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The ability to mine data to extract useful knowledge has become one of the most
important challenges in government, industry, and scientific communities. Much
success has been achieved when the data to be mined represents a set of independent
entities and their attributes, for example, customer transactions. However, in most
domains, there is interesting knowledge to be mined from the relationships between
entities. This relational knowledge may take many forms from periodic patterns of
transactions to complicated structural patterns of interrelated transactions. Extracting
such knowledge requires the data to be represented in a form that not only captures
the relational information but supports efficient and effective mining of this data and
comprehensibility of the resulting knowledge. Relational databases and first-order
logic are two popular representations for relational data, but neither has sufficiently
supported the data mining process.

The graph representation, that is, a collection of nodes and links between
nodes, does support all aspects of the relational data mining process. As one of
the most general forms of data representation, the graph easily represents entities,
their attributes, and their relationships to other entities. Section 1.2 describes several
diverse domains and how graphs can be used to represent the domain. Because one
entity can be arbitrarily related to other entities, relational databases and logic have
difficulty organizing the data to support efficient traversal of the relational links.
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Graph representations typically store each entity’s relations with the entity. Finally,
relational database and logic representations do not support direct visualization of
data and knowledge. In fact, relational information stored in this way is typically
converted to a graph form for visualization. Using a graph for representing the data
and the mined knowledge supports direct visualization and increased comprehensi-
bility of the knowledge. Therefore, mining graph data is one of the most promising
approaches to extracting knowledge from relational data.

These factors have not gone unnoticed in the data mining research community.
Over the past few years research on mining graph data has steadily increased.
A brief survey of the major data mining conferences, such as the Conference on
Knowledge Discovery and Data Mining (KDD), the SIAM Conference on Data
Mining, and the IEEE Conference on Data Mining, has shown that the number
of papers related to mining graph data has grown from 0 in the late 1990s to 40
in 2005. In addition, several annual workshops have been organized around this
theme, including the KDD workshop on Link Analysis and Group Detection, the
KDD workshop on Multi-Relational Data Mining, and the European Workshop on
Mining Graphs, Trees and Sequences. This increasing focus has clearly indicated
the importance of research on mining graph data.

Given the importance of the problem and the increased research activity in
the field, a collection of representative work on mining graph data was needed to
provide a single reference to this work and some organization and cross fertilization
to the various topics within the field. In the remainder of this introduction we first
provide some terminology from the field of mining graph data. We then discuss
some of the representational issues by looking at actual representations in several
important domains. Finally, we provide an overview of the remaining chapters in
the book.

1.1 TERMINOLOGY

Data mining is the extraction of novel and useful knowledge from data. A graph
is a set of nodes and links (or vertices and edges), where the nodes and/or links
can have arbitrary labels, and the links can be directed or undirected (implying
an ordered or unordered relation). Therefore, mining graph data, sometimes called
graph-based data mining, is the extraction of novel and useful knowledge from
a graph representation of data. In general, the data can take many forms from
a single, time-varying real number to a complex interconnection of entities and
relationships. While graphs can represent this entire spectrum of data, they are typ-
ically used only when relationships are crucial to the domain. The most natural
form of knowledge that can be extracted from graphs is also a graph. Therefore,
the knowledge, sometimes referred to as patterns, mined from the data are typically
expressed as graphs, which may be subgraphs of the graphical data, or more abstract
expressions of the trends reflected in the data. Chapter 2 provides more precise def-
initions of graphs and the typical operations performed by graph-based data mining
algorithms.
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While data mining has become somewhat synonymous with finding frequent
patterns in transactional data, the more general term of knowledge discovery encom-
passes this and other tasks as well. Discovery or unsupervised learning includes not
only the task of finding patterns in a set of transactions but also the task of finding
possibly overlapping patterns in one large graph. Discovery also encompasses the
task of clustering, which attempts to describe all the data by identifying categories
or clusters sharing common patterns of attributes and relationships. Clustering can
also extract relationships between clusters, resulting in a hierarchical or taxonomic
organization over the clusters found in the data. In contrast, supervised learning is
the task of extracting patterns that distinguish one set of graphs from another. These
sets are typically called the positive examples and negative examples. These sets of
examples can contain several graph transactions or one large graph. The objective
is to find a graphical pattern that appears often in the positive examples but not in
the negative examples. Such a pattern can be used to predict the class (positive or
negative) of new examples. The last graph mining task is the visualization of the
discovered knowledge. Graph visualization is the rendering of the nodes, links, and
labels of a graph in a way that promotes easier understanding by humans of the
concepts represented by the graph.

All of the above graph mining tasks are described within the chapters of this
book, and we provide an overview of the chapters in Section 1.3. However, an
additional motivation for the work in this book is the important application domains
and how their data is represented as a graph to support mining. In the next section
we describe three domains whose data is naturally represented as a graph and in
which graph mining has been successful.

1.2 GRAPH DATABASES

Three domains that epitomize the tasks of mining graph data are the Internet Movie
Database, the Mutagenesis dataset, and the World Wide Web. We describe several
graph representations for the data in these domains and survey work on mining
graph data in these domains. These databases may also serve as a benchmark set of
problems for comparing and contrasting different graph-based data mining methods.

1.2.1 The Internet Movie Database

The Internet Movie Database (IMDb) [41] maintains a large database of movie and
television information. The information is freely available through online queries,
and the database can also be downloaded for in-depth analysis. This database
emerged from newsgroups in the early 1990s, such as rec.arts.movies, and has now
become a commercial entity that serves approximately 65 million accesses each
month.

Currently, the IMDb has information on 468,305 titles and 1,868,610 people
in the business. The database includes filmographies for actors, directors, writers,
composers, producers, and editors as well as movie information such as titles, release
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dates, production companies and countries, plot summaries, reviews and ratings,
alternative names, genres, and awards.

Given such filmography information, a number of mining tasks can be performed.
Some of these mining tasks exploit the unstructured components of the data. For
example, Chaovalit and Zhou [9] use text-based reviews to distinguish well-accepted
from poorly accepted movies. Additional information can be used to provide recom-
mendations to individuals of movies they will likely enjoy. Melville et al. [33] combine
IMDb movie information (title, director, cast, genre, plot summary, keywords, user
comments, reviews, awards) with movie ratings from EachMovie [14] to predict items
that will be of interest to individuals. Vozalis and Margaritis [42] combine movie
information, ratings from the GroupLens dataset [37], and demographic information
to perform a similar recommendation task. In both of these cases, movie and user
information is treated as a set of independent, unstructured attributes.

By representing movie information as a graph, relationships between movies,
people, and attributes can be captured and included in the analysis. Figure 1.1(a)
shows one possible representation of information related to a single movie. This
hub topology represents each movie as a vertex, with links to attributes describing
the movie. Similar graphs could be constructed for each person as well. With this
representation, one task we can perform is to answer the following question:

What commonalities can we find among movies in the database?

Using a frequent subgraph discovery algorithm, subgraphs that appear in a
large fraction of the movie graphs can be reported. These algorithms may report
discoveries such as movies receiving awards often come from the same small set of
studios [as shown in Fig. 1.1(b)] or certain director/composer pairs work together
frequently [as shown in Fig. 1.1(c)].

By connecting people, movies, and other objects that have relationships to each
other, a single connected graph can be constructed. For example, Figure 1.2 shows
how different movies may have actors, directors, and studios in common. Similarly,
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Figure 1.1. (a) Possible graph representation for information related to a single movie.
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Figure 1.2. Second graph representation in which relationships between data points are

represented using labeled edges.

different actors may appear in the same movie, forming a relationship between these
people. Analysis of this connected graph may answer questions such as:

What common relationships can we find between objects in the database?

For the movie graph, a discovery algorithm may find a recurring pattern that
movies made by the same studio frequently also have the same producer. Jensen and
Neville [21] mention another type of discovery that can be made from a connected
graph. In this case, an emerging film star may be characterized in the graph by a
sequence of successful movies in which he or she stars and by winning one or more
awards.

Other analyses can be made regarding the topology of such graphs. For example,
Ravasz and Barabasi [36] analyzed a graph constructed by linking actors appearing
in the same movie and found that the graph has a distinct hierarchical topology.
Movie graphs can also be used to perform classification. As an example, Jensen and
Neville [21] use information in a movie graph as shown in Figure 1.2 to predict
whether a movie will make more than $2 million in its opening weekend. In a
separate study, they use structure around nominated and nonnominated movies to
predict which new movies will be nominated for awards [32].

These examples show that patterns can be learned from structural information
that is explicitly provided. However, missing structure can also be inferred from
this data. Getoor et al.’s [16] approach learns a graph linking actors and movies
using IMDb information together with demographic information based on actor ZIP
codes. Mining algorithms can be used to infer missing links in the movie graph.
For example, given information about a collection of people who starred together
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in a movie, link completion [17, 28] can be used to determine who the remaining
individuals are who starred in the same movie. Such link completion algorithms can
also be used to determine when one movie is a remake of another [21].

1.2.2 Mutagenesis Data

The Mutagenesis dataset is a chemical compound dataset where the task is explicitly
defined as:

Given the molecular structure of a compound, identify the compound as muta-
genic or not mutagenic.

The Mutagenesis dataset was collected to identify mutagenic activity in che-
mical data [10]. Mutation is a structural alteration in DNA (deoxyribonucleic acid).
Occasionally, a mutation improves an organism’s chance of surviving or has no
observable effect. In most cases, however, such DNA changes harm human health.
A high correlation is also observed between mutagenicity and carcinogenicity. Some
chemical compounds are known to cause frequent mutations. Mutagenicity cannot
be practically determined for every compound using biological experiments, so
accurate evaluation of mutagenic activity from chemical structure is very desirable.

Structure–activity relationships (SARs) relate biological activity with molecular
structure. The importance of SARs to drug design is well established. The Mutagen-
esis problem focuses on obtaining SARs that describe the mutagenicity of nitroaro-
matic compounds or organic compounds composed of NO or NO2 groups attached
to rings of carbon atoms. Analyzing relationships between mutagenic activity and
molecular structure is of great interest because highly mutagenic nitroaromatic com-
pounds are carcinogenic.

The Mutagenesis dataset collected by Debnath et al. [10] consists of the mole-
cular structure of 230 compounds, such as the one shown in Figure 1.3. Of these
compounds, 138 are labeled as mutagenic and 92 are labeled nonmutagenic. Each
compound is described by its constituent atoms, bonds, atom and bond types, and
partial charges on atoms. In addition, the hydrophobicity of the compound (log P ),
the energy level of the compound’s lowest unoccupied molecular orbital (LUMO), a
Boolean attribute identifying compounds with three or more benzyl rings (I1), and a
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Figure 1.3. 1,6,-Dinitro-9,10,11,12-tetrahydrobenzo[e]pyrene.
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Boolean attribute identifying compounds that are acenthryles (Ia). The mutagenicity
of the compounds has been determined using the Ames test [1]. While alternative
datasets are being considered by the community as challenges for structural data
mining [29], the Mutagenesis dataset provides both a representative case for graph
representations of chemical data and an ongoing challenge for researchers in the
data mining community.

Some work has focused on analyzing these chemical compounds using global,
nonstructural descriptors such as molecular weight, ionization potential, and various
physiocochemical properties [2, 19]. More recently, researchers have used induc-
tive logic programming (ILP) techniques to encode additional relational information
about the compounds and to infuse the discovery process with background knowl-
edge and high-level chemical concepts such as the definitions of methyl groups and
nitro groups [23, 40]. In fact, Srinivasan and King in a separate study [38] show that
traditional classification approaches such as linear regression improve dramatically
in classification accuracy when enhanced with structural descriptors identified by
ILP techniques.

Inductive logic programming methods face some limitations because of the
explicit encoding of structural information and the prohibitive size of the search
space [27]. Graphs provide a natural representation for the structural information
contained in chemical compounds. A common mining task for the Mutagenesis data,
therefore, is to represent each compound as a separate graph and look for frequent
substructures in these graphs. Analysis of these graphs may answer the following
question:

What commonalities exist in mutagenic or non-mutagenic compounds that will
help us to understand the data?

This question has been addressed by researchers with notable success [5, 20].
A related question has been addressed as well [11, 22]:

What commonalities exist in mutagenic or nonmutagenic compounds that will
help us to learn concepts to distinguish the two classes?

An interesting twist on this task has been offered by Deshpande et al. [12], who
do not use the substructure discovery algorithm to perform classification but instead
use frequency of discovered subgraphs in the compounds to form feature vectors
that are then fed to a Support Vector Machine classifier.

Many of the graph templates used for the Mutagenesis and other chemical
structure datasets employ a similar representation. Vertices correspond to atoms and
edges represent bonds. The vertex label is the atom type and the edge label is the
bond type. Alternatively, separate vertices can be used to represent attributes of
the atoms and the bonds, as shown in Figure 1.4. In this case information about
the atom’s chemical element, charge, and type (whether it is part of an aromatic
ring) is given along with attributes of the bond such as type (single, double, triple)
and relative three-dimensional (3D) orientation. Compound attributes including log
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Figure 1.4. Graph representation for a chemical compound.

P , LUMO, I1, and Ia can be attached to the vertex representing the entire chemical
compound.

When performing a more in-depth analysis of the data, researchers often aug-
ment the graph representation with additional features. The types of features that
are added are reflective of the type of discoveries that are desired. Ketkar et al. [22],
for example, add inequality relationships between atom charge values with the goal
of identifying value ranges in the concept description. In Chapter 14 of this book,
Okada provides many more descriptive features that can be considered.

1.2.3 Web Data

The World Wide Web is a valuable information resource that is complex, dyna-
mically evolving, and rich in structure. Mining the Web is a research area that is
almost as old as the Web itself. Although Etzioni coined the term “Web mining” [15]
to refer to extracting information from Web documents and services, the types of
information that can be extracted are so varied that this has been refined to three
classes of mining tasks: Web content mining, Web structure mining, and Web usage
mining [26].

Web content mining algorithms attempt to answer the following question:

What patterns can I find in the content of Web pages?

The most common approach to answering this question is to perform mining
of the content that is found within each page on the Web. This content typically
consists of text occasionally supplemented with HTML tags [8, 43]. Using text
mining techniques, the discovered patterns facilitate classification of Web pages and
Web querying [4, 34, 44].

When structure is added to Web data in the form of hyperlinks, analysts can
then perform Web structure mining. In a Web graph, vertices represent Web pages
and edges represent links between the Web pages. The vertices can optionally be
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labeled by the domain name (as Kuramochi and Karypis describe in Chapter 6), and
edges are typically unlabeled or labeled with a uniform tag. Additional vertices can
be attached to the Web page nodes that are labeled with keywords or other textual
information found in the Web page content. Figure 1.5 shows a sample graph of
this type for a collection of three Web pages. With the inclusion of this hypertext
information, Web page classification can be performed based on structure alone
(Gartner and co-workers describe this in Chapter 11 of this book) or together with
Web content information [18]. Algorithms that analyze Web pages based on more
than textual content can also potentially glean more complex patterns, such as “there
is a prevalence of data mining web pages that have links to job pages and links to
publication pages.”

Other researchers focus on insights that can be drawn using structural infor-
mation alone. Chakrabarti and Faloutsos. (Chapter 4) and others [7, 24] have studied
the unique attributes of graphs created from Web hyperlink information. Such hyper-
link graphs can also be used to answer the following question:

What patterns can I find in the Web structure?

In Chapter 6, Kuramochi and Karypis discover frequent subgraphs in these
topology graphs. In Chapter 16, Tomkins and Kumar show how new or emerging
communities of Web pages can be identified from such a graph. Analysis of this
graph leads to identification of topic hubs and authorities [25]. Authorities in this
case are highly ranked pages on a given topic, and hubs represent overview sites
with links to strong authority pages. The PageRank program [6] precomputes page
ranks based on the number of links to the page from other sites together with the
probability that a Web surfer will visit the page directly, without going through
intermediary sites. In Chapter 12, Shimbo and Ito also demonstrate how the relat-
edness of Web pages can be determined from link structure information. Finally,
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Figure 1.5. Graph representation for Web text and structure data. Solid arrows represent

edges labeled ‘‘hyperlink’’ and dashed arrows represent edges labeled ‘‘keyword.’’
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Desikan and Srivastava [13] have been investigating methods of finding patterns
in dynamically evolving graphs, which can provide insights on trends as well as
potential intrusions.

The third type of question that is commonly addressed in mining the web is:

What commonalities can we find in Web navigation patterns?

Answering this question is the problem of Web usage mining. Although mining
clickstream data on the client side has been investigated [30], data is most easily
collected and mined from Web servers [39]. Didimo and Liotta (Chapter 3) provide
some graph representations and visualizations of navigation patterns. As Berendt
points out [3], a graph representation of navigation allows the individual’s website
roadmap to be constructed. From the graph one can determine which pages act
as starting points for the site, which collection of pages are typically navigated
sequentially, and how easily (or often) are pages within the site accessed. Navigation
graphs can be used to categorize Web surfers and can ultimately assist in organizing
websites and ranking Web pages [3, 31, 35, 45].

1.3 BOOK OVERVIEW

The intention of this book is to provide an overview of the state of the art in mining
graph data. To this end, we have gathered writings from colleagues that contribute
to varied aspects of the problem. The aspects we focus on here are basic graph
tools, techniques for mining graph data, and noteworthy graph mining applications.

Chapter 2 kicks off the graph tools part of the book by providing working
definitions of key terms including graphs, subgraphs, and the operation that underlies
much of graph mining, graph isomorphism. Here, Bunke and Neuhaus examine
graph isomorphism techniques in detail and evaluate their merits based on the type
of data that is available and the task that must be performed. Didimo and Liotta
provide a thorough overview of graph visualization techniques in Chapter 3. They
show how graph drawing algorithms assist and enhance the mining process and
show how many of the techniques are customized for particular mining and other
graph-based tasks. In Chapter 4, Chakrabarti and Faloutsos describe how the R-MAT
algorithm can be used to generate graphs that exhibit properties found in real-world
graphs. The ability to generate such graphs is useful for developing new mining
algorithms, for testing existing algorithms, and for performing mining tasks such as
anomaly detection.

In Part II, we highlight some of the most popular mining techniques that are cur-
rently developed for graph data. Chapters 5 through 7 focus on methods of discov-
ering subgraph patterns from graph data. Yan and Han (Chapter 5) and Kuramochi
and Karypis (Chapter 6) investigate efficient methods for extracting frequent sub-
structures from graph data. Cook, Holder, and Ketkar (Chapter 7) evaluate subgraph
patterns based on their ability to compress the input graph. Discovered subgraphs
can be used to generate a graph grammar that is descriptive of the data, as shown by
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Jonyer in Chapter 8. In contrast, Ohara et al. (Chapter 9) allow discovered subgraphs
to represent features in a supervised learning problem. These subgraphs represent
the attributes in a decision tree that can be learned from graph data. In Chapter 10,
Liquière presents an alternative method for inducing concepts from graph data. By
defining a partial order over the graph-based examples, the classification space can
be viewed as a lattice and classical algorithms can be used to construct the concept
definition from this lattice. In Chapter 11, Gärtner et al. define kernels on struc-
tural data that can be represented as a graph. The result can be applied to graph
classification, making this problem tractable.

The next two chapters focus on properties of portions of the graph (individual
edges, nodes, or neighborhoods around nodes), rather than on the graph as a whole,
to perform the mining task. Shimbo and Ito, in Chapter 12, define an inner product
of nodes in a graph. The resulting kernel can be used to analyze Web pages based
on a combination of two factors: importance of the page and the degree to which
two pages are related. Bhattacharya and Getoor use this location information in
Chapter 13 to perform graph-based entity resolution. Edge attributes and constructed
clusters of nodes can be used to identify the unique (nonduplicated) set of entities
in the graph and to induce the corresponding entity graph.

The final part of the book features a collection of graph mining applications.
These applications cover a diverse set of fields that are challenging and relevant,
and for which data can be naturally represented as a graph. In Chapter 14, Okada
provides an overview of chemical structure mining, including graph representations
of the data and graph-based algorithms for analyzing the data. Zaki uses tree mining
techniques to analyze bioinformatics data in Chapter 15. Specifically, the Sleuth
algorithm is used to mine subtrees and can be applied to bioinformatics data such
as RNA (ribonucleic acid) structures and phylogenetic subtrees. Tomkins and Kumar
apply graph algorithms to Web data in Chapter 16 in which dense subgraphs are
extracted that may represented communities of websites. Finally, Greenblatt and co-
workers introduce a variety of graph mining tools in Chapter 17 that are effective for
analyzing social network graphs. These applications are by no means comprehensive
but illustrate the types of fields for which graph mining techniques are needed, and
define the challenges that continue to drive this growing field of study.
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