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AALEN’S ADDITIVE RISK MODEL.
See ADDITIVE RISK MODEL, AALEN’S

ABAC

A graph from which numerical values may be
read off, usually by means of a grid of lines
corresponding to argument values.

See also NOMOGRAMS.

ABACUS

A simple instrument to facilitate numerical
computation. There are several forms of aba-
cus. The one in most common use at present
is represented diagramatically in Fig. 1. It
consists of a rectangular framework ABCD
with a cross-piece PQ parallel to the longer
sides, AB and CD, of the rectangle. There are
a number (at least eight, often more) of thin
rods or wire inserted in the framework and
passing through PQ, parallel to the shorter
sides, AD and BC. On each rod there are
threaded four beads between CD and PQ,
and one bead between PQ and AB.

Analogously to the meaning of position in
our number system, the extreme right-hand
rod corresponds to units; the next to the left,
tens; the next to the left, hundreds; and so
on. Each bead in the lower rectangle (PQCD)
counts for 1, when moved up, and each bead in
the upper rectangle (ABQP counts for 5. The
number shown in Fig. 2 would be 852 if beads
on all rods except the three extreme right-
hand ones are as shown for the three extreme
left-hand rods (corresponding to ‘‘zero’’).

Figure 1. Diagrammatic representation of the
form of abacus presently in common use.

Figure 2. Abacus that would be showing the num-
ber 852 if beads on all rods except the three extreme
right-hand ones are as shown for the three extreme
left-hand rods (corresponding to ‘‘zero’’).

The Roman abacus consisted of a metal
plate with two sets of parallel grooves, the
lower containing four pebbles and the upper
one pebble (with a value five times that of
each pebble in the corresponding groove of the
lower set). The Japanese and Chinese abacus
(still in use) consists of a frame with beads on
wires. The Russian abacus, which originated
in the sixteenth century (the modern version
in the eighteenth century), is also still in use.
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ABBE, ERNST

Born: January 23, 1840, in Eisenach, Ger-
many.

Died: January 14, 1905, in Jena, Ger-
many.

Contributed to: theoretical and applied
optics, astronomy, mathematical statis-
tics.

The recognition of Abbe’s academic talent by
those in contact with him overcame a child-
hood of privation and a financially precarious
situation very early in his academic career,
when he completed ‘‘On the Law of Distri-
bution of Errors in Observation Series,’’ his
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2 ABEL’S FORMULA

inaugural dissertation for attaining a lecture-
ship at Jena University at the age of 23 [1].
This dissertation, partly motivated by the
work of C. F. Gauss∗, seems to contain his
only contributions to the probability analy-
sis of observations subject to error. These
contributions constitute a remarkable antic-
ipation of later work in distribution theory
and time-series∗ analysis, but they were over-
looked until the late 1960s [5,8], and almost
none of the early bibliographies on probabil-
ity and statistics (a notable exception being
ref. 10) mention this work. In 1866, Abbe was
approached by Carl Zeiss, who asked him to
establish a scientific basis for the construc-
tion of microscopes; this was the beginning
of a relationship that lasted throughout his
life, and from this period on his main field of
activity was optics [9] and astronomy∗.

Abbe shows, first, that the quantity � =∑n
i=1 Z2

i , where Zi, i = 1, . . . , n, are n inde-
pendently and identically distributed N(0,
1) random variables, is described by a chi-
square∗ density with n degrees of freedom
[5,8], although this discovery should perhaps
be attributed to I. J. Bienaymé∗ [4]. Second,
again initially by means of a ‘‘discontinu-
ity factor’’ and then by complex variable
methods, Abbe obtains the distribution of
� =∑n

j=1(Zj − Zj+1)2, where Zn+1 = Z1, and
ultimately that of �/�, a ratio of quadratic
forms∗ in Z1, . . . , Zn very close in nature to
the definition of what is now called the first
circular serial correlation∗ coefficient, and
whose distribution under the present con-
ditions is essentially that used to test the
null hypothesis of Gaussian white noise∗
against a first-order autoregression alterna-
tive, in time-series∗ analysis [3]. (The dis-
tribution under such a null hypothesis was
obtained by R. L. Anderson in 1942.) Knopf
[6] expresses Abbe’s intention in his disserta-
tion as being to seek a numerically express-
ible criterion to determine when differences
between observed and sought values in a
series of observations are due to chance alone.
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E. SENETA

ABEL’S FORMULA

(Also known as the Abel identity.) If each
term of a sequence of real numbers {ai} can be
represented in the form ai = bici, i = 1, . . . , n,
then a1 + a2 + · · · + an can be expressed as

s1(b1 − b2)+ s2(b2 − b3)+ · · ·
+ sn−1(bn−1 − bn),

where si = c1 + · · · + ci. Equivalently,
m∑

k=n

bkck = Bmcm+1 − Bn−1cn

+
m∑

k=n

Bk(ck − ck+1),

where Bk =
∑k

l=1 bl.
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This representation is usually referred to
as Abel’s formula, due to Norwegian math-
ematician Niels Henrik Abel (1802–1829).
(The continuous analog of this formula is the
formula of integration by parts.) It is useful
for manipulations with finite sums.
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ABSOLUTE ASYMPTOTIC EFFICIENCY
(AAE). See ESTIMATION, CLASSICAL

ABSOLUTE CONTINUITY

Absolute continuity of measures, the Radon–
Nikodym theorem∗, and the Radon–Nikodym
derivative∗ are subjects properly included in
any basic text on measure and integration.
However, both the mathematical theory and
the range of applications can best be appre-
ciated when the measures are defined on an
infinite-dimensional linear topological space.
For example, this setting is generally nec-
essary if one wishes to discuss hypothesis
testing∗ for stochastic processes with infi-
nite parameter set. In this article we first
define basic concepts in the area of abso-
lute continuity, state general conditions for
absolute continuity to hold, and then spe-
cialize to the case where the two measures
are defined on either a separable Hilbert
space or on an appropriate space of functions.
Particular attention is paid to Gaussian mea-
sures.

The following basic material is discussed
in many texts on measure theory∗; see, e.g.,
ref. 23. Suppose that (�, β) is a measurable
space, and that µ1 and µ2 are two probability
measures on (�,β). µ1 is said to be absolutely
continuous with respect to µ2 (µ1 � µ2) if
A in β and µ2(A) = 0 imply that µ1(A) = 0.
This is equivalent to the following: µ1 � µ2
if and only if for every ε > 0 there exists δ >
0 such that µ2(A) < δ implies that µ1(A) �
ε. Similar definitions of absolute continu-
ity can be given for nonfinite signed mea-
sures; this article, however, is restricted to

probability measures. When µ1 � µ2, the
Radon–Nikodym theorem∗ states that there
exists a real-valued β-measurable function
f such that µ1(A) = ∫

A f dµ2 for all A in β.
The function f , which belongs to L1[�, β,µ2]
and is unique up to µ2-equivalence, is called
the Radon–Nikodym derivative of µ1 with
respect to µ2, and is commonly denoted by
dµ1/dµ2. In statistical and engineering appli-
cations dµ1/dµ2 is usually called the likeli-
hood ratio∗, a term that has its genesis in
maximum likelihood estimation∗.

Absolute continuity and the Radon–
Nikodym derivative have important appli-
cations in statistics. For example, suppose
that X : �→ RN is a random vector. Sup-
pose also that under hypothesis H1 the dis-
tribution function of X is given by F1 =
µ1◦X−1[F1(x) = µ1{ω : X(ω) � x}], whereas
under H2, X has the distribution function
F2 = µ2 ◦X−1. Fi defines a Borel measure on
R1; one says that Fi is induced fromµi by X. A
statistician observes one realization (sample
path) of X, and wishes to design a statisti-
cal test to optimally decide in favor of H1
or H2. Then, under any of several classical
decision criteria of mathematical statistics
(e.g., Bayes risk, Neyman–Pearson∗, mini-
mum probability of error), an optimum deci-
sion procedure when µ1 � µ2 is to form the
test statistic∗ �(X) = [dF1/dF2](X) and com-
pare its value with some constant, C0; the
decision is then to accept H2 if �(X) � C0,
accept H1 if �(X) > C0. The value of C0 will
depend on the properties of F1 and F2 and
on the optimality criterion. For more details,
see HYPOTHESIS TESTING∗.1

Two probability measures µ1 and µ2 on
(�, β) are said to be equivalent (µ1 ∼ µ2) if
µ1 � µ2 and µ2 � µ1. They are orthogonal,
or extreme singular (µ1 ⊥ µ2) if there exists a
set A in β such that µ2(A) = 0 and µ1(A) = 1.
For the hypothesis-testing problem discussed
above, orthogonal induced measures permit
one to discriminate perfectly between H1 and
H2. In many practical applications, physical
considerations rule out perfect discrimina-
tion. The study of conditions for absolute
continuity then becomes important from the
aspect of verifying that the mathematical
model is valid.

In the framework described, the random
vector has range in RN . However, absolute
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continuity, the Radon–Nikodym derivative,
and their application to hypothesis-testing
problems are not limited to such finite-
dimensional cases. In fact, the brief com-
ments above on hypothesis testing apply
equally well when X takes its value in an
infinite-dimensional linear topological space,
as when X(ω) represents a sample path∗
from a stochastic process∗ (Xt), t ∈ [a, b].
(The infinite-dimensional case does intro-
duce interesting mathematical complexities
that are not present in the finite-dimensional
case.)

GENERAL CONDITIONS FOR ABSOLUTE
CONTINUITY

We shall see later that special conditions
for absolute continuity can be given when
the two measures involved have certain spe-
cialized properties, e.g., when they are both
Gaussian. However, necessary and sufficient
conditions for absolute continuity can be
given that apply to any pair of probability
measures on any measurable space (�, β).
Further, if (�,β) consists of a linear topologi-
cal space� and the smallest σ -field β contain-
ing all the open sets (the Borel σ -field), then
additional conditions for absolute continuity
can be obtained that apply to any pair of prob-
ability measures on (�, β). Here we give one
well-known set of general necessary and suf-
ficient conditions. First, recall that if (�,β, P)
is a probability space and F a collection of real
random variables on (�, β), then F is said to
be uniformly integrable with respect to P [23]
if the integrals

∫
{ω:|f (ω)|�c} |f (ω)|dP(ω), c > 0, f

in F, tend uniformly to zero as c→∞. An
equivalent statement is the following: F is
uniformly integrable (P) if and only if

sup
F

∫
�

|f (ω)|dP(ω) <∞(a)

and

(b) For every ε > 0 there exists δ > 0 such
that P(A) < δ implies that

sup
F

∫
A
|f (ω)|dP(ω) � ε.

Theorem 1. Suppose that µ1 and µ2 are
two probability measures on a measurable

space (�,β). Suppose that {Fn, n � 1} is an
increasing family of sub-σ -fields of β such
that β is the smallest σ -field containing ∪nFn.
Let µn

i be the restriction of µi to Fn. Then
µ1 � µ2 if and only if

µn
1 � µn

2 for all n � 1,(a)

and

{dµn
1/dµ

n
2, n � 1}(b)

is uniformly integrable (µ2).

When µ1 � µ2, then dµ1/dµ2 = limn dµn
1/

dµn
2 almost everywhere (a.e.) dµ2.

Condition (a) of Theorem 1 is obviously neces-
sary. The necessity of (b) follows from the fact
that {dµn

1/dµ
n
2, Fn : n � 1} is a martingale∗

with respect to µ2. This property, and the
martingale convergence theorem, yield the
result that dµ1/dµ2 = limn dµn

1/dµ
n
2 a.e. dµ2.

Sufficiency of (a) and (b) follows from the sec-
ond definition of uniform integrability given
above and the assumption that β is the small-
est σ -field containing ∪nFn.

Conditions (a) and (b) of Theorem 1 are
also necessary and sufficient for µ1 � µ2
when the family of increasing σ -fields (Ft)
has any directed index set.

A number of results frequently used to
analyze absolute continuity can be obtained
from Theorem 1. This includes, for example,
Hájek’s divergence criterion [20] and Kaku-
tani’s theorem on equivalence of infinite prod-
uct measures [29] (a fundamental result in
its own right).

The conditions of Theorem 1 are very gen-
eral. However, in one respect they are some-
what unsatisfactory. They usually require
that one specify an infinite sequence of
Radon–Nikodym derivatives {dµn

1/dµ
n
2, n �

1}. It would be preferable to have a more
direct method of determining if absolute con-
tinuity holds. One possible alternative when
the measures are defined on a separable met-
ric space involves the use of characteristic
functions∗. The characteristic function of a
probability measure defined on the Borel σ -
field of a separable metric space completely
and uniquely specifies the measure [38]. Thus
in such a setting, two characteristic func-
tions contain all the information required
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to determine whether absolute continuity
exists between the associated pair of mea-
sures. The use of characteristic functions
offers a method for attacking the following
problem. For a given measure µ on (�, β)
determine the set Pµ of all probability mea-
sures on (�,β) such that ν � µ for all ν in Pµ.
Some results on this problem are contained
in ref. 3; further progress, especially detailed
results for the case of a Gaussian measure
µ on Hilbert space, would be useful in sev-
eral important applications areas (detection
of signals in noise, stochastic filtering, infor-
mation theory∗).

PROBABILITY MEASURES ON HILBERT
SPACES

There has been much activity in the study
of probability measures on Banach spaces
[1,4,5,31]. Here we restrict attention to the
case of probabilities on Hilbert spaces; this
is the most important class of Banach spaces
for applications, and the theory is relatively
well developed in this setting.

Let H be a real separable Hilbert space
with inner product 〈·, ·〉 and Borel σ -field �
(see SEPARABLE SPACE). Let µ be a proba-
bility measure on �. For any element y in
H, define the distribution function Fy by
Fy(a) = µ{x : 〈y, x〉 � a}, a in (−∞,∞). µ is
said to be Gaussian if Fy is Gaussian for all
y in H. It can be shown that for every Gaus-
sian µ there exists a self-adjoint trace-class
nonnegative linear operator Rµ in H and an
element mµ in H such that

〈y, mµ〉 =
∫

H
〈y, x〉dµ(x) (1)

and

〈Rµ, v〉 =
∫

H
〈y−mµ, x〉〈v−mµ, x〉dµ(x) (2)

for all y and v in H. Rµ is called the covari-
ance (operator) of µ, and mµ is the mean
(element). Conversely, to every self-adjoint
nonnegative trace-class operator Rµ and ele-
ment m in H there corresponds a unique
Gaussian measure µ such that relations (1)
and (2) are satisfied. Non-Gaussian measures
µ may also have a covariance operator Rµ
and mean element mµ satisfying (1) and

(2); however, the covariance Rµ need not be
trace-class. For more details on probability
measures on Hilbert space, see refs. 17, 38,
and 53.

Elegant solutions to many problems of
classical probability theory (and applications)
have been obtained in the Hilbert space
framework, with methods frequently mak-
ing use of the rich structure of the theory
of linear operators. Examples of such prob-
lems include Sazanov’s solution to obtain-
ing necessary and sufficient conditions for a
complex-valued function on H to be a char-
acteristic function∗ [49]; Prohorov’s condi-
tions for weak compactness of families of
probability measures, with applications to
convergence of stochastic processes [43]; the
results of Mourier on laws of large numbers∗

[34]; the results of Fortét and Mourier on
the central limit theorem∗ [15,34]; and con-
ditions for absolute continuity of Gaussian
measures. The latter problem is examined
in some detail in the following section. The
study of probability theory in a Hilbert space
framework received much of its impetus from
the pioneering work of Fortét and Mourier
(see refs. 15 and 34, and the references cited
in those papers). Their work led not only to
the solution of many interesting problems
set in Hilbert space, but also to extensions
to Banach spaces and more general linear
topological spaces [1,4,5,15,31,34].

The infinite-dimensional Hilbert spaces H
most frequently encountered in applications
are L2[0, T] (T <∞) and l2. For a discussion
of how Hilbert spaces frequently arise in engi-
neering applications, see COMMUNICATION

THEORY, STATISTICAL. In particular, the inter-
est in Gaussian measures on Hilbert space
has much of its origin in hypothesis testing
and estimation problems involving stochas-
tic processes: detection and filtering of sig-
nals embedded in Gaussian noise. For many
engineering applications, the noise can be
realistically modeled as a Gaussian stochas-
tic process with sample paths almost surely
(a.s.) in L2[0, T] or a.s. in l2. When H is
L2[0, T], a trace-class covariance operator
can be represented as an integral opera-
tor whose kernel is a covariance function.
Thus suppose that (Xt), t ∈ [0, T], is a measur-
able zero-mean stochastic process on (�, β, P),
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inducing the measure µ on the Borel σ -
field of L2[0, T]; µ(A) = P{ω : X(ω) ∈ A}. Then
E
∫ T

0 X2
t (ω) dt <∞ if and only if µ has a

trace-class covariance operator Rµ defined by
[Rµf ](t) = ∫ T

0 R(t, s)f (s) ds, f in L2[0, T], where
R is the covariance function of (Xt). If Rµ is
trace-class, then E

∫ T
0 X2

t (ω) dt = trace Rµ.

ABSOLUTE CONTINUITY OF PROBABILITY
MEASURES ON HILBERT SPACE

If H is finite-dimensional and µ1 and µ2 are
two zero-mean Gaussian measures on �, it is
easy to see that µ1 and µ2 are equivalent if
and only if their covariance matrices have the
same range space. However, if H is infinite-
dimensional, this condition (on the ranges
of the covariance operators) is neither nec-
essary nor sufficient for µ1 ∼ µ2. The study
of conditions for absolute continuity of two
Gaussian measures on function space has a
long and active history. Major early contribu-
tions were made by Cameron and Martin [6,7]
and by Grenander [18]. The work of Cameron
and Martin was concerned with the case
when one measure is Wiener measure (the
measure induced on C[0, 1] by the Wiener
process∗) and the second measure is obtained
from Wiener measure by an affine transfor-
mation. Grenander obtained conditions for
absolute continuity of a Gaussian measure
(induced by a stochastic process with continu-
ous covariance) with respect to a translation.
Segal [50] extended the work of Cameron and
Martin to a more general class of affine trans-
formations of Wiener measure. Segal also
obtained [50] conditions for absolute continu-
ity of Gaussian ‘‘weak distributions.’’ These
necessary and sufficient conditions can be
readily applied to obtain sufficient conditions
for equivalence of any pair of Gaussian mea-
sures on H; they can also be used to show that
these same conditions are necessary. Com-
plete and general solutions to the absolute
continuity problem for Gaussian measures
were obtained by Feldman [12] and Hájek
[21]. Their methods are quite different. The
main result, in each paper, consists of two
parts: a ‘‘dichotomy theorem,’’ which states
that any two Gaussian measures are either
equivalent or orthogonal; and conditions that
are necessary and sufficient for equivalence.

The following theorem for Gaussian mea-
sures on Hilbert space is a modified ver-
sion of Feldman’s result [12]; several proofs
have been independently obtained (Kallian-
pur and Oodaira [30], Rao and Varadarajan
[44], Root [45]).

Theorem 2. Suppose that µ1 and µ2 are
two Gaussian measures on �, and that µi has
covariance operator Ri and mean mi, i = 1, 2.
Then:

1. either µ1 ∼ µ2 or µ1 ⊥ µ2;
2. µ1 ∼ µ2 if and only if all the following

conditions are satisfied:
(a) range (R1/2

1 ) = range (R1/2
2 );

(b) R1 = R1/2
2 (I + T)R1/2

2 , where I is the
identity on H and T is a Hilbert–
Schmidt operator in H:

(c) m1 −m2 is in range (R1/2
1 ).

Various specializations of Theorem 2 have
been obtained; see the references in refs. 8
and 47. Two of the more interesting special
cases, both extensively analyzed, are the fol-
lowing: (1) both measures induced by station-
ary Gaussian stochastic processes; (2) one of
the measures is Wiener measure. In the for-
mer case, especially simple conditions can be
given when the two processes have rational
spectral densities; see the papers by Feld-
man [13], Hájek [22], and Pisarenko [40,41].
In this case, when the two measures have the
same mean function, µ1 ∼ µ2 if and only if
lim|λ|→∞ f1(λ)/f2(λ) = 1, where fi is the spec-
tral density∗ of the Gaussian process induc-
ing µi. Moreover, this occurs if and only if
the operator T appearing in Theorem 2 is
also trace-class [22]. For the case where one
of the measures is Wiener measure, see the
papers by Shepp [51], Varberg [54,55], and
Hitsuda [24].

The problem of determining the Radon–
Nikodym derivative for two equivalent Gaus-
sian measures on a Hilbert space has been
studied, especially by Rao and Varadara-
jan [44]. For convenience, we use the nota-
tion of Theorem 2 and assume now that all
covariance operators are strictly positive. In
the case where the Hilbert space is finite-
dimensional, the log of the Radon–Nikodym
derivative dµ1/dµ2 (log-likelihood ratio∗) is
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easily seen to be a quadratic-linear form;
that is, log�(X) = 〈x, Wx〉 + 〈x, b〉 + constant,
where the linear operator W = 1

2 (R−1
2 −R−1

1 ),
b = R−1

1 m1 − R−1
2 m2, and log ≡ loge. How-

ever, when H is infinite-dimensional, the
log-likelihood ratio need not be a quadratic-
linear form defined by a bounded linear oper-
ator. This holds true even if the operator T
of Theorem 2 is not only Hilbert–Schmidt,
but is also trace class. However, when T
is Hilbert–Schmidt, one can always express
the log of the Radon–Nikodym derivative as
an almost surely convergent series [44]. The
essential difficulty in characterizing the like-
lihood ratio for infinite-dimensional Hilbert
space is that the operators R1 and R2 can-
not have bounded inverses and these two
inverses need not have the same domain of
definition. Even if range (R1) = range (R2),
so that R−1

2 −R−1
1 is defined on range (R1), it

is not necessary that R−1
2 − R−1

1 be bounded
on range (R1).

In the finite-dimensional case, if R1 =
R2, then log�(X) = 〈x, b〉+ constant, with b
defined as above, so that the log-likelihood
ratio is a bounded linear form. This need not
be the case for infinite-dimensional Hilbert
space; in general, log�(X) will be a bounded
linear form (when R1 = R2) if and only if
m1 −m2 is in the range of R1. As can be
seen from Theorem 1, this condition is strictly
stronger than the necessary and sufficient
condition for µ1 ∼ µ2, which (with R1 = R2)
is that m1 −m2 be in range (R1/2

1 ).
If the two measures are induced by sta-

tionary Gaussian processes with rational
spectral densities, expressions for the like-
lihood ratio can be given in terms of the
spectral densities; see the papers by Pis-
arenko [41] and Hájek [22].

In many applications, only one of the two
measures can be considered to be Gaussian.
For this case, a useful sufficient condition
for absolute continuity is given in ref. 2. This
condition can be applied when the two mea-
sures are induced by stochastic processes (Xt)
and (Yt), where (Yt) is a function of (Xt)
and a process (Zt) that is independent of
(Xt). In particular, if (Xt) is Gaussian and
(Yt) = (Xt + Zt), then conditions for absolute
continuity can be stated in terms of sample
path properties of the (Zt) process (abso-
lute continuity, differentiability, etc.). Such

conditions can often be verified in physical
models by knowledge of the mechanisms gen-
erating the observed data, when the distri-
butional properties of the (Zt) process are
unknown. When (Xt) is the Wiener process
on [0, T], conditions for absolute continu-
ity of the induced measures on L2[0, T] can
be obtained from the results of refs. 10, 27,
and 28. Some of these results do not require
independence of (Xt) and (Zt).

Other results on absolute continuity
of measures on Hilbert space have been
obtained for infinitely divisible measures
[16], measures induced by stochastic pro-
cesses with independent increments [16],
admissible translations of measures [42,52],
and for a fixed measure and a second measure
obtained from the first measure by a non-
linear transformation [16]. With respect to
admissible translates, Rao and Varadarajan
[44] have shown that if µ is a zero-mean mea-
sure having a trace-class covariance operator,
R, then the translate of µ by an element y is
orthogonal to µ if y is not in range (R1/2). A
number of these results are collected in the
book by Gihman and Skorohod [17], which
also contains much material on basic proper-
ties of probability measures on Hilbert space,
and on weak convergence∗. The book by Kuo
[33] contains not only basic material on prob-
ability measures on Hilbert spaces (including
absolute continuity), but also an introduc-
tion to some topics in probability on Banach
spaces.

ABSOLUTE CONTINUITY OF MEASURES
INDUCED BY STOCHASTIC PROCESSES

Many problems involving stochastic proces-
ses are adequately modeled in the framework
of probability measures on Hilbert space, pro-
vided that the sample paths of each process of
interest belong almost surely to some separa-
ble Hilbert space. However, this condition is
not always satisfied; even when it is satisfied,
one may prefer conditions for absolute conti-
nuity stated in terms of measures on RT (the
space of real-valued functions on T), where
T is the parameter set of the process. For
example, a class of stochastic processes fre-
quently considered are those having almost
all paths in D [0, 1]. D [0, 1] is the set of all
real-valued functions having limits from both
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left and right existing at all points of (0, 1),
with either left-continuity or right-continuity
at each point of (0, 1), and with a limit from
the left (right) existing at 1(0). D [0, 1] is a
linear metric space∗ under the Skorohod met-
ric [38], but this metric space is not a Hilbert
space.

The general conditions for absolute con-
tinuity stated in Theorem 1 apply in any
setting. Moreover, necessary and sufficient
conditions for equivalence of measures (most
frequently on RT) induced by two Gaussian
stochastic processes can be stated in a num-
ber of ways: The reproducing kernel Hilbert
space (r.k.H.s.) of the two covariance func-
tions [30,37,39]; operators and elements in
an L2 space of real-valued random functions
[12]; operators and elements in an L2-space
of random variables [46]; and tensor products
[35]. Hájek’s conditions for absolute continu-
ity in terms of the divergence [21] apply to the
general case. Sato [48] has stated conditions
for absolute continuity in terms of a repre-
sentation for all Gaussian processes whose
induced measure on RT is equivalent to the
measure induced by a given Gaussian pro-
cess. Several of these results are presented in
[8]. Many other papers on absolute continuity
for measures induced by two Gaussian pro-
cesses have appeared; space does not permit
an attempt at a complete bibliography.

Use of the r.k.H.s. approach to study lin-
ear statistical problems in stochastic pro-
cesses was first explicitly and systematically
employed by Parzen; the r.k.H.s. approach
was also implicit in the work of Hájek (see
the papers by Hájek [22] and Parzen [39] and
their references).

For non-Gaussian processes, results on
absolute continuity have been obtained for
Markov processes∗ [16,32], diffusion proces-
ses∗ [36], locally infinitely divisible processes
[16], semimartingales∗ [25], point processes∗

[26], and non-Gaussian processes equivalent
to the Wiener process [9,10,27,28].

Dudley’s result [9] is of particular inter-
est to researchers interested in Gaussian
measures. Suppose that (Wt) is the Wiener
process on [0,1] with zero mean and unity
variance parameter, and that β(·, ·) is a con-
tinuous real-valued function on R× [0, 1].
Let Yt = β(Wt, t). Dudley shows in ref. 9 that
the measure on function space induced by

(Yt) is absolutely continuous with respect
to Wiener measure if and only if β(u, t) =
u+ φ(t) or β(u, t) = −u+ φ(t), where φ is in
the r.k.H.s. of the Wiener covariance min(t,
s). The methods used to prove this result rely
heavily on some of the special properties of
the Wiener process, such as the fact that (Wt)
has the strong Markov property, and laws of
the iterated logarithm∗ for the Wiener pro-
cess (obtained in ref. 9). A characterization
of admissible β ’s for other Gaussian pro-
cesses with continuous paths would be of
much interest; such characterizations would
necessarily require a different approach, and
this problem is very much open at present.

The absolute continuity problem dis-
cussed in refs. 10, 27, and 28 has received
much attention, partly because of its con-
nection to signal detection∗ and nonlinear
filtering∗. One considers a measurable pro-
cess (Yt) defined by Yt =

∫ t
0 hs ds+Wt, 0 � t �

T, where (Wt) is a zero-mean Wiener process
and (hs) is a stochastic process with sam-
ple paths a.s. in L1[0, T]. Let µY and µW
be the measures induced by (Yt) and (Wt)
on the space of continuous functions on [0,
1]. Conditions for µY � µW ,µY ∼ µW , and
results on the Radon–Nikodym derivative
have been obtained in refs. 10, 27, and 28.
In the special case where (hs) is independent
of (Wt), a sufficient condition for µY ∼ µW is
that

∫ T
0 h2

s ds <∞ for almost all sample paths
of (hs). This condition is also sufficient for
µY � µW if the process (hs) is only assumed
independent of future increments of (Wt).

Finally, we mention a result of Fortét [14],
who has obtained a sufficient condition for
orthogonality of two measures when one is
Gaussian, expressed in terms of the r.k.H.s.
of the two covariances. Suppose that µi is
a probability measure on RT , T = [0, 1], with
r.k.H.s. Hi and mean function mi. Then if µ1
is Gaussian, µ1 and µ2 are orthogonal unless
both the following conditions are satisfied:
(a) H1 ⊂ H2; and (b) m1 −m2 ∈ H2.

NOTE

1. The ubiquitous nature of the Radon–
Nikodym derivative in various hypo-
thesis-testing applications can be attri-
buted to its being a necessary and suf-
ficient statistic∗ [11].
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ABSOLUTE DEVIATION

The numerical value of the difference between
two quantities regardless of its sign. If θ̂ is
an estimate of θ , its absolute deviation from
θ is |θ − θ̂ |.

See also CHEBYSHEV’S INEQUALITY; MEAN DEVIATION; and
MOMENTS.

ABSOLUTE MOMENT

The expected value of the modulus (absolute
value) of a random variable X, raised to power
r is its rth absolute (crude) moment

ν ′r = E[|X|r].

The quantity

νr = E[|X − E[X]|r]

is the rth absolute central moment of X.
ν1 is the mean deviation∗.

ACCELERATED LIFE TESTING

NOTATIONS

Accelerated life models relate the lifetime dis-
tribution to the explanatory variable (stress,
covariate). This distribution can be defined
by the survival function. But the sense of
accelerated life models is best seen if they
are formulated in terms of the hazard rate
function.

Suppose at first that the explanatory vari-
able x(·) ∈ E is a deterministic time function:

x(·) = (x1(·), . . . , xm(·))T : [0,∞)→ B ∈ Rm,

where E is a set of all possible stresses, xi(·)
is univariate explanatory variable. If x(·) is
constant in time, x(·) ≡ x = const, we shall
write x instead of x(·) in all formulas. We
note E1 a set of all constant in time stresses,
E1 ⊂ E.

Denote informally by Tx(·) the failure time
under x(·) and by

Sx(·)(t) = P{Tx(·) � t}, t > 0, x(·) ∈ E,
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the survival function of Tx(·). Let Fx(·)(t) = 1−
Sx(·)(t) be the cumulative distribution function
of Tx(·). The hazard rate function of Tx(·) under
x(·) is

αx(·)(t) = lim
h↓0

1
h

P{Tx(·) ∈ [t, t+ h) | Tx(·) � t}

= −S′x(·)(t)
Sx(·)(t)

.

