. For any one liquid, the value of m is practically
the same at all temperatures; however, the value of K carries a temperature
dependency with it. Equation (1.43) is valid for mineral oils and most other
hydraulic fluids up to about 800 bar. This same equation is valid for water
up to about 3000 bar. Consequently, if the appropriate values for K, and m
are known for any liquid, the secant bulk modulus for that liquid can be
calculated easily using Equation (1.43). By setting Equation (1.43) equal to
Equation (1.13), it may be shown that
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2
P ) and 4P Kok mPY

V= V0<1 " K, + mP v K,V,
Substituting this result into Equation (1.17) produces the following expression

that may be used to evaluate the tangent bulk modulus of a liquid as a function
of the liquid parameters K, and m:

B (m — 1)P mP
B =K, <1 o ><1 + ) (1.45)

0 0

Table 1-1 presents typical fluid properties for liquids that are used commonly
within hydraulic systems.

Bulk Modulus of Air. There are two methods for determining the fluid bulk
modulus of air. One method assumes that the temperature of the air remains
constant (isothermal), and the other method assumes that no heat transfer
occurs in or out of the volume of air during the expansion and compression
of the fluid (adiabatic). While the isothermal assumption is more consistent
with our definition of the fluid bulk modulus, the adiabatic assumption is used
more commonly and is recommended [1].

To develop an expression for the isothermal bulk modulus of air, we use
the ideal gas law of Equation (1.1) and enforce the assumption of a constant
temperature 7. A convenient representation of this equation is given by

Table 1-1. Fluid Bulk Modulus Properties K, and m (Values for K, are in kbar.)

Water in Oil Phosphate
Temperature, °C Mineral Oil Water Water Glycol ~ Emulsion Ester*

0 20.7 19.7 320 20.8 29.7
10 19.8 20.9 31.8 20.2 28.1
20 19.0 21.8 31.5 19.6 26.5
30 18.1 224 31.1 19.0 25.0
40 17.3 22.6 30.5 18.4 23.6
50 16.4 22.7 29.9 17.8 223
60 15.6 225 29.1 17.2 21.1
70 14.7 22.2 28.2 16.6 19.9
80 13.9 21.6 27.2 16.0 18.8
90 13.0 21.1 26.0 15.4 17.8

100 12.2 20.4 24.8 14.8 16.9
m

(for all temperatures) 3.6 34 45 >0 >3

*Viscosity greater than 50 cSt at 22°C.
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1
= RT " constant, (1.46)

a-lhs]

where p is the density of air, P is the air pressure, R is the gas constant, and
T is the constant air temperature. Taking the derivative of Equation (1.46)
yields the following result:

1 P
5 dp = 53 dP = 0. (1.47)

Rearranging this equation yields an expression for the isothermal bulk mod-
ulus of air. This result is given by

1

dp

1
— 1.48
B. P (148)

QU
~| -

In other words, the isothermal bulk modulus of air is simply equal to the fluid
pressure itself.

The adiabatic bulk modulus of air may be determined by assuming that no
heat transfer occurs between the air and the surrounding liquid or container
material. Using the first law of thermodynamics and the ideal gas law, it can
be shown that

PV?Y = constant, (1.49)

where P is the air pressure, V, is the air volume, and vy is the ratio of the
constant-pressure specific heat to the constant-volume specific heat. Note that
v = 1.4 for air. Taking the derivative of Equation (1.49), it may be shown
that

VY dP + PyV,o"V dV, = 0. (1.50)

Dividing this expression through by V? and rearranging terms produces the
following expression for the bulk modulus of entrained air within the hy-
draulic system:

1 1dv, 1
5= V. aP By (1.51)

A comparison of Equations (1.48) and (1.51) shows that the adiabatic bulk
modulus of air differs from the isothermal bulk modulus of air by a factor of
1.4. Although the isothermal bulk modulus is more compatible with the equa-
tion of state, which has been used to define the bulk modulus, the adiabatic
bulk modulus is used more often and therefore will be applied in the examples
that follow.



1.3 FLUID BULK MODULUS 17

Bulk Modulus of the Container. To consider the bulk modulus of a con-
tainer, it will be instructive to examine the cylindrical container shown in
Figure 1-2. The volume of this container is given by

V.= %TdZL, (1.52)

where d is the diameter of the container, and L is the length of the container.
If it is assumed that the container expands only in the radial direction, then
the expanded volume of the container may be expressed as

2
-7 o =T 52 L £
V. 2 (d, + 28)°L 2 d, [1 + 4 <d0> + 4 <d,,> ]L, (1.53)
where d, is the original diameter of the container, and & is the radial deflec-
tion, as shown in Figure 1-2. If it is assumed that &/d, << 1, then the

container volume may be closely approximated as
Vo=V, + Vs (1.54)

where the original volume and the deformed volume are given, respectively,
by

Vv, = ?fde and  V, = md, L. (1.55)

Notice that these are more explicit expressions for the volume terms than
were used in Equation (1.18) for describing the total volume of the container.
From a strength-of-materials textbook [2] we learn that the inside radial de-
flection of a thick-walled cylinder (without capped ends) is given by

d P(D?+d?
— Zo__ o o 4 .
°=2E (Df —d? ”)’ (1.56)

where P is the internal pressure, E is the tensile modulus of elasticity for the
cylinder material, v is Poisson’s ratio, D, is the original outside diameter of
the cylinder, and d, is the original inside diameter of the cylinder. Note: The
result of Equation (1.56) is valid for both thick- and thin-walled cylinders.
Using Equations (1.55) and (1.56) together, it may be shown that the de-
formed volume of the cylinder is given by

2 02 02
Vo==d?— 25— + v]L .
5= 73 d, 7 < 2 E v|L (1.57)

The derivative of this expression with respect to the pressure P is then
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dV 2 2 2
e _md,L (Dio td, ) (1.58)

dP 2 E \D2?-d?

If we assume that the ratio of the displaced volume in the chamber to the
original volume is much less than unity, that is, Ax/V, << 1, then Equation
(1.19) may be used to show that the effective volume of the chamber is given
by

V.=~V = gdozL. (1.59)

Equations (1.58) and (1.59) now may be substituted into Equation (1.24)
to express the container bulk modulus as

1 2 (D}+d}
E=E<D027_do2+ V). (1.60)

Recognizing that the inside diameter of the container is given by d, = D, —
2t, where t is the container wall thickness, an equivalent expression for the
container bulk modulus may be written as

1 2[D, t
o () R S

Two special cases of these results are instructive. For very thick walls it
may be assumed that D,/d, >> 1. In this case, Equation (1.60) may be
approximated as

1_20+9

) z (1.62)

On the other hand, for a thin-walled cylinder, it may be assumed that D, /¢
>> 1. In this case, Equation (1.61) may be used to show that

= ——, (1.63)

Equations (1.62) and (1.63) may be used to describe the range for the bulk
modulus of the container as
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7<l< o (1.64)

Table 1-2 presents the modulus of elasticity and Poisson’s ratio for com-
mon materials that are used to construct hydraulic containers.

Case Study

It is instructive to consider typical calculations of the effective bulk mod-
ulus for the purposes of illustrating the wide variation that may be expected
for this parameter. Let us consider a petroleum-based fluid (mineral oil)
that is pressurized to 20 MPa (0.20 kbar) at a temperature of 70°C. Fur-
thermore, let us consider a case where the fluid is contained within a
cylindrical container with an outside diameter equal to six times the wall
thickness (D,/t = 6). From Equation (1.45) and Table 1-1 it may be shown
that the tangent bulk modulus for this liquid is 15.82 kbar. From Equation
(1.51), the bulk modulus of the air is 0.28 kbar. Calculate the effective
bulk modulus of this system for the following two cases:

1. When the container is made of steel and the liquid has no entrained
air

2. When the container is made of high-pressure hose material and the
liquid has 1% entrained air by volume (V,/V, = 0.01)

For the first case, the bulk modulus of the container may be calculated
using Equation (1.61) and the material properties for steel that are shown
in Table 1-2. This calculation shows that 8. = 504.63 for the steel con-
tainer. Using this result with Equation (1.27), the effective bulk modulus
may be calculated as

Table 1-2. Material Properties for Common Hydraulic Containers (Modulus of Elasticity
E is reported in kbar.)

Ductile High-Pressure
Property  Steel Cast Iron Copper Brass Aluminum Hose* TPET
E 2069 1655 1103 1034 724 59 0.0393
v 0.30 0.28 0.30 0.34 0.33 0.47 0.47

*Flexible and reinforced with stainless steel braids (consult manufacturers for more accurate
numbers).
+ Thermoplastic elastomer (melt-processible rubber).
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p—
—_

0

] -1
- (15.82 Kbar | °  0.28 kbar | 504.63 kbar>

15.82 kbar.

Similarly, for the second case, the bulk modulus of the container may
be calculated using Equation (1.61) and the material properties for high-
pressure hose that are shown in Table 1-2. This calculation shows that
B. = 13.82 for the hose. Using this result with Equation (1.27), the effec-
tive bulk modulus may be calculated as

(1 v, 1 1)‘
¢ Bl Ve Ba Bc

—F + 0.01 X ! + ! B
15.82 kbar ) 0.28 kbar ~ 13.82 kbar
= 5.84 kbar.

A comparison of these two results reveals a 63% difference in the ef-
fective bulk modulus for fluids that are presumably very similar, and much
of this difference is a result of simply putting the fluid in a different con-
tainer.

Summary. The preceding work has shown that the effective bulk modulus
is a result of various physical considerations. These considerations include
the liquid properties, the amount of entrained air within the liquid, and the
flexibility of the device that is used to contain the fluid. In summary, it may
be noted that a wide variation in the effective bulk modulus can be expected
from one hydraulic system to the next. As mentioned previously, this variation
in the effective bulk modulus depends on the air content of the fluid, which
also may depend on the circulation system for the fluid. For instance, one
may suspect that an open-circuit system where fluid is circulated through a
ventilated reservoir may contain more entrained air than a closed-circuit sys-
tem where most of the fluid is contained within the working components of
the system. Other issues related to the reservoir design may have an impact
on the turbulent mixing that occurs within the reservoir, which also may have
an impact on the amount of entrained air that is introduced by each appli-
cation. Since the uncertainty of the fluid bulk modulus is significant from one
application to the next, it is worth considering techniques that may be used
to measure the fluid bulk modulus within an actual system. This will be the
topic of the next subsection.
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1.3.3 Measuring the Fluid Bulk Modulus

Figure 1-4 shows a closed container with a piston that is supported by a fluid
generally consisting of a mixture of liquid and air. The piston has a cross-
sectional area given by A. When the fluid pressure is at zero gauge pressure,
the height of the fluid column is given by the dimension /,. When the force
F is applied to the piston, the fluid column is decreased in height by the
dimension x. Obviously, to support the applied force, the fluid pressure within
the container must increase.

From the definition of the fluid bulk modulus, the fluid pressure within the
closed container may be expressed differentially as

dP = B ‘l/dv, (1.65)

where B is the effective fluid bulk modulus, and V is the effective fluid vol-
ume. By treating B as a constant, Equation (1.65) may be solved and rear-
ranged to show that the effective fluid bulk modulus is given by
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Figure 1-4. Geometry of a test device used to measure the fluid bulk modulus within a closed
container.
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P

T In(V, /vy (1.60)

B

where V_ is the fluid volume in the chamber when the pressure is zero. This
volume would be given more explicitly as Al,. From geometry, the effective
fluid volume after compression takes place may be written as

V=V, - Ax = A(, — x). (1.67)

Substituting this result into Equation (1.66) yields the following result for the
effective fluid bulk modulus of the device shown in Figure 1-4:

P

T/, -0 (1.68)

B

From this equation it can be seen that the parameters that must be measured
for determining the fluid bulk modulus are the fluid pressure P, the original
height of the fluid column /,, and the displaced distance of the piston x.

As all experimentalists know, the measurements of the parameters shown
in Equation (1.68) will always deviate slightly from the actual physical values.
If we denote these measured parameters using primed notation, the measured
value for the fluid bulk modulus may be written as

[ — P,
B = In[l/(I, — x")]’ (1.69)

Using this expression, a dimensionless uncertainty in our measurements may
be defined as

e =2 (1.70)

Using Equation (1.68), the dimensionless uncertainty may be written more
explicitly as

g In[l,/(1, — x)]

P , (1.71)

e=1-—

where the unprimed values of P, [, and x are the unknown true values of
these parameters.
If it is assumed that the measurement uncertainty is small, a first-order

Taylor series expansion of Equation (1.71) may be written as

o’
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de ' , de ' ’ de ’ ’
e = <ﬁ> (P-P)+ (5> (I, = I)) + <£> (o —x’). (1.72)

Using Equation (1.71) and assuming that x'//) << 1, it can be shown that

oe '\ 1 o) 1 EEA 1
o) - @) -p (- 0w
Substituting these results back into Equation (1.72) yields the following result

for the uncertainty associated with measuring the fluid bulk modulus in the
closed container:

P
=—+2-=—1, 1.74
€ P I x ( )

The reader will recall that the primed variables are the measured values,
whereas the unprimed variables are the true values. The accuracies for in-
struments that are used for measuring pressures and displacements typically
are specified in terms of some percentage of the full-scale capabilities of the
instrument itself. This means that the true values of the measured parameters
are somewhere within a range that has been identified by the manufacturer
of the instrument. Mathematically, this maximum range of uncertainty for
each measurement may be described as

(P—=P)==%5&P. (=)= £l 0= X)) = 28X,
(1.75)

where the values of &,, &, and £, are supplied by the instrument manufac-
turers, and P, /..., and x,,, are the maximum measurement ranges for these
instruments. Using the results of Equations (1.72), (1.73), and (1.75), an ex-
pression for the maximum measurement uncertainty may be given as

X

Pmax lmax max
Smax = i(&f’ P/ + gll_/ + gx 7) (176)

Equation (1.76) describes the maximum range of uncertainty associated
with the measurement of the fluid bulk modulus for the mechanical device
shown in Figure 1-4. If a strain-gauged pressure transducer is used, it is
common to be able to measure pressures accurately within = 1.5% of the full-
scale reading. This means that £, = 0.015. For measuring linear dimensions
such as [, the method used may vary from a highly accurate coordinate-
measuring machine (CMM) to a simple visual inspection of a calibrated scale.
Therefore, the range of accuracies for making the linear measurement of the
original height of the fluid column may be anywhere between +1 X 107%%
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and =+ 1% of the full-scale reading [3]. This means that 1 X 107¢ < ¢, <
0.01. In practice, it is quite common to use a linear variable differential trans-
former (LVDT) for making linear displacement measurements. These devices
typically are accurate within =0.5% of full-scale readings, and therefore,
&, = 0.005.

Case Study

The test device shown in Figure 1-4 is used to measure the effective fluid
bulk modulus. While taking this measurement, each instrument is being
used at half its maximum capacity, and the instrument accuracies are given
by &, = 0.015, ¢, = 0.005, and &, = 0.005. Calculate the uncertainty in
the measurement of the bulk modulus.

To calculate the uncertainty in this measurement, Equation (1.76) will
be used. This calculation is given by

P l X

Smax = i<§P Pr + gl% + gx ;?X>

+(0.015 X 2 + 0.005 X 2 + 0.005 X 2)
+0.05.

This result shows a measurement uncertainty of +5%.

As shown by the preceding case study, measurements of the effective fluid
bulk modulus may be taken with the device shown in Figure 1-4 while main-
taining a fair degree of confidence in the results. Of course, the uncertainty
in this measurement can get better or worse depending on the quality of the
instruments, their operating range, and the operating point of the measure-
ment. In any event, the range of expected uncertainty should be checked
before conducting the experiment to see whether or not the measurement is
worthwhile or to design an acceptable test device. Equation (1.76) provides
the tool for checking this uncertainty as it pertains to the device shown in
Figure 1-4. It also should be mentioned that the device in Figure 1-4 is a
laboratory device that may or may not represent an actual hydraulic control
system adequately. In situ measurements of the fluid bulk modulus have been
considered in previous research [4]; however, these measurements have been
shown to be expensive and highly uncertain, thus rendering these methods
somewhat doubtful. In summary, the reader should be impressed with the
range of variability that the effective fluid bulk modulus may undergo and
with the difficulty in obtaining confidence in its value even from an experi-
mental point of view. Indeed, when simulating hydraulic control systems, the
specification for the fluid bulk modulus becomes one of the most arbitrary
aspects of the model, which is highly unfortunate because this parameter is
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often the deciding factor between a stable and an unstable hydraulic com-
ponent or system. This influence of the fluid bulk modulus will be shown in
subsequent chapters of this text.

1.4 THERMAL FLUID PROPERTIES

1.4.1 Coefficient of Thermal Expansion

Definition. The isobar coefficient of thermal expansion for a hydraulic fluid
was presented in Equation (1.3) and is rewritten here for convenience in terms
of both density and fluid volume:

dp

1 dv
pdT

d_T’

(1.77)

a = —

<=

where T is the fluid temperature. The coefficient of thermal expansion «
describes the change in fluid density (or volume) as the temperature of the
fluid increases or diminishes. Since the fluid consists of air and liquid, and
since the fluid container also exhibits expansion and contraction with changes
in temperature, it is of use to consider the effective coefficient of thermal
expansion for the entire fluid system.

The Effective Coefficient of Thermal Expansion. The effective coefficient
of thermal expansion can be evaluated by considering the device in Figure 1-
2 and the effective volume of the fluid V, as given in Equation (1.19). This
volume consists of air and liquid and is adjusted for small deflections of the
container itself. Using the effective volume, we may calculate the effective
coefficient of thermal expansion as

a, = — —=. (1.78)

Substituting the differential volume dV, of Equation (1.20) into this result
yields the following expression for the effective coefficient of thermal expan-
sion:

V,(1dV)\ V,[(1dV,)\ 1 dv,
===+ - — :
Ty (v, dT) V. <Va dT) V. dT’ (1.79)

where V, is the volume of the liquid, V, is the volume of the air, and Vj is
the deflected volume of the container shown in Figure 1-2. By definition, the
coefficient of thermal expansion for liquid and air are given respectively as
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14V,
=—=— d =——t 1.80
“=voar M %T Vv ar (1.80)
and a convenient definition for the coefficient of thermal expansion for the
container is

_1.4v;
<V, dT’

o

(1.81)

Again, the reader will observe that the definition for the coefficient of
thermal expansion for the container «, is somewhat different in form com-
pared with that of ¢; and «,. Substituting Equations (1.80) and (1.81) into
Equation (1.79) yields the following result for the effective coefficient of
thermal expansion:

1%
a, = % o + 7“ o, — a,. (1.82)

The volumetric ratios in this expression describe the fractional content of
liquid and air within the container. Using Equation (1.19) with Equation
(1.82), it may be shown that

V a\ 'V,
ae=(1+7j>a,+< —;:)veaa—ac. (1.83)
Since V, >> V,, Equation (1.83) may be closely approximated as
V
o, = o + ( - ﬁ) o, — . (1.84)
aa Ve

Table 1-3 shows a partial list of data that are currently available for esti-
mating the coefficient of thermal expansion of mineral oil and water as it
varies with temperature. More extensive data related to the coefficient of
thermal expansion for hydraulic fluids have been published by the U.S. Army

Table 1-3. Volumetric Coefficient of Thermal Expansion for Various Liquids Used within
Hydraulic Systems [Reported in units of 107 4/(°C or °K)]

Temperature, °C
0 20 40 60 80 100 120

Mineral oil 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Water —0.68 1.73 3.60 5.04 6.24 7.28 8.40
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and may be consulted for more accurate information [8]. In the following
paragraphs, the coefficient of thermal expansion for air and the hydraulic
container will be discussed.

The isobar coefficient of thermal expansion for air may be determined
using the ideal gas law of Equation (1.1). A convenient form of this equation
is given by

P
pT = R = constant, (1.85)

where the pressure P is fixed to satisfy the isobar requirement. Differentiating
this equation yields the following result:

pdT + Tdp=0. (1.86)

Rearranging this expression yields the following result for the coefficient of
thermal expansion for air:

(1.87)

N
o=
&|Q.
NI
~i=

The reader will recall that this temperature 7 is given in the absolute scale;
therefore, the coefficient of thermal expansion for air is given more familiarly
as

1 1
Y T (T, + 273.15) °C or °K _ (T, + 459.67) °F or °R’

(1.88)

where T and T are the fluid temperatures measured in the Celsius and Fah-
renheit scales, respectively.

An expression for the coefficient of thermal expansion for the container is
given in Equation (1.81). If we use the cylindrical container geometry of
Figure 1-2, the instantaneous volume of the container may be described using
Equations (1.54) and (1.55). Differentiation of V5 as shown in Equation (1.55)
shows that the change in the deformed volume of the container with respect
to temperature is given by

dv, ds
2= md,L (1.89)

where d, is the original inside diameter of the container, L is the length of
the container, and & is the inside radial growth of the container that occurs
due to an increase in the temperature. If we use the approximation of Equation
(1.59) for the effective volume of the container, then it may be shown that
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(1.90)

a. = — =4

1 148
© v, dr d,dT
By definition, the linear coefficient of thermal expansion is given by

dl
T’

~—

y = (1.91)

where [ is the linear dimension that grows due to an increase in temperature.
Recognizing that the linearly growing dimension in this problem is the di-
ameter of the container, it may be shown that

di _, ds

l=d,+25=d, and . =2-_ (1.92)

Using this result with Equations (1.90) and (1.91), the volumetric coeffi-
cient of thermal expansion for the container may be approximated by

@ =2y, (1.93)

where vy is the linear coefficient of thermal expansion of the container ma-
terial, which may be found in material handbooks. Using material handbooks
and Equation (1.93), the volumetric coefficients of thermal expansion for typ-
ical hydraulic containers are given in the Table 1-4.

Case Study

To consider the possible variation that may be expected in the coefficient
of thermal expansion, let us once again consider a petroleum-based fluid
(mineral oil) that is at a temperature of 70°C within a cylindrical container.
From Table 1-3 it may be shown that the coefficient of thermal expansion
for this liquid is 7 X 107*/°C. Using Equation (1.88), the coefficient of

Table 1-4. Volumetric Coefficients of Thermal Expansion for Materials Commonly Used
to Make Hydraulic Containers

Ductile
Cast High-Pressure
o, Steel Iron  Copper Brass Aluminum Hose* TPET
107¢/°C or °K 22.0 264 340 380 48.0 447 460
107%/°For °R 122 147 18.8 212 26.6 248 256

*Flexible and reinforced with stainless steel braids (consult manufacturers for more accurate
numbers).
+ Thermoplastic elastomer (melt-processible rubber).
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thermal expansion for the air is 3 X 1073/°C. Calculate the effective co-
efficient of thermal expansion of the fluid for the following two cases:

1. When the container is made of steel and the liquid has no entrained
air

2. When the container is made of high-pressure hose material and the
liquid has 1% entrained air by volume (V,/V, = 0.01)

For the first case, the coefficient of thermal expansion for the steel con-
tainer may be determined using Table 1-4. This table shows that «, =
22 X 107¢/°C for the steel container. Using this result with Equation (1.84),
the effective coefficient of thermal expansion may be calculated as

7X 107 22x107° 678 x 107*
°C °C B °C :

a, = o — o, =

Similarly, for the second case, the coefficient of thermal expansion for
the high-pressure hose may be determined using Table 1-4. This table
shows that o, = 447 X 107%/°C for the hose. Using this result with Equa-
tion (1.84), the effective coefficient of thermal expansion may be calculated

as
w1y Ye, o _Tx107 [ TX 10T
% = %N a )y YT % T ToC 3% 103

7 X 1074 447 X 107¢
°C °C
258 x 107
OC *

X 0.01 X

A comparison of these two results reveals a 62% difference in the cal-
culated effective coefficient of thermal expansion for fluids that are pre-
sumably very similar. Again, most of this difference is a result of simply
putting the fluid in a different container.

In the preceding case study it has been shown that the effective coefficient
of thermal expansion can vary significantly for fluids that are used within
hydraulic control systems. As shown by this example, the coefficient of ther-
mal expansion is not greatly influenced by reasonable percentages of en-
trained air, and since this is the only parameter within our model that varies
with temperature, we can say that the effective coefficient of thermal expan-
sion does not vary much with temperature. On the other hand, this example
has shown that the effective coefficient of thermal expansion for the fluid is
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influenced significantly by the container properties, which will vary for the
fluid as it flows through various conduit materials within the same hydraulic
circuit.

Measuring the Coefficient of Thermal Expansion. Since temperature var-
iations within hydraulic control systems are not nearly as pronounced as, say,
pressure variations, an accurate value for the coefficient of thermal expansion
is not nearly as important as having an accurate value for the fluid bulk
modulus. For this reason, we do not include an extensive discussion on mea-
surement techniques (and the associated uncertainty) for the effective coeffi-
cient of thermal expansion. The reader should recognize, however, that these
techniques do not change in principle from the techniques that were described
for measuring the fluid bulk modulus. Similar types of experiments as those
described in Section 1.3.3 may be used, and the uncertainty in each mea-
surement may be calculated as well.

1.4.2 Thermal Conductivity

The rate at which heat is transferred through a material (fluid or solid) is
governed by Fourier’s law. This law is based on observed phenomena and
states that the heat flux (heat per unit area) is directly proportional to the
temperature gradient in a direction normal to an isothermal surface. Figure
1-5 illustrates this phenomenon. By definition, the thermal conductivity of a
material is given by

k=t — <& (1.94)

9 ] l
/
/

Figure 1-5. The relationship between the coordinate system, heat flow direction, and temper-
ature gradient in one dimension.
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where ¢, is the heat being transferred through the material, A is the cross-
sectional area normal to the heat flow, x is the dimension in the direction of
the heat flow, and T is the material temperature. Table 1-5 provides values of
thermal conductivity for mineral oil and water as it varies with temperature.

1.4.3 Specific Heat

The specific heat is a thermodynamic property that is useful for determining
the change in internal energy of a substance for small increases in tempera-
ture. As such, the specific heat for a substance that maintains a constant
volume is given by

c,=—=l, (1.95)

where u is the specific internal energy of the substance. If the internal energy
is considered as a measure of added heat to the substance, we can see that
the specific heat ¢, describes the amount of additional heat that is required to
raise the temperature of the substance by a unit of temperature (e.g., 1°C or
°K). The thermodynamic property of enthalpy is given by the expression

h=u+ Puv, (1.96)

where u is the specific internal energy, P is pressure, and v is the specific
volume. By definition, the specific heat for a substance that maintains a con-
stant pressure is given by

_ah

=7 R (1.97)

Cp

By differentiating Equation (1.96) with respect to temperature, it can be
shown that

Table 1-5. Values of Thermal Conductivity k for Petroleum-Based Fluid and Water
Reported in 102 W/(m °C)

Temperature, °C
0 20 40 60 80 100 120

Mineral oil 147 145 145 141 138 137 135
Water 569 598 628 650 668 679 686
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T, va, (1.98)

P

Cp

P

where « is the isobar coefficient of thermal expansion. Since « is very small
for liquids (see Table 1-3), it can be shown that the change in internal energy
is approximately equal to the change in enthalpy, and therefore,

= ¢, (1.99)

for liquids that are used commonly within hydraulic control systems. Table
1-6 shows the specific heat for mineral oil and water as it varies with fluid
temperature. These results will be used in the next chapter to calculate the
temperature rise within a fluid due to a pressure drop across a flow passage.

1.5 FLUID VISCOSITY

1.5.1 Definitions

From solid mechanics one may recall that the shear stress within a solid is
proportional to the shear strain within a region of linear deformation. In the
case of solids, this constant of proportionality relating the shear stress to the
shear strain is called the shear modulus of elasticity and is often noted by
the symbol G. When a shear stress is applied to a solid, a fixed distortion
of the material occurs, and until the shear stress is released, the material
remains in a fixed distorted shape while storing potential energy much like a
mechanical spring. Fluids do not behave this way. When a shear stress is
applied to a fluid, the fluid will not deform into a fixed shape while storing
potential energy. Rather, for a constantly applied shear stress, a fluid will
deform continuously while dissipating energy in the form of heat. In this case
it has been observed experimentally that the shear stress within the fluid is
proportional to the rate of shear strain, and the constant of proportionality in
this relationship is called the absolute viscosity of the fluid and is noted by
the symbol u. Mathematically, we describe this relationship as

Table 1-6. Specific Heat c, for Petroleum-Based Fluid and Water
[Reported in kd/ (kg °C)]

Temperature, °C
0 20 40 60 80 100 120

Mineral oil 1.796 1.868 1.951 2.035 2.118 2.206 2.294
Water 4217 4.184 4.178 4.184 4.195 4.214 4.239
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= v, (1.100)

where 7 is the shear stress within the fluid, and <y is the rate of shear strain.
Note: Equation (1.100) has been shown to be valid for both liquids and gases.

Figure 1-6 shows two parallel plates separated by a thin film of fluid. The
bottom plate is stationary, whereas the top plate is being pulled across the
fluid medium at a velocity given by U. From experiments, it has been ob-
served that the fluid “sticks” to the surfaces of both plates so that the fluid
velocity at the bottom plate is zero and the fluid velocity at the top plate is
given by U. Between the two plates, the fluid velocity u varies as a function
of y. Two particles p, and p, are shown to be moving within the fluid medium.
At one instant in time these particles are perfectly in line with each other,
whereas at the next instant in time one particle is ahead of the other. The
second instant in time is shown in Figure 1-6 using the primed notation. The
angle &y formed by the triangular relationship of these particles is called the
shear strain of the fluid, and this definition is common with the language of
solid mechanics as well. From geometry, it can be shown that

Sy =~ tan(dy) = 2 (1.101)
oy

From the motion of the fluid particles, it is clear that the position of each
particle at the second instant in time is given by

x| =u, ot and x5 = u, ét, (1.102)
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Figure 1-6. A schematic illustrating the shear strain within a fluid.
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where u, and u, are the linear velocities of particles 1 and 2, respectively,
and 6t is the separation of time between the two instances. Subtracting the
second position of particle 1 from the second position of particle 2 yields the
following result for their relative displacement at the second instant in time:

ox = du ot, (1.103)

where éu is given by u, — u,. Substituting Equation (1.103) into Equation
(1.101) yields the following relationship between the fluid shear strain, time,
fluid velocity, and the dimensional variable y:

dy _ ou
5t oy (1.104)
In the limit as 6¢ and 8y go to zero, it can be shown that
dy du
=—=— 1.1
d " dy’ (1.105)

where v is the rate of shear strain, and du/dy is the velocity gradient in the
y direction. Using Equations (1.100) and (1.105), it may now be shown that
the shear stress within the fluid is given by

du
=u—. 1.106
TRy ( )
From this result we define the absolute fluid viscosity as
T
= . 1.107
= aur ay ( )

In accordance with this definition, a plot of shear stress versus the rate of
shear strain should be linear where the slope is equal to the viscosity. The
actual value of the viscosity depends on the type of fluid, and for a particular
fluid, it is also highly dependent on the temperature. Fluids for which the
shear stress is linearly related to the rate of shear strain are called Newtonian
fluids. Fluids for which the shear stress is not linearly related to the rate of
shear strain are designated as non-Newtonian fluids. The kinematic viscosity
is defined as v = w/p, where p is the fluid density. Physically speaking, the
viscosity of the fluid is a type of friction coefficient associated with the motion
of the fluid itself.
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1.5.2 Viscous Drag Coefficient

The viscous drag coefficient is a lumped parameter that is used commonly in
the modeling of dynamic systems to describe energy dissipation effects. This
model is based on the principle of fluid shear and therefore is appropriately
discussed in this section. If we consider the two plates shown in Figure 1-6,
it is apparent that a certain force is required to drag the top plate across the
fluid film that separates the two plates from each other. This drag force may
be written as

F = 1A, (1.108)

where 7 is the fluid shear stress at the contact surface of the top plate, and A
is the surface area of contact at this plate. Using Equation (1.106), it may be
shown that the shear stress at the top plate is given by uwU/h, where u is the
fluid viscosity, U is the sliding velocity of the top surface, and £ is the fluid
film thickness that exists between the two plates. Using this expression for
the fluid shear, the following expression may be written for the viscous drag
force on the top plate:

F=cU, (1.109)

where the viscous drag coefficient is given by

c =%. (1.110)

From this expression, it may be seen that the viscous drag coefficient in-
creases with fluid viscosity and the surface contact area A. Furthermore, this
coefficient decreases as the fluid film thickness % increases. Within the ma-
chinery that is used to operate hydraulic control systems, the fluid film thick-
ness between moving parts is often on the order of microns; therefore, in a
number of applications, the viscous drag coefficient becomes an important
parameter for describing viscous energy dissipation.

1.5.3 Viscosity Charts and Models

Viscosity is a bulk property of a fluid that generally is measured rather than
being predicted analytically. A chart showing this measured data for typical
SAE oils is given in Figure 1-7. A very common hydraulic fluid is an SAE
10W fluid. Units of absolute viscosity are shown in Figure 1-7 in pascal-
seconds (Pa s). It is also common to report the absolute viscosity in the
English system in micro-Reyn (uwReyn) and in the SI system as centipoise
(cP). These units are related to each other according to the following defini-
tions:
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Figure 1-7. Fluid viscosity for SAE grade fluids.

1 X 10° uReyn = 1 psi-s, 1 X 10° cP = 1 Pa-s. (1.111)

As with all bulk properties of hydraulic fluids, the viscosity of the fluid
varies significantly with exposed conditions. For instance, the absolute vis-
cosity of a liquid tends to decrease markedly with temperature and increase
mildly with pressure. Both these variations occur exponentially, and their
combined effects may be written mathematically as

w =, expla(P — P,) — NT — T,)], (1.112)

where , is the fluid viscosity at a pressure and temperature given by P, and
T,, and « and A are constants for a particular fluid. Note: « in this expression
is not the coefficient of thermal expansion. For mineral oils, it has been shown
empirically that the pressure coefficient is related to the viscosity at zero
gauge pressure by the dimensional relationship

a = [0.6 + 0.965 log,,(r,)] X 1078, (1.113)
where u, is measured in centipoise, and the units of « are in pascals™' [5].

Figure 1-7 shows a chart of the fluid viscosities for SAE grade fluids as they
vary with temperature at standard atmospheric pressure. The viscosity index
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is used to describe how quickly the viscosity drops with temperature. If the
viscosity does not decrease rapidly with temperature, the fluid is said to have
a high viscosity index. On the other hand, if the fluid viscosity drops off
rapidly with temperature, the fluid is said to have a low viscosity index.

This subsection has focused on the viscosity of mineral oils because they
are used predominantly to operate hydraulic control systems. However, other
fluids may be used as well, and viscosity data for those fluids may be obtained
from the fluid manufacturers. Regardless of the fluid type that is used, it is
recommended that fluid viscosities remain within the following range for the
continuous operation of a hydraulic control system:

7.8 cP < u <957 cP and 1.1 uReyn < w < 13.8 uReyn. (1.114)

The optimal operating viscosity is given by uw = 11.3 cP = 1.6 uReyn.
Maximum cold-start viscosities are recommended to be less than 1390 cP
(201 wReyn), and minimum intermittent viscosities are recommended to be
greater than 5.0 cP (0.7 uReyn).

1.6 VAPOR PRESSURE

There is a combination of pressure and temperature at which all liquids will
tend to vaporize and change phase. The pressure at which this occurs is called
the vapor pressure of the liquid and must be specified at a given temperature.
For instance, water tends to vaporize (boil) at atmospheric pressure when its
temperature reaches 100°C. This is to say, the vapor pressure of water at
100°C is 101 kPa absolute. If the pressure drops below 1 atm (101 kPa), then
water will vaporize at a lower temperature. Similarly, if the pressure increases
above 1 atm, water will vaporize only at some temperature above 100°C. This
discussion of vapor pressure is important because vapor bubbles do not tend
to dissolve in solution like air; rather, vapor bubbles collapse. When a vapor
bubble collapses near a surface, it can cause erosion and extreme damage to
mechanical parts of hydraulic machinery. This phenomenon is familiarly re-
ferred to as cavitation, a term coined by R. E. Froude (1810-1879). Due to
the localized reduction in pressure that tends to occur in high-velocity jet
streams, vapor bubbles are formed at moderate temperatures within hydraulic
systems. Once these bubbles are exposed to a higher pressure, say, when the
fluid velocity is reduced, the bubbles collapse with violent motions that create
large transient pressures. If the collapse occurs near a surface, these transient
pressures can be large enough to fail the surface by inducing high stresses in
the solid material. As a result of repeated exposures to cavitating conditions,
the surface eventually will erode, and before long, the structural part may fail
completely. The vapor pressure for petroleum-based fluids operating near
65°C is extremely low, i.e., less than 350 Pa absolute [6]. Due to the high
percentage of water contained in water-glycol solutions and water-in-oil emul-
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sions, these fluids have a much higher vapor pressure than that of petroleum-
based fluids.

1.7 CHEMICAL PROPERTIES

In this section various terms that are used commonly to describe fluid chem-
ical properties are defined. These terms do not have quantitative definitions
as given in the previous discussions; however, their qualitative meanings are
of use and therefore are included here [1,7,9].

Emulsivity. This quality describes a fluid’s ability to form emulsions. An
emulsion is a fluid that is formed by suspending oily liquid in another
liquid, often by means of a gummy substance.

Lubricity. This quality of a fluid describes the “oiliness” of the fluid and
refers to its adequacy when used as a lubricant. Many oils naturally
contain some molecular species with boundary lubricating properties.
Some vegetable oils such as castor oil and rapeseed oil contain more
natural boundary lubricants than mineral oils. Additives therefore usu-
ally are incorporated into mineral oils for the purpose of improving the
lubricity. Lack of adequate lubrication properties promotes wear and
shortens the life of hydraulic components.

Thermal stability. This quality of a fluid describes the fluid’s ability to
resist chemical reactions and decomposition at high temperatures. Fluids
react more vigorously as temperature is increased and may form solid
reaction products.

Oxidative stability. This quality of a fluid describes an ability to resist
reactions with oxygen-containing materials, especially air. Again, these
reactions may form solid by-products within the fluid.

Hydrolytic stability. This quality of a fluid describes an ability to resist
reactions with water. Undesirable formation of solids may result, or a
stable water-in-oil emulsion may be formed that degrades lubricating
ability and promotes rusting and corrosion. Demulsifier additives are
used often to inhibit emulsion formations.

Compatibility. This quality of a fluid is a “catch all” that describes the
fluid’s ability to resist chemical reactions with any material that may be
used in the system to which it is exposed. For instance, some fluids tend
to soften seals and gaskets, which may cause them to be incompatible.
Water is incompatible with steel because it causes the steel to corrode.

Foaming. This term is used to describe a fluid’s ability to combine with
gases, principally air, and to form emulsions. Entrained air reduces the
lubricating ability and bulk modulus of a liquid. A reduction in the bulk
modulus can severely limit dynamic performance, and for this reason,
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fluids should have the ability to release air without forming emulsions.
Antifoamant additives are used to encourage this ability.

Flash point. This is the lowest temperature at which the vapor of a volatile
oil will ignite with a flash.

Pour point. This is the lowest temperature at which a fluid will flow.

Handling properties. These properties refer to the toxicity, odor, color, and
storage characteristics of a fluid. These characteristics can be dangerous
or annoying, thereby making the handling or use of the fluid somewhat
undesirable.

1.8 FLUID TYPES AND SELECTION

1.8.1 Petroleum-Based Fluids

Petroleum-based fluids are by far the most common fluids used in hydraulic
systems. They are a complex mixture of hydrocarbons that must be refined
to produce a fluid with the appropriate characteristics that are suitable for
hydraulic control systems. Various additive packages are sold for petroleum-
based fluids. These packages include inhibitors against oxidation, foaming,
and corrosion. Additives can be used to increase the viscosity index and to
improve the lubricity of a fluid as well.

1.8.2 Synthetic Fluids

Synthetic fluids are used to provide a fire-resistant alternative to petroleum
based fluids and are named after their base stock, which is the predominant
material used to make them. Examples of such fluids are phosphate esters
and silicate esters.

1.8.3 Biodegradable Fluids

Biodegradation is the ability of a substance to be broken down into innocuous
products by the action of living things. Due to environmental concerns, bio-
degradable fluids have become an important alternative for use in hydraulic
control systems. This is especially true in the mobile hydraulic industry, where
an unintentional spill of mineral oil may result in long-term soil and water
contamination in the vicinity of the spill itself. Various types of biodegradable
fluids are available for use. The most basic forms of biodegradable fluids are
the vegetable oils, especially those extracted from rapeseed. Other biodegrad-
able fluids with higher performance are ester-based synthetic fluids. While
the ester-based synthetic fluids provide a wider and more robust range of
performance (especially at cold temperatures), they are very costly, which
prohibits their use in many applications.
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1.8.4 Water

Water hydraulics is a growing topic of discussion among the engineering
community. The reasons for this are somewhat obvious. Water is available in
abundance and therefore is very inexpensive. Water is also very friendly to
the environment and therefore alleviates the concerns for contamination in
the event of a hydraulic failure or spill. On the other hand, water has several
disadvantages that must be overcome before it is used widely as a medium
for transmitting power hydraulically. Among these disadvantages, water has
the ability to sustain life in the form of bacterial growth. This growth causes
inherent contamination within the hydraulic system, which, in turn, may cause
a failure. Another disadvantage of water is that it has a very narrow temper-
ature range between phase changes. Water freezes at 0°C and boils at 100°C
(at standard atmospheric pressure). This narrow range of temperature over
which water will remain liquid is not easily overcome by many applications.
Water also exhibits poor lubricity and low viscosity. These characteristics
make water a poor lubricating medium which is often necessary for main-
taining a longer life for hydraulic systems. Another disadvantage of water is
that it is corrosive to the ferrous materials that are used commonly to build
hydraulic machinery. In order to use water as the working medium, machine
parts must be coated with polymer-type materials, which means that they must
be subject to low surface stresses to keep the lower-strength polymers from
failing. This drives the hydraulic system toward low-pressure applications and
causes the power density of the system to be sacrificed.

1.8.5 Fluid Selection

When selecting a hydraulic fluid, one must keep in mind the following char-
acteristics:

1. The fluid must exhibit good lubricity with compatible materials that are
used for bearings and sealing surfaces.

2. The fluid must exhibit a high viscosity index over a wide range of
operating temperatures.

3. The fluid must provide a long service life (at least 5000 hours). This
means that it must be stable against heat, water, oxidation, and shear.

4. The fluid must be compatible with environmental requirements. This
may or may not require the use of biodegradable fluids.

5. The fluid must have a high bulk modulus for a satisfactory dynamic
response of the hydraulic system. Generally, this means that the fluid
should resist absorption of air and exhibit a low tendency to foam.

6. The fluid generally must be low cost and highly available.
7. The fluid must exhibit a resistance to flammability.

8. The fluid should exhibit a high thermal conductivity for the purpose of
transferring heat away from the system.
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9. The fluid should exhibit a low vapor pressure and a high boiling tem-
perature to avoid cavitation.

1.9 CONCLUSION

In conclusion, this chapter has considered the various physical properties that
are commonly discussed for hydraulic fluids. These properties have been re-
lated to the mass density of the fluid, its thermal characteristics, the fluid
viscosity, and other important topics of cavitation potential and chemical com-
patibilities. It must be mentioned that this brief overview is far from exhaus-
tive, and the reader is referred to sundry texts that have fluid property data
scattered throughout. For the remainder of this text, the fluid properties men-
tioned here will be referred to and used for describing the overall performance
of hydraulic control systems. The following chapter on fluid mechanics will
assume a working knowledge of the terms and definitions that have been
presented here.

1.10 REFERENCES

[1] Merritt, H. E. 1967. Hydraulic Control Systems. John Wiley & Sons, New York.

[2] Boresi A. P, R. J. Schmidt, and O. M. Sidebottom. 1993. Advanced Mechanics
of Materials, 5th ed. John Wiley & Sons, New York.

[3] Doebelin, E. O. 1990. Measurement Systems: Application and Design, 4th ed.
McGraw Hill, New York, NY.

[4] Manring, N. D. 1997. The effective fluid bulk-modulus within a hydrostatic trans-
mission. ASME Journal of Dynamic Systems, Measurement, and Control 119:462—
66.

[5] Hutchings, I. M. 1992. Tribology: Friction and Wear of Engineering Materials.
CRC Press, London.

[6] Esposito, A. 2000. Fluid Power with Applications, 5th ed. Prentice-Hall, Upper
Saddle River, New Jersey.

[7] Yeaple, F. 1996. Fluid Power Design Handbook, 3d ed. Marcel Dekker, New York.

[8] United States Army Material Command. 2000. Engineering Design Handbook:
Hydraulic Fluids. University Press of Hawaii, Honolulu.

[9] Radhakrishnan, M. 2003. Hydraulic Fluids: A Guide to Selection, Test Methods
and Use. American Society of Mechanical Engineers, New York.

1.11 HOMEWORK PROBLEMS

1.11.1 Fluid Mass Density

1.1  The density of water at the standard reference state (pressure = 1 atm.,
temperature = 25°C) is 1000 kg/m?. Calculate the water’s fluid density
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1.2

1.3
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when the pressure is increased to 20 MPa and the temperature is in-
creased to 80°C. Note: At the reference state, the bulk modulus of water
is 22 kbar, and the coefficient of thermal expansion is 200 X 1076/°C.

The density of hydraulic fluid at atmospheric pressure and a temper-
ature of 100°C is 842 kg/m?>. Calculate the percent change in the fluid’s
density when the pressure is increased to 40 MPa and the temperature
is reduced to 0°C. Note: At the original state, the bulk modulus of the
hydraulic fluid is 12 kbar, and the coefficient of thermal expansion is
7 X 107*/°C.

An open container contains 1 gal of hydraulic fluid weighing 7 1bf.
The temperature of the hydraulic fluid is increased by 100°F, and the
volume of fluid increases to 1.01 gal. What are the original and final
densities of the hydraulic fluid? What is the coefficient of thermal
expansion for this fluid?

1.11.2 Fluid Bulk Modulus

14

1.5

1.6

It is shown from experiments that for a fixed mass of water-glycol
solution, the fluid pressure varies according to the following equation:

KV, = V)
V,=mV,=Vy

o

P:

where K, and m are experimental constants, V, is the fluid volume
when the pressure is zero, and V is the fluid volume associated with
the pressure P. Using the definition of for the secant bulk modulus K
and the tangent bulk modulus B, develop an expression for each. What
is the percent difference between these two results for m = 4.5 and
V=098V

Calculate the effective fluid bulk modulus for mineral oil with 1% of
entrained air (by volume) inside a brass tube with an outside diameter
of 20 mm and a wall thickness of 2.5 mm. Assume that the fluid
pressure is 2100 kPa and that the operating temperature is 90°C. All
processes are assumed to be isothermal.

A measurement is taken in the laboratory to determine the effective
fluid bulk modulus of a fluid within a container similar to what is
shown in Figure 1-4. A 6000-psi pressure transducer (accurate within
+1.5% of its full scale reading) is used with a '%-in. linear variable
differential transformer (LVDT) (accurate within +1.5% of its full
scale reading) to make this measurement. The original depth of the
container is 1 ft = 0.1 in. The experimental records are given in the
following table:
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Fluid Pressure Displacement Bulk Modulus Maximum Error
P, psi X, in. B, psi €max
1500 0.203
3000 0.274
4500 0.336
6000 0.389

Using these data, fill in the remainder of the table for the measured
fluid bulk modulus and the uncertainty associated with the measure-
ment. At what point would you begin to consider the measurements to
be useful?

1.11.3 Thermal Fluid Properties

1.7

1.8

Calculate the effective coefficient of thermal expansion for a hydraulic
fluid with 3% entrained air within a high-pressure hose. The operating
temperature is 40°C.

A heat flux of 550 W/m? is measured across a stagnant film of hy-
draulic fluid 2.54 mm thick. The temperature drop across the fluid film
is 10°C. Calculate the coefficient of thermal conductivity for the hy-
draulic fluid

1.11.4 Fluid Viscosity

1.9

1.10

Using Figure 1-7, determine the fluid viscosity of a 10W petroleum-
based fluid at an operating temperature of 50°C. Using Equation
(1.111), convert this result to the uReyn and the centipoise scales.

A 10W hydraulic fluid is nominally used at 70°F and atmospheric
pressure. Using Equation (1.112) and Figure 1-7, calculate the fluid
property A if the temperature is increased to 200°F. If the pressure is
also increased to 6000 psi, what is the new viscosity? Does the pressure
have much effect in your opinion?