Denote by

Ax(·)(t) =
∫ t

0
αx(·)(u)du = −ln{Sx(·)(t)}

the cumulative hazard function of Tx(·).
Each specified accelerated life model re-

lates the hazard rate (or other function) to
the explanatory variable in some particular
way. To be concise the word stress will be
used here for explanatory variable.

We say that a stress x2(·) is higher than
a stress x1(·) and we write x2(·) > x1(·), if
for any t � 0 the inequality Sx1(·)(t) � Sx2(·)(t)
holds and exists t0 > 0 such that Sx1(·)(t0) >
Sx2(·)(t0). We say also that the stress x2(·) is
accelerated with respect to the stress x1(·).
It is evident that by the same way one can
consider decelerated stresses.

At the end we note that if the stress is a
stochastic process X(t), t � 0, and TX(·) is the
failure time under X(·), then denote by

Sx(·)(t) = P{TX(·) � t|X(s) = x(s), 0 � s � t},

the conditional survival function. In this case
the definitions of models should be under-
stood in terms of these conditional function.

STRESSES IN ALT

In accelerated life testing (ALT) the most
used types of stresses are: constant in time
stresses, step-stresses, progressive (mono-
tone) stresses, cyclic stresses and random
stresses (see, for example, Duchesne & Law-
less (2000, 2002), Duchesne & Rosenthal
(2002), Duchesne (2000), Gertsbach & Kor-
donsky (1997), Miner (1945), Lawless (1982),
Nelson (1990), Meeker & Escobar (1998),
Nikulin & Solev (2000), Shaked & Singpur-
walla (1983)).

The most common case is when the stress
is unidimensional, for example, pressure,
temperature, voltage, but then more then
one accelerated stresses may be used. The
monotone stresses are used, for example, to
construct the so-called collapcible models, the
accelerated degradation models, etc.

The mostly used time-varying stresses in
ALT are step-stresses: units are placed on
test at an initial low stress and if they do
not fail in a predetermined time t1, the stress
is increased. If they do not fail in a prede-
termined time t2 > t1, the stress is increased
once more, and so on. Thus step-stresses have
the form

x(u) =


x1, 0 � u < t1,
x2, t1 � u < t2,
· · · · · ·
xm, tm−1 � u < tm,

(1)

where x1, . . . , xm are constant stresses. Sets of
step-stresses of the form (1) will be denoted
by Em, Em ⊂ E. Let E2, E2 ⊂ E, be a set of
step-stresses of the form

x(u) =
{

x1, 0 � u < t1,
x2, u � t1, (2)

where x1, x2 ∈ E1.

SEDYAKIN’S PRINCIPLE AND MODEL

Accelerated life models could be at first
formulated for constant explanatory vari-
ables. Nevertheless, before formulating them,
let us consider a method for generalizing
such models to the case of time-varying
stresses.

In 1966 N. Sedyakin formulated his
famous physical principle in reliability which
states that for two identical populations of
units functioning under different stresses x1
and x2, two moments t1 and t2 are equivalent
if the probabilities of survival until these
moments are equal:

P{Tx1 � t1} = Sx1 (t1) = Sx2 (t2)

= P{Tx2 � t2}, x1, x2 ∈ E1.

If after these equivalent moments the units
of both groups are observed under the same



12 ACCELERATED LIFE TESTING

stress x2, i.e. the first population is observed
under the step-stress x(·) ∈ E2 of the form (2)
and the second all time under the constant
stress x2, then for all s > 0

αx(·)(t1 + s) = αx2 (t2 + s). (3)

Using this idea of Sedyakin, we considered
some generalisation of the model of Sedyakin
to the case of any time-varying stresses by
supposing that the hazard rate αx(·)(t) at any
moment t is a function of the value of the
stress at this moment and of the probability
of survival until this moment. It is formalized
by the following definition.

Definition 1. We say that Sedyakin’s model
(SM) holds on a set of stresses E if there exists
on E×R+ a positive function g such that for
all x(·) ∈ E

αx(·)(t) = g
(
x(t), Ax(·)(t)

)
. (4)

The fact that the SM does not give relations
between the survival under different con-
stant stresses is a cause of non-applicability
of this model for estimation of reliability
under the design (usual) stress from acceler-
ated experiments. On the other hand, restric-
tions of this model when not only the rule
(4) but also some relations between sur-
vival under different constant stresses are
assumed, can be considered. These narrower
models can be formulated by using mod-
els for constant stresses and the rule (4).
For example, it can be shown that the well
known and mostly used accelerated failure
time model for time-varying stresses is a
restriction of the SM when the survival func-
tions under constant stresses differ only in
scale.

MODEL OF SEDYAKIN FOR STEP-STRESSES

The mostly used time-varying stresses in
accelerated life testing are step-stresses (2)
or (1). Let us consider the meaning of the rule
(4) for these step-stresses. Namely, we shall
show that in the SM the survival function
under the step-stress is obtained from the
survival functions under constant stresses
by the rule of time-shift.

Proposition 1. If the SM holds on E2 then
the survival function and the hazard rate
under the stress x(·) ∈ E2 satisfy the equalities

Sx(·)(t) =
{

Sx1 (t), 0 � t < t1,
Sx2 (t− t1 + t∗1), t � t1, (5)

and

αx(·)(t) =
{
αx1 (t), 0 � t < t1,
αx2 (t− t1 + t∗1), t � t1, (6)

respectively; the moment t∗1 is determined by
the equality Sx1 (t1) = Sx2 (t∗1).

From this proposition it follows that for
any x(·) ∈ E2 and for all s � 0

αx(·)(t1 + s) = αx2 (t∗1 + s). (7)

It is the model on E2, proposed by Sedyakin
(1966).

Let us consider a set Em of stepwise
stresses of the form (1). Set t0 = 0. We shall
show that the rule of time-shift holds for the
SM on Em.

Proposition 2. If the SM holds on Em then
the survival function Sx(·)(t) satisfies the equal-
ities:

Sx(·)(t) = Sxi (t− ti−1 + t∗i−1), if

t ∈ [ti−1, ti), (i = 1, 2, . . . , m), (8)

where t∗i satisfy the equations

Sx1 (t1) = Sx2 (t∗1), . . . , Sxi (ti − ti−1 + t∗i−1)

= Sxi+1 (t∗i ), (i = 1, . . . , m− 1). (9)

From this proposition it follows that for all
t ∈ [tj−1, tj) we have

Ax(·)(t) = Axj (t− tj−1 + t∗j−1).

In the literature on ALT (see Bhatta-
charyya & Stoejoeti (1989), Nelson (1990),
Meeker & Escobar (1998)) the model (8) is
also called the basic cumulative exposure
model.

We note here that the SM can be not appro-
priate in situations of periodic and quick
change of the stress level or when switch-
up of the stress from one level to the another
can imply failures or shorten the life, see
Bagdonavičius & Nikulin (2002).



ACCELERATED LIFE TESTING 13

ACCELERATED FAILURE TIME MODEL

Accelerated life models describing depen-
dence of the lifetime distribution on the
stresses will be considered here. The con-
sidered models are used in survival analysis
and reliability theory analyzing results of
accelerated life testing. A number of such
models was proposed by engineers who con-
sidered physics of failure formation process
of certain products or by statisticians (see,
for example, Bagdonavičius, Gerville-Reache,
Nikulin (2002), Cox & Oakes (1984), Chen
(2001), Cooke & Bedford (1995), Crowder,
Kimber, Smith & Sweeting (1991), Duch-
esne & Rosenthal (2002), Duchesne Law-
less (2002), Gertsbach & Kordonskiy (1969,
1997), Gerville-Reache & Nikoulina (2002),
Kartashov (1979), Lawless (2000), LuValle
(2000), Meekers & Escobar (1998), Nelson
(1990), Nelson & Meeker (1991), Singpur-
walla & Wilson (1999), Viertl (1988), Xu &
Harrington (2001),. . .) To introduce in this
topic we consider at first the most famous
Accelerated Failure Time (AFT) model. We
start from the definition of this model for
constant stresses.

Suppose that under different constant
stresses the survival functions differ only in
scale:

Sx(t) = S0{r(x) t} for any x ∈ E1, (10)

where the survival function S0, called the
baseline survival function, does not depend
on x. For any fixed x the value r(x) can be
interpreted as the time-scale change constant
or the acceleration (deceleration) constant of
survival functions.

Applicability of this model in accelerated
life testing was first noted by Pieruschka
(1961), see also Sedyakin (1966). It is the
most simple and the most used model in fail-
ure time regression data analysis and ALT
(see, Cooke & Bedford (1995), Nelson (1990),
Meeker & Escobar (1998), Chen (2001), Hu &
Harrington (2001), etc. . . .)

Under the AFT model on E1 the distribu-
tion of the random variable

R = r(x)Tx

does not depend on x ∈ E1 and its survival
function is S0. Denote by m and σ 2 the mean

and the variance of R, respectively. In this
notations we have

E(Tx) = m/r(x), Var(Tx) = σ 2/r2(x),

and hence the coefficient of variation

E(Tx)√
Var(Tx)

= m
σ

does not depend on x.
The survival functions under any x1, x2 ∈

E1 are related in the following way:

Sx2(t) = Sx1 {ρ(x1, x2) t},

where the function ρ(x1, x2) = r(x2)/r(x1)
shows the degree of scale variation. It is
evident that ρ(x, x) = 1.

Now we consider the definition of the AFT
model for time-varying stresses, using the
Sedyakin’s prolongation of the model (10) on
E1 to another model on E.

Definition 2. The AFT model holds on E if
there exists on E a positive function r and on
[0,∞) a survival function S0 such that

Sx(·)(t) = S0

(∫ t

0
r{x(u)} du

)
for any x(·) ∈ E. (11)

The most used way of application of AFT
model is the following. The baseline sur-
vival function S0 is taken from some class
of parametric distributions, such as Weibull,
lognormal, loglogistic, or from the class of
regression models such as Cox proportional
hazards model, frailty model, linear transfor-
mation model, additive hazards model, etc.
. . .

The AFT model in this form (11) was stud-
ied in Bagdonavičius (1990), Bagdonavičius
& Nikulin (2002), Cox & Oakes (1984), Chen
(2001), Meeker & Escobar (1998), Nelson
(1990), Sedyakin (1966), Viertl (1988), Xu &
Harrington (2001), etc.

AFT MODEL FOR STEP-STRESSES

The next two proposals give the forms of the
survival functions in AFT model on Em.
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Proposition 3. If the AFT model holds on
E2 then the survival function under any stress
x(·) ∈ E2 of the form (2) verifies the equality

Sx(·)(t) =
{

Sx1 (t), 0 � τ < t1,
Sx2 (t− t1 + t∗1), τ � t1,

(12)

where

t∗1 =
r(x1)
r(x2)

t1. (13)

Proposition 4. If the AFT model holds on
Em then the survival function Sx(·)(t) verifies
the equalities:

Sx(·)(t) = S0


i−1∑
j=1

r(xj)(tj − tj−1)

+ r(xi)(t− ti−1)


= Sxi

t− ti−1 + 1
r(xi)

×
i−1∑
j=1

r(xj)(tj − tj−1)

 ,

t ∈ [ti−1, ti), (i = 1, 2, . . . , m).

So the AFT model in the form (11) verifies
the Sedyakin’s principle on Em. The proofs
of these propositions one can find in Bagdon-
avičius and Nikulin (1995, 2002).

Remark 1. Suppose that z0(·) is a fixed (for
example, usual or standard) stress and S0 =
Sz0(·), z0(·) ∈ E. In this case the AFT model is
given by (11). Denote

fx(·)(t) = S−1
0 (Sx(·)(t))

=
∫ t

0
r{x(u)}du, x(·) ∈ E,

with fx(·)(0) = 0. (14)

This relation shows that the moment t under
any stress x(·) ∈ E is equivalent to the mo-
ment fx(·)(t) under the usual stress z0(·), there-
fore fx(·)(t) is called the resource used till the
moment t under the stress x(·).

PARAMETRIZATION OF THE AFT MODEL

Let x(·) = (x0(·), x1(·), . . . , xm(·))T ∈ E be a pos-
sibly time-varying and multidimensional
explanatory variable; here x0(t) ≡ 1 and
x1(·), . . . , xm(·) are univariate explanatory
variables.

Under the AFT model the survival func-
tion under x(·) is given by (11). Often the
function r is parametrized in the following
form:

r(x) = e−β
Tx, (15)

where β = (β0, . . . , βm)T is a vector of un-
known regression parameters. In this case
the parametrized AFT model is given by the
next formula:

Sx(·)(t) = S0

(∫ t

0
e−β

Tx(τ )dτ
)

, x(·) ∈ E.

(16)

Here xj(·) (j = 1, . . . , m) are not necessary the
observed explanatory variables. They may be
some specified functions zj(x). Nevertheless,
we use the same notation xj for zj(x).

If the explanatory variables are constant
over time then the model (16), or (10), is
written as

Sx(t) = S0

(
e−β

Tx t
)

, x ∈ E, xj ∈ E1, (17)

and the logarithm of the failure time Tx under
x may be written as

ln{Tx} = βTx+ ε, (18)

where the survival function of the random
variable ε is S(t) = S0(ln t). It does not depend
on x. Note that if the failure-time distribu-
tion is lognormal, then the distribution of the
random variable ε is normal, and we have the
standard multiple linear regression model.

Let us consider, following Nelson (1990),
Meeker & Escobar (1998), Viertl (1988), some
examples. For this we suppose at first that
the explanatory variables are interval-valued
(load, temperature, stress, voltage, pressure).

Suppose at first that x is one-dimensional,
x ∈ E1.
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Example 1. Let

r(x) = e−β0−β1x. (19)

It is the log-linear model.

Example 2. Let

r(x) = e−β0−β1 log x = α1xβ1 . (20)

It is the power rule model.

Example 3. Let

r(x) = e−β0−β1/x = α1e−β1/x. (21)

It is the Arrhenius model.

Example 4. Let

r(x) = e−β0−β1 ln x
1−x = α1

(
x

1− x

)−β1
,

0 < x < 1. (22)

It is the Meeker-Luvalle model (1995).

The Arrhenius model is used to model
product life when the explanatory variable
is the temperature, the power rule model—
when the explanatory variable is voltage,
mechanical loading, the log-linear model is
applied in endurance and fatigue data anal-
ysis, testing various electronic components
(see Nelson (1990)). The model of Meeker-
Luvalle is used when x is the proportion of
humidity.

The model (16) can be generalized. One
can suppose that ln r(x) is a linear com-
bination of some specified functions of the
explanatory variable:

r(x) = exp

{
−β0 −

k∑
i=1

βizi(x)

}
, (23)

where zi(x) are specified functions of the
explanatory variable, β0, . . . , βk are unknown
(possibly not all of them) parameters.

Example 5. Let

r(x) = e−β0−β1 log x−β2/x = α1xe−β2/x, (24)

where β1 = −1. It is the Eyring model, applied
when the explanatory variable x is the tem-
perature.

INTERPRETATION OF THE REGRESSION
COEFFICIENTS IN AFT MODEL

Suppose that the stresses are constant over
time. Then under the AFT model (17) the
p-quantile of the failure time Tx is

tp(x) = eβ
TxS−1

0 (1− p), x ∈ E1, (25)

so the logarithm

ln{tp(x)} = βTx+ cp, x ∈ E1, (26)

is a linear function of the regression parame-
ters; here cp = ln(S−1

0 (1− p)).
Let m(x) = E{Tx} be the mean life of units

under x. Then

m(x) = eβ
Tx

∫ ∞
0

S0(u)du, x ∈ E1, (27)

and the logarithm

ln{m(x)} = βTx+ c, x ∈ E1, (28)

is also a linear function of the regression
parameters; here

c = ln
{∫ ∞

0
S0(u)du

}
.

Denote by

MR(x, y) = m(y)
m(x)

and QR(x, y) = tp(y)
tp(x)

,

x, y ∈ E1, (29)

the ratio of means and quantiles, respec-
tively. For the AFT model on E1 we have

MR(x, y) = QR(x, y) = eβ
T (y−x), (30)

and hence eβ
T (y−x) is the ratio of means, cor-

responding to the stresses x and y.
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TIME-DEPENDENT REGRESSION
COEFFICIENTS

The AFT model usually is parametrized in
the following form (16). In this case the
resource used till the moment t under stress
x(·) is given by (14), from which it follows that
at any moment t the resource usage rate

∂

∂t
fx(·)(t) = e−β

Tx(t), x(·) ∈ E,

depends only on the value of the stress x(·)
at the moment t. More flexible models can be
obtained by supposing that the coefficients β
are time-dependent, i.e. taking

∂

∂t
fx(·)(t) = e−β

T (t)x(t) = e−
∑m

i=0 βi(t)xi(t),

x(·) ∈ E,

If the function βi(·) is increasing or decreasing
in time then the effect of ith component of the
stress is increasing or decreasing in time.

So we have the model

Sx(·)(t) = S0

{∫ t

0
e−β

T (u)x(u)du
}
. (31)

It is the AFT model with time-dependent
regression coefficients. We shall consider the
coefficients βi(t) in the form

βi(t) = βi + γigi(t), (i = 1, 2, . . . , m),

where gi(t) are some specified deterministic
functions or realizations of predictable pro-
cesses. In such a case the AFT model with
time-dependent coefficients and constant or
time-dependent stresses can be written in the
usual form (16) with different interpretation
of the stresses. Indeed, set

θ = (θ0, θ1, . . . , θ2m)T

= (β0,β1, . . . , βm, γ1, . . . , γm)T ,

z(·) = (z0(·), z1(·), . . . , z2m(·))T

= (1, x1(·), . . . , xm(·), x1(·)g1(·), . . . ,
xm(·)gm(·))T. (32)

Then

βT(u)x(u) = β0 +
m∑

i=1

(βi + γigi(t))xi(t)

= θTz(u).

So the AFT model with the time-dependent
regression coefficients can be written in the
standard form

Sx(·) = S0

{∫ t

0
e−θ

Tz(u)du
}

, (33)

where the unknown parameters and the
explanatory variables are defined by (32).

PLANS OF EXPERIMENTS IN ALT

As it was said before the purpose of ALT is to
give estimators of the main reliability char-
acteristics: the reliability function S0 = Sx(0) ,
the p-quantile tp(x(0)) and the mean value
m(x0) under usual (design) stress x(0), using
data of accelerated experiments when units
are tested at higher than usual stress con-
ditions. Different plans of experiments are
used in ALT with dynamic environment.

The first plan of experiments.
Denote by x0 = (x00, x01, . . . , x0m), x00 = 1,

the usual stress. Generally accelerated life
testing experiments are done under an one-
dimensional stress (m = 1), sometimes under
two-dimensional (m = 2).

Let x1, . . . , xk be constant over time accel-
erated stresses:

x0 < x1 < · · · < xk;

here xi = (xi0, xi1, . . . , xim) ∈ Em, xi0 = 1. The
usual stress x0 is not used during experi-
ments. According to the first plan of exper-
iment k groups of units are tested. The ith
group of ni units,

∑k
i=1 ni = n, is tested under

the stress xi. The data can be complete or
independently right censored.

If the form of the function r is completely
unknown and this plan of experiments is
used, the function Sx0 can not be estimated
even if it is supposed to know a paramet-
ric family to which belongs the distribution
Sx0(t).
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For example, if S0(t) = e−(t/θ )α then for con-
stant stresses

Sx(t) = exp
{
−

(
r(x)
θ

t
)α}

, x ∈ E1. (34)

Under the given plan of experiments the
parameters

α,
r(x1)
θ

, . . . ,
r(xk)
θ

, xi ∈ E1, (35)

and the functions Sx1 (t), . . . , Sxk (t) may be
estimated. Nevertheless, the function r(x)
being completely unknown, the parameter
r(x0) can not be written as a known function
of these estimated parameters. So r(x0) and,
consequently, Sx0 (t) can not be estimated.

Thus, the function r must be chosen from
some class of functions. Usually the model
(17) is used.

The second plan of experiments. In step-
stress accelerated life testing the second plan
of experiments is as follows:

n units are placed on test at an initial low
stress and if it does not fail in a predetermined
time t1, the stress is increased and so on. Thus,
all units are tested under the step-stress x(·)
of the form:

x(τ ) =


x1, 0 � τ < t1,
x2, t1 � τ < t2,
· · · · · ·
xk, tk−1 � τ < tk;

(36)

where xj = (xj0, . . . , xjm)T ∈ Em, xj0 = 1, t0 =
0, tk = ∞.

In this case the function r(x) should be also
parametrized because, even when the usual
stress is used until the moment t1, the data
of failures occurring after this moment do
not give any information about the reliability
under the usual stress when the function r(x)
is unknown. Thus, the model (16) should be
used. From the Proposition 2 it follows that
for step-stresses the form (36) we have: if
t ∈ [ti−1, ti), i = 1, . . . , k

Sx(·)(t) = S0

1{i>1}
i−1∑
j=1

e−β
Txj (tj − tj−1)

+ e−β
Txi (t− ti−1)

 . (37)

Now we consider the third plan of experi-
ments. Application of the first two plans may
not give satisfactory results because assump-
tions on the form of the function r(x) are
done. These assumptions can not be statisti-
cally verified because of lack of experiments
under the usual stress.

If the function r(x) is completely unknown,
and the coefficient of variation (defined as the
ratio of the standard deviation and the mean)
of failure times is not too large, the following
plan of experiments may be used.

The third plan of experiments. Suppose
that the failure time under the usual stress
x0 takes large values and most of the failures
occur after the moment t2 given for the exper-
iment. According to this plan two groups of
units are tested:

a) the first group of n1 units under a con-
stant accelerated stress x1;

b) the second group of n2 units under a
step-stress: time t1 under x1, and after this
moment under the usual stress x0 until the
moment t2, x1, x2 ∈ E1, i.e. under the stress
x2(·) from E2:

x2(τ ) =
{

x1, 0 � τ � t1,
x0, t1 < τ � t2.

(38)

Units use much of their resources until the
moment t1 under the accelerated stress x1,
so after the switch-up failures occur in the
interval [t1, t2] even under usual stress. The
AFT model implies that

Sx1 (u) = Sx0 (ru),

where r = r(x1)/r(x0), and

Sx2(·)(u) =
{

Sx0 (ru), 0 � u � t1,
Sx0 (rt1 + u− t1), t1 < u � t2,

or, shortly,

Sx2(·)(t) = Sx0 (r(u ∧ t1)+ (u− t1) ∨ 0),

x2(·) ∈ E2, (39)

with a ∧ b = min(a, b) and a ∨ b = max(a, b).
It will be shown in the next section that if

the third plan is used, and both functions Sx0
and r(x) are completely unknown, semipara-
metric estimation of Sx0 is possible.



18 ACCELERATED LIFE TESTING

The third plan may be modified. The mo-
ment t1 may be chosen as random. The most
natural is to choose t1 as the moment when
the failures begin to occur.

At the end we consider the fourth plan
of experiment, which is applied when the
failure-time distribution under the usual
stress is exponential. According to this plan k
groups of units are observed. The i-th group of
ni units is tested under one-dimensional con-
stant stress x(i) until the ri-th failure (ri � n),
(type two censoring). The failure moments of
the i-th group are

T(i1) � T(i2) � · · · � T(iri).

DATA

We suppose that n units are observed. The
ith unit is tested under the value x(i)(·) =
(x(i)

1 (·), . . . , x(i)
m (·))T of a possibly time-varying

and multi-dimensional explanatory variable
x(·), according to the plan of experiment. The
data are supposed to be independently right
censored.

Let Ti and Ci be the failure and censoring
times of the ith unit,

Xi = Ti ∧ Ci, δi = 1{Ti�Ci}.

As it is well known the right censored data
may be presented in the form

(X1, δ1), . . . , (Xn, δn). (40)

or

(N1(t), Y1(t), t � 0), . . . , (Nn(t), Yn(t), t � 0),
(41)

where

Ni(t) = 1{Xi�t,δi=1}, Yi(t) = 1{Xi�t}. (42)

Here Ni(t) is the number of observed failures
of the ith unit in the interval [0, t], and Yi(t)
is the indicator of being at risk just prior to
the moment t.

Using this presentation of data the sta-
tistical analysis of an appropriate acceler-
ated life model can be done as is shown,
for example, in Andersen, Borgan, Gill &
Keiding (1993), Bagdonavičius and Nikulin
(2002), Lawless (1982), Meeker & Escobar
(1998).

ESTIMATION AND TESTING IN ALT

If the functions r(·) and S0(·) are unknown
we have a nonparametric model. The func-
tion r(·) can be parametrized. If the baseline
function S0 is completely unknown, in this
case the we have a semiparametric model.
Very often the baseline survival function S0
is also taken from some class of paramet-
ric distributions, such as Weibull, lognormal,
loglogistique, etc. In this case we have a para-
metric model and the maximum likelihood
estimators of the parameters are obtained by
almost standard way for any plans. Para-
metric case was studied by many people,
see, for example, Bagdonavičius, Gerville-
Réache, Nikoulina and Nikulin (2000), Gerts-
bakh & Kordonskiy (1969), Gerville-Réache
& Nikoulina (2000), Glaser (1984), Hirose
(1993), Iuculano & Zanini (1986), Lin &
Ying (1995), LuValle (2000), Mazzuchi &
Soyer (1992), Nelson (1990), Meeker & Esco-
bar (1998), Sedyakin (1966), Sethuraman
& Singpurwalla (1982), Schmoyer (1986),
Shaked & Singpurwalla (1983), Viertl (1988).
Nonparametric analysis of AFT model was
considered by Basu & Ebrahimi (1982), Lin &
Ying (1995), Lawless (1982), Robins & Tsiatis
(1992), Schmoyer (1991), Ying (1993), Bag-
donavičius and Nikulin (2000). Semipara-
metric case was considered by Tsiatis (1991),
Lin & Ying (1995), Duchesne & Lawless
(2002), Bagdonavičius and Nikulin (2002).

Tsiatis (1991), (constant stresses), Robins
and Tsiatis (1992), Lin and Ying (1995) (time-
dependent stresses) give asymptotic proper-
ties of the regression parameters for random
right censored data. Lin and Ying (1995) give
also semiparametric procedures for making
inference about β (but not about the survival
function and other reliability characteristics)
which by pass the estimation of the covari-
ance matrix of β̂. All above mentioned papers
boundedness of the density of the censoring
variable is required. In the case of accelerated
life testing when type one censoring is gen-
erally used, this condition is not true. In the
case of accelerated life testing when type one
censoring is generally used, this condition
does not hold. Bagdonavičius and Nikulin
(2002) give asymptotic properties of the esti-
mators under the third plan of experiments.
Using these properties Lin & Ying (1995)
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and Bagdonavičius & Nikulin (2002) studied
tests for nullity of the regression coefficients,
namely for testing the hypothesis

Hk1,k2,...,kl :βk1 = · · · = βkl = 0,

(1 � k1 < k2 < · · · < kl).
(43)

MODELING IN ALT IN TERMS OF RESOURCE
USAGE

The accelerated life (time transformation)
models with dynamic environment give the
possibility to include the effect of the usage
history on the lifetime distributions of var-
ious units, subjects, items, populations, etc.
Accelerated life models as time transforma-
tion models can be formulated using the
notion of the resource introduced by Bag-
donavičius and Nikulin (1995). This notion
gives a general approach for construction
time transformation models in terms of the
rate of resource usage and it gives a simple
physical interpretation of considered models.

Let� be a population of units and suppose
that the failure-time of units under stress
x(·) is a random variable Tx(·) = Tx(·)(ω),ω ∈ �,
with the survival function Sx(·)(t) and the
cumulative distribution function Fx(·)(t). The
moment of failure of a concrete item ω0 ∈ �
is given by a nonnegative number Tx(·)(ω0).

The proportion Fx(·)(t) of units from �

which fail until the moment t under the
stress x(·) is also called the uniform resource
of population used until the moment t. The
same population of units �, observed under
different stresses x1(·) and x2(·) use differ-
ent resources until the same moment t if
Fx1(·)(t) �= Fx2(·)(t). In sense of equality of used
resource the moments t1 and t2 are equivalent
if Fx1(·)(t1) = Fx2(·)(t2).

The random variable

RU = Fx(·)(Tx(·)) = 1− Sx(·)(Tx(·))

is called the uniform resource. The distri-
bution of the random variable RU does not
depend on x(·) and is uniform on [0, 1). The
uniform resource of any concrete item ω0 ∈ �
is RU(ω0). It shows the proportion of the pop-
ulation � which fails until the moment of the
unit’s ω0 failure Tx(·)(ω0).

The considered definition of the resource
is not unique. Take any continuous survival
function G such that the inverse H = G−1

exists. In this case the distribution of the
statistics RG = H(Sx(·)(Tx(·))) doesn’t depend
on x(·) and the survival function of RG is
G. The random variable RG is called the G-
resource and the number

f G
x(·)(t) = H(Sx(·)(t)),

is called the G-resource used until the moment
t. Note that in the case of the uniform resource
H(p) = 1− p, p ∈ (0, 1].

Accelerated life models can be formulated
specifying the way of resource usage, i.e. in
terms of the rate of resource usage.

Note often the definitions of accelerated
life models are formulated in terms of expo-
nential resource usage, when G(t) = e−t, t � 0,
because the exponential resource usage rate
is nothing else but the hazard rate and the
used resource is the cumulative hazard rate
respectively.

Let αx(·)(t) and Ax(·)(t) be the hazard rate
and the cumulative hazard rate under x(·).
The exponential resource is obtained by tak-
ing G(t) = e−t, t � 0, and H(p) = G−1(p) =
− ln p, so it is the random variable

R = Ax(·)(Tx(·))

with standard exponential distribution. For
any t the number Ax(·)(t) ∈ [0,∞) is the expo-
nential resource used until the moment t
under stress x(·). The rate of exponential
resource usage is the hazard rate αx(·)(t).

All models can be formulated in terms of
other resources than exponential. Let us con-
sider at first one particular resource. Suppose
that x0 is a fixed (for example, usual) stress
and G = Sx0 . For any x(·) ∈ E ⊃ E1 set

fx(·)(t) = S−1
x0

(Sx(·)(t)).

Then the moment t under any stress x(·) ∈
E is equivalent to the moment fx(·)(t) under
the usual stress x0. The survival function of
the resource R is Sx0 . As it was shown by
(14) in the Remark 1 the AFT model (11) is
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determined by the Sx0 -resource usage rate by
the next differential equation:

∂

∂t
fx(·)(t) = r{x(t)}, for any x(·) ∈ E,

with fx(·)(0) = 0.

An natural generalization of the AFT model
on E is obtained by changing, for example,
the right part of this equation by the next
way:

∂fx(·)(t)
∂t

= r{x(t)} tν(x(t))−1 for any x(·) ∈ E,

with fx(·)(0) = 0, (44)

where ν is a positive function on E. This
equality implies that

Sx(·)(t) = Sx0

(∫ t

0
r{x(τ )}τ ν(x(τ ))−1dτ

)
for any x(·) ∈ E. (45)

In this model variation of stress changes
locally not only the scale but also the shape
of distribution. This model is known as the
changing shape and scale model (CHSS), see
Bagdonavičius & Nikulin (2000).

To show the usefulness of the notion of the
resource let us consider, following Bagdon-
avičius and Nikulin (1997), the so-called gen-
eralized additive-multiplicative (GAM) model
on E, given in terms of the rate of resource
usage by the next differential equation

∂f G
x(·)(t)
∂t

= r[x(t)]
∂f G

0 (t)
∂t

+ a(x(t)),

with f G
0 (0) = f G

x(·)(0) = 0, (46)

for some functions a and r (positive) on E,
where f G

0 (t) = H(S0(t)). In this model the
stress influences the rate of resource using
as multiplicatively as additively. The last
equation implies that

Sx(·)(t) = G
{∫ t

0
r[x(τ )]dH(S0(τ ))

+
∫ t

0
a(x(τ ))dτ

}
. (47)

Consider some particular cases.

1. Taking G(t) = e−t1{t�0} we obtain:

∂f G
x(·)(t)
∂t

= −S′x(·)(t)
Sx(·)(t)

= αx(·)(t),

∂f G
0 (t)
∂t

= −S′0(t)
S0(t)

= α0(t),

where αx(·)(t) is the hazard rate under the
covariate x(·), α0(t) is the baseline hazard
rate. So we obtain the model:

αx(·)(t) = r[x(t)]α0(t)+ a(x(t)).

It is the additive-multiplicative semiparamet-
ric model (Lin & Ying (1996). If a(x(t)) ≡ 0,
we obtain the proportional hazards model or
Cox model:

αx(·)(t) = r[x(t)]α0(t).

If r[x(t)] ≡ 1, we obtain the additive hazards
model:

αx(·)(t) = α0(t)+ a(x(t)).

2. Taking G(t) = exp{− exp{t}}, t ∈ R1,
we obtain

∂f G
x(·)(t)
∂t

= αx(·)(t)
Ax(·)(t)

,
∂f G

0 (t)
∂t

= α0(t)
A0(t)

,

where

Ax(·)(t) =
∫ t

0
αx(·)(τ )dτ , A0(t) =

∫ t

0
α0(τ )dτ

are the cumulated hazards rates. So we have
the new model:

αx(·)(t)
Ax(·)(t)

= r[x(t)]
α0(t)
A0(t)

+ a(x(t)).

3. Taking G(t) = 1/(1+ t), t � 0, we obtain

∂f G
x(·)(t)
∂t

= αx(·)(t)
Sx(·)(t)

,
∂f G

0 (t)
∂t

= α0(t)
S0(t)

.

So we have the generalized logistic regression
model:

αx(·)(t)
Sx(·)(t)

= r[x(t)]
α0(t)
S0(t)

+ a(x(t)).
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If a(x(t)) ≡ 0, we obtain the logistic regression
model since we have:

1
Sx(·)(t)

− 1 = r[x(t)]
(

1
S0(t)

− 1
)
.

4. Taking G(t) = 1/(1+ et), t ∈ R1, we obtain

∂f G
x(·)(t)
∂t

= αx(·)(t)
1− Sx(·)(t)

,
∂f G

0 (t)
∂t

= α0(t)
1− S0(t)

.

So we have the new model:

αx(·)(t)
1− Sx(·)(t)

= r[x(t)]
α0(t)

1− S0(t)
+ a(x(t)).

5. Take G(t) = �(ln t), t � 0, where�(·) is the
distribution function of the standard normal
law. If a(x(t)) ≡ 0, then in terms of survival
functions we obtain the model:

�−1(1− Sx(·)(t)) = ln r[x(t)]+�−1(1− S0(t)).

It is the generalized probit model.
6. Taking G = S0, we obtain

Sx(·)(t) = S0

{∫ t

0
σ [x(τ )]dτ

}
.

where σ (x(t)) = r[x(t)]+ a(x(t)). It is the accel-
erated life model, given by (11). As one can
see, the GAM model contains many interest-
ing sub-models, which are well adapted to
solve the statistical problems in ALT, and
the notions of the resource and the rate of
resource usage give a power instrument for
modeling in ALT.
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ACCEPTABLE QUALITY LEVEL (AQL)

This is usually defined as the maximum per-
cent defective (or the maximum number of
defects per 100 units) that can be considered
satisfactory for a process average.
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ACCEPTANCE ERROR

A term used in the theory of testing hypothe-
ses∗ to denote a decision to accept a hypothe-
sis H0 when that hypothesis is not valid. It is
also called a Type I error∗.

See also HYPOTHESIS TESTING and LEVEL OF SIGNIFICANCE.

ACCEPTANCE NUMBER

Given a sampling plan∗, the acceptance num-
ber c denotes the maximum number of defec-
tive items that can be found in the sample
without leading to rejection of the lot.
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ACCEPTANCE PROCESS ZONE

The acceptance process level (APL) is a fun-
damental notion in quality control. It is the
process level most remote from the standard
that still yields product quality that we are
willing to accept with high probability. Since
most specifications are two-sided (i.e., requir-
ing characteristics to lie within a specified
tolerance band), it is usually appropriate to
specify both an upper and a lower APL.

The band around the nominal value bet-
ween the upper and lower acceptance process
level (APL) values is called the acceptance
process zone.
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PROCESS LEVEL (RPL); and SAMPLING PLANS.

ACCEPTANCE REGION (IN TESTING
HYPOTHESES)

A hypothesis test∗ divides the space T of
a test statistic∗ T into two complementary
regions, C (the critical region) and T − C.
The region T − C is called the acceptance
region or nonrejection region. This region is
characterized by the property that if the value
of the test statistic falls into this region the
hypothesis under test is accepted.

See also CRITICAL REGION and HYPOTHESIS TESTING.

ACCEPTANCE SAMPLING

The term ‘‘acceptance sampling’’ relates to
the acceptance or rejection of a product or
process on the basis of sampling inspection∗.
It has been pointed out that ‘‘sampling inspec-
tion is the process of evaluating the quality of
material by inspecting some but not all of it’’
[4]. Its methods constitute decision rules for
the disposition or sentencing of the product
sampled. In this sense it may be contrasted
with survey sampling∗, the purpose of which
is largely estimation∗.

Sampling plans∗, which specify sample
size and acceptance criteria, are fundamen-
tal to acceptance sampling. Such plans may
be based on a simple dichotomous classi-
fication of conformance or nonconformance
of a quality characteristic to specified crite-
ria (attributes plans) or on a comparison of
statistics computed from quantitative mea-
surements to numerical criteria developed
from the specifications and from assumptions
about the shape and nature of the distribu-
tion of individual measurements (variables
plans). An example of the former is the
attributes plan: sample 50 items and accept
the lot of material from which the sample
was taken if two or fewer items are found
nonconforming; reject otherwise. An example
of the latter is the variables plan: sample 12
items and accept the lot if the sample mean
is more than 2 standard deviations above the
lower specification limit; reject otherwise.

When a process parameter such as the
mean∗ or standard deviation∗ is specified,
the sampling plan resolves itself simply into
a test of hypothesis. See HYPOTHESIS TESTING.
That is, the sampling plan might be a t-test∗
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if the plan is imposed to assure that the
process mean conforms to a specified value.
These tests are called variables plans for pro-
cess parameter and are commonly used in
the sampling of bulk materials. See BULK

SAMPLING. More complicated situations arise
when it is necessary to test the proportion
of product beyond or between specification
limits through the use of a measurement cri-
terion. Such tests are referred to as variables
plans for proportion nonconforming.

The operating characteristic (OC) curve
(complement of the power∗ curve) is the pri-
mary measure of performance of a sampling
plan. It shows the probability of acceptance
as a function of the value of the quality char-
acteristic. As such, it provides a description
of the protection afforded by the plan as well
as a vehicle for comparison of various accep-
tance sampling plans and procedures. Two
types of OC curves are distinguished. The
type A operating characteristic curve relates
to the inspection of individual lots of product
and shows lot probability of acceptance as a
function of lot quality. In attributes inspec-
tion, it is computed from the hypergeometric
distribution∗. The type B operating charac-
teristic curve relates to the process that pro-
duced the product to be inspected and shows
the proportion of lots accepted in a continuing
series as a function of the process average.
In attributes inspection, it is computed either
from the binomial distribution∗ when inspec-
tion is for proportion nonconforming, or from
the Poisson distribution∗ when inspection is
for nonconformities per unit. Details of the
nature and construction of type A and type B
operating characteristic curves are given in
ref. 2.

Often the performance of a plan is char-
acterized by two points on the OC curve: a
producer’s quality level with high probabil-
ity of acceptance and a consumer’s quality
level with low probability of acceptance. The
corresponding risks are called the producer’s
risk (of rejection) and the consumer’s risk (of
acceptance). (The producer’s risk is conven-
tionally taken to be 0.05 and the consumer’s
risk is 0.10.) The ratio of the consumer’s qual-
ity level to the producer’s quality level is
called the operating (or discrimination) ratio.
It describes the steepness of the OC curve and
hence the capability of the plan to distinguish

between acceptable and unacceptable qual-
ity. So-called two-point plans can be derived
from the producer’s and consumer’s quality
levels through their operating ratios. A third
point on the OC curve that is commonly ref-
erenced is the indifference quality level∗, at
which the probability of acceptance is 0.50.
Sets of plans have been developed using the
indifference quality level and the relative
slope of the OC curve at that point.

Acceptance sampling procedures progress
far beyond the simple single sampling plan
to other, more complex procedures. Double-
sampling∗ plans allow the possibility of two
samples, a second sample being taken if the
results of the first sample are not sufficiently
definitive. This concept can be extended
to multiple sampling plans, involving more
than two samples. Sequential procedures∗

are applied in acceptance sampling to achieve
the excellent discrimination and economy of
sample size associated with such methods.
These plans may be used in both attributes
and variables inspection.

Various measures and associated curves
have been developed to describe the proper-
ties of sampling plans. The average sample
number (ASN)∗ curve describes the aver-
age sample size for various quality levels
when using double∗, multiple∗, sequential∗,
or other procedures. The average outgoing
quality (AOQ)∗ curve shows the average pro-
portion of nonconforming product the con-
sumer will receive if rejected lots are 100%
inspected plotted against quality level. Its
maximum is called the average outgoing qual-
ity limit (AOQL)∗. Under such a procedure,
the average total inspection curve shows the
total number of units inspected in both sam-
pling and 100% inspection and can be used to
estimate and compare inspection loads.

For a continuing sequence of lots sam-
pling plans may be combined into sampling
schemes consisting of two or more plans used
together with switching rules that establish
the procedure for moving from one of the
plans to another. Schemes can be constructed
to give protection for both the producer and
the consumer which is superior to that of the
constituent plans with a reduction of sample
size for the protection afforded. Such schemes
are usually specified by an acceptable qual-
ity level (AQL)∗ which, when exceeded, will
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eventually lead to a switch to a tighter plan
with consequent economic and psychologi-
cal pressure on the supplier to improve the
quality of the product. Sampling schemes
have their own OC curves. Sometimes options
for discontinuation of inspection are incorpo-
rated into the procedure. Sampling schemes
may be combined into sampling systems that
select specific schemes by prescribed rules.
The most important sampling systems are
military standards∗ MIL-STD-105D for attri-
butes and MIL-STD-414 for variables. Their
civilian counterparts are ANSI Z1.4 and
ANSI Z1.9 in the United States and inter-
national standards ISO 2859 and ISO 3951,
respectively.

The variety of approaches in acceptance
sampling is almost limitless. Continuous
sampling plans are used on streams of out-
put where lots are difficult to define. Chain
sampling∗ plans link the criteria for the
immediate sampling plan to past results.
Grand lot sampling procedures combine sam-
ples from lots that have been shown to be
homogeneous, to achieve larger sample size
and greater discrimination. Skip-lot plans∗

provide for the inspection of only a frac-
tion of the lots submitted. Acceptance control
charts∗ can be used to visually portray the
results of inspection through the medium of
the control chart. Bayesian plans introduce
economic considerations and prior results
and estimates into the sampling equation.
Special plans have been developed for various
areas of application, such as compliance test-
ing, reliability and life testing∗, and safety
inspection. See SAMPLING PLANS.

The application and administration of
sampling inspection demands a broad range
of knowledge of statistical methodology,
because the determination of what, where,
when, how, and to what quality levels the
inspection is to be carried out is largely
empirical. Acceptance sampling procedures
are an integral part of quality control∗ prac-
tice and serve to distinguish between quality
levels as a vehicle for quality improvement.
In application, however, they should, where
possible, be supplemented and eventually
supplanted by statistical techniques for pro-
cess quality control (such as control charts∗)

in an effort to prevent the occurrence of non-
conforming material rather than to detect it
after it has been produced.

The history and development of accep-
tance sampling is described in detail by
Dodge [1], who originated and developed
many acceptance sampling procedures. The
statistical methodology of acceptance sam-
pling has been treated specifically by
Schilling [5] and in the context of industrial
statistics as a whole by Duncan [3].
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ACCURACY AND PRECISION

The accuracy of an observation or a statistic
derived from a number of observations has to
do with how close the value of the statistic is
to a supposed ‘‘true value’’.

In forecasting, accuracy is a measure of
how close the forecast Ŷt of an observa-
tion Yt at time t is to Yt; see PREDICTION

AND FORECASTING. See also REGRESSION VARI-

ABLES, SELECTION OF and FINAL PREDICTION

ERROR CRITERIA, GENERALIZED for model
choices in multiple regression aimed at reduc-
tion of error (and hence at improved accu-
racy).
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In estimation theory accuracy measures
how close an estimate θ̂ of a parameter θ is to
the ‘‘true value’’ of θ . The accuracy of θ̂ can be
measured, for example, in terms of the mean
absolute error or of the mean squared error∗
(MSE) of θ̂ .

Accuracy should be distinguished from
precision. Precision of measurement indicates
the resolving power of a measuring device
and is frequently given by the number of dec-
imal places reported in the measurements
made with the device. The precision of an
estimator θ̂ , on the other hand, measures how
tightly the distribution of θ̂ clusters about its
center (say, its expected value) [1, Sec. 4.1].
One has

MSE(θ̂ ) = {Variance of θ̂} + (bias of θ̂)2;
Here the accuracy of θ̂ can be measured via
MSE(θ̂ ) and its precision via Var(θ̂ ). Carl
Friedrich Gauss’s measure of precision is

1/{
√

2× (standard deviation of θ̂ )}
where the quantity

√
2× (standard deviation)

is known as the modulus. Gauss’s measure
satisfies the intuitive notion that the pre-
cision increases as the standard deviation
decreases.

NEYMAN AND WOLFOWITZ ACCURACY

Let T be a statistic∗ based on a sample from a
population having an unknown parameter θ ,
and let (L1(T),L2(T)) be a confidence interval
for θ . If

Q(θ0) = Pr [L1(T) � θ0 � L2(T)|θ ],

then [2,4] Q(θ0) is the Neyman accuracy of
the confidence interval. It is a measure of the
accuracy of (L1(T), L2(T)) in excluding the
false value θ0 �= θ of θ . The interval with the
smaller Neyman accuracy is said to be more
selective [5]; see CONFIDENCE INTERVALS AND

REGIONS. If

W(a, b)=aE{(L1(T)− θ )2} + bE{(L2(T)− θ )2},
then [2] W(·, ·) is the Wolfowitz accuracy of the
confidence interval [6], and measures how
close the confidence limits L1 and L2 are
to the true value of θ ; see also [3], where the
efficiency of competing confidence intervals
is measured inter alia by the ratio of their
Wolfowitz accuracies when a = b = 1.
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ACHENWALL, GOTTFRIED

Born: October 20, 1719, in Elbing, Ger-
many.

Died: May 1, 1772, in Göttingen, Ger-
many.

Contributed to: Staatswissenschaft
(‘‘university statistics’’).

Achenwall was born into the family of a mer-
chant. In 1738–1740 he acquired a knowl-
edge of philosophy, mathematics, physics,
and history at Jena; then he moved to Halle,
where, without abandoning history, he stud-
ied the law and Staatswissenschaft (the sci-
ence of the state; also known as ‘‘university
statistics’’). Apparently in 1742 Achenwall
returned for a short time to Jena, then con-
tinued his education in Leipzig. In 1746 he
became Docent at Marburg, and in 1748,
extraordinary professor at Göttingen (ordi-
nary professor of law and of philosophy from
1753), creating there the Göttingen school of
statistics. Its most eminent member was A.
L. Schlözer (1735–1809). Achenwall married
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in 1752, but his wife died in 1754, and he had
no children.

Achenwall followed up the work of Her-
mann Conring (1606–1681), the founder
of Staatswissenschaft, and was the first
to present systematically, and in German
rather than in Latin, the Conring tradition.
According to both Conring and Achenwall,
the aim of statistics was to describe the
climate, geographical position, political struc-
ture, and economics of a given state, to pro-
vide an estimate of its population, and to give
information about its history; but discovering
relations between quantitative variables was
out of the question. For Achenwall [1, p. 1],
‘‘the so-called statistics’’ was the Staatswis-
senschaft of a given country.

Since 1741, ‘‘statisticians’’ have begun to
describe states in a tabular form, which facili-
tate the use of numbers, a practice opposed by
Achenwall. Even in 1806 and 1811 [5, p. 670]
the use of tabular statistics was condemned
because numbers were unable to describe the
spirit of a nation.

Nevertheless, Achenwall [4, Chap. 12]
referred to Süssmilch,∗ advised state mea-
sures fostering the multiplication of the pop-
ulation, recommended censuses, and even
[4, p. 187] noted that its ‘‘probable esti-
mate’’ can be gotten by means of ‘‘yearly
lists of deaths, births, and marriages.’’ The
gulf between statistics (in the modern sense)
and Staatswissenschaft was not as wide as it
is usually supposed to have been. Leibniz’s
manuscripts, written in the 1680s, present
a related case. First published in 1866 and
reprinted in 1977, they testify that he was
both a political arithmetician and an early
advocate of tabular description (both with
and without the use of numbers) of a given
state; see [10,222–227,255].

REFERENCES

1. Achenwall, G. (1748). Vorbereitung zur
Staatswissenschaft. Göttingen. (An abridged
version of this was included in his next contri-
bution.)

2. Achenwall, G. (1749). Abriβ der neuesten
Staatswissenschaft der vornehmsten
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O. SHEYNIN

ACTUARIAL HEALTH STUDIES

Medico-actuarial studies originated in the
United States in the 1890s from concerted
efforts to improve the underwriting of life
insurance risks [15]. The mortality investiga-
tions undertaken were aimed to isolate and
measure the effects of selected risk factors,
such as occupational hazards, medical condi-
tions, and build. The underlying hypothesis
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was that each of the factors (or certain combi-
nations of factors) influencing mortality could
be regarded as an independent variable and
the total mortality risk could be treated as a
linear compound of a number of independent
elements.

The first comprehensive study, known as
the Specialized Mortality Investigation, was
carried out by the Actuarial Society of Amer-
ica and published in 1903 [1]. It covered the
experience of 34 life insurance companies
over a 30-year period and focused atten-
tion on the mortality in 35 selected occu-
pations, 32 common medical conditions, and
several other factors affecting mortality. It
was followed in 1912 by the Medico-Actuarial
Mortality Investigation [2], sponsored jointly
by the Actuarial Society of America and
the Association of Life Insurance Company
Medical Directors, which included a much
wider variety of occupations, medical condi-
tions, and other factors, among them abuse
of alcohol. This study laid the broad lines
on which such investigations have been con-
ducted since.

The assessment of the long-term risk in
life insurance was seen as requiring analysis
of mortality by sex, age at issue, and duration
since issue of insurance for policies issued
under similar underwriting rules. Cohorts of
policyholders were followed over long periods
of time. Attention was focused on the mortal-
ity in the years following issue of insurance
in order to trace the effects on mortality of
the selection exercised by insurance compa-
nies through medical examinations and other
screening for insurance, as well as effects
of antiselection by applicants for insurance
who withheld information relevant to their
health. The extent of class selection, that is,
the reflection of the underlying mortality in
the segments of the population from which
the insured lives were drawn, was brought
out in the mortality experienced among the
insured lives under study after many years
since issue of insurance had elapsed. Most
important, however, the patterns of the mor-
tality experienced over longer periods of time
indicated the incidence of the extra mortal-
ity by duration, which permitted classifying
the long-term risk as one of decreasing extra
mortality, relatively level extra mortality, or
increasing extra mortality.

Analyses of mortality by cause shed light
on the causes mainly responsible for excess
mortality and also on the causes of death
which could be controlled to some degree by
screening applicants for life insurance. Suc-
cessive medico-actuarial investigations per-
mitted some conclusions regarding the trends
in mortality associated with different factors
affecting mortality, notably occupational haz-
ards, build, blood pressure, various medical
conditions, and changing circumstances.

METHODOLOGY

In selecting a particular cohort of policyhold-
ers for study, because of interest in some par-
ticular factor influencing mortality, it was the
practice in medico-actuarial investigations
to exclude individuals who also presented
other kinds of risks. Specifically, all individ-
uals were excluded from the study if they
were also subject to any other kind of risk
that would have precluded issuing insurance
at standard premium rates. Consequently,
such extra mortality as was found in the
study could properly be associated with the
factor of interest rather than with the com-
bined effects of this factor and other elements
at risk.

The findings of medico-actuarial investi-
gations have been customarily expressed as
ratios of actual deaths in the cohort of policy-
holders under study to the expected deaths,
which were calculated on the basis of con-
temporaneous death rates among otherwise
similar life insurance risks accepted at stan-
dard premium rates. Such mortality ratios
usually were computed by sex, age groups at
issue of the insurance, duration since issue of
the insurance, and causes of death. The cal-
culation of expected deaths involves accurate
estimates of the exposed to risk. Because
of the varying forms of records, individual
and grouped, different tabulating procedures
have been employed, as a rule considering
deaths within a unit age interval as having
occurred at the end of that interval.

Ratios of actual to expected mortality pro-
vide very sensitive measures of mortality and
therefore may fluctuate widely in finer sub-
divisions of the experience level. They have
the merit, however, of revealing even small
departures from expected mortality in broad
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groupings. In some circumstances the pat-
terns of excess mortality are more clearly
perceived from the extra deaths per 1000
than from corresponding mortality ratios;
this often is the case during the period imme-
diately following surgery for cancer. It is
important to keep in mind that mortality
ratios generally decrease with age, so that
the mortality ratios for all ages combined can
be materially affected by the age composition
of a population.

Proportions surviving a specified period of
time, even though they provide absolute mea-
sures of longevity in a population, have rarely
been used in medico-actuarial investigations,
because they are relatively insensitive to
appreciable changes in mortality; small dif-
ferences in proportions surviving may be
difficult to assess. Relative proportions sur-
viving have been used occasionally in medico-
actuarial studies where very high mortality
rates occur, as among cancer patients.

In all mortality comparisons, but particu-
larly in comparisons of mortality ratios and
relative proportions surviving, it is the suit-
ability of the basis for calculating expected
deaths that makes the figures meaningful. If
such a basis is regarded as a fixed yardstick,
then the reliability of comparisons based on
small numbers of deaths can be tested by
determining whether an observed deviation
from this basis is or is not significant in prob-
ability terms; if it is significant, then what are
the limits in probability terms within which
the ‘‘true’’ value of the observed deviation can
be expected to lie [14]?

In medico-actuarial mortality investiga-
tions the numbers of deaths in most classi-
fications have usually been quite large. The
mortality ratios shown for such classifica-
tions have therefore been taken as reasonably
reliable estimates of the ‘‘true’’ values of the
mortality ratios in the underlying population.
As a rule of thumb, when the number of poli-
cies terminated by death was 35 or greater
and some doubt attached to the significance
of the mortality ratio, confidence limits were
calculated at the 95% confidence level on the
assumption of a normal distribution; when
the number of policies terminated by death
was less than 35, confidence limits have been
calculated on the assumption of a Poisson
distribution.

INTERPRETING THE FINDINGS

Medico-actuarial investigations have been
based on the experience among men and
women insured under ordinary life insur-
ance policies. These insured lives have been
drawn predominantly from the middle-class
and better-off segments of the population and
have passed the screening for life insurance
which results in the rejection of about 2%
of all applicants and the charging of extra
premiums to about 6% of all applicants. Ini-
tially at least more than 9 out of 10 persons
are accepted for life insurance at standard
premium rates and those issued insurance
at standard premium rates are in ostensibly
good health. In recent years the death rates of
men aged 25 or older insured under standard
ordinary policies have ranged from 25 to 35%
of the corresponding population death rates
in the first two policy years, from 40 to 50%
of the corresponding population death rates
at policy year durations 3–5, and from 55 to
75% of the corresponding population death
rates after 15 or more years have elapsed
since issue of insurance. The corresponding
figures for women insured under standard
ordinary policies have been similar to those
of male insured lives at ages over 50, but
were closer to population death rates at the
younger ages.

Inasmuch as the underwriting rules deter-
mine which applicants are accepted for stan-
dard insurance and which for insurance at
extra premium rates, the mortality experi-
ence in medico-actuarial investigations has
occasionally been affected to a significant
degree by changes in underwriting practices
to more lenient or stricter criteria.

The mortality findings in medico-actuarial
investigations relate to the status of individ-
ual at time of issue of the insurance. The
experience therefore reflects not only the
effects of some individuals becoming poorer
risks with the passage of time, but also of
some individuals becoming better risks (e.g.,
leaving employment in a hazardous occupa-
tion or benefiting from medical or surgical
treatment) and withdrawing from the expe-
rience. Where the effects of employment in
hazardous occupations or of certain physi-
cal impairments are deferred, it is essential
that the study cover a sufficiently long period
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of time for the deferred mortality to become
manifest. This is particularly important in
the case of overweight and hypertension [13].

The results of medico-actuarial investi-
gations have been relatively free from bias
arising from failure to trace the experience
among those withdrawing. Considerable evi-
dence has been accumulated to show that
insured lives who cease paying premiums
and thus automatically remove themselves
from observation are as a group subject to
somewhat lower mortality [12].

It should also be kept in mind that the
mortality ratios shown in medico-actuarial
studies were computed on the basis of the
number of policies (or amounts of insurance)
and not on the basis of lives. In classifi-
cations involving small numbers of policies
terminated by death it has been necessary
to look into the data to determine whether
the results had been affected by the death of
a single individual with several policies (or
with large amounts of insurance). This has
usually been noted in the descriptive text.

The data in medico-actuarial investiga-
tions are very accurate with respect to re-
ported ages and remarkably complete in the
follow-up∗. The information obtained on ap-
plications for life insurance with respect to
past medical histories requires some qualifi-
cation. The great majority of applicants for
life insurance admit some physical impair-
ment or medical history; if the impairment or
history appears to be significant, attention is
focused on it in the medical examination for
insurance and a statement from the attend-
ing physician may be obtained. The medical
examination on modest amounts of life insur-
ance is not as comprehensive as a diagnostic
examination in clinical practice, where the
physician is in position to study a patient
for a longer period of time, more intensively,
and with the patient’s full cooperation. Appli-
cants for insurance not infrequently forget or
try to conceal unfavorable aspects of their
personal or family medical histories, partic-
ularly with respect to questionable habits.
Even when reasonably complete details are
elicited, there are usually practical limits on
the extent to which it is feasible to check up
on indefinite statements and vague diagnoses
reported on applications for life insurance.
Only on applications for large amounts of

insurance would two or more medical exam-
inations by different physicians be called for
and intensive effort made to clarify obscure
findings. Broadly speaking, the medical find-
ings on life insurance medical examinations
stand up very well, but the medical impair-
ments studied in medico-actuarial mortality
investigations often represent less differen-
tiated conditions which cannot be character-
ized as precisely as is sometimes possible in
clinical studies [13].

On the other hand, it has proved feasible
on applications for life insurance to obtain
fuller details of occupation and avocation
(even approximate exposure to occupational
hazards) than has been possible in many
epidemiological∗ studies.

FINDINGS OF MEDICO-ACTUARIAL
INVESTIGATIONS

The Medico-Actuarial Mortality Investiga-
tion of 1912 covered the period from 1885
to 1909 [2]. It produced tables of average
weights for men and women by age and
height which remained in general use as a
weight standard until 1960. The mortality
experienced according to variations in build
indicated some extra mortality among under-
weights at ages under 35, associated with
materially greater risk of tuberculosis and
pneumonia, but at ages 35 and older the low-
est mortality was found among those 5 to 10
pounds underweight. Overweight was found
to be associated with increased death rates
from heart disease, diabetes, and cerebral
hemorrhage. The investigation also included
76 groups of medical impairments, 68 occu-
pations, four categories of women studied
according to marital status, and insured
blacks and North American Indians.

The Occupational Study 1926 dealt with
some 200 occupations or groups of occupa-
tions, separately for those where occupa-
tional accidents were the dominant element
of extra risk and those where nonoccupa-
tional accidents, pneumonia, cirrhosis of the
liver, cancer, or other causes, were suspect as
responsible for the extra risk [3].

The Medical Impairment Study 1929 [4],
which covered the period from 1909 to 1928,
and its 1931 Supplement11 broadly confirmed
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the findings of the Medico-Actuarial Inves-
tigation as to average weights by age and
height at ages 25 and older and the effects on
mortality of departures from average weight.
The study centered on 122 groups of medical
impairments, including a number of combina-
tions of two impairments treated as a single
element of risk. The more important find-
ings related to the extra mortality on heart
murmurs, elevated blood pressure, and albu-
min and sugar in the urine. The findings
on elevated blood pressure indicated clearly
that systolic blood pressures in excess of 140
mm were associated with significant extra
mortality, which at the time was contrary to
medical opinion [10].

Smaller investigations of the mortality
among insured lives with various medical
impairments followed, published under the
titles Impairment Study 1936 [6] and Impair-
ment Study 1938 [19]. Together they included
42 groups of medical impairments, among
them persons with a history of cancer, gas-
tric and duodenal ulcers, gall bladder disease,
and kidney stone, including surgery for these
conditions.

In 1938 an extensive investigation was
also undertaken of the mortality according to
variations in systolic and diastolic pressure.
This study, known as the Blood Pressure
Study 1938, covered the period from 1925 to
1938 [8,9]. It confirmed earlier findings that
diastolic pressures in excess of 90 mm as well
as systolic blood pressures in excess of 140
mm were associated with at least 25% extra
mortality, and it brought out clearly that
various minor impairments accompanying
elevated blood pressure, notably overweight,
increased the risk appreciably.

The Occupational Study 1937 covered nu-
merous occupations over the period 1925 to
1936 [7]. It developed the extra mortality
among those employed in the manufacturing,
distribution, and serving of alcoholic bever-
ages. It also indicated some decline since the
early 1920s in the accidental death rates in
many occupations.

The Impairment Study 1951, which cov-
ered the period 1935 to 1950, reviewed the
mortality experience for 132 medical impair-
ment classifications on policies issued during
the years 1935 through 1949 [16]. It showed
lower extra mortality than that found in the

Medical Impairment Study 1929 for medical
impairments due to infections, for conditions
treated surgically, for diseases of the respira-
tory system, and for some women’s diseases.
Because of the inclusion in the study of
smaller groups of lives with specific impair-
ments, greater use was made of confidence
intervals based on the Poisson distribution.

The Build and Blood Pressure Study 1959
covered the experience on about 4,500,000
policies over the period 1935 to 1953 [17]. It
focused on changes in the mortality experi-
enced among underweights and overweights,
elevated blood pressures, and combinations
of overweight and hypertension with other
impairments. New tables of average weights
for men and women by age and height
were developed, which showed that men had
gained weight while women had reduced
their average weights since the 1920s. Moder-
ate underweights showed very favorable mor-
tality, while marked overweights recorded
somewhat higher relative mortality. The
mortality on slight, moderate, and marked
elevations in blood pressure registered dis-
tinctly higher mortality than found in earlier
investigations.

The Occupational Study 1967 covered the
period from 1954 to 1964 and was limited
to occupations believed to involve some extra
mortality risks [18]. Only the following occu-
pations, on which there was substantial expe-
rience, recorded a crude death rate in excess
of 1.5 per 1000:

Lumberjacks
Mining operators
Explosive workers
Construction crane workers
Shipbuilding operators
Structural iron workers
Railroad trainmen and switchmen
Taxi drivers
Marine officers and crew
Guards and watchmen
Marshals and detectives
Sanitation workers
Porters
Elevator operators
Persons selling, delivering, or
serving alcoholic beverage

The mortality in most occupations decreased
from that reported in the Occupational Study
1937. Significant reductions occurred among
mining officials and foremen, workers in
metal industry, telecommunication linemen,
longshoremen, firefighters, police officers,
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window cleaners, hotelkeepers, saloonkeep-
ers and bartenders, and most laborers. Rela-
tive mortality increased for lumberjacks, rail-
road trainmen and switchmen, truck drivers,
marine crew and guards, and watchmen.

The Build Study 1979 [21] and the Blood
Pressure Study 1979 [22] each covered about
4,250,000 policies over the period 1954 to
1971. They showed that the average weights
for men had continued to increase, as did
the average weights for women under 30;
women 30 and older registered decreases in
average weights as compared with the Build
and Blood Pressure Study 1959. The excess
mortality among overweights was found to be
substantially the same as in the earlier study,
but somewhat higher mortality was recorded
among moderate overweights. Nevertheless,
the optimum weights (those associated with
the lowest mortality) were again found to
be in the range of 5 to 10% below average
weight, even though the average weights for
men had increased significantly. The excess
mortality on elevated blood pressures was
found to be distinctly lower than in the Build
and Blood Pressure Study 1959. A cohort of
24,000 men who had been treated for hyper-
tension exhibited virtually normal mortality
among those whose blood pressures had been
reduced to below 140 systolic and 90 dias-
tolic after treatment. The study adduced the
most convincing evidence thus far available
that recent treatment for hypertension was
highly effective for many years. In progress at
this time is another medico-actuarial inves-
tigation of the mortality among insured lives
with a wide variety of medical impairments,
covering the period from 1955 through 1974.
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ACTUARIAL SCIENCE

Actuarial science is an applied mathemati-
cal and statistical discipline in which data-
driven models are constructed to quantify
and manage financial risk. The term ‘‘actuar-
ial statistics’’ is not in common use because a
well-defined set of statistical techniques use-
ful to actuaries has not been established. This
topic could also be viewed as a discussion
of the types of data (mortality, morbidity*,
accident frequency, and severity) collected by
actuaries, but that will not be the focus here.
This entry will concentrate on two particu-
lar statistical endeavors in which actuaries
have played a major role—construction of
mortality tables and credibility theory.

CONSTRUCTION OF MORTALITY TABLES

From the 1600s, governments sold annuities
based on individual’s lifetimes. To be use-
ful as a fund-raising mechanism, the cost of
the annuity needed to be greater than the
expected cost of the benefit. Although not the
first mortality table (or life table*), the work
of Halley [10] combined the construction of a
mortality table with the concept of expected
present value. From the life table, for a per-
son of current age x, it is possible to get
the probability distribution of the number of
years remaining, that is,

k|qx = Pr(death is between ages x+ k

and x+ k+ 1), k = 0, 1, . . . .

In addition, if the annuity is to pay one mon-
etary unit at the end of each year, provided

the annuitant is alive, the expected present
value is

ax =
∞∑

k=1
k|qx(v+ v2 + · · · + vk)

where v = 1/(1+ i) and i is the rate of inter-
est.

A few years later, de Moivre* [19] intro-
duced an approximation based on linear
interpolation* between values in the life table
(his table did not have survival probabili-
ties at each integral age). This approximation
continues to be used today and is referred to
as the uniform distribution of deaths assump-
tion [4], Chap. 3.

Life tables for actuarial use were con-
structed on an ad-hoc basis until the mid-
dle of the twentieth century when the so-
called ‘‘actuarial method’’ was developed. It
is loosely based on an assumption put forth
by Balducci [2], viz.,

Pr(a person age x+ t dies before age x+ 1)

= (1− t) Pr(a person age x

dies before age x+ 1),

0 < t < 1 (see LIFE TABLES, BALDUCCI

HYPOTHESIS). The result is an exposure-based
formula that estimates the key life-table
quantity as

qx = Pr(a person age x dies before age x+ 1)

= number of observed deaths / exposure.

For a life observed between ages x and x+ 1,
the exposure contribution is the portion of the
year the life was observed, except for deaths,
for which the exposure is the time from first
observation to age x+ 1.

This estimator is inconsistent [5]. How-
ever, it has one quality that made it
extremely valuable. Given the types of
records commonly kept by insurance compa-
nies, this formula was easy to implement by
hand, or using mainframe computers preva-
lent through the 1980s. A good exposition of
the actuarial method and its practical appli-
cations is Reference 3. Since then, actuaries
have used the more accurate Kaplan-Meier*
[13] and maximum likelihood estimation*
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procedures. These concepts are introduced
in an actuarial setting in Reference 6.

Once the values of qx have been obtained,
a second actuarial contribution has been the
smoothing of these values to conform with
the a priori notion that from about age five
onward the values should be smoothly in-
creasing. The process of smoothing mortal-
ity rate estimates is called graduation*. An
introduction to all of the commonly used
methods is given in Reference 17. Two of
the more commonly used methods, interpola-
tion*, and Whittaker, will be discussed here.
Both methods create the graduated rates as
a linear combination of surrounding values.

The interpolation method requires that
the observations be grouped in a manner that
creates estimates of qx at every k (often 5)
years of age. This is done by first aggregating
the deaths (say, dx) and exposures (say, ex) at
the surrounding ages, to create, for example,
with k = 5,

d∗x = dx−2 + dx−1 + dx + dx+1 + dx+2,

e∗x = ex−2 + ex−1 + ex + ex+1 + ex+2.

Because these series are often convex, an
improved aggregated value can be found from
King’s pivotal point formula [14]:

d∗∗x = −0.008d∗x−5 + 0.216d∗x − 0.008d∗x+5

e∗∗x = −0.008e∗x−5 + 0.216e∗x − 0.008e∗x+5.

Finally, the mortality rate at age x is given
by q∗∗x = d∗∗x /u

∗∗
x .

The most commonly used interpolation
formula is the Karup-King formula

qx+j = sq∗∗x+5 + 0.5s2(s− 1)δ2q∗∗x+5

+(1− s)q∗∗x + 0.5(1− s)2(−s)δ2q∗∗x ,

j = 0, 1, 2, 3, 4, 5,

where s = j/5 and δ2q∗∗x = q∗∗x+5 − 2q∗∗x + q∗∗x−5
is the second central difference (see FINITE

DIFFERENCES, CALCULUS OF). This formula
uses four mortality rates and has the prop-
erty that if those rates lie on a quadratic
curve, the interpolated values will reproduce
that curve. In addition, the cubic curves that
connect consecutive mortality rates will have
identical first derivatives where they meet.

Another popular formula is due to Jenk-
ins [12] (see Eq. 7 in the entry GRADUATION).
It requires fourth central differences and
thus involves six points. It reproduces third-
degree polynomials and adjacent curves will
have identical first and second derivatives.
To achieve these goals, the formula does not
match the original mortality rates. That is,
qx+0 �= q∗∗x .

The Whittaker method [22] can be derived
by a Bayesian argument or from arguments
similar to those used in creating smoothing
splines (see SPLINE FUNCTIONS). Let qx, x =
0, . . . , n, be the original estimates; let vx, x =
0, . . . , n, be the graduated values; and let wx,
x = 0, . . . , n, be a series of weights. Then, the
graduated values are those that minimize the
expression

n∑
x=0

wx(vx − qx)2 + h
n−z∑
x=0

(�zvx)2

(see GRADUATION, WHITTAKER–HENDERSON).
The weights are often chosen as either the
exposure (sample size) at each age or the
exposure divided by qx(1− qx), which would
approximate using the reciprocal of the vari-
ance as the weight. The value of z controls the
type of smoothing to be effected. For example,
z = 3 leads to graduated values that tend
to follow a quadratic curve. The choice of h
controls the balance between fit (having the
graduated values be close to the original val-
ues) and smoothing (having the graduated
values follow a polynomial).

CREDIBILITY

Credibility theory is used by actuaries in the
setting of premiums based on prior or corol-
lary information. Two common situations are
experience rating and classification ratemak-
ing. An example of the former is workers
compensation insurance. Suppose a particu-
lar employer had been charged a standard
rate on the basis of expecting $x of claim pay-
ments per thousand dollars of payroll. In the
previous year, the employer had claims of $y
per thousand dollars of payroll, where y < x.
The employer believes that a reduction in
premium is warranted, while the insurer may
claim that the result was simply good fortune.
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A credibility procedure will base the next
premium on the value zy+ (1− z)x, where
0 � z � 1 and z is called the credibility fac-
tor. The magnitude of z is likely to depend
on the sample size that produced y, the vari-
ance of y, and, perhaps, some measure of the
accuracy of x.

With regard to classification ratemaking,
consider setting premiums for automobile
insurance. Separate rates may be needed for
various combinations of gender, age, location,
and accident history. Let y be an estimate
based on the data for a particular combi-
nation of factors and let x be an estimate
based on all the data. Because some combina-
tions may occur infrequently, the reliability
of y may be low. A credibility estimate using
zy+ (1− z)x may be more accurate (though
biased). Credibility analysis succeeds for just
that reason. By applying the factor 1− z
to an estimator that is more stable, the
reduction in variance may offset the effect
of bias, producing a smaller mean square
error.

Two approaches to credibility have evol-
ved. One, usually credited to Mowbray [20],
has been termed limited fluctuation credibil-
ity. The question reduces to determining the
sample size needed so that the relative error
when estimating the mean will be less than
k% with probability at least p%. A normal or
Poisson approximation along with a variance
estimate is usually sufficient to produce the
answer. If the sample size exceeds this num-
ber, then z = 1 (full credibility) is used. If not,
z is customarily set equal to the square root
of the ratio of the actual sample size to that
needed for full credibility. Assuming no error
in the quantity being multiplied by 1− z , the
effect is to reduce the variance to equal that
which would have been obtained with the
full credibility sample size. The simplicity
of this method causes it to remain popular.
Its drawback is that it does not allow for
the increased bias as z decreases, nor does
it allow for any error in the quantity being
multiplied by 1− z.

The second method has been termed great-
est accuracy credibility and bears a strong
resemblance to Bayesian analysis. It was
introduced by Whitney [21] with a more thor-
ough derivation produced by Bailey [1] and
a modern derivation by Bühlmann [7]. This

approach begins by assuming that a sample
of size n is obtained from an individual. The
observations are independent realizations of
the random variable X with a distribution
function that depends on the vector parame-
ter θ . Define

E(X|θ ) = µ(θ ) and Var(X|θ ) = v(θ ).

Further, assume that θ is unknown, but
has been drawn at random from a random
variable � with distribution function F�(θ ).
Finally, assume that µ(θ ) is to be estimated
by a linear function of the observations, that
is,

µ̂(θ ) = α0 + α1X1 + · · · + αnXn.

The objective is to minimize

E�,X1,...,Xn

{[
µ̂(�)− µ(�)

]2
}

.

That is, the squared error should be mini-
mized both over all possible observations and
all possible parameter values. For a particu-
lar insured with a particular value of θ , the
squared error may be larger than if the sam-
ple mean were used, but for others it will be
smaller so that the overall error is reduced.

The solution is

µ̂(θ ) = zx+ (1− z)µ; µ = E[µ(�)],

z = n
n+ k

, k = E[v(�)]
Var[µ(�)]

.

It turns out to be the Bayesian (posterior
mean) solution for certain common cases such
as normal-normal and Poisson-gamma.

In practice, the indicated quantities must
usually be estimated. An approach given in
Bühlmann and Straub [8] provides an empir-
ical Bayes* estimate, derived by a method of
moments* approach. This is not unreason-
able, because the distribution of � is not an a
priori opinion, but rather a real, if unobserv-
able, distribution of how characteristics vary
from policyholder to policyholder or group
to group. With data on several policyhold-
ers or groups, it is possible to estimate the
needed moments. A true Bayesian model can
be constructed by placing a prior distribution
on the parameters of the distribution of �.
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This is done for the normal-normal model in
Reference 15.

Textbooks that develop these credibility
topics and more (all include an English lan-
guage version of the Bühlmann-Straub for-
mula) include references 9, 11, 16, Chap. 5;
and 18. A comprehensive list of book and
article abstracts through 1982 is found in
reference 23.
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7. Bühlmann, H. (1967). Experience rating and
credibility. ASTIN Bull., 4, 199–207.
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ADAPTIVE METHODS

In adaptive statistical inference, we use the
sample to help us select the appropriate
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type of statistical procedure needed for the
situation under consideration. For a simple
illustration of this, say that we use the sam-
ple kurtosis∗ K as a selector statistic [3]. One
adaptive point estimator, T, for the center of
a distribution would be

T =


midrange∗, K � 2,
arithmetic mean∗, 2 < K < 5,
median∗, 5 � K.

That is, if the sample looks as if it arises
from a short-tailed distribution, the average
of the largest and smallest items of the sam-
ple is used as our estimator. If it looks like
a long-tailed situation, the median is used.
Otherwise, our estimate is the arithmetic
mean (average) x.

To generalize this illustration somewhat,
suppose that we have a whole family (not
necessarily finite) of possible distributions.
Within this family of distributions, take a
few representative ones, say F1, F2, . . . , Fk.
Now, for each of these k distributions, sup-
pose that we can find a good statistic to
make the inference under consideration. Let
us say that these respective statistics are
T1, T2, . . . , Tk. We observe the sample from a
distribution; and with a selector statistic, say
Q, we determine which one of F1, F2, . . . , Fk
seems closest to the underlying distribution
from which the sample arises. If Q suggests
that we have been sampling from Fi, then we
would use the statistic Ti; or if Q suggests
that we might be someplace between Fi and
Fj, then we could use a combination of Ti
and Tj; or more generally, Q could dictate a
statistic that is a linear combination of all
the statistics, T1, T2, . . . , Tk: let us say

T =
k∑

i=1

WiTi,
k∑

i=1

Wi = 1,

where the weights W1, W2, . . . , Wk are func-
tions of the statistic Q. If it looks more like
the sample arises from Fi, then, of course, the
weight Wi would be large.

Consider a very simple example in which
we are trying to choose the best of three types
of concrete [10]. The compression strengths
were tested after bars of each type had been
exposed to severe environmental conditions

Table 1.

Concrete A B C

Ordered 5060 5625 4880
Observations 5398 6020 6030

5820 6270 6290
6131 6636 6372
6400 6880 6920
7527 7337 8320
7560 8170 8581

Midrange 6310.0 6897.5 6730.5
Mean 6270.86 6705.43 6770.43
Modified median 6122.00 6609.86 6471.86

for a period of 1 year. Seven (n = 7) observa-
tions were taken for each type of cement,
where the observations are the breaking
strengths of the bars measured in pounds
per square inch. Let us denote the order
statistics∗ of a sample by y1 � y2 � · · · �
y7. However, since we do not know from
what underlying distribution these arose,
we choose three representative distributions:
the short-tailed uniform∗ using the midrange
(y1 + y7)/2 as an estimate of center, the
normal∗ using the average x as the estimate,
and the long-tailed double exponential∗ with
a modified median (3y3 + 8y4 + 3y5)/14 as the
statistic. These statistics were computed for
each of the three samples and are given in
Table 1 together with the original data.

It is interesting to note that using the
midrange or median statistics, concrete B
looks to be the best, whereas x suggests con-
crete C. Accordingly, a selector statistic is
needed, and we use

Q = (y7 − y1)/2∑ |yi −M|/7 ,

the ratio of one-half of the range divided
by the mean deviation∗ from the sample
median M. (Q is defined somewhat differ-
ently when n > 20.) The average of the three
Q values is computed to obtain Q = 1.876.
The midrange, average, or median is selected
respectively, according to whether Q falls
below, in between, or above

2.08− (2/n) and 2.96− (5.5/n);

that is, with n = 7, 1.794 and 2.174. (The for-
mulas for these cutoffs have been determined
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empirically.) Since Q = 1.876, it seems as if
the distribution has fairly normal tails; thus
the statistic x chooses concrete C as the best.

We must understand, however, that the
inference under consideration is not neces-
sarily a point estimate in the general situ-
ation. We could be considering a confidence
interval∗ or a test of hypothesis∗. Moreover,
making an inference in this manner, that
is, selecting the underlying distribution and
then making the inference from the same
data, can certainly destroy certain probabil-
ities that are of interest in statistics. For
example, if we are constructing a nominal
95% confidence interval, we can actually spoil
the confidence coefficient∗ by such a proce-
dure, so that it might actually be 0.80 or even
0.70. Or if we are making a test of a statistical
hypothesis, the significant level might not be
α = 0.05, but 0.15 or 0.25. Despite this fact,
however, the adaptive idea is useful in good
data analysis; therefore, it is necessary for
us to adjust our theories to the applications.
That is, we want our theories to support the
applications, not oppose them.

This forces us to look at some of the dif-
ficulties associated with the corresponding
sampling distribution theory. Let us say that
θ is the location parameter∗ and we are inter-
ested in testing the hypothesis H0 : θ = θ0
against the hypothesis H1 : θ > θ0. Again,
suppose that we have a family of distribu-
tions for which θ is the location parameter of
each member of the family. If we are sampling
from Fi, say, we would reject the hypothesis
H0 and accept the alternative hypothesis H1
if some statistic, say Zi, was greater than or
equal to ci; i.e., Zi � ci, i = 1, 2, . . . , k. There-
fore, our adaptive test might be something
like this: reject H0 and accept H1 if

Z =
k∑

i=1

WiZi � c,

where W1, W2, . . . , Wk are functions of some
selector statistic, say Q. The significance level
of the test is then

Pr

∣∣∣∣∣
k∑

i=1

WiZi � c|H0

∣∣∣∣∣ .
This probability is difficult to compute, so let
us first consider a special and easier situation

in which each of the W’s is equal to 0 or 1. Of
course, only one Wi can equal 1, and the rest
must equal 0. Thus if Q suggests that Fi is
the underlying distribution, then we will use
Zi. That is, if Q ∈ Ri, where R1, R2, . . . , Rk are
appropriate mutually exclusive∗ and exhaus-
tive sets, we will select Zi for the test statistic.
Under these conditions, the significance level
would be

k∑
i=1

Pr[Q ∈ Ri and Zi � ci|H0].

If each of the individual tests is made at the
0.05 significance level, it has been observed
in practice that this significance level is fre-
quently somewhat larger than that nominal
significance level of 0.05.

There is a certain desirable element of
model building in this entire procedure; that
is, we observe the data and select the model
that seems appropriate, and then we make
the statistical inference∗ for the situation
under consideration. However, there can be
some cheating in doing this; that is, if we
construct the model from given data and
then make a test of hypothesis using those
data, our nominal significance level is not
necessarily the correct one. Moreover, even
some researchers carry this to an extreme
by selecting the test procedure that favors
what they want (usually rejection of the null
hypothesis∗). They might then quote a signif-
icance level of 0.05, while the real α, for the
overall selection and testing procedure might
be higher than 0.25.

There is a method, however, of ‘‘legaliz-
ing’’ this cheating. Suppose that the selector
statistic Q and each Zi are independent under
the null hypothesis H0. Then the significance
level is

k∑
i=1

Pr[Q ∈ Ri and Zi � ci|H0]

=
k∑

i=1

Pr[Q ∈ Ri|H0] Pr[Zi � ci|H0]

= α
k∑

i=1

Pr[Q ∈ Ri|H0] = α,

provided that each individual test is made
at the nominal significance level α. That is,
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this common significance level α is exactly
the same as the overall significance level.
The important feature of this is to make
certain that the selector statistic Q is inde-
pendent of the test statistic. One elegant way
of achieving this is through distribution-free
(nonparametric) methods∗ [5].

To illustrate the beauty of the nonpara-
metric methods in these situations, let us
consider the two-sample problem. Suppose
that we have two independent continuous-
type distributions, F and G. The null hypothe-
sis H0 is the equality of the two corresponding
functions. Say that the sample X1, X2, . . . , Xm
arises from F, and the sample Y1, Y2, . . . , Yn
arises from G. We suggest three nonparamet-
ric statistics that can be used to test this null
hypothesis [2]. The first, Tukey’s quick test∗,
is used when the underlying distributions
have short tails, like those of the uniform
distribution∗. Tukey’s statistic is

T1 = (#Y ’s > largest X)

+ (#X ’s < smallest Y).

A large T1 would suggest the alternative
hypothesis H1 that the Y ’s tend to be larger
than the X ’s. Thus we reject H0 and accept
H1 if T1 is greater than or equal to c1, where

Pr[T1 � c1|H0] = α.

The second statistic T2 is that of Mann,
Whitney, and Wilcoxon. This statistic is a
good one in case the underlying distributions
have middle tails, like those of the normal∗

or logistic∗ distributions. After combining the
two samples, we determine the ranks of the
Y ’s in the combined sample; say those ranks
are R1, R2, . . . , Rn. One form of the Mann-
Whitney-Wilcoxon statistic∗ is

T2 =
n∑

i=1

Ri.

Now we reject H0 and accept H1 if T2 is
greater than or equal to c2, where

Pr[T2 � c2|H0] = α.

The third statistic is that associated with
the median test. It is T3 = #Y ’s greater than

the combined sample median. We reject H0 if
that statistic, T3, is greater than or equal to
c3, where

Pr[T3 � c3|H0] = α.

Each of the probabilities denoted by α in
these three tests does not depend on the
form of the underlying continuous distribu-
tion, and sometimes these tests are called
distribution-free tests.

For an example of each of these statis-
tics, refer to data on the three types of
concrete, and let the samples from A and
B represent, respectively, the X and Y values
with m = n = 7. The computed statistics are
T1 = 3, T2 = 59, with T3 = 4. Let us now con-
sider an adaptive procedure that selects one
of these three statistics. Considering the com-
bined sample (i.e., the X ’s and Y ’s together)
use a selector statistic, say Q, and decide
whether we have short-tailed distributions,
in which case we use the T1 test; middle-
tailed distributions, in which case we use the
T2 test; or long-tailed distributions, in which
case we use the T3 test. It turns out that
the overall (selecting and testing) significance
level will also equal α because each of T1, T2,
and T3 is independent of Q. The reason we
have this independence under H0 is that the
order statistics of the combined sample are
complete, sufficient statistics for the under-
lying ‘‘parameter,’’ the common distribution
F = G. Moreover, it is well known that the
complete, sufficient statistics for F = G are
then independent of statistics whose distri-
butions do not depend upon F = G, such as
T1, T2, and T3. However, the selector statis-
tic Q is a function of the complete, sufficient
statistics, and thus it is also independent of
each of the statistics T1, T2, and T3, under
H0. Incidentally, in our example, using the Q
and Q associated with the illustration about
concrete, the statistics T2 for middle-tailed
distributions would be selected and T2 = 59
has a p-value of 0.288. Thus the null hypoth-
esis would not be rejected at the significance
level of α = 0.05.

Although these nonparametric methods
can be generalized to multivariate situations
such as regression∗, many statisticians do
not find them extremely satisfactory in data
analysis. Possibly the newer robust statistics
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show more promise in adaptation; some of
them are ‘‘almost distribution-free’’ and lend
themselves better to data analysis. Although
it is impossible to give many details on robust-
ness in this short article, the idea is illus-
trated with the trimmed mean.

Suppose that we are attempting to make
an inference about the center θ of a symmetric
distribution. Let X1 � X2 � · · · � Xn repre-
sent the items of a random sample, ordered
according to magnitude. The β-trimmed mean
is

Xβ = 1
h

n−g∑
i=g+1

Xi,

where β is usually selected so that g = ηβ
is an integer (otherwise, g = [ηβ], the great-
est integer in ηβ) and where h = n− 2g. Of
course, Xβ=0 = X.

It is well known that

Z = X − 0

S/
√

n− 1
,

where S2 =∑n
i=1(Xi − X)2/n, has a t-distri-

bution∗ with n− 1 degrees of freedom pro-
vided that the sample arises from a nor-
mal distribution. However, even though the
underlying distribution is nonnormal (with-
out really long tails), Z still has a distribution
fairly close to this t-distribution. This is what
we mean by ‘‘almost distribution-free.’’ Now
it is not so well known, but true [11], that

Zβ = Xβ − 0√
SS(β)/h(h− 1)

,

where

SS(β) = (g+ 1)(Xg+1 − Xβ )2

+ (Xg+2 − X)2 + · · ·
+ (Xn−g−1 − X)2

+ (g+ 1)(Xn−g − Xβ )2,

has an approximate t-distribution with h− 1
degrees of freedom for many underlying dis-
tributions, so that Zβ is almost distribution-
free. Of course, Zβ=0 = Z.

In an adaptive procedure using some Zβ to
make an inference about θ , a selector statis-
tic, such as the kurtosis K or Q, can be used
to choose an appropriate β. This β will be
larger for larger values of K and Q. In mak-
ing inferences about θ based upon a selected
Zβ , the overall confidence coefficient or the
overall significance level will deviate some-
what from the nominal one. However, these
deviations are not great; in many instances
we have found that α equals something like
0.06 rather than the nominal α = 0.05. Thus
we can place great reliability on the level of
the resulting inferences.

These adaptive and robust methods have
been extended to multivariate situations and
the interested reader is referred to some of
the following articles and their references
for further study. The future seems bright
for adaptive methods, and these will bring
applications and theory closer together.
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Sankhyā A, 25, 331–352.

See also DISTRIBUTION-FREE METHODS; EXPLORATORY

DATA ANALYSIS; and ROBUST ESTIMATION.

ROBERT V. HOGG



ADAPTIVE SAMPLING 41

ADAPTIVE SAMPLING

Adaptive sampling is a method of unequal
probability sampling whereby the selection
of sampling units at any stage of the sam-
pling process depends on information from
the units already selected. In general terms
it means that if you find what you are looking
for at a particular location, you sample in
the vicinity of that location with the hope of
obtaining even more information.

Methods of estimation were initially devel-
oped in the three pioneering papers of
Thompson [23–25] and the sampling book by
Thompson [26]. The material considered in
this review is described briefly by Seber and
Thompson [20], while full details are given in
the book by Thompson and Seber [31].

ADAPTIVE CLUSTER SAMPLING

Suppose we have a population spread over
a large area which is highly clumped but is
generally sparse or empty between clumps.
If one selects a simple random sample (with-
out replacement) of units, then most of the
units selected will be empty. Density esti-
mation based on this meager information
will then have poor precision. Further, if the
population species is rare, we will get little
physiological information about individuals.
It would be better to begin with an initial
sample and, if individuals are detected on
one of the selected units, then sample the
neighboring units of that unit as well. If fur-
ther individuals are encountered on a unit in
the neighborhood, then the neighborhood of
that unit is also added to the sample, and so
on, thus building up a cluster of units. We call
this adaptive cluster sampling∗. If the initial
sample includes a unit from a clump, then
the rest of the clump will generally be sam-
pled. Such an approach will give us a greater
number of individuals.

As well as counting individuals, we may
wish to measure some other characteristic of
the unit, for example plant biomass or pol-
lution level, or even just note the presence
or absence of some characteristic using an
indicator variable. In addition to rare-species
and pollution studies, we can envisage a wide
range of populations which would benefit
from adaptive sampling, for example popula-
tions which form large aggregations such as

fish, marine mammals, and shrimp. We can
also add mineral deposits and rare infectious
diseases in human populations (e.g., AIDS) to
our list. Recently the method has been used
in sampling houses for a rare characteristic
[5] and in sampling animal habitats [15].

To set out the steps involved in adap-
tive cluster sampling we begin with a finite
population of N units indexed by their ‘‘labels’’
(1, 2, . . . , N). With unit i is associated a vari-
able of interest yi for i = 1, 2, . . . , N. The
object is to select a sample, observe the
y-values for the units in the sample, and
then estimate some function of the popula-
tion y-values such as the population total∑N

i=1 yi = τ or the population mean µ = τ/N.
The first step is to define, for each unit

i, a neighborhood consisting of that unit and
a set of ‘‘neighboring’’ units. For example,
we could choose all the adjacent units with
a common boundary, which, together with
unit i, form a cross. Neighborhoods can be
defined to have a variety of patterns; the
units (plots) in a neighborhood do not have
to be contiguous. However, they must have
a symmetry property, that is, if unit j is in
the neighborhood of unit i, then unit i is in
the neighborhood of unit j. We assume, for
the moment, that these neighborhoods do not
depend on yi.

The next step is to specify a condition C
(for instance, y > c, where c is a specified
constant). We now take an initial random
sample of n1 units selected with or without
replacement from the N units in the popu-
lation. Whenever the y-value of a unit i in
the initial sample satisfies C, all units in the
neighborhood of unit i are added to the sam-
ple. If in turn any of the added units satisfies
the condition, still more units are added. The
process is continued until a cluster of units
is obtained which contains a ‘‘boundary’’ of
units called edge units that do not satisfy C.
If a unit selected in the initial sample does
not satisfy C, then there is no augmentation
and we have a cluster of size one. The process
is demonstrated in Fig. 1, where the units
are plots and the neighborhoods form a cross.
Here yi is the number of animals on plot i,
and c = 0, so that a neighborhood is added
every time animals are found. In Fig. 1a we
see one of the initial plots which happens to
contain one animal. As it is on the edge of
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Figure 1. (a) Initial sample plot. (b) Cluster
obtained by adding adaptively.

a ‘‘clump,’’ we see that the adaptive process
leads to the cluster of plots in Fig. 1b.

We note that even if the units in the initial
sample are distinct, as in sampling without
replacement, repeats can occur in the final
sample, as clusters may overlap on their
edge units or even coincide. For example,
if two non-edge units in the same cluster
are selected in the initial sample, then that
whole cluster occurs twice in the final sample.
The final sample then consists of n1 (not nec-
essarily distinct) clusters, one for each unit
selected in the initial sample.

APPLICATIONS AND EXTENSIONS

In applications, other methods are some-
times used for obtaining the initial sample.
For instance, in forestry the units are trees
and these are usually selected by a method
of unequal probability sampling∗, where the
probability of selecting a tree is proportional
to the basal area of a tree (the cross-sectional
area of a tree at the basal height—usually
4.5 feet in the USA). Roesch [16] described a
number of estimators for this situation.

In ecology, larger sample units other than
single plots are often used. For example, a
common sampling unit is the strip transect,
which we might call the primary unit. In
its adaptive modification, the strip would be
divided up into smaller secondary units, and
if we found animals in a secondary unit, we
would sample units on either side of that
unit, with still further searching if additional
animals are sighted while on this search.
Strips are widely used in both aerial and
ship surveys of animals and marine mam-
mals. Here the aircraft or vessel travels down
a line (called a line transect∗), and the area
is surveyed on either side out to a given dis-
tance. Thompson [24] showed how the above
theory can be applied to this sampling sit-
uation. He pointed out that a primary unit
need not be a contiguous set of secondary
units. For example, in some wildlife surveys
the selection of sites chosen for observation
is done systematically (with a random start-
ing point), and a single systematic selection
then forms the primary unit. We can then
select several such primary units without
replacement and add adaptively as before.
Such a selection of secondary units will tend
to give better coverage of the population then
a simple random sample.

Clearly other ways of choosing a primary
unit to give better coverage are possible.
Munholland and Borkowski [13,14] suggest
using a Latin square∗ + 1 design selected
from a square grid of secondary units (plots).
The Latin square gives a secondary unit in
every row and column of the grid, and the
extra (i.e. +1) unit ensures that any pair
of units has a positive probability of being
included in the initial sample. The latter
requirement is needed for unbiased variance
estimation.
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In some situations it is hard to know what
c should be for the condition y > c. If we
choose c too low or too high, we end up with
a feast or famine of extra plots. Thompson
[28] suggested using the data themselves,
in fact the order statistics∗. For example, c
could be the rth largest y-value in the initial
sample statistic, so that the neighborhoods
are now determined by the y-values. This
method would be particularly useful in pollu-
tion studies, where the location of ‘‘hot spots’’
is important.

Another problem, regularly encountered
with animal population studies, is that not all
animals are detected. Thompson and Seber
[30] developed tools for handling incomplete
detectability for a wide variety of designs,
including adaptive designs, thus extending
the work of Steinhorst and Samuel [22].

Often we are in a multivariate situation
where one needs to record several charac-
teristics or measurements on each unit, e.g.
the numbers of different species. Thompson
[27] pointed out that any function of the vari-
ables can be used to define the criterion C,
and obtained unbiased estimates of the mean
vector and covariance matrix for these vari-
ables.

We can use any of the above methods in
conjunction with stratification. If we don’t
allow the clusters to cross stratum bound-
aries, then individual stratum estimates are
independent and can be combined in the
usual fashion. Thompson [25] extended this
theory to allow for the case where clusters
do overlap. Such an approach makes more
efficient use of sample information.

Finally, there are two further develop-
ments relating to design, namely, selecting
networks without replacement and a two-
stage sampling procedure [17,18].

UNBIASED ESTIMATION

Although the cluster is the natural sample
group, it is not a convenient entity to use for
theoretical developments, because of the dou-
ble role that edge units can play. If an edge
unit is selected in the initial sample, then it
forms a cluster of size 1. If it is not selected in
the initial sample, then it can still be selected
by being a member of any cluster for which
it is an edge unit. We therefore introduce the

idea of the network Ai for unit i, defined to be
the cluster generated by unit i but with its
edge units removed. In Fig. 1(b) we get the
sampled network by omitting the empty units
from the sampled cluster. Here the selection
of any unit in the network leads to the selec-
tion of all of the network. If unit i is the
only unit in a cluster satisfying C, then Ai
consists of just unit i and forms a network
of size 1. We also define any unit which does
not satisfy C to be a network of size 1, as its
selection does not lead to the inclusion of any
other units. This means that all clusters of
size 1 are also networks of size 1. Thus any
cluster consisting of more than one unit can
be split into a network and further networks
of size 1 (one for each edge unit). In contrast
to having clusters which may overlap on their
edge units, the distinct networks are disjoint
and form a partition of the N units.

Since the probability of selecting a unit
will depend on the size of the network it
is in, we are in the situation of unequal-
probability sampling and the usual estimates
based on equal-probability sampling will be
biased. However, we have the well-known
Horvitz—Thompson∗ (HT) and Hansen–
Hurwitz (HH) estimators (cf. refs. [8] and
[9]) for this situation, the latter being used
in sampling with replacement. These esti-
mators, however, require knowing the prob-
ability of selection of each unit in the final
sample. Unfortunately these probabilities are
only known for units in networks selected
by the initial sample and not for the edge
units attached to these networks. Therefore,
in what follows we ignore all edge units which
are not in the initial sample and use only net-
work information when it comes to computing
the final estimators.

Motivated by the HT estimator for the
population mean µ, we consider

µ̂ = 1
N

N∑
i=1

yi
Ii

E[Ii]
,

where Ii takes the value 1 if the initial sample
intersects network Ai, and 0 otherwise; µ̂ is
an unbiased estimator for sampling with or
without replacement.

Another possible estimator (motivated by
the HH estimator) which is also obviously
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unbiased for sampling with or without re-
placement, is

µ̃ = 1
N

N∑
i=1

yi
fi

E[fi]
,

where fi is the number of times that the
ith unit in the final sample appears in the
estimator, that is, the number of units in
the initial sample which fall in (intersect) Ai
determined by unit i; fi = 0 if no units in the
initial sample intersect Ai. It can be shown
that

µ̃ = 1
n1

n1∑
i=1

wi = w, say,

where wi is the mean of the observations in
Ai, i.e., w is the mean of the n1 (not nec-
essarily distinct) network means. See also
NETWORK ANALYSIS.

ADAPTIVE ALLOCATION

There are other ways of adaptively adding
to an initial sample. For instance, suppose
the population is divided up into strata or
primary units each consisting of secondary
units. An initial sample of secondary units is
taken in each primary unit. If some criterion
is satisfied such as y > c, then a further sam-
ple of units is taken from the same primary
unit. Kremers [12] developed an unbiased
estimator for this situation.

If the clumps tend to be big enough so
that they are spread over several primary
units, we could use what is found in a par-
ticular primary unit to determine the level of
the sampling in the next. This is the basis for
the theory developed by Thompson et al. [29].
Other forms of augmenting the initial sample
which give biased estimates are described by
Francis [6,7] and Jolly and Hampton [10,11].
This kind of adaptive sampling based on allo-
cating more units rather than adding more
neighborhoods is called adaptive allocation.

RAO—BLACKWELL MODIFICATION

An adaptive sample can be defined as one for
which the probability of obtaining the sample
depends only on the distinct unordered y-
observations in the sample, and not on the y-
values outside the sample. In this case d, the

set of distinct unordered labels in the sam-
ple together with their associated y-values,
is minimal sufficient for µ. This is proved for
‘‘conventional designs’’ by Cassel et al. [3] and
Chaudhuri and Stenger [4], and their proofs
readily extend to the case of adaptive designs.
(This extension is implicit in Basu [1].) This
means that an unbiased estimator which is
not a function of d can be ‘‘improved’’ by
taking the expectation of the estimator condi-
tional on d to give an estimator with smaller
variance. For example, consider three unbi-
ased estimators of µ, namely y1 (the mean
of the initial sample of n1 units), µ̂, and µ̃.
Each of these depends on the order of selec-
tion, as they depend on which n1 units are in
the initial sample; µ̃ also depends on repeat
selections; and when the initial sample is
selected with replacement, all three estima-
tors depend on repeat selections. Since none
of the three estimators is a function of the
minimal sufficient statistic d, we can apply
the Rao—Blackwell theorem∗. If T is any
one of the three estimators, then E[T|d] will
give a better unbiased estimate, i.e. one with
smaller variance. We find that this estima-
tor now uses all the units including the edge
units.

Finally we mention the ‘‘model-based’’ or
‘‘superpopulation’’ approach (cf. Särndal et al.
[19], for example). Here the population vector
y of y-values is considered to be a realization
of a random vector Y with some joint distri-
bution F, which may depend on an unknown
parameter φ. In a Bayesian framework φ will
have a known prior distribution. For this
model-based approach, Thompson and Seber
[31] indicate which of the results for conven-
tional designs carry over to adaptive designs
and which do not. They also show in their
Chapter 10 that optimal designs tend to be
adaptive.

RELATIVE EFFICIENCY

An important question one might ask about
adaptive sampling is ‘‘How does it compare
with, say, simple random sampling?’’ This
question is discussed by Thompson and
Seber [31, Chapter 5], and some guide-
lines are given. Cost considerations are also
important. Simple examples given by them
throughout their book suggest that there are
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large gains in efficiency to be had with clus-
tered populations. Two simulation studies
which shed light on this are by Brown [2]
and Smith et al. [21].
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ADDITION THEOREM

Let Ai and Aj be two events defined on a
sample space. Then

Pr[Ai ∪ Aj] = Pr[Ai]+ Pr[Aj]− Pr[Ai ∩ Aj],

where Pr[Ai ∪ Aj] denotes the probability of
Ai or Aj or both occurring, Pr[Ai] and Pr[Aj]
denote respectively the probability of Ai and
the probability of Aj, and Pr[Ai ∩ Aj] denotes
the probability of both Ai and Aj occurring.

The theorem is extended for the general
case of n events as follows:

Pr[A1 ∪ · · · ∪ An] =
n∑

i=1

Pr[Ai]

−
n−1∑
i1

n∑
<i2

Pr[Ai1 ∩ Ai2 ]

+
n−2∑
i1

n−1∑
<i2

n∑
<i3

Pr[Ai1 ∩ Ai2 ∩ Ai3 ]

− · · · + (−1)n+1 Pr[∩n
i=1Ai].

It is also called Waring’s theorem.

See also BONFERRONI INEQUALITIES AND INTERVALS;
BOOLE’S INEQUALITY; and INCLUSION-EXCLUSION

METHOD.

ADDITIVE RISK MODEL, AALEN’S

THE MODEL

In medical statistics and survival analysis∗, it
is important to assess the association between
risk factors and disease occurrence or mor-
tality. Underlying disease mechanisms are
invariably complex, so the idea is to simplify
the relationship between survival patterns
and covariates in such a way that only essen-
tial features are brought out. Aalen’s (1980)
additive risk model [1] is one of three well-
developed approaches to this problem, the
others being the popular proportional haz-
ards model introduced by D. R. Cox in 1972
(see PROPORTIONAL HAZARDS MODEL, COX’S),
and the accelerated failure-time model, which
is a linear regression model with unknown
error distribution, introduced in the context
of right-censored survival data by R. G. Miller
in 1976.

Aalen’s model expresses the conditional
hazard function λ(t|z) of a survival time T as
a linear function of a p-dimensional covariate
vector z:

λ(t|z) = α(t)′z =
p∑

j=1

αj(t)zj, (1)

where α(t) is a nonparametric p-vector of
regression functions [constrained by λ(t|z) �
0] and z = (z1, . . . , zp)′. Some authors refer to
(1) as the linear hazard model.

As a function of the covariates z1, . . . , zp,
the additive form of Aalen’s model contrasts
with the multiplicative form of Cox’s model:

λ(t|z) = λ0(t) exp{β ′z}

= λ0(t)
p∏

j=1

exp{βjzj},

where λ0(t) is a nonparametric baseline haz-
ard function and β is a vector of regression
parameters. Aalen’s model has the feature
that the influence of each covariate can vary
separately and nonparametrically through
time, unlike Cox’s model or the accelerated
failure-time model. This feature can be desir-
able in some applications, especially when
there are a small number of covariates.

Consider the following simple example
with three covariates: T is the age at which an
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individual contracts melanoma (if at all), z1 =
indicator male, z2 = indicator female, and
z3 = number of serious sunburns as a child.
Then the corresponding regression functions,
α1, α2, and α3, can be interpreted as the (age-
specific) background rates of melanoma for
males and females and as the excess rate of
melanoma due to serious sunburns is child-
hood, respectively.

Aalen’s model is expected to provide a rea-
sonable fit to data, since the first step of
a Taylor series expansion of a general con-
ditional hazard function about the zero of
the covariate vector can be expressed in the
form (1). It is somewhat more flexible than
Cox’s model and can be especially helpful
for exploratory data analysis∗. A rough jus-
tification for the additive form can be given
in terms of p independent competing risks∗,
since the hazard function of the minimum of
p independent random variables is the sum
of their individual hazard functions.

It is generally sensible to include a non-
parametric baseline function in the model, by
augmenting z with a component that is set
to 1. Also, it is often natural to center the
covariates in some fashion, so the baseline
can be interpreted as the ‘‘hazard’’ function
for an ‘‘average’’ individual. In some cases,
however, a baseline hazard is already implicit
in the model and it is not necessary to center
the covariates, as in the melanoma example
above.

Aalen originally proposed his model in a
counting process∗ setting, which allows time-
dependent covariates and general patterns of
censorship, and which can be studied using
powerful continuous-time martingale∗ tech-
niques. In a typical application the observed
survival times are subject to right censorship,
and it is customary to assume that the censor-
ing time, C say, is conditionally independent
of T given z. One observes (X, δ, z), where
X = T ∧ C and δ = I{X = T}. Aalen’s model
(1) is now equivalent to specifying that the
counting process N(t) = I(X � t, δ = 1), which
indicates an uncensored failure by time t, has
intensity process

λ(t) = α(t)′y(t),

where y(t) = zI{X � t} is a covariate process.

MODEL FITTING

To fit Aalen’s model one first estimates the
p-vector of integrated regression functions
A(t) = ∫ t

0 α(s) ds. Denote by (ti, δi, zi) the pos-
sibly right-censored failure time ti, indicator
of noncensorship δi, and covariate vector zi
for n individuals. Let N = (N1, . . . , Nn)′ and
Z = (y1, . . . , yn)′, where Ni is the counting
process and yi is the associated covariate
process for individual i.

Aalen [1] introduced an ordinary least
squares (OLS) type estimator of A(t) given
by

Â(t) =
∫ t

0
(Z′Z)−1Z′ dN,

where the matrix inverse is assumed to exist;
Â is a step function, constant between uncen-
sored failures, and with jump

�i =
∑

tk�ti

zkz′k

−1

zi (2)

at an uncensored failure time ti. The matrix
inverse exists unless there is collinearity∗

between the covariates or there are insuffi-
ciently many individuals at risk at time ti. A
heuristic motivation for Â comes from apply-
ing the method of least squares to increments
of the multivariate counting process N. The
estimator is consistent and asymptotically
normal [14,9]. The covariance matrix of Â(t)
can be estimated [1,2] by V̂(t) =∑

ti�t δi�i�
′
i.

Plots of the components of Â(t) against t,
known as Aalen plots, are a useful graphi-
cal diagnostic tool for studying time-varying
covariate effects [2,3,4,7,9,12,13]. Mau [12]
coined the term Aalen plots and made a
strong case for their importance in survival
analysis∗. Roughly constant slopes in the
plots indicate periods when a covariate has
a non-time-dependent regression coefficient;
plateaus indicate times at which a covariate
has no effect on the hazard. Interpretation
of the plots is helped by the inclusion of
pointwise or simultaneous confidence limits.
An approximate pointwise 100(1− α)% confi-
dence interval for the jth component of A(t)
is given by

Âj(t)± zα/2V̂jj(t)1/2,
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where zα/2 is the upper α/2 quantile of the
standard normal distribution and V̂jj(t) is the
jth entry on the diagonal of V̂(t). To avoid wild
fluctuations in the plots (which occur when
the size of the risk set is small), estimation
should be restricted to time intervals over
which the matrix inverse in (2) is numerically
stable.

Figure 1 shows an Aalen plot based on
survival data for 495 myelamatosis patients
[17]. The plot gives the estimated integrated
regression function for one particular covari-
ate, serum β2-microglobulin, which was log-
transformed to adjust for skewness. Point-
wise 95% confidence limits are also shown.
Serum β2-microglobulin is seen to have a
strong effect on survival during the first two
years of follow-up.

The vector of regression functions α can be
estimated by smoothing the increments of Â.
One approach is to extend Ramlau-Hansen’s
kernel estimator [19] to the additive-risk-
model setting [3,9,14]. For a kernel function

K that integrates to 1 and some bandwidth
b > 0,

α̂(t) = b−1
n∑

i=1

K
(

t− ti

b

)
�i

consistently estimates α provided the band-
width tends to zero at a suitable rate with
increasing sample size. Plots of the regres-
sion function estimates in some real and
simulated data examples have been given
by Aalen [3].

Huffer and McKeague [9] introduced a
weighted least squares∗ (WLS) estimator of
A; see Fig. 2 for a comparison with the OLS
estimator. The weights consistently estimate
[λ(t|zi)]−1 and are obtained by plugging α̂(t)
and z = zi into (1). The WLS estimator is
an approximate maximum-likelihood estima-
tor and an approximate solution to the score
equations [20]. It is consistent and asymp-
totically normal provided λ(t|z) is bounded
away from zero [9,14]. Furthermore, the WLS

Figure 1. An Aalen plot with 95%
confidence limits for the myelam-
atosis data.

Figure 2. Comparison of Aalen
plots of the WLS estimates
(dashed line) and OLS (solid line)
estimates for the myelamatosis
data.
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estimator is asymptotically efficient in the
sense of having minimal asymptotic variance
[6,20,4]. Simulation studies [9] show that
significant variance reductions are possible
using WLS compared with OLS estimators,
especially in large samples where the weights
are more stable. When there are no covariates
(p = 1 and zi = 1), the OLS and WLS estima-
tors reduce to the Nelson—Aalen estimator
of the baseline cumulative hazard function.
Simultaneous confidence bands for A based
on OLS and WLS estimators, for continuous
or grouped data, can be found in refs. 9, 15.

Tests of whether a specific covariate (say
the jth component of z) has any effect on
survival can be carried out within the Aalen-
model setting. The idea is to test the null
hypothesis H0 : Aj(t) = 0 over the follow-up
period. This can be done [2] using a test statis-
tic of the form

∑n
i=1 w(ti)�ij for a suitable

weight function w. Kolmogorov—Smirnov-
type tests∗ are also available [9]; such tests
are equivalent to checking whether the con-
fidence band for the jth component of A
contains the zero function.

To predict survival under Aalen’s model,
one estimates the conditional survival prob-
ability P(T > t|z) = exp{−A(t)′z}. This can be
done using the product-limit estimator

P̂(T > t|z) =
∏
ti�t

(1−�′iz),

or by plugging Â(t) into P(T > t|z) in place
of the unknown A(t). When there are no
covariates, P̂(T > t|z) reduces to the Kaplan–
Meier estimator∗ of the survival function cor-
responding to the baseline hazard.

MODEL DIAGNOSTICS

Some goodness-of-fit checking procedures are
available for additive risk models. Aalen [2,3]
suggested making plots against t of sums
of the martingale residual processes M̂i(t) =
δiI(ti � t)− Â(ti ∧ t)′zi over groups of individ-
uals. If the model fits well, then the plots
would be expected to fluctuate around the
zero line. McKeague and Utikal [16] sug-
gested the use of a standardized residual
process plotted against t and z, and devel-
oped a formal goodness-of-fit test for Aalen’s
model.

Outlier detection has been studied by Hen-
derson and Oman [8], who considered the
effects on Â(t) of deletion of an observation
from a data set. They show that unusual
or influential observations∗ can be detected
quickly and easily. They note that Aalen’s
model has an advantage over Cox’s model in
this regard, because closed-form expressions
for the estimators are available, leading to
exact measures of the effects of case deletion.

Mau [12] noticed that Aalen plots are use-
ful for diagnosing time-dependent covariate
effects in the Cox model. To aid interpre-
tation of the plots in that case, Henderson
and Milner [7] suggested that an estimate
of the shape of the curve expected under
proportional hazards be included.

RELATED MODELS

In recent years a number of variations on
the additive structure of Aalen’s model have
been introduced. McKeague and Sasieni [17]
considered a partly parametric additive risk
model in which the influence of only a subset
of the covariates varies nonparametrically
over time, and that of the remaining covari-
ates is constant:

λ(t|x, z) = α(t)′x+ β ′z, (3)

where x and z are covariate vectors and α(t)
and β are unknown. This model may be more
appropriate than (1) when there are a large
number of covariates and it is known that
the influence of only a few of the covariates
is time-dependent. Lin and Ying [10] studied
an additive analogue of Cox’s proportional
hazards model that arises as a special case of
(3):

λ(t|z) = α0(t)+ β ′z. (4)

Efficient WLS-type estimators for fitting (3)
and (4) have been developed.

A variation in the direction of Cox’s pro-
portional hazards model [5] has been studied
by Sasieni [21,22]: the proportional excess
hazards model

λ(t|x, z) = α0(t|x)+ λ0(t) exp{β ′z}, (5)
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where α0(t|x) is a known background haz-
ard (available from national mortality statis-
tics say) and λ0(t) and β are unknown. A
further variation in this direction is due
to Lin and Ying [11], who considered an
additive–multiplicative hazards model that
includes

λ(t|x, z) = γ ′x+ λ0(t) exp{β ′z}, (6)

where γ , β, and λ0(t) are unknown. Finding
efficient procedures for fitting the models (5)
and (6) involves a combination of Cox partial
likelihood∗ techniques and the estimation of
efficient weights similar to those needed for
the standard additive risk model (1).

CONCLUSION

Despite the attractive features of Aalen’s
model as an alternative to Cox’s model
in many application, it has received rela-
tively little attention from practitioners or
researchers. Cox’s model has been perceived
to be adequate for most applications, but it
can lead to serious bias when the influence
of covariates is time-dependent. Fitting sep-
arate Cox models over disjoint time intervals
(years, say) is an ad hoc way around this prob-
lem. Aalen’s model, however, provides a more
effective approach. Interest in it, and espe-
cially in Aalen plots, is expected to increase
in the future.
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ADMISSIBILITY

DEFINITION

Admissibility is a very general concept that
is applicable to any procedure of statistical

inference∗. The statistical literature contains
discussions of admissibility of estimators∗,
confidence intervals∗, confidence sets, tests
of hypotheses, sampling designs in survey
sampling∗, and so on. For each class of pro-
cedures, there is formulated a definition of
admissibility which is appropriate for that
class only. But all such definitions are based
on a common underlying notion—that a pro-
cedure is admissible if and only if there does
not exist within that class of procedures
another one which performs uniformly at
least as well as the procedure in question and
performs better than it in at least one case.
Here ‘‘uniformly’’ always means for all values
of the parameter∗ (or parameters) that deter-
mines the (joint) probability distribution∗ of
the random variables under investigation. It
thus remains only to define how the condi-
tion of ‘‘performing as well as’’ is interpreted
in each case. All such definitions are based
closely on that of the admissibility of a deci-
sion rule∗ formulated in Abraham Wald’s
theory of statistical decision functions or deci-
sion theory∗, as it is briefly called. In fact, the
importance of the notion of admissibility in
statistical theory rests on the adoption of
the decision-theoretic approach to statistical
problems formulated in Wald’s theory.

DECISION THEORY

Wald’s theory formulates the following gen-
eral model for statistical decision making.
Let S denote the sample space of the ran-
dom variables under investigation, of which
the true (joint) probability distribution is
unknown, it being known only to belong to a
family P = (Pθ , θ ∈ �). Depending upon the
object of the investigation (e.g., point or inter-
val estimation or hypothesis testing∗, etc.),
there is a specific set a of all possible deci-
sions a which the statistician may make. A
decision rule δ is a function which prescribes
for each sample point z how the decision
would be made, i.e., some specific a cho-
sen from a. (δ may either assign a unique
a to each z—such a rule is called a nonran-
domized rule—or it may assign to each z a
probability distribution δz on a, the choice of a
specific a being made according to that proba-
bility distribution by an independent random
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experiment.) Consequences of wrong deci-
sions are allowed for by assuming a suitable
nonnegative loss function∗ L (a, θ ). When the
experiment, i.e., the taking of observations
on the random variables, is repeated a large
number of times under identical conditions,
the average long-run loss converges to its
‘‘expectation’’ or ‘‘mean value’’ R(θ , δ) which
is called the risk function∗. Admissibility of
decision rules is defined in terms of the risk
function as follows:

A decision rule δ2 is better than a rule δ1 if

R(θ , δ2) � R(θ , δ1) for all θ ∈ � (1)

and the strict inequality in (1) holds for at
least one θ ∈ �.

A decision rule δ is admissible if there
exists no rule δ1 which is better than δ. See
DECISION THEORY for further details.

A LIMITATION

A limitation of the admissibility principle
may be noted here. The central problem of
decision theory is: Under the conditions of
a given decision problem, how should the
choice of a decision rule be effected from the
class of all decision rules? The admissibil-
ity criterion requires that inadmissible rules
be left out of consideration. This leaves the
class of admissible rules, which, however, is
generally very large, and admissibility says
nothing as to how a choice should be made
from this large class. The choice is therefore
made in practice by applying other statisti-
cal principles, such as unbiasedness∗, min-
imaxity, and invariance∗, or by taking into
consideration the statistician’s prior beliefs∗

regarding the weight to be attached to the
different possible values of the parameter. In
the last-mentioned case, if the prior beliefs
are expressed as a probability distribution τ
on�, the risk function R(θ , δ) integrated with
respect to τ gives the Bayes risk r(τ , δ). The
appropriate decision rule, called the Bayes
rule, is then the one that minimizes r(τ , δ)
for given τ . This is the Bayesian mode of
inference. In Bayesian inference∗, there is
thus an optimum decision rule which often
is unique, determined by the prior beliefs,
and hence the concept of admissibility has

less importance. In Wald’s theory, however,
the approach is non-Bayesian and based on
the long-run frequency. Thus the risk func-
tion R(θ , δ) represents the average loss in the
long run when the experiment is repeated a
large number of times under identical condi-
tions. There was the same approach in the
earlier Neyman–Pearson∗ theories of inter-
val estimation and hypothesis testing, which
are included in Wald’s theory as particular
cases. This approach is often referred to as
the N-P-W approach. The importance of the
criterion of admissibility is thus related to
the N-P-W approach.

Another point to be noted is that if a deci-
sion rule is inadmissible, there exists another
that should be used in preference to it. But
this does not mean that every admissible rule
is to be preferred over any inadmissible rule.
It is easy to construct examples of rules that
are admissible but which it would be absurd
to use. An example in point estimation is an
estimator that is equal to some constant k
whatever be the observations. The risk func-
tion then vanishes for θ = k and the estimator
is an admissible one. (See ref. 11 for a more
sophisticated example.)

PARTICULAR PROCEDURES

Any statistical inference procedure such as
point or interval estimation∗ corresponds sim-
ply to a class of decision rules. But the
definition of admissibility considered appro-
priate for a particular procedure may not
always be equivalent to the decision the-
ory definition in terms of a risk function.
For example, consider interval estimation
of the parameter θ in a probability density
function f (x, θ ) on the basis of independent
observations. Let x denote collectively the
observations and T1, T2 the statistics (func-
tions of x) defining the confidence interval.
[The pair (T1, T2) constitutes in this case the
decision rule.] Admissibility for confidence
intervals is defined as follows. ‘‘A set of confi-
dence intervals {T1, T2} is admissible if there
exists no other set {T∗1, T∗2} such that

T∗2(x)− T∗1(x) � T2(x)− T1(x)(a)

for all x,
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Pθ {T∗1(x) � θ � T∗2(x)}(b)

� Pθ {T1(x) � θ � T2(x)}
for all θ ,

the strict inequality in (b) holding for at
least one θ . [The probabilities in (b) are
the inclusion probabilities.] This definition
is obviously not reducible to one based on
the risk function, as there are two inequali-
ties; moreover, the first of these is required
to hold at each sample point x, there being
no averaging over the sample space, which is
an essential ingredient in the definition of a
risk function.

In the case of point estimation∗, on the
other hand, the definition of admissibility is
identical with that for decision rules. A loss
function that is found reasonable and math-
ematically convenient, particularly in point
estimation problems, is the squared error,
i.e., L(t, θ ) = c(t− θ )2, where t is the estimate
and c is any positive constant. Further if, as
often is the case, the estimators are restricted
to the class of unbiased∗ estimators, then the
admissibility criterion reduces to one based
on the variance or equivalently the efficiency∗

of the estimator.
In the case of hypothesis testing∗ of the

null hypothesis θ = θ0, the decision-theoretic
definition of admissibility reduces to one
based on the power function∗ in the Ney-
man–Pearson theory by a suitable choice
of the loss function, namely, by putting
L (θ , a1) = 0 and L (θ , a2) = 1, where for the
value θ , a1 is the correct decision and a2 the
incorrect one. The set a consists in this case
of only two points, corresponding to the rejec-
tion or nonrejection of the null hypothesis.
(See ref. 2 for a paper dealing with admissi-
bility of tests.)

SPECIAL TYPES OF ADMISSIBILITY

These are extensions of the basic notion of
admissibility.

Strong and Weak Admissibility

In some cases it is found necessary to intro-
duce weak and strong versions of admissi-
bility, strong admissibility being based on

a more stringent criterion. For example, in
the problem of interval estimation (see the
section ‘‘Particular Procedures’’), if condition
(a) is replaced by

Eθ {T∗2 − T∗1} � Eθ {T2 − T1} for all θ ,(a∗)

and the sign of strict inequality required to
hold for at least one θ in either (a∗) or in (b),
we obtain a more stringent criterion as the
set of alternatives is enlarged. (See ref. 8 for
weak and strong admissibility of confidence
sets.)

ε-Admissibility

A decision rule δ0 is said to be ε-admissible
if there exists no other decision rule δ1 such
that

R(θ , δ1) < R(θ , δ0)− ε for all θ ∈ �.

(See ‘‘Decision Theory’’ section of this entry
for definitions of these terms.)
ε-admissibility provides a measure of the

extent by which an inadmissible rule falls
short of being admissible. (See ref. 10 for an
application.)

Uniform Admissibility

This term is special to survey sampling∗ the-
ory. Earlier investigations had related mostly
to the admissibility of a particular estimator
e1 under a given sampling design p1. But
in survey sampling, the choice of the sam-
pling design is generally, subject to certain
limitations of cost and time, within the statis-
tician’s control. This leads to the notion of the
joint admissibility of the pair (e1, p1) within a
class of pairs (e, p). (Such a pair is now called
a sampling strategy or, more simply, a strat-
egy.) It would be pointless to consider the joint
admissibility within the class of all possible
pairs (e, p), as then the only admissible sam-
pling design would be that in which the whole
population is observed with probability 1. It
is therefore necessary to place a restriction on
the class e of designs. The restrictions usually
assumed are that the expected sample size or
the expected sampling cost under p should
not exceed certain limits, as these are the
restraints that generally apply in practice.
Of course, the particular sampling design p1
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must also satisfy the restriction. The term
‘‘uniform admissibility’’ denotes just this joint
admissibility of an estimator e1 and a sam-
pling design p1, defined as usual, within a
class of pairs (e, p) such that p belongs to
a specified class e of designs. Note that the
uniform admissibility of (e1, p1) is a stronger
property than the admissibility of e1 under
the given design p1, as the former implies the
latter. (See refs. 14 and 15 for some recent
related results.)

Hyperadmissibility

This notion is special to survey sampling
theory∗ and denotes broadly that an esti-
mator is admissible for the population as a
whole and also for every possible subpopu-
lation of that population (see ref. 6 for more
details).

Admissibility within a Restricted Class

It is often necessary to consider the admissi-
bility of a procedure within a restricted class
of procedures. For example, in the case of
point estimation, an unbiased estimator T0 of
a parameter θ is said to be admissible within
the unbiased class if there exists no other
unbiased estimator T1 of θ that is ‘‘better’’
than T0.

RELATIONS WITH COMPLETENESS∗ AND
EFFICIENCY∗

In Wald’s theory, the notion of admissibility
is intimately related to that of complete-
ness. The theory requires that the statistician
should restrict the choice of a decision rule to
the class of all admissible rules. But in gen-
eral, there is no simple characteristic that
distinguishes the class of all admissible rules
from that of all inadmissible ones. This leads
to the notion of a complete class that contains
all the admissible rules: ‘‘A class e of decision
rules is said to be complete if given any rule
δ1 not in e, there exists at least one rule δ0 in
e that is better than δ1.’’ (See the ‘‘Decision
Theory’’ section for definition of betterness.)
Hence if a class of rules is known to be com-
plete, the statistician may validly restrict the
choice of decision rule to such class as all
the excluded rules are necessarily inadmis-
sible. Of course, after choosing a particular

rule from a complete class, it would have
to be tested for its admissibility. It is further
shown in the theory that there exists a simply
characterized class of decision rules (the class
of generalized Bayes rules) which under very
general conditions forms a complete class.

Essential completeness is a sharpening of
the notion of completeness ‘‘A class e of deci-
sion rules is said to be essentially complete
if given any rule δ1 not in e, there exists
at least one rule δ in e which is as good
as δ1, i.e., such that R(θ , δ0) � R(θ , δ1) for
all θ ∈ �.’’ Clearly, a statistician may validly
restrict the choice of a decision rule to an
essentially complete class if it exists. It is
shown in the theory that ‘‘the class of deci-
sion rules based on a sufficient statistic is
always essentially complete.’’ This proposi-
tion provides the decision-theoretic justifica-
tion for the sufficiency principle∗ in statistics.
For some related propositions such as the
Rao–Blackwell theorem∗, see ref. 4.

STEIN’S RESULT

A notable result relating to admissibility is
that of Stein [16]: For k independent nor-
mal variables, the sample means are jointly
inadmissible for the population means with
the squared errors as loss function if k � 3.
The theoretical and practical implications
of Stein’s results have been a matter of
debate [1,1]; see JAMES–STEIN ESTIMATORS

and SHRINKAGE ESTIMATORS.

SURVEY SAMPLING∗

Survey sampling essentially involves no new
point of principle. The commonly considered
estimation problem is to estimate the popula-
tion total. If the squared error is taken as the
loss function, as is often the case, the admis-
sibility of an estimator is defined as follows:
An estimator e(s, x) is admissible if there does
not exist any other estimator e′(s, x) such that∑

s

p(s)[e′(s, x)− T(x)]2

�
∑

s

p(s)[e(s, x)− T(x)]2 for all x
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and the strict inequality holds for at least one
x. Here x = (x1, x2, . . . , xN) denotes the pop-
ulation vector and is the parameter, T(x) =∑N

i=1 xi, p(s) is the probability of the sample
s under the chosen sampling design, and N
denotes the number of units in the popula-
tion. The estimator e(s, x) must, of course,
depend only on the xi observed in the sample.
See SURVEY SAMPLING for further details.

The following important general results
have been proved recently. (The lateness of
the results is a consequence of the fact the
correct model for survey sampling was devel-
oped only after 1950; see SURVEY SAMPLING.)

1. The sample mean is admissible as the
estimator of the population mean in the
entire class of all estimators whatever
the sampling design, and for a very
wide class of loss functions [7].

2. The Horwitz–Thompson estimator∗ is
always admissible in the restricted
class of unbiased estimators [5].

Suppose that samples are taken indepen-
dently from k different finite populations. Are
the sample means together jointly admissi-
ble for the population means with squared
error as loss function? It is found that they
are. Thus in the case of finite populations,
an effect corresponding to Stein’s result for
the multivariate normal population does not
occur. This is a very recent result [9].
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ADVANCES IN APPLIED PROBABIL-
ITY . See APPLIED PROBABILITY JOURNALS

AFFLUENCE AND POVERTY INDEXES.
See INDEXES, AFFLUENCE AND POVERTY

AGGREGATE

The word ‘‘aggregate’’ has several meanings.
As a verb, it means putting together, or com-
bining, elements that usually differ in some
notable respect. As a noun, it is used to
describe the result of this process. The word is
also sometimes used as a synonym for ‘‘total,’’
as in ‘‘aggregate production’’ and ‘‘aggregate
debt.’’

In geology, and especially in mining engi-
neering, the word is specifically applied to
collections of samples of ore.

See also ARITHMETIC MEAN and GEOLOGY, STATISTICS IN.

AGGREGATE INDEX NUMBERS. See
INDEX NUMBERS
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AGGREGATION

Aggregation may be a phenomenon of direct
interest, as in the study of biological popula-
tions, or it may reflect the necessary reduc-
tion of primary data to produce a usable
statistical summary, as in the construction
of index numbers∗. Since the two topics are
quite distinct, we consider them separately.

AGGREGATION AS AN OBSERVABLE
PHENOMENON

It is often true that events (individuals) clus-
ter in time or space or both (e.g., larvae
hatching from eggs laid in a mass, after-
shocks of an earthquake). Thus if the random
variable of interest is the number of events
occurring in an interval of time (or in a
selected area), the clustering is manifested
in a greater probability of extreme events
(large groups) than would be expected other-
wise. Alternatively, individual members of a
population may be in close proximity because
of environmental conditions. In either case,
the population is said to be aggregated.

A standard initial assumption (corre-
sponding to the absence of aggregation) is
that the random variable follows a Poisson
distribution∗, and various indices have been
proposed to detect departures from the Pois-
son process∗. These methods are based upon
data collected either as quadrat counts or
as measurements of distance (or time) from
randomly selected individuals (or points) to
the nearest individual, known as nearest-
neighbor distances. For example, the index
of dispersion is defined as I = s2/m, where
m and s2 denote the sample mean and vari-
ance. For the Poisson process, E(I|m > 0) .= 1;
values of I significantly greater than 1 sug-
gest aggregation; I < 1 is indicative of regular
spacing of the individuals [5, Chap. 4]. Other
measures, based upon both quadrat counts
and distances, are summarized in Pielou [15,
Chaps. 8 and 10] and Cormack [6]. When dif-
ferent kinds of individual (e.g., species) have
different aggregation patterns, this make
inferences about population characteristics
such as diversity∗ much more difficult.

If the Poisson process is used to describe
parents (or centers), each parent may give

rise to offspring (or satellites). If these clus-
ters are independent but have identical size
distributions, the resulting distribution for
the total count is a (Poisson) randomly
stopped sum distribution∗. If environmen-
tal heterogeneity is postulated, a compound
distribution∗, usually based on the Poisson,
is appropriate. For both classes of Poisson-
based distributions, I > 1. These standard
distributions lack an explicit spatial or tem-
poral dimension, for which a dispersal mech-
anism must be incorporated. The resulting
model, known as a center-satellite process,
has three components: a Poisson process for
locating the cluster center, a distribution to
generate the number of satellites, and a dis-
persal distribution to describe displacements
from the center. This class of processes was
introduced by Neyman and Scott [14] and
is mathematically equivalent to the class of
doubly stochastic Poisson processes defined
for heterogeneity (See Bartlett [3, Chap. 1]).

A more empirical approach to aggregation
is that of Taylor [18], who suggests that the
population mean, µ, and variance, σ 2, are
related by the power law:

σ 2 = Aµb, A > 0, b > 0.

It is argued that values of b greater than
1 (the Poisson value) reflect density depen-
dence in the spatial pattern of individuals.
Although this view has been contested (see
the discussion in Taylor [18]), a substantial
body of empirical evidence has been pre-
sented in its support [19].

Knox [12] developed a test to detect the
clustering of individuals in space and time,
which may be formulated as follows. Suppose
that n individuals (e.g., cases of a disease) are
observed in an area during a time period. If
cases i and j are less than a specified critical
distance from one another, set the indicator
variable wij = 1; otherwise, set wij = 0. Simi-
larly, if i and j occur within a specified time of
one another, set yij = 1; otherwise, set yij = 0.
Then the space-time interaction coefficient is

STI =
∑∑

i�=j

wijyij

For example, for a disease such as measles,
we might consider cases within 1 mile of each
other occurring 10 days or less apart (the
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length of the latent period). If nS and nT
denote the number of adjacent pairs in space
and time, respectively, and both are small rel-
ative to n, then the conditional distribution of
STI given nS, nT , and n is approximately Pois-
son with expected value nSnT/n. The test has
been extended to several spatial and tempo-
ral scales by Mantel [13]. For further details,
see Cliff and Ord [5, Chaps. 1 and 2].

[Editor’s Addendum. A population that
has its individuals evenly distributed is fre-
quently called overdispersed, while an aggre-
gated population with its individuals clus-
tered in groups can be described as underdis-
persed; see OVERDISPERSION.]

AGGREGATION AS A STATISTICAL METHOD

Aggregation in this sense involves the com-
pounding of primary data in order to express
them in summary form. Also, such an exercise
is necessary when a model is specified at the
micro (or individual) level but the usable data
refer to aggregates. Then the question that
arises is whether the equations of the micro
model can be combined in such a way as to
be consistent with the macro (or aggregate)
model to which the data refer.

We may wish to compound individual data
records, such as consumers’ expenditures, or
to combine results over time and/or space.
The different cases are described in turn.

Combining Individual Records

Consider a population of N individuals in
which the ith individual (i = 1, . . . , N) has
response Yi to input xi of the form

Yi = f (xi, βi)+ εi

where βi denotes a (vector of) parameter(s)
specific to the ith individual and εi denotes
a random-error term. For example, the equa-
tion may represent the consumer’s level of
expenditure on a commodity given its price.
Then the total expenditure is Y =∑

Yi
(summed over i = 1, . . . , N), and the average
input is x =∑

xi/N.
In general, it is not possible to infer an

exact relationship between Y and x from
the micro relations. The few results avail-
able refer to the linear aggregation of linear

equations. Theil [20] showed that when f
denotes a linear function so that

Yi = αi + βixi + εi,
perfect aggregation is possible, in that we
may consider a macro relation of the form

Y = α + βx∗ + ε,
where α =∑

αi, β =
∑
βi, x∗ =∑

βixi/β, and
ε =∑

εi. That is, we must use the weighted
average x∗ rather than the natural average x.
Further, a different aggregation procedure is
required for each regressor variable and for
the same regressor variable with different
response variables [2, Chap. 20; 20, Chap. 2].
If we use the natural average, the macro
relation is

Y = α + βx+N cov(xi, βi)+ ε,
where the covariance is evaluated over the
N members of the population and repre-
sents the aggregation bias. This bias is small,
for example, when x is the price variable
in a consumer demand equation, but may
be much more substantial when x denotes
consumers’ income in such a relationship.
When the micro relationship is a nonlinear
function of xi, the nonlinearity will gener-
ate a further source of aggregation bias. It
must be concluded that exact aggregation is
rarely possible, although the bias may be
small in many cases. For further discussion
and recent developments of the theory, see
Ijiri [11].

Aggregation of Groups

Instead of forming a macro relation from a
known group of individuals, we may wish to
identify suitable groups from a finer classifi-
cation of individuals. This is a necessary step
in the construction of broad industrial classi-
fications for use in input-output systems. See
ECONOMETRICS. Blin and Cohen [4] propose
a method of cluster analysis∗ for solving this
problem.

Temporal Aggregation

Variates may be continuous or summed over
a unit time interval, although the variate
is recorded only as an aggregate over peri-
ods of r units duration. For a model that
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is linear in the regressor variables and has
time-invariant parameters, aggregation is
straightforward provided that there are no
lagged variables. However, if

Yt = α + βxt−k + εt
for some k > 0 and k not a multiple of r,
exact aggregation is not possible; any aggre-
gated model will involve x-values for two or
more time periods [20, Chap. 4]. Such mod-
els are often formulated using distributed
lags∗. Also, Granger and Morris [9] show that
the autoregressive–moving average (ARMA)
models∗ are often appropriate in this case.

The aggregation of time series∗ exhibit-
ing positive autocorrelation tends to increase
the values of the various test statistics and
thereby give rise to overoptimistic assess-
ments of the model [17]. However, Tiao and
Wei [21] have shown that whereas aggrega-
tion can considerably reduce the efficiency
of parameter estimators∗, it has much less
effect upon prediction efficiency. Indeed, it
has been shown that there are circumstances
where forecasts from aggregate relations may
be more accurate than an aggregate of fore-
casts from micro relations [1,10].

The discussion so far has assumed that β
does not vary over time. For a discussion of
aggregation when there is a change of regime
(time-varying parameters), see Goldfeld and
Quandt [8, Chap. 4].

Spatial Aggregation

Many problems in spatial aggregation are
similar to those of time series, but they are
further compounded by the (sometimes nec-
essary) use of areas of irregular shape and
different size. Yule and Kendall [22] first
showed how different aggregations of spatial
units affect estimates of correlation∗. Cliff
and Ord [5, Chap. 5] give a general review
of methods for estimating the autocovari-
ance and cross-correlation functions using a
nested hierarchy of areal sampling units. The
estimation of these functions for irregular
areas depends upon making rather restric-
tive assumptions about the nature of interac-
tion between areas.

Cliff and Ord considered data from the
London Atlas; a 24× 24 lattice of squares of
side 500 meters was laid over the Greater

London area and the percentage of land used
for commercial (X), industrial (Y), office (Z),
and other purposes was recorded for each
square. The correlation between each X and
Y for different combinations of grid squares
were as follows:

Size of Spatial Unit

1× 1 2× 2 4× 4 8× 8

corr(X, Z) 0.19 0.36 0.67 0.71
corr(Y, Z) 0.09 0.16 0.33 0.34

The correlation functions exhibit an element
of mutual exclusion at the smallest levels,
and the positive correlation for larger spatial
units indicates the general effects of areas
zoned for housing and nonhousing purposes.
Here, as in time series, we must think in
terms of a distance or time-dependent corre-
lation function and not a unique ‘‘correlation’’
between variables.

A PERSPECTIVE

Aggregation appears both as a phenomenon
of interest in its own right and as a nec-
essary evil in modeling complex processes.
The center-satellite models have proved use-
ful in astronomy [14], in ecology [3,15], in
geography [5], and several other disciplines.
At the present time, such processes offer a
flexible tool for simulation work, although
further work on the theory and analysis of
such processes is desirable; the data analytic
distance methods of Ripley [16] represent
a useful step in the right direction. In epi-
demiology [12,13] and hydrology (models of
storms, etc.) the development of clusters in
both space and time is important, although
relatively little work exists to date. The work
of Taylor [18] represents a challenge to the
theoretician, as useful models generating the
empirical regularities observed by Taylor are
still lacking.

Econometricians seem to be turning away
from the view that an aggregate model is the
sum of its parts and placing more emphasis
upon aggregated models per se. The nonlin-
earities of the aggregation procedure, com-
bined with the complexities of the underlying
processes [8], suggest that aggregated models
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with time-dependent parameters are likely
to play an increasing role in economics and
other social sciences.

Where the level of aggregation is open to
choice [4], further work is needed to identify
suitable procedures for combining finer units
into coarser ones. Similar problems arise in
quadrat sampling∗ [15, p. 222].

The use of a sample to estimate the mean
over an area or volume is of interest in the
geosciences (e.g., drillings in an oil field).
Estimators for such aggregates are based
upon a variant of generalized least squares∗

known as ‘‘kriging’’∗; see Delfiner and Del-
homme [7] and the papers of Matheron cited
therein for further details.

In all these areas, much remains to be
discussed about the statistical properties of
the estimators currently used, and there is
still plenty of scope for the development of
improved methods.
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AGING FIRST-PASSAGE TIMES

First-passage times of appropriate stochastic
processes∗ have often been used to repre-
sent times to failure of devices or systems
subjected to shocks and wear, random repair
times, and random interruptions during their
operations. Therefore the aging properties of
such first-passage times have been widely
investigated in the reliability∗ and mainte-
nance literature. In this entry we overview
some basic results regarding first-passage
times that have aging properties that are
related as follows (the definitions of these
notions are given later):

PF2 ⇒ IFR⇒ DMRL⇒ NBUE
⇓ ⇑

IFRA⇒ NBU⇒ NBUC

Some terminology and notation that are
used throughout the entry are described
below. Let {Xn, n � 0} be a discrete-time
stochastic process with state space [0, ∞).
We assume that the process starts at 0,
that is, P{X0 = 0} = 1. For every z � 0 we
denote by Tz the first time that the process
crosses the threshold z, that is, Tz ≡ inf{n �
0 : Xn � z}(Tz = ∞ if Xn < z for all n � 0). If,
for example, Tz is new better than used
(NBU) [increasing failure rate (IFR), increas-
ing failure-rate average (IFRA), etc.] for
any z � 0 (see HAZARD RATE AND OTHER

CLASSIFICATIONS OF DISTRIBUTIONS) then the
process {Xn, n � 0} is called an NBU [IFR,
IFRA, etc.] process. In a similar manner one
defines an NBU [IFR, IFRA, etc.] continuous-
time process. In this entry we point out many
instances of NBU, IFRA, IFR, and other
processes that have first-passage times with
similar aging properties. We do not consider
here antiaging properties such as NWU (new
worse than used), DFR (decreasing failure
rate), DFRA (decreasing failure-rate aver-
age), etc. Some antiaging properties of first-
passage times can be found in the references.

MARKOV PROCESSES

Consider a discrete-time Markov process∗

{Xn, n � 0} with the discrete state space
N+ = {0, 1, . . .}. Denote by P = {pij}i∈N+ ,j∈N+

the transition matrix of the process. Keilson,
in a pioneering work [16], obtained many
distributional properties, such as complete
monotonicity, for various first-passage times
of such processes. The strongest aging prop-
erty that we consider here is that of log-
concavity. A nonnegative random variable is
said to have the Pólya frequency of order 2
(PF2) property if its (discrete or continuous)
probability density is log-concave. See PÓLYA

TYPE 2 FREQUENCY (PF2) DISTRIBUTIONS.
Assaf et al. [4] have shown the following
result:

PF2 Theorem. If the transition matrix P
is totally positive of order 2 (TP2) (that is,
pijpi′ j′ � pi′ jpij′ whenever i � i′ and j � j′),
then Tz has a log-concave density for all z � 0,
that is, {Xn, n � 0} is a PF2 process.

They also extended this result to some
continuous-time Markov processes with dis-
crete state space. Shaked and Shanthiku-
mar [35] extended it to continuous-time pure
jump Markov processes with continuous state
space. See also TOTAL POSITIVITY.

An aging notion that is weaker than the
PF2 property is the notion of IFR (increasing
failure rate). A discrete nonnegative random
variable T is said to have this property if
P{T � n} is log-concave on N+, or, equiva-
lently, if its discrete hazard rate∗ function,
defined by P{T = n}/P{T � n}, is nondecreas-
ing on N+. If P is the transition matrix of
the discrete-time Markov process {Xn, n � 0},
then let Q denote the matrix of left partial
sums of P. Formally, the i, jth element of Q,
denoted by qij, is defined by qij =

∑j
k=0 pik.

Durham et al. [10] essentially proved the fol-
lowing result.

IFR Theorem. If Q is TP2, then Tz is IFR
for all z � 0, that is, {Xn, n � 0} is an IFR
process.

This strengthens previous results of Esary
et al. [13] and of Brown and Chaganty [8].
Using ideas of the latter, it can be extended
to some continuous-time Markov processes
with discrete state space. Shaked and Shan-
thikumar [35] have extended this result to
continuous-time pure jump Markov processes
with continuous state space; see also refs. 17,
38.
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One application of the IFR result described
above is given in Kijima and Nakagawa
[18]. They considered a Markov process
{Xn, n � 0} defined by Xn = bXn−1 +Dn, n =
1, 2, . . . (X0 ≡ 0), where 0 � b � 1, and the
Dn’s are independent nonnegative random
variables. Such processes arise in studies of
imperfect preventive maintenance policies,
where each maintenance action reduces the
current damage by 100(1− b)%, and Dn is the
total damage incurred between the (n− 1)st
and the nth maintenance action. Let Gn
denote the distribution function of Dn. They
showed that if Gn(x) is TP2 in n and x, and
if Gn(x) is log-concave in x for all n, then
{Xn, n � 0} is an IFR process.

Since the IFR property is weaker than
the PF2 property, one would expect that a
condition weaker than the assumption that
P is TP2 would suffice to guarantee that
{Xn, n � 0} is an IFR process. Indeed, the
assumption that Q is TP2 is weaker than the
assumption that P is TP2.

Sometimes the time that the maximal
increment of a Markov process passes a cer-
tain critical value is of interest. Thus, Li
and Shaked [21] studied first-passage times
of the form Tz,u ≡ inf{n � 1 : Xn � z or Xn −
Xn−1 � u}[Tz,u = ∞ if Xn < z and Xn − Xn−1
< u for all n]. The process {Xn, n � 0} is
said to have a convex transition kernel if
P{Xn+1 > x+ y|Xn = x} is nondecreasing in
x for all y. They have shown the following
result:

Increment IFR Theorem. If {Xn, n � 0}
has monotone sample paths, and a convex
transition kernel, and if P is TP2, then Tz,u is
IFR for all z and u.

They also obtained a version of this result
for some continuous-time Markov processes
with discrete state space.

An aging notion that is weaker than the
IFR property is the notion of IFRA (increas-
ing failure-rate average). A discrete nonneg-
ative random variable T is said to have this
property if either P{T = 0} = 1 or P{T = 0} =
0 and [P{T > n}]1/n is nonincreasing in n =
1, 2, . . . . The process {Xn, n � 0} is said to be
stochastically monotone if P{Xn+1 > x|Xn = y}
is nondecreasing in y for every x. Equiva-
lently, {Xn, n � 0} is said to be stochastically

monotone if qij is nonincreasing in i for all
j, where Q is the matrix of left partial sums
of P. From a general result of Shaked and
Shanthikumar [34] we obtain the following
result.

IFRA Theorem. If {Xn, n � 0} is stochasti-
cally monotone and if it has nondecreasing
sample paths, then Tz is IFRA for all z � 0,
that is, {Xn, n � 0} is an IFRA process.

This result strengthens previous results
of Esary et al. [13] and of Brown and Cha-
ganty [8]. Using ideas of the latter, it can be
extended to some continuous-time Markov
processes with discrete state space. Drosen
[9] and Shaked and Shanthikumar [35]
have extended it to continuous-time pure
jump Markov processes with continuous state
space. Özekici and Günlük [28] have used this
result to show that some interesting Markov
processes that arise in the study of some
maintenance policies are IFRA.

Since the IFRA property is weaker than
the IFR property, one would expect that a
condition weaker than the assumption that
Q is TP2 would suffice to guarantee that
{Xn, n � 0} is an IFRA process. Indeed, the
assumption that {Xn, n � 0} is stochastically
monotone is weaker than the assumption
that Q is TP2. However, for the IFRA result
we need to assume that {Xn, n � 0} has non-
decreasing sample paths, whereas there is no
such assumption in the IFR result.

When the time that the maximal incre-
ment of a Markov process passes a certain
critical value is of interest, then one stud-
ies Tz,u. Li and Shaked [21] have shown the
following result.

Increment IFRA Theorem. If {Xn, n � 0}
has monotone convex sample paths and a
convex transition kernel, then Tz,u is IFRA
for all z and u.

They also obtained a version of this result
for some continuous-time Markov processes
with discrete state space.

An aging notion that is weaker than the
IFRA property is the notion of NBU (new
better than used). A discrete nonnegative ran-
dom variable T is said to have this property if
P{T � n} � P{T −m � n|T � m} for all n � 0
and m � 0. Brown and Chaganty [8] proved
the following result.
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NBU Theorem. If {Xn, n � 0} is stochasti-
cally monotone, then Tz is NBU for all z � 0,
that is, {Xn, n � 0} is an NBU process.

This strengthens previous results of Esary
et al. [13]. Brown and Chaganty [8] extended
it to some continuous-time Markov processes
with discrete state space.

Since the NBU property is weaker than
the IFRA property, it is not surprising that
the condition that suffices to imply that {Xn,
n � 0} is NBU is weaker than the conditions
that imply that {Xn, n � 0} is IFRA.

Marshall and Shaked [25] have identified
a condition that is different than stochas-
tic monotonicity, and that still yields that
{Xn, n � 0} is an NBU process. Explicitly,
they showed that if the strong Markov pro-
cess {Xn, n � 0} starts at 0, and is free of
positive jumps (that is, it can jump up
only at most one unit at a time), then it
is an NBU process. They obtained a simi-
lar result for continuous-time strong Markov
processes with discrete or continuous state
space. For example, a Wiener process which
starts at 0 is an NBU process. Also, if
{(X1(t), X2(t), . . . , Xm(t)), t � 0} is a Brownian
motion∗ in Rm, and Y(t), ≡ [

∑m
i=1 X2

i (t)]1/2,
then the Bessel process {Y(t), t � 0} is NBU.

Li and Shaked [21] studied the NBU prop-
erty of Tz,u, the time that the maximal incre-
ment of a Markov process passes a certain
critical value, and obtained the following
result.

Increment NBU Theorem. If {Xn, n � 0}
has a convex transzition kernel, then Tz,u
is NBU for all z and u.

They also obtained a version of this result
for some continuous-time Markov processes
with discrete state space.

An aging notion that is weaker than the
NBU property is the notion of NBUC (new
better than used in convex ordering). A non-
negative random variable T is said to have
this property if E[φ(T)] � E[φ(T −m)|T � m]
for all m � 0 and for all nondecreasing con-
vex functions φ for which the expectations
are defined. If P is the transition matrix
of {Xn, n � 0}, then the potential matrix of
{Xn, n � 0}, which we denote by R, is defined
by R ≡∑∞

n=0 Pn. Let R denote the matrix of

left partial sums of R, that is, if rij denotes
the ijth element of R and rij denotes the ijth
element of R, then rij ≡

∑j
k=0 rik. Also, let us

define the following matrix: Rm ≡
∑∞

n=m Pn,
and let Rm denote the matrix of left par-
tial sums of Rm, that is, if rm,ij denotes the
ijth element of Rm, and rm,ij denotes the ijth
element of Rm, then rm,ij ≡

∑j
k=0 rm,ik. Ocón

and Pérez [27] have shown the following
result.

NBUC Theorem. If rm,ij is nonincreasing
in i for all j and m, then Tz is NBUC for all
z � 0; that is, {Xn, n � 0} is an NBUC process.

In addition to the condition given in the
NBUC Theorem, they also assumed that {Xn,
n � 0} has nondecreasing sample paths, but
if, for a fixed z, one modifies {Xn, n � 0} so
that z is an absorbing state, then the almost
sure monotonicity of the sample paths is not
required for the conclusion that {Xn, n � 0} is
NBUC. They have also extended this result
to some continuous-time Markov processes
with discrete state space.

Since the NBUC property is weaker than
the NBU property, one would expect that a
condition weaker than stochastic monotonic-
ity should suffice to imply that {Xn, n � 0}
is NBUC. Indeed, it can be shown that if
{Xn, n � 0} is stochastically monotone then
rm,ij is nonincreasing in i for all j and m.

An aging notion that is weaker than the
NBUC property is the notion of NBUE (new bet-
ter than used in expectation). A nonnegative
random variable T is said to have this prop-
erty if E[T] � E[T −m|T � m] and all m � 0.
Karasu and Özekici [15] obtained the follow-
ing result.

NBUE Theorem. If rij is nonincreasing in
i for all j, then Tz is NBUE for all z � 0, that
is, {Xn, n � 0} is an NBUE process.

In addition to the condition given in the
NBUE Theorem, they also assumed that
{Xn, n � 0} has nondecreasing sample paths,
but, again, if for a fixed z one modifies
{Xn, n � 0} so that z is an absorbing state,
then the almost sure monotonicity of the
sample paths is not required for the conclu-
sion that {Xn, n � 0} is NBUE. They have also
extended this result to some continuous-time
Markov processes with discrete state space.
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Since the NBUE property is weaker than
the NBUC property, it is not surprising that
the condition that suffices to imply that {Xn,
n � 0} is NBUE is weaker than the condition
that implies that {Xn, n � 0} is NBUC.

We close this section with an aging notion
that is weaker than the IFR but stronger
than the NBUE notion. A nonnegative ran-
dom variable T is said to have the DMRL

(decreasing mean residual life) property if
E[T −m|T � m] is nonincreasing in m � 0. If
P is the transition matrix of the discrete-
time Markov process {Xn, n � 0}, then let
Qm denote the matrix of left partial sums
of Pm. Denote the ijth element of Qm by qm,ij.
Ocón and Pérez [27] have shown the following
result.

DMRL Theorem. If rm,ij/qm,ij is nonin-
creasing in i for all j and m, then Tz is DMRL

for all z � 0, that is, {Xn, n � 0} is an DMRL

process.

In addition to the condition given in the
DMRL Theorem, they also assumed that
{Xn, n � 0} has nondecreasing sample paths,
but, again, if for a fixed z one modifies
{Xn, n � 0} so that z is an absorbing state,
then the almost sure monotonicity of the
sample paths is not required for the conclu-
sion that {Xn, n � 0} is DMRL. They have also
extended this result to some continuous-time
Markov processes with discrete state space.

CUMULATIVE DAMAGE PROCESSES

Suppose that an item is subjected to shocks
occurring randomly in (continuous) time ac-
cording to a counting process∗ {N(t), t � 0}.
Suppose that the ith shock causes a non-
negative random damage Xi, and that dam-
ages accumulate additively. Thus, the dam-
age accumulated by the item at time t is
Y(t) =∑N(t)

i=1 Xi. We assume that the dam-
age at time 0 is 0. The process {Y(t), t � 0}
is called a cumulative damage∗ shock pro-
cess. Suppose that the item fails when the
cumulative damage exceeds a threshold z.

If {N(t), t � 0} is a Poisson process∗, and
if the damages Xi are independent and
identically distributed and are indepen-
dent of {N(t), t � 0}, then {Y(t), t � 0} is a
Markov process. The results described in the

preceding section can then be used to derive
aging properties of the first-passage time Tz.
For example, the process {Y(t), t � 0} clearly
has monotone sample paths, and is stochas-
tically monotone. Therefore it is IFRA. Esary
et al. [13] noticed that if the Xi’s are not neces-
sarily identically distributed, but are merely
stochastically increasing (that is, P{Xi > x} is
nondecreasing in i for all x), then the process
{Y(t), t � 0} is still IFRA. In fact, they identi-
fied even weaker conditions on the Xi’s that
ensure that {Y(t), t � 0} is IFRA. As another
example of the application of the results of the
preceding section to the process {Y(t), t � 0},
suppose that the damages Xi are independent
and identically distributed with a common
log-concave distribution function; then the
process {Y(t), t � 0} is IFR. In fact, Esary et al.
[13] and Shaked and Shanthikumar [35] have
identified even weaker conditions on the Xi’s
that ensure that {Y(t), t � 0} is IFR.

If {N(t), t � 0} is a nonhomogeneous
(rather than homogeneous) Poisson process,
then {Y(t), t � 0} is not a Markov process,
even if the damages Xi are independent and
identically distributed, and are independent
of {N(t), t � 0}. Let �(t), t � 0, be the mean
function of the process {N(t), t � 0}. From
results of A-Hameed and Proschan [3] it
follows that the IFRA results mentioned in
the previous paragraph still hold provided �
is star-shaped. It also follows that the IFR

results mentioned in the previous paragraph
still hold provided � is convex.

Sumita and Shanthikumar [40] have stud-
ied a cumulative damage wear process∗ in
which {N(t), t � 0} is a general renewal∗ pro-
cess. Let the interarrivals of {N(t), t � 0} be
denoted by Ui, i = 1, 2, . . . . Thus, (Ui, Xi), i =
1, 2, . . . , are independent and identically dis-
tributed pairs of nonnegative random vari-
ables. It is not assumed that, for each
i, Ui and Xi are independent. In fact, the
model is of particular interest when, for each
i, Ui and Xi are not independent. If we define
Y(t) ≡∑N(t)

i=1 Xi, then in general {Y(t), t � 0}
is not a Markov process. They showed that
if the Ui’s are NBU, and if the pairs (Ui, Xi)
possess some positive dependence properties,
then {Y(t), t � 0} is an NBU process. They
also showed that if the Ui’s are NBUE, and
if the pairs (Ui, Xi) possess some other posi-
tive dependence properties, then {Y(t), t � 0}
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is an NBUE process. Furthermore, they also
showed that if the Ui’s are HNBUE (har-
monic new better than used in expectation)
(that is,

∫∞
t P{Ui > x}dx � µ exp(−t/µ) for

t � 0, where µ = E[Ui]), if the Xi’s are expo-
nential random variables, and if the pairs
(Ui, Xi) possess some positive dependence
properties, then {Y(t), t � 0} is an HNBUE pro-
cess. They obtained similar results for the
model in which the nth interarrival depends
on the (n− 1)st jump Xn−1 (rather than on
the nth jump). In ref. 39 they considered
a wear process that, at time t, is equal to
max0�n�N(t){Xn}. Again, they did not assume
that, for each i, Ui and Xi are independent.
they identified conditions under which this
process is NBU, NBUE, or HNBUE.

In the preceding paragraphs it has been
assumed that the threshold z is fixed. But in
many applications it is reasonable to allow
it to be random, in which case denote the
threshold by Z, and the first-passage time to
Z by TZ. For this model Esary et al. [13] have
shown that if Z is IFRA [respectively, NBU]
then TZ is IFRA [respectively, NBU]. They have
also shown that if the identically distributed
random damages Xi have the PF2 property,
and if Z has the PF2 property, then TZ has
the PF2 property.

A-Hameed and Proschan [3] considered a
random threshold cumulative damage model
in which the damages Xi are still indepen-
dent, but are not necessarily identically dis-
tributed, and the counting process {N(t), t �
0} is a nonhomogeneous Poisson process with
mean function �. In fact, they assumed that
the ith random damage has the gamma dis-
tribution∗ with shape parameter ai and rate
parameter b. Let Ak ≡

∑k
i=1 ai, k = 1, 2, . . . .

They showed that if Ak is convex [respec-
tively, star-shaped, superadditive] in k, if �
is convex [respectively, star-shaped, super-
additive], and if Z is IFR [respectively, IFRA,
NBU]. For the special case when all the ai’s are
equal, they showed that if � is convex [star-
shaped] and if Z is DMRL [NBUE], then TZ is
DMRL [NBUE]. For this special case, Klefsjö
[19] showed that if � is star-shaped and if Z
is HNBUE, then TZ is HNBUE. Abdel-Hameed
[1,2] and Drosen [9] have extended some of
these results to pure jump wear processes.

The reader is referred to Shaked [32] for
more details and further references on cumu-
lative damage processes.

NON-MARKOVIAN PROCESSES

In many applications in reliability theory∗,
the underlying wear process is non-
Markovian. Various researchers have tried to
obtain aging properties of first-passage times
for some such processes. We describe some
fruits of their efforts.

IFRA Closure Theorem [29]. If {Xi(t), t �
0}, i = 1, 2, . . . , n are independent IFRA pro-
cesses, each with nondecreasing sample
paths, then {φ(X1(t), X2(t), . . . , Xn(t)), t � 0} is
also an IFRA process whenever φ is continuous
and componentwise nondecreasing.

The following result follows from refs. 11, 26.

NBU Closure Theorem. If {Xi(t), t � 0},
i = 1, 2, . . . , n, are independent NBU processes,
each with nondecreasing sample paths, then
{φ(X1(t), X2(t), . . . , Xn(t)), t � 0} is also an NBU

process whenever φ is continuous and com-
ponentwise nondecreasing.

More general results are described in the next
section.

Marshall and Shaked [25] and Shanthiku-
mar [37] have identified a host of non-Marko-
vian processes that are NBU. We will try
to describe some of these processes in plain
words. One class of NBU wear processes that
Marshall and Shaked [25] have identified
is the following, with shocks and recovery:
Shocks occur according to a renewal process
with NBU interarrivals. Each shock causes the
wear to experience a random jump, where
the jumps are independent and identically
distributed and are independent of the under-
lying renewal process. These jumps may be
negative as long as the wear stays nonneg-
ative. Between shocks the wear changes in
some deterministic manner which depends
on the previous history of the process. This
deterministic change may correspond to a
partial recovery of the underlying device.

A second class of NBU wear processes that
Marshall and Shaked [25] have identified is
the following, with random repair times: The
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process starts at 0, and before the first shock
it increases in some deterministic manner.
Shocks occur according to a Poisson process.
Each shock causes the wear to experience
a random jump (usually a negative jump,
but the process is set equal to 0 if such
a jump would carry it below 0), where the
jumps are independent and identically dis-
tributed, and are independent of the under-
lying Poisson process. Between shocks the
wear increases in some deterministic man-
ner where the rate of increase depends only
on the current height of the process. This
deterministic change may correspond to a
continuous wear of the underlying device,
and the jumps correspond to repairs that
reduce the wear.

A third class of NBU wear processes that
Marshall and Shaked [25] have identified is
that of Gaver–Miller [14] processes. These
have continuous sample paths that alter-
nately increase and decrease in a determin-
istic fashion where the rate of increase or
decrease depends only on the current height
of the process. The random durations of in-
crease are independent and identically dis-
tributed exponential random variables, and
the random durations of decrease are inde-
pendent and identically distributed NBU ran-
dom variables.

Shanthikumar [37] has generalized the
first two kinds of processes mentioned above.
In particular, he allowed the times between
jumps and the magnitude of jumps to be
dependent, and he still was able to prove,
under some conditions, that the resulting
wear processes are NBU. His results also
extend the NBU results of Sumita and Shan-
thikumar [40]. Lam [20] has gone even fur-
ther and identified a class of stochastic pro-
cesses that are even more general than those
of Shanthikumar [37]. She showed that the
processes in that class are NBUE. Marshall
and Shaked [26] extended the NBU results
that are described above to processes with
state space [0,∞)m.

Semi-Markov processes∗ are more general
than Markov processes in the sense that the
sojourn time of the process in each state has a
general distribution rather than being expo-
nential. Using coupling arguments, Shanthi-
kumar [37] was able to formulate a set of con-
ditions under which semi-Markov processes

are NBU. Lam [20] obtained conditions under
which semi-Markov processes are NBUE.

For some more details on the aging proper-
ties of first-passage times of non-Markovian
processes, and for further references, see the
review by Shaked [32].

PROCESSES WITH STATE SPACE RM

Let {X(t), t � 0} = {(X1(t), X2(t), . . . , Xm(t)),
t � 0} be a stochastic process on
Rm+ ≡ [0,∞)m. A set U ⊆ Rm+ is an upper set if
x ∈ U and y � x implies that y ∈ U. The first-
passage time of the process {X(t), t � 0} to
an upper set U is defined by TU ≡ inf{t � 0 :
X(t) ∈ U}[TU = ∞ if X(t) /∈ U for all t � 0].
The process {X(t), t � 0} is called an IFRA

[NBU] process if TU is IFRA [NBU] for all
closed upper sets U ⊆ Rm+ . Clearly, every
component {Xi(t), t � 0} of an IFRA [NBU]
process {X(t), t � 0} is an IFRA [NBU] process
on R+. In this section we consider only
processes that start at 0. The following
characterizations of IFRA and NBU processes
are taken from refs. 26, 36.

IFRA and NBU Characterization Theorem

(i) The process {X(t), t � 0}, with nonde-
creasing sample paths, is IFRA if, and
only if, for every choice of closed upper
sets U1, U2, . . . , Un, the random vari-
ables TU1 , TU2 , . . . , TUn satisfy that
τ (TU1 , TU2 , . . . , TUn ) is IFRA for every
coherent life function τ . (For a defini-
tion of coherent life functions see, e.g.,
Esary and Marshall [12] or Barlow and
Proschan [5].)

(ii) The process {X(t), t � 0}, with nonde-
creasing sample paths, is NBU if, and
only if, for every choice of closed upper
sets U1, U2, . . . , Un, the random vari-
ables TU1 , TU2 , . . . , TUn satisfy that
τ (TU1 , TU2 , . . . , TUn ) is NBU for every
coherent life function τ .

The following IFRA closure properties can be
derived from results in Marshall [22].

General IFRA Closures Theorem

(i) Let {Xi(t), t � 0} be an IFRA process on
R

mi+ with nondecreasing sample paths,
i = 1, 2, . . . , n. If these n processes are
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independent, then {(X1(t), X2(t), . . . ,
Xn(t)), t � 0} is an IFRA process on

R

∑n
i=1 mi
+ .

(ii) Let {X(t), t � 0} be an IFRA process on
R

m1+ , and let ψ : Rm1+ → Rm2+ be a non-
decreasing continuous function such
that ψ(0) = 0. Then {ψ(X(t)), t � 0} is
an IFRA process on Rm2+ .

The following NBU closure properties can be
derived from results in Marshall and Shaked
[26].

General NBU Closures Theorem

(i) Let {Xi(t), t � 0} be an NBU process on
R

mi+ with nondecreasing sample paths,
i = 1, 2, . . . , n. If these n processes are
independent, then {(X1(t), X2(t), . . . ,
Xn(t)), t � 0} is an NBU process on

R

∑n
i=1 mi
+ .

(ii) Let {X(t), t � 0} be an NBU process on
R

m1+ , and let ψ : Rm1+ → Rm2+ be a non-
decreasing continuous function such
that ψ(0) = 0. Then {ψ(X(t)), t � 0} is
an NBU process on Rm2+ .

A discrete-time Markov process {Xn, n � 0}
with state space Rm is said to be stochasti-
cally monotone if P{Xn+1 ∈ U|Xn = x} is non-
decreasing in x for all upper sets U ⊆ Rm.
Brown and Chaganty [8] have shown that if
such a stochastically monotone process, with
state space Rm+ , starts at 0, then it is an
NBU process. They also showed that some
continuous-time Markov processes are NBU.
Brown and Chaganty [8] and Shaked and
Shanthikumar [34] have shown that if such
a stochastically monotone process, with state
space Rm+ , starts at 0 and has nondecreas-
ing sample paths, then it is an IFRA process.
They also showed that some continuous-time
Markov processes are IFRA. (In fact, they
as well as Marshall [22] and Marshall and
Shaked [26], have considered processes with
state spaces that are much more general
than Rm+ .)

To see an application of their IFRA results,
consider the following model of Ross [30].
Suppose that shocks hit an item accord-
ing to a nonhomogeneous Poisson process
{N(t), t � 0} with mean function �. The ith

shock inflicts a nonnegative random dam-
age Xi. The Xi’s are assumed to be inde-
pendent and identically distributed, and
are also assumed to be independent of the
underlying nonhomogeneous Poisson pro-
cess. Suppose that there is a function D
such that the total damage after n shocks
is D(X1, X2, . . . , Xn, 0, 0, 0 . . .), where D is
a nonnegative function whose domain is
{(x1, x2, . . .), xi � 0, i = 1, 2, . . .}. Define Y(t) ≡
D(X1, X2, . . . , XN(t), 0, 0, 0, . . .), t � 0. If �(t)/t
is nondecreasing in t > 0, if D is nonde-
creasing in each of its arguments, and
if D(x1, x2, . . . , xn, 0, 0, 0, . . .) is permutation
symmetric in x1, x2, . . . , xn, for all n, then
{Y(t), t � 0} is an IFRA process.

A function φ : Rm+ → R+ is said to be sub-
homogeneous if αφ(x) � φ(αx) for all α ∈ [0, 1]
and all x. Note that every coherent life func-
tion τ is a nondecreasing subhomogeneous
function. A vector (S1, S2, . . . , Sn) of nonneg-
ative random variables is said to be MIFRA

(multivariate increasing failure-rate average),
in the sense of Block and Savits [7], if φ(S1, S2,
. . . , Sn) is IFRA for any nondecreasing sub-
homogeneous function φ (see Marshall and
Shaked [24] for this interpretation of the
MIFRA property). In a similar manner Mar-
shall and Shaked [24] have defined the notion
of MNBU (multivariate new better than used).
According to Block and Savits [7], a stochas-
tic process {X(t), t � 0} on Rm+ is said to be a
MIFRA process if, for every finite collection
of closed upper sets U1, U2, . . . , Un in Rm

+ , the
vector (TU1 , TU2 , . . . , TUn ) is MIFRA. Clearly,
every MIFRA process is an IFRA process. Block
and Savits [7] showed that there exist IFRA

processes that are not MIFRA. In a simi-
lar manner one can define MNBU processes.
Clearly, every MIFRA process is also an MNBU

process. It may be of interest to compare the
definition of MIFRA and MNBU processes to the
characterizations given in the IFRA and NBU
Characterization Theorem above. Some mul-
tivariate cumulative damage wear processes
that are MIFRA will be described now.

Consider m items that are subjected to
shocks that occur according to (one) Pois-
son process {N(t), t � 0}. Let Xij denote the
damage inflicted by the ith shock on the
jth item, i = 1, 2, . . . , j = 1, 2, . . . , m. Suppose
that the vectors Xi = (Xi1, Xi2, . . . , Xim), i =
1, 2, . . ., are independent. Assume that the
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damages accumulate additively. Thus, the
wear process {Y(t), t � 0} = {(Y1(t), Y2(t), . . . ,
Ym(t)), t � 0} here has state space Rm

+ , where
Yj(t) =

∑N(t)
i=1 Xij, t � 0, j = 1, 2, . . . , m.

IFRA Shock Model Theorem [31]. If Xi �st
Xi+1 (that is, E[ψ(Xi)] � E[ψ(Xi+1)] for
all nondecreasing functions ψ for which
the expectations are well defined), i =
1, 2, . . . , then {Y(t), t � 0} is an IFRA process.

Thus, if the jth item is associated with a
fixed threshold zj (that is, the item fails once
the accumulated damage of item j crosses
the threshold zj), j = 1, 2, . . . , m, then, by the
IFRA Characterization Theorem, the vector
of the lifetimes of the items (Tz1 , Tz2 , . . . , Tzm )
satisfies that τ (Tz1 , Tz2 , . . . , Tzm ) is IFRA for
every coherent life function τ .

MIFRA Shock Model Theorem [31]. If Xi =st
Xi+1 (that is, the Xi’s are identically dis-
tributed) then {Y(t), t � 0} is a MIFRA process.

Thus, the vector of the lifetimes of
the items (Tz1 , Tz2 , . . . , Tzm ) is such that
φ(Tz1 , Tz2 , . . . , Tzm ) is IFRA for every nonde-
creasing subhomogeneous function φ.

Shaked and Shanthikumar [36] have ex-
tended the above results to processes with
state spaces more general than Rm. They
also showed that these results still hold if
the shocks occur according to a birth process
with nondecreasing birth rates (rather than a
homogeneous Poisson process). Marshall and
Shaked [23] obtained some multivariate NBU

properties for the model described above.
For additional details regarding multi-

variate IFRA and NBU processes see refs. 32,
33.
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AGREEMENT ANALYSIS, BASIC

Basic agreement analysis [4] is a model-based
approach to analyzing subjective categori-
cal data∗. Two or more raters place objects
into K unordered, mutually exclusive, and
exhaustive categories. Basic agreement anal-
ysis provides a principled measure of the
amount of inter-rater agreement as well as
estimates of rater bias and the true probabil-
ities τ (i) of the categories i, i = 1, . . . , K. The
approach thereby controls for possible con-
founding effects of systematic rater bias in
the analysis of subjective categorical data.

Each rater’s judgment process is mod-
eled as a mixture of two components: an
error process that is unique for the rater
in question, and an agreement process that
operationalizes the true values of the objects
to be classified. The probability Pr[Xr = i]
that rater r places a randomly selected object
into category i is given by

Pr[Xr = i] = λτ (i)+ (1− λ)εr(i),

where εr(i) is the probability of i under Rater
r’s error process, and λ, the percentage of
judgments governed by the agreement pro-
cess, is assumed to be the same for all
raters in the simplest model. The coefficient λ
quantifies the amount of agreement between
raters, and is closely related to the well-
known kappa index of Cohen [1]; see KAPPA

COEFFICIENT. In fact, basic agreement anal-
ysis can be considered as a systematization
of Cohen’s idea to correct for agreement by
chance in the analysis of subjective categori-
cal data.

For two raters,

Pr[Xr = i, X2 = j] = Pr[X1 = i] Pr[X2 = j]

+
{
λ2τ (i)[1− τ (i)] if i = j,
−λ2τ (i)τ (j) if i �= j;

model parameters can be estimated on the
basis of cross-tabulation of the raters’ judg-
ments in agreement matrices [4]. For the spe-
cial case of K = 2, see [3]. The model is a
member of the class of general processing tree
models [2].

The basic agreement model is a measure-
ment error model that allows more focused

analyses of experiments employing subjec-
tive categorical data from several raters, for
whom ratings have measurement error dis-
tributions that can induce bias in the evalu-
ation of scientific hypotheses of interest.
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KARL CHRISTOPH KLAUER

AGREEMENT, MEASURES OF

Measures of agreement are special cases of
measures of association∗ or of correlation∗

that are designed to be sensitive not merely
to deviations from independence, but specif-
ically to deviations indicating agreement.
These are measures most commonly used
to assess reliability (see GROUP TESTING) or
reproducibility of observations. In this con-
text, it is usually assured that one has better
than chance agreement. Consequently, the
statistical problems of interest revolve not
around the issue of testing the null hypothe-
sis of independence but around estimation of
the population measure of agreement.

Typically, one samples n subjects and has
m observations on each, say Xi1, Xi2, . . . , Xim
(i = 1, 2, . . . , n), where the marginal distribu-
tions of the observations are the same for
all j = 1, 2, . . . , m. Typically, a measure of
agreement is zero when all ratings are inde-
pendent and identically distributed, and 1.0
if Pr{Xij = Xij

′} = 1 for all i and j �= j′.
Controversies as to the validity of certain

measures of agreement can be generated if
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the assumption of equal marginal distribu-
tions is violated [1]. This assumption, how-
ever, imposes no major limitation. One need
only randomly assign the m observations for
each subject to positions 1, 2, . . . , m prior to
analysis.

Suppose that

Xij = µ+ ξi + εij,

where ξi ∼ N(0,σ 2
ξ ), εij ∼ N(0, σ 2

ε ), ρ = σ 2
ξ /

(σ 2
ξ + σ 2

ε ), and the ‘‘true’’ values of ξi and
‘‘errors’’ εij are independent for all i and j.
For this type of interval or ratio-level data,
the intraclass correlation coefficient∗ is one
such measure of agreement. This measure is
most readily computed by applying a oneway
analysis of variance∗ with each subject con-
stituting a group. The intraclass correlation
coefficient then is

rI = F − 1
F +m− 1

,

where F is the F-statistic∗ to test for subject
differences.

Since

F ∼ (m− 1)ρ + 1
1− ρ Fn−1,n(m−1),

nonnull tests and confidence intervals for
the parameter ρ can be structured on this
basis [2].

A nonparametric analogue of the same
procedure is based on the use of coefficient of
concordance∗. In this case the n observations
for each value of j are rank ordered 1, 2, . . . , n,
with ties given the average of ranks that
would have been assigned had there been no
ties. One may then calculate the intraclass
correlation coefficient based on the ranks rS.
This statistic, rS, is the average Spearman
rank correlation coefficient∗ between pairs of
ratings and is related to the coefficient of
concordance W by the relationship

rS = mW − 1
m− 1

.

The distribution of rS is approximately of the
same form as that of rI [3].

These two measures, rI and rS, are
designed to measure agreement for measure-
ments taken on ordinal, interval, or ratio

scales. For measurements taken on the nom-
inal scale, the kappa coefficient∗ performs the
same function [4]; its nonnull distribution is
not known theoretically, and jack-knife∗ or
bootstrap∗ methods are suggested for estima-
tion and testing of this measure [5].

To illustrate these methods we use scores
on a test of memory for 11 subjects (n = 11)
each tested three times (m = 3). The three
scores per subject are listed in random time
order in Table 1. The intraclass correlation
coefficient was found to be rI = 0.59. The
rank orders for each rating appear as super-
scripts in the table. The average Spearman
coefficient based on these data was rS = 0.45.

Finally, one may dichotomize (or classify)
the scores in innumerable ways. For illus-
tration we defined a ‘‘positive’’ test as a
score of 50 or above, a ‘‘negative’’ test as a
score below 50. The kappa coefficient for this
dichotomization was k = 0.05.

This example illustrates an important
point in evaluating magnitudes of measures
of agreement. The measure of agreement
reflects the nature of the population sam-
pled (i.e., σ 2

ξ ), the accuracy of the observation
(i.e., σ 2

ε ), and the nature of the observa-
tion itself (interval vs. ordinal vs. nominal).
Consequently, poor measures of agreement
are obtained if the observation is insensitive
to the variations inherent in the population
either because of an intrinsic scaling problem
or because of inaccuracy of measurement.

Further, there are many more measures
of agreement than these common ones pro-
posed in the literature, because there are
many ways of conceptualizing what consti-
tutes agreement and how to measure dis-
agreement. To see this, let D(Xij, Xrs) be any
metric reflecting agreement between two ob-
servations Xij and Xrs (even if the X ’s are
multivariate) with D(Xij, Xrs) = 1 if and only
if Xij ≡ Xrs. If Dw is the mean of D’s between
all n

(m
2

)
pairs of observations within sub-

jects, and Dt the mean of D’s between all(nm
2

)
pairs of observations, then a measure of

agreement is

Dw −Dt

1−Dt
.

For example, when Xij is a rank order
vector, one might propose that D(Xij, Xrs) be
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Table 1.

Rating

Subject 1 2 3

1 444 487 545

2 578 456 402.5

3 465.5 323 587

4 669 508 556

5 465.5 434 504

6 7211 8311 7011

7 353 282 649.5

8 6710 6610 638

9 262 445 649.5

10 161 211 191

11 487 699 402.5

a rank correlation coefficient between such
vectors. Such a measure has been proposed as
an extension of kappa [5] for multiple choices
of categories, or as a measure of intergroup
rank concordance [6].

As a result, the magnitude of a mea-
sure of agreement is determined not only
by the nature of the population, the accu-
racy of the observation, and the nature of
the observation itself, but, finally, by the
metric of agreement between observations
selected as the basis of the measure of agree-
ment. See also SIMILARITY, DISSIMILARITY AND

DISTANCE, MEASURES OF.
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HELENA CHMURA KRAEMER

AGRICULTURAL SURVEYS

The purpose of this paper is to describe
the statistical methodologies that have been
developed over time that are somewhat uni-
que to the field of agriculture. Agricultural
Statisticians throughout history have been
innovative in the use of available statistical
theory and adapting it to their needs.

From a statistical point of view, the char-
acteristics of agricultural surveys are similar
to surveys associated with other social or
physical phenomena. First, one must define
the population and then prepare a frame that
represents it. Then, unless one is to do a
complete census∗, sampling theory is used to
select a sample from the frame. Estimators
that reflect the sampling design are devel-
oped and include methodologies to impute
for missing data (see IMPUTATION) and to
estimate for nonresponse∗. The statistics lit-
erature is rich with theory and methods to
support these issues.

Agriculture has several features that pose
methodological problems. One first needs to
consider the definition of agriculture. Agri-
culture involves the use of land, the culture
or raising of a living organism through differ-
ent life cycles, and the concept of ownership.
For example, the use of land, culture, and
ownership as criteria separate fishing from
aquaculture and tree farming from forestry.
This definition easily points to land as the
population. For example, agricultural land is
simply all land used for the culture or rais-
ing of plants or animals under some form of
private ownership. One of the first difficul-
ties is that it is also necessary to describe
agriculture as a business, with the need to
provide measures of the economic or demo-
graphic situation of farms and the people
operating the farms. This suggests that the
sampling frame∗ consists of a list of farms
or farm operators that account for the land
associated with agriculture.

The need to account for both land and the
farm operators has dominated the statisti-
cal thinking of agricultural statisticians and
this led to the development of multiple frame
sampling that will be described in greater
detail.

The other unique feature of agriculture
is that it provides the food and fiber that
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feeds and clothes a country’s population. Food
security becomes an issue, which means that
timely and accurate forecasts of future sup-
plies are needed for policy purposes and
to ensure that markets operate efficiently.
Agriculture is seasonal—especially crop pro-
duction—which means that all of the supply
becomes available in a short period of time
and is held in storage and used until the next
harvest period.

This paper will provide an overview of
the history of the development of statistical
procedures to forecast and measure agricul-
tural production. The examples will mostly
apply to the United States but, where appro-
priate, methods used in other countries will
also be presented. The material will draw
heavily from Reference 20, which traces the
history of agricultural statistics as developed
by the United States Department of Agricul-
ture (USDA).

BEFORE PROBABILITY SAMPLING

The basic method to obtain agricultural stati-
stics in many developing and developed coun-
tries was to use the administrative levels of
government. The basic unit was an admin-
istrative unit such as a village or small
agricultural region. The village or local area
administrators provided subjective measures
of areas planted and production and other
agricultural measures. No sampling was in-
volved as village totals were sent up the
administrative line. This practice is still wide-
spread in many developing countries, for
several reasons. First, their farmers may not
be educated enough to understand the con-
cept of area or production or are unwilling to
answer questions. Cost is also an issue. How-
ever, these administrative data are subject to
manipulation by the various levels of govern-
ment through which they pass, which means
that these countries are facing the need to
modernize their methodology. The adminis-
trative system used in China is typical of
procedures used in many countries [21].

Basic statistics in the United States were
initially provided by periodic censuses of agri-
culture, with surveys of voluntary reporters
in intervening years to measure change from
the census benchmark.

Prior to the 1880 agricultural census in the
United States, only information about total
crop production and livestock inventories
was obtained. The 1880 census also obtained
information about crop acreages. These cen-
sus enumerations of acreage provided bench-
marks for estimating crop acreages for years
between census years. This was the begin-
ning of the procedure that is still used to
forecast and estimate crop production. Basi-
cally, it calculates crop production as the
product of the two separate estimates of
acreage and yield per acre. Once planted,
crop averages usually do not change very
much between planting and harvest. There
is also less year-to-year variability between
crop acres than there is between yield per
acre. In general, the estimates through the
nineteenth century were linked to the decen-
nial Census of Agriculture conducted by the
Bureau of the Census∗. The USDA relied
upon correspondents reporting their assess-
ment of year-to-year changes in their locality
to make the annual estimates. As might
be suspected, small year-to-year biases in
the measures of change linked to a census
could grow to a widening gap over the years
between the USDA estimates and the next
census benchmark level. This problem led to
the development of improved methodology.

The most important statistics produced
were and still are the forecasts of the pro-
duction of crops such as wheat, corn, soy-
beans, and cotton, followed by end-of-season
estimates of actual production. For reasons
given above, the forecasts and estimates of
production were determined by separately
estimating or forecasting acreage planted
and average yields per acre. There was no
‘‘sampling frame’’ of farms; there were only
lists of correspondents who would voluntarily
respond to a mailed inquiry.

In the absence of probability sampling
theory, much effort went into improving esti-
mating procedures to measure crop acreages
and to forecast crop yields. These procedures
are discussed below in chronological order
and are described more thoroughly in Refer-
ence 3.

Starting in 1912, the Par Method was
adopted to translate farmer reported crop
condition values early in the crop season
into a probable yield per acre that would
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be realized at harvest. The par method to
forecast yield (y) consisted of the following
components:

y = CYm/Cm, where

Cm = the previous 10-yr average condition
for the given month,

Ym = the previous 10-yr average yield per
acre realized at the end of the season,

C = current condition for the given month.

The forecasting model was simply a line
passing through the origin and the point (C,
y). A separate par yield (y) was established for
each state, crop, and month. In actual prac-
tice, subjective modification of the means was
considered necessary to remove the effects of
atypical conditions. For example, a drought
that may occur only once every 10 or 15
year would greatly affect the 10-yr average
conditions and yield. To aid in these adjust-
ments, 5- and 10-yr moving averages∗ were
computed to identify unusual situations or
trends, and if necessary, exclude the atypical
observations.

The development of simple graphic solu-
tions prior to the use of regression and cor-
relation theory was a major breakthrough as
a practical means to forecast crop yields, and
this approach was implemented in the late
1920s. Data for a sufficient number of years
had accumulated, so that final end-of-season
estimates of yields could be plotted against
averages of condition reports from farmers
for each crop in each State.

The condition was reflected on the x-axis
and end-of-season yields on the y-axis. The
plotted points depicted a linear description
of early season crop conditions compared to
end-of-season yields. The yield forecast for
the current system was obtained by entering
the current condition on the chart and finding
the best fit with historic yields subjectively.

Graphical regression techniques provided
a consistent method to translate survey data
into estimates, which in effect adjusted for
persistent bias in the data caused by the
purposive sampling procedures. This method
quickly replaced the par method and was
adopted rapidly.

The following discussion describes early
attempts to estimate the acreage to be har-
vested.

Because the ideas of probability sampling
had not yet been formed, the procedures used
to estimate acres for harvest were more dif-
ficult than those to estimate average yields.
The USDA used its state offices to enlarge
the lists of farm operators, but there was no
complete list of farms that could be used for
survey purposes. Therefore, the estimating
procedures relied upon establishing a base
from the most recent Census of Agriculture
and estimating the percent change from year
to year. As the country developed with a
road system and a postal service, a com-
mon data collection∗ approach was the Rural
Carrier Survey. The postal carriers would
drop a survey form in each mailbox along
their route. A common procedure during that
time was to include two columns in the ques-
tionnaire when asking the farmer questions
about acreage planted to each crop. During
the current survey, the farmer was asked to
report the number of acres planted this year
and the number of acres planted the previous
year in each crop. This method was subject
to several reporting biases, including mem-
ory bias, and it led to matching ‘‘identical’’
reports from year to year to remove the mem-
ory bias. The matching of identical reports
did improve the estimates, but was consider-
ably more labor intensive because the name
matching had to be done by hand. The process
was also complicated by problems with opera-
tions changing in size, and it was inherently
biased because it did not account for new
entrants to agriculture.

This methodology was subject to a poten-
tially serious bias, caused by the selective or
purposive nature of the sample. In an effort
to make an allowance for this bias, a relative
indicator of acreage was developed in 1922;
it became known as the ratio relative and
contained the following components:

R1 = Ratio of the acreage of a given crop to
the acreage of all land in farms
(or crops) for the current year as
reported by the sample of farm
operators;

R2 = Same as R1 but for the previous year;
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ŷ = (R1/R2)× (Estimated total area of the
crop the previous year).

The ratio R1/R2 was essentially a measure
of change in the crop area from the previous
year. The assumption was that the previ-
ous year’s area was known without error.
The belief was that this ratio held the bias
resulting from the purposive sampling con-
stant from one year to the next. A reported
limitation was the extreme variability in the
acreage ratios between the sample units. This
was countered by increasing the ‘‘number’’ of
farms surveyed and weighting the results by
size of farm.

By 1928, matched farming units that re-
ported in both years were used to compute the
ratio relative. This reduced the influence of
the variability between sample units. When
looking back at the variance of the estimate
from a current perspective, one may examine
the components (also assuming probability
sampling).

Var(y) = Var(R1)+ Var(R2)− 2 cov(R1,R2).

This shows why the use of matching
reports improved the ratio relative estima-
tor. However, this did not solve the problem,
because by using matching reports, farms
going into or out of production of a particular
crop were not properly represented. There-
fore, statisticians continued their efforts to
develop a more objective method of gathering
and summarizing survey data.

Some statisticians in the early 1920s
would travel a defined route on the rural
roads or via railway routes and record the
number of telephone or telegraph poles oppo-
site fields planted to each crop. The relative
change in the pole count for each crop from
year to year provided a measure of the aver-
age change in crop acreage. This method was
generally unsatisfactory, because large por-
tions of the United States still did not have
telephone service; the pole count method was
therefore not widely used.

A more refined method of estimating acre-
age was developed in the mid-1920s. A crop
meter was developed and attached to an auto-
mobile speedometer to measure the linear
frontage of crops along a specified route. The
same routes were covered each year. This

made possible a direct comparison of the
number of feet in various crops along iden-
tical routes from the current year and the
previous year. The properties of the estimator
are described in Reference 12.

THE TWENTIETH CENTURY AFTER
PROBABILITY SAMPLING

A milestone in the evolution of statistical
methodology for agriculture was the devel-
opment of the master sample of agriculture
[13,14]. This was a cooperative project involv-
ing Iowa State University, the US Depart-
ment of Agriculture, and the US Bureau
of the Census. This area-sampling∗ frame
demonstrated the advantages of probability
sampling. The entire landmass of the United
States was subdivided into area-sampling
units using maps and aerial photographs.
The sampling units had identifiable bound-
aries for enumeration purposes. The area-
sampling frame had several features that
were extremely powerful for agricultural sur-
veys.

By design, it was complete in that every
acre of land had a known probability of
being selected. Using rules of association to
be described presently, crops and livestock
associated with the land could also be mea-
sured with known probabilities. The Master
Sample of Agriculture was based on a strat-
ified design—the strata defined to reflect
the frequency of occurrence of farmsteads.
Area-sampling units varied in size in differ-
ent areas of the country to roughly equalize
the number of farm households in each area-
sampling unit.

The master sample was used for many
probability surveys, but not on a recurring
basis, because of added costs arising from
the area samples having to be enumerated
in person. The panel surveys of farm oper-
ators, while not selected using probability
theory, were very much cheaper to conduct,
because the collection was done by mail. It
was not until 1961 that pressures to improve
the precision of the official estimates resulted
in the US Congress appropriating funds for
a national level area frame survey on an
annual recurring basis. During the early
1960s, the Master Sample of Agriculture was
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being replaced by a new area frame that
was stratified via land use categories on the
basis of the intensity of cultivation of crops.
This methodology is still used. The process of
developing the area frame is now much more
sophisticated, relying upon satellite imagery
and computer-aided stratification [18]. The
method of area frame sampling described
here is generally referred to as Area Frame
of Segments.

An alternative is to select an Area Frame
of Points. The usual practice is to divide the
landmass into grids, and within each grid
selecting a sample of points. Then, data col-
lection involves identifying what is on each
point or identifying the farm associated with
the point; Reference 9 describes a sample
design starting with 1800× 1800 m grids.
Each grid contained a total of 36 points—each
point having a 3× 3 m dimension. A random
sample of 3 points was selected from each
grid.

This method of sampling is easier to imple-
ment than segment sampling and is being
used in Europe. However, data collected from
point samples are less suitable for matching
with satellite images or data. Data coming
from segments are based on a drawing of the
fields on aerial photographs. The use of the
area frame led to the development of some
new estimators, described below.

The sampling unit for the area sample
frame is a segment of land—usually identi-
fied on an aerial photograph for enumeration.
The segment size generally ranged from 0.5
to 2 sq mi, depending upon the availabil-
ity of suitable boundaries for enumeration
and the density of the farms. The basic area
frame estimator was the design-based unbi-
ased estimate of the total,

ya =
∑

h

∑
i

ehi • yhi

where y′hi was the ith segment total for an
item in the hth stratum and ehi was the
reciprocal of the probability of selecting the
ith segment in the hth stratum.

During the frame development process,
the segment boundaries are determined with-
out knowledge of farm or field boundaries.
Therefore, an early (and continuing) difficulty

was how to associate farms with sample seg-
ments during data collection. Three methods
have evolved, which are referred to both as
methods of association∗ and as estimators.
Let yhil be the value of the survey item on
the lth farm having all or a portion of its
land in the ith sample segment. Then dif-
ferent estimators arise, depending on how
survey items on farms are associated with
the sample segments. We present these next.

Farm (Open):

The criterion for determining whether a farm
is in a sample or not is whether its headquar-
ters are located within the boundaries of the
sample segment. This estimator was most
practicable when farm operations were gen-
erally homogeneous, that is, they produced a
wide variety of items, some of which may not
have appeared in the segment. This estima-
tor was also useful for items such as number
of hired workers and of animals born that
are difficult to associate with a parcel of land.
The extreme variation in size of farms and the
complex rules needed to determine if the farm
headquarters were in the segment resulted
in large sampling and nonsampling errors,

y′hi =
∑

l

Fhilyhil,

where Fhil = 1, if the operator of farm l lives
in the segment; 0, otherwise.

Tract (Closed):

The tract estimator is based on a rigorous
accounting of all land, livestock, crops, and so
on, within the segment boundaries, regard-
less of what part of a farm may be located
within the boundaries of the segment. The
method offered a significant reduction in both
sample and nonsampling errors over the farm
method, because reported acreages could be
verified by map or photograph. The estimator
is robust in that the maximum amount that
can be reported for a segment is limited by
its size. The estimator is especially useful for
measuring acres in specific crops,

y′hi =
∑

l

Thilyhil,

where
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Thil =
Amount of item on farm l

in segment i
Total amount of item on farm l

.

Weighted:

The difficulty with the tract estimate was
that some types of information, such as eco-
nomic, could only be reported on a whole-
farm basis. This led to the development of
the weighted procedure, in which data are
obtained on a whole-farm basis, for each
farm with a portion of its land inside a
sample segment. The whole farm data are
prorated to the segment on the basis of the
proportion of each farm’s land that is inside
the segment. This estimator provides the
advantage of a smaller sampling error than
either the farm or tract procedures. On the
minus side, data collection costs increased
15 to 20% because of increased interviewing
times, and intractable nonsampling errors
are associated with determining the weights.
This estimator is also used to estimate live-
stock inventories, number of farm workers,
and production expenditures,

y′hi =
∑

l

Whilyhil,

where

Whil =
Acres of farm l
in segment i

Total acres in farm l
.

Ratio:

The area frame sample was designed so that
50 to 80% of the segments were in the sample
from year to year. This allowed the compu-
tation of the usual ratio estimators∗ such as
the year-to-year matched segment ratios of
change.

While the area frame sampling and esti-
mating procedures were being refined, this
period also saw a rapid change in the struc-
ture of agriculture. Farms became more spe-
cialized and much larger. This introduced
more variability that required much larger
area frame sample sizes.

The proportion of farms having livestock
was decreasing rapidly during this period.
The variation in numbers of livestock on such
farms also had increased dramatically.

The combination of these two factors
meant that either resources for an extremely

large area frame sample would be needed
or alternative sampling frames were needed.
In the early 1960s, H.O. Hartley∗ at Iowa
State University was approached about this
problem. The result was his 1962 paper lay-
ing out the basic theory of multiple frame
sampling and estimation, and summarized in
Reference 6. This was followed by Reference
5, which more fully developed the concepts
of multiple frame sampling and estimation
methodology and which also developed multi-
ple frame estimators with reduced variances.

As implied by its name, multiple frame
sampling involves the use of two or more sam-
pling frames. If there are two frames, there
are three possible poststrata or domains—
sample units belonging only to frame A, sam-
ple units belonging only to frame B, and
finally the domain containing sample units
belonging to both frames A and B. As pointed
out by Hartley, the sampling and estimation
theory to be used depended on knowing in
advance of sampling whether the domain and
frame sizes were known. This determined
whether theories applying to poststratifica-
tion or domain estimation were to be used.

In the agricultural situation, the area-
sampling frame provided 100% coverage of
the farm population. There was also a par-
tial list of farms, which could be stratified by
size or item characteristic before sampling.
Domain membership and sizes are unknown
prior to sampling, thus sample allocation is
by frame and domain estimation theories
apply. The theory requires that after sam-
pling, it is necessary to separate the sampled
units into their proper domain. This meant
area sample units had to be divided into two
domains—farms not on the list, and farms
on the list.

By definition, all farms represented by the
list were also in the area frame. The Hartley
estimator for this situation was

ŶH = Na(ya + Py ′ab)+NbQy′′ab,

where ya represents area sample units not
in the list, y′ab represents area sample units
overlapping the list frame, y′′ab represents the
list frame, and P+Q = 1.

The weights P and Q were to be deter-
mined to minimize var (ŶH). This sampling
and estimation theory was used for surveys to
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measure farm labor numbers and wage rates,
livestock inventories, and farm production
expenditure costs. Because of the consider-
able variation in the sizes of farms and the
sampling efficiencies that occurred from the
stratification in the list frame, the majority
of the weight went to the list frame portion
of the estimator; that is, P was small and Q
was large.

An alternative estimator is suggested in
Reference 10. With it, units in the list
frame that are in the area frame sample are
screened out of the area frame portion of the
survey. In other words, P = 0 and

ŶH = Naya +Nby′′ab.

Additional analysis [5] suggested that, for
a fixed cost, the screening estimator would
have the lower variance whenever the cost of
sampling from the list frame is less than the
difference between the cost of sampling from
the area frame and the cost of screening the
area frame sample to identify those also in
the list frame.

For those reasons, the screening estima-
tor is used exclusively. The increased use of
telephone enumeration for the list sample
reflects personal to telephone enumeration
cost ratios of 1 to 15 in some cases. The
area frame sample is surveyed in its entirety
in June each year. Farms that overlap the
list frame are screened out and the area
domain representing the list incompleteness
is defined. During the next 12-month period,
a series of multiple frame quarterly surveys
are conducted to measure livestock invento-
ries, crop acreages and production, and grain
in storage. Other multiple frame surveys dur-
ing the year cover farm labor and production
expenditures. Each survey relies upon the
multiple frame-screening estimator.

Multiple frame is still the dominant sam-
pling methodology used in the United States.
Its use has also spread to many countries
[23]. The methods used in other countries
differ only by their choice of area frame sam-
pling, that is, point sampling versus square
segments.

As the structure of agriculture became
widely diverse in the United States, the basic
use of stratification of the list frame of farms

and estimators such as direct and ratio esti-
mators were becoming increasingly ineffi-
cient.

The sampling methods now used to select
farms from the list frame are described in
Reference 15. This procedure was named
Multiple Probability Proportional to Size∗
(Multiple PPS), because in effect multiple
samples are selected. The frame is optimized
for a particular characteristic, and a PPS
sample is selected using a measure of size
representing the characteristic. This process
can be repeated multiple times for each vari-
able of interest to be included in the combined
sample.

The next step is to combine the samples
into one overall sample and recalculate the
sample weights.

The probability of selecting the ith farm
is m = max(πi1, . . . ,πiM), where from 1 to M
samples have been selected, and the indi-
vidual probabilities of selecting a given farm
from each sample is noted. The maximum
probability of selecting each farm from across
the individual samples becomes the farm’s
sample weight.

The next step is to calibrate the sample
weights so that the final estimation becomes
model unbiased.

The use of Poisson Permanent Random
Number (PPRN) sampling, as described in
Reference 17, is used to select the PPS sam-
ples.

In these designs, every population is as-
signed a permanent random number between
0 and 1. Unit l is selected if its random num-
ber is less than its maximum probability of
being selected.

PPRN sampling furthermore allows one
to think of a sample drawn with inclusion
probabilities as the union of M PPRN sam-
ples, each drawn using the same permanent
random number and individual probabilities.
This is convenient when one is interested in
estimates of different combinations of target
variables in different surveys.

For example, the USDA makes estimates
for potatoes in June and December, row crops
(e.g., soybeans and corn) in March, June,
and December, and small grains (e.g., wheat
and barley) in March, July, September, and
December. It wants to contact the same farms
throughout the year, but has little interest in
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sampling a farm for the September survey
if it has not historically had small grains.
Thus, PPRN samples of farms using the same
permanent random number can be drawn
for potatoes, row crops, and small grains,
each with its own selection probabilities. The
union of all three is the overall sample in
June. Similarly, the union of the row-crops
and small-grains samples is the overall sam-
ple in March. The use of Poisson sampling is
discussed in greater detail in Reference 2.

The domain determination has been the
most difficult operational aspect to tackle in
developing, implementing, and using multi-
ple frame methodology [19]. As the struc-
ture of farms becomes more complicated with
complex corporate and partnership arrange-
ments, the survey procedures require a sub-
stantial effort to minimize nonsampling
errors associated with domain determina-
tion.

Since the first crop report was issued
in 1863, the early season forecasts of crop
production continued to be some of the
most critical and market sensitive infor-
mation prepared by the USDA. The devel-
opment of probability sampling theory and
the area-sampling frame provided a founda-
tion upon which to replace judgement-based
estimates of locality conditions to forecast
yields per acre. In 1954, research was initi-
ated to develop forecasting techniques based
on objective counts and measurements that
would be independent of judgment-based
estimates. The use of nonrepresentative sam-
ples of farmers continued to be used to report
conditions in their locality and individual
farms during this period, however.

Research on the use of corn and cotton
objective methods began in 1954 followed by
work on wheat and soybeans in 1955 and
sorghum in 1958. Early results showed that
a crop-cutting survey at harvest time based
on a probability sample of fields would pro-
vide estimates of yield per acre with good
precision. Countries such as India and China
have also used this methodology, estimating
final yields and production with pioneering
work described in Reference 16. The methods
used in China are described in Reference 21.
There were two difficulties when attempting
to forecast yields. One difficulty is to forecast
yield before the crop is mature, and it is even

more difficult to do so before the plants have
set fruit.

A two-step sampling procedure is used.
First, a sample of fields is selected from
those identified during the annual area frame
survey as having the crop of interest. Self-
weighting samples are selected. Observations
within fields are made in two randomly lo-
cated plots with each selected field. Selected
plots for most crops include two adjacent rows
of predetermined length. The probable yield
per acre is a function of the number of plants,
the number of fruits per plant, and the size
or weight of the fruit. Early in the crop sea-
son, the number of plants is used to forecast
the number of fruits, with historical aver-
ages used for fruit weights. After fruit is
present, several measurements are obtained
to project final fruit weight. For example, the
length and diameter of corn ears are obtained
from ears within the sample plots. When the
crop is mature, the sample plots are har-
vested, and the fruit counted and weighed
for the final yield estimate. The early sea-
son counts and measurements from within
the sample plots are combined with the data
from the harvested fruit, and become part of
a database that is used to develop forecast-
ing models in subsequent years. After the
farmer harvests the sample field, another set
of sample plots is located and grain left on
the ground is gleaned and sent to a labora-
tory where it is weighed and used to measure
harvest loss. During the forecast season, his-
torical averages are used to estimate harvest
losses.

Simple linear and multiple regression
models are used to describe past relation-
ships between the prediction variables and
the final observations at maturity. Typically,
early season counts and end-of-season har-
vest weights and counts from within each
unit are used. They are first screened sta-
tistically for outlier∗ and leverage∗ points
[4]. Once these atypical data are identified
and removed, the remaining data are used to
create current forecast equations.

The basic forecast models for all crops are
essentially the same, in that they consist
of three components: the number of fruits,
average fruit weight, and harvest loss.
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The net yield per acre as forecast for each
sample plot is computed as follows:

yi = (FiCiWi)− Li,

where

Fi = Number of fruit harvested or forecast
to be harvested in the ith sample plot,

Ci = Conversion factor using the row space
measurement to inflate the plot counts
to a per acre basis,

Wi = Average weight of fruit harvested or
forecast to be harvested,

Li = Harvest loss as measured from
postharvest gleanings (the historical
average is used during the forecast,
season),

Yield forecasts =
∑

i

(yi/n) for the n

sample fields.

Separate models are used to forecast the
number of fruits (Fi) to be harvested and
the final weights (Wi). The variables used in
each model vary over the season, depending
upon the growth stage at the time of each
survey. At the end of the crop season, Fi and
Wi are actual counts and weights of fruit for
harvest.

The major contributor to forecast error is
the difficulty of forecasting fruit weight early
in the season. Many factors such as plant-
ing date, soil moisture, and temperatures
at pollination time crucially affect a plant’s
potential to produce fruit. While the fruit
can be counted early in the season, the plant
does not always display characteristics that
provide an indication of final fruit weight.
While each plant’s potential to produce fruit
is affected by previous circumstances, that
information is locked inside the plant—often
until fruit maturity.

Over the years, the USDA has conducted
extensive research to improve the basic
yield forecast models. Examples of this work
appear in Reference 1. Models using weather
data were continuously being developed and
compared against the traditional objective
yield models, but always fell short. The
plant measurements reflected the impacts of

weather, and the use of weather data does not
add to the precision. Another effort involved
an attempt to model the plant growth and
to use these models, known as plant pro-
cess models, for yield forecasting. They did
not prove to be feasible in a sample survey
environment.

USE OF SATELLITE IMAGERY AND DATA IN
AGRICULTURAL STATISTICS

The first satellite designed to monitor land
use was the land observatory (Landsat) satel-
lite launched in 1972. Several generations of
Landsat satellites have since been launched
and placed in orbit, for example in 1999. The
satellites are designed to travel in almost per-
fectly circular, near-polar orbit passes over
the sunlit side of the planet several times
daily. The orbit shifts westward so that every
part of the surface of the earth is imaged
every 16 days. The satellite contains a sensor
referred to as the Thematic Mapper (TM).
This camera-like device divides the images
into picture elements (pixels) and measures
the brightness of each pixel in seven portions
of the electronic spectrum. The TM scanner
pixel size is 30 m sq, for which there are
measures of light reflectance for seven bands
of the electromagnetic spectrum. The French
government launched the SPOT satellite in
1986, which contains a sensor that provides
a 20-m resolution. The sensor is pointable,
which allows the satellite to observe the same
area on the ground several days in a row.
Data from both LANDSAT and SPOT satel-
lites are available in either photographic or
digital form. The net result is large amounts
of data about the land and the vegetation it
carries.

The set of measurements for each pixel, its
signature, can be used to separate crop areas
by type or by different types of land use. It
is only to the degree that the spectral signa-
tures for different crops and land uses can be
separated that satellite data become useful.

It soon became evident that the accu-
racy of the crop and land use classifications
as derived from the satellite data would be
greatly improved by using ground truth data.
The methodology developed to use data from
the area frame surveys as ground truth to
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improve the accuracy of the classification of
pixels by land use or crop cover is described
in Reference 11. This process first involves
obtaining ground-to-pixel registration. Dis-
criminant functions are developed from pix-
els matched to ground truth data. The dis-
criminant functions are then used to classify
all elements in a satellite scene. In other
words, every pixel is assigned to a target crop
or land use. Regression estimators are used
to estimate the population parameters.

This complete classification of pixels by
crop or land use in effect provides complete
coverage of a given land area. A popular prod-
uct is the set of cropland data layers prepared
for entire states. Since each pixel is georef-
erenced, these cropland data in a geographic
information system can be linked to trans-
portation corridors, watershed boundaries, or
any other georeferenced data.

The National Oceanic and Atmospheric
Administration (NOAA) has launched a
series of weather satellites that also carry
an imaging system, the Advanced Very High
Resolution Radiometer (AVHRR). This imag-
ing has a pixel size of 1.1 km versus the 30-m
pixel size of the TM. A key result, however,
is that the entire globe can be imaged daily
instead of once every 16 days. The AVHRR
images provide both data and images on veg-
etation conditions [22]. The daily images or
weekly composites are used by governmental
agencies and marketing boards to monitor
crop conditions over large areas to make deci-
sions for agricultural marketing and for early
warning of food aid requirements.

Satellite data classified by land use cate-
gories are used extensively to design and pre-
pare area-sampling frames [7]. The satellite
data are also spatially referenced using lat-
itude/longitude coordinates. Therefore, they
can be used along with mapping products
showing natural boundaries such as roads
and rivers.

THE FUTURE

The future holds many challenges. There
is a growing need to understand and mea-
sure agriculture’s affect on the environment.
There is a related need for policy makers
and others to know how their decisions about

trade and the environment affect the pro-
duction decisions made by farmers and their
resulting economic situation. There is a grow-
ing concern about the demographics of farm
operations as they shrink in number with
the increasing size of farms. The interrela-
tionship between these variables will need to
be measured, pointing to an integration of
sampling methods with the use of satellite
data. Statistical theory will pave the way.
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AGRICULTURE, STATISTICS IN

The area covered by this topic is so vast
that whole volumes have been written on
it, e.g., ref. 8—and that is only an intro-
duction. The use of statistical techniques
in agricultural research goes back many
years, and indeed agriculture was one of the
areas in which modern analytical techniques
were first devised. The interchange of ideas
between statistical and agricultural science
has been of mutual benefit to both subjects.
This continues to the present day, and all
that is done here is to point out particular
topics of joint importance to the two sciences.

HISTORY

The earliest paper describing what may be
thought of as a statistically designed agricul-
tural experiment appears to be that of Cretté
de Palluel [4]. This concerned an experiment
on the fattening of sheep in which 16 animals,
four each of four different breeds, were fed on
four diets, one of each breed per diet. The ani-
mals were killed at four monthly intervals so
that the experiment could be regarded, in
modern terms, either as a 1

4 replicate∗ of a
43 factorial∗ or a 4× 4 Latin square∗. This
experiment, which antedates the founding
of modern agricultural research stations by
more than half a century, shows in a sim-
ple form the principles of good experimental
design∗ and analysis.

Agricultural journals have been in exis-
tence in their present form since the early
years of this century, and many now have
statisticians on their editorial boards. Thus
the Journal of Agricultural Science has been
published in Cambridge since 1905 and deals
with many branches of agriculture and ani-
mal husbandry. The Journal of Agricultural
Research was founded in Washington in 1913
and changed to Agronomy Journal in 1949,
reflecting its prime concern with crops. Trop-
ical Agriculture has been published since
1924 in Trinidad, and the Indian Journal
of Agricultural Science since 1931 in New
Delhi. These two deal primarily with tropical
agriculture, as does Experimental Agricul-
ture, which started in 1930 in Oxford as the
Empire Journal of Experimental Agriculture
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and dropped its imperial connections in 1965.
All these journals have a long and honor-
able history of statistical writing, from early
papers on the methodology of the analysis
of field data in the Journal of Agricultural
Science in the 1920s to several papers on the
techniques of intercropping trials in Experi-
mental Agriculture in the late 1970s.

Courses on statistical methods applied to
agriculture have been taught for many years,
one of the first being those by G. W. Snedecor∗

at Iowa State College as early as 1915. How-
ever, the first statistician appointed to work
at an agricultural research station was R.
A. Fisher∗, who went to Rothamsted Exper-
imental Station in 1919. Within a few years
Fisher had developed the technique of anal-
ysis of variance∗ for use in analyzing the
results of agricultural experiments; he was
also quick to emphasize the importance of
replication and randomization in field trials
and introduced the randomized block design∗.
A good summary of Fisher’s early work is
given by Yates [12].

PRESENT POSITION

From the 1930s onward, statistical meth-
ods for agricultural use have been greatly
extended, both by the introduction of new
techniques and by their use in agricul-
tural research throughout the world. Thus,
at Rothamsted, Fisher’s colleague and suc-
cessor F. Yates introduced more complex
experimental designs. Among others, Yates
recognized the importance of extensive exper-
imentation: Crowther and Yates [5] gave a
comprehensive summary of fertilizer trials
in northern Europe from 1900 to that time.
Yates also used statistical methods in surveys
of agricultural practice, from 1944 onward
[14]. Again, these statistical techniques were
initially employed in agronomy and crop
husbandry, but similar principles were soon
applied to experiments with animals, despite
their often greater expense and difficulty. A
comprehensive statement of the part statis-
tics, and statisticians, can play in planning
field experiments was given by Finney [7],
and the position since then has changed only
in detail, not in broad outline.

METHODS OF EXPERIMENTAL DESIGN AND
ANALYSIS

The main techniques used in practice for
design and analysis of agricultural experi-
ments continue to be based largely on Fish-
erian principles. Thus, since all agricultural
work is subject to biological variability, treat-
ments in comparative experiments are repli-
cated in space, and sometimes in time also.
Further, the application of any treatment to
a particular set of plants or animals, or piece
of ground, is usually randomized, possibly
with some restrictions, although systematic
designs∗ are sometimes used for particular
purposes. These same principles are used, to
a lesser degree, in the design of surveys, the
random element occurring in the selection of
units to be sampled.

The most commonly used experimental
design for field trials is the randomized block∗

design, in which the area of land available
for experimentation is divided into blocks,
within which it is hoped that soil conditions
are reasonably uniform; the blocks are sub-
divided into plots to which treatments∗ are
applied. (The names ‘‘block’’ and ‘‘plot,’’ now
widely used in experimental design, reflect
the agricultural context in which they were
first applied.) There are three main lines of
development of practical designs, in the direc-
tions of factorial experimentation∗, incom-
plete block designs∗, and row and column
designs∗. Full details are given in the rele-
vant articles elsewhere, but there are whole
books devoted to the topic of experimental
design, e.g., Cochran and Cox [2] for ways
of allocating treatments to plots and Cox [3]
for other aspects of the planning of practical
experiments.

The standard technique for analyzing the
results of agricultural experiments is the
analysis of variance∗. Although this has its
critics and is certainly not universally appli-
cable, it remains the usual method for assess-
ing whether the variation among a group of
treatments is greater than would occur if all
the observed effects were due to chance. How-
ever, this technique occupies only the middle
range of the examination of experimental
results: it is first necessary to summarize
observed data to see whether they have any
meaning at all, and it is frequently desirable
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to synthesize the observed results into more
formal models, which may advance agricul-
tural theory as well as practice.

Since it is common to take many records
on an agricultural crop or animal, the first
task is to sort out those on which to conduct
a formal statistical analysis. For example,
if a crop is harvested over a long period
of time (e.g., tomatoes or coffee), does one
wish to analyze total yield, or early yield, or
indeed the proportion of the total yield in a
specified time? Again, there may be derived
variables of interest: in experiments with ani-
mals, it could be the digestibility of the feed
or the butterfat content of the milk. In pest
and disease control trials it is often far more
important to determine the damage on a crop
than to assess the total yield, damaged and
undamaged together. All these preliminaries
are a vital part of the statistical assessment
of a trial∗; also, noting apparently anomalous
values may help to pinpoint errors in record-
ing, or alternatively, lead to the discovery of
quite unsuspected effects.

Formal statistical analysis is not always
necessary when the main purpose of a trial
is just to obtain preliminary information for
use in a further trial, for example at an early
stage in a plant breeding project. However,
it is common to conduct analyses of variance
on trial results, if only to provide an assess-
ment of residual variation∗ after allowing for
treatment effects∗. Some trials have treat-
ments that are quantitative in nature, and
the technique of regression∗ as well as anal-
ysis of variance will be useful at this formal
stage. With two variables, judicious use of
analysis of covariance∗ permits the effect of
one variable on another to be assessed and
allowed for. When, as is common, many vari-
ables have been recorded, multivariate meth-
ods of analysis (see MULTIVARIATE ANALYSIS

OF VARIANCE (MANOVA)) may be used as
an alternative to the separate analysis of
each record.

Although analysis of variance and its deri-
vatives are undoubtedly the methods most
commonly used for data analysis, they are
not the only ones; many other techniques
may be used to supplement or replace them.
Thus an important area for studying experi-
mental techniques is the investigation of best
plot sizes. An early study here was that by

Fairfield Smith [6] of the relation between
plot size and variability. Subsequent work
has shown that it is also often necessary to
take account of possible variation due to indi-
vidual plants as well as the environment,
while there are many nonstatistical factors
that have to be considered in practice. Stud-
ies of animal breeding trials and components
of variance (see VARIANCE COMPONENTS) have
proceeded together ever since the work of
Henderson [9] dealing with a nonorthogonal
set of data on dairy cows. Many agricultural
experiments are now conducted to provide
data for testing a mathematical model, and
there are biologically important models that
do not fall conveniently into the linear form
suitable for analysis-of-variance techniques.
One example among many is the set of models
describing the relations between crop yield
and plant density, work on which is conve-
niently summarized by Willey and Health
[11]. There is now much interest in plant dis-
ease epidemiology, and although the earlier
theoretical work, both biological and math-
ematical, was not relevant to practical agri-
culture, some of the more recent studies are,
e.g., ref. 1. Finally, the design and analysis
of series of trials often present problems dif-
ferent in kind from those for a single trial:
for trials of crop varieties, references range
in time from 1938 [13] to 1980 [10].

APPLICATION AREAS

There is now scarcely an agricultural experi-
mental station anywhere in the world that
does not use statistical techniques of the
types outlined here; indeed, many have their
own statisticians. This is true not only of
the United States and the United Kingdom,
where these methods started, but of other
countries in the English-speaking world.
The language barrier has proved no impedi-
ment, and striking advances have been made
in many European countries, including the
Netherlands, East Germany, and Poland.
Further, the methods, although originating
largely in the more developed countries with
a temperate climate, have been used in
tropical developing countries, such as India,
Israel, and others in Asia, together with those
in Africa and Latin America.

Experiments on many crops now use sta-
tistical methods; these include a wide range
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of temperate cereals, fruit, vegetables, and
forage crops, and an even wider range of
tropical cereals and plantation crops. Exper-
iments in the area of animal husbandry and
disease control also use statistical techniques
(although the methods used on large and
expensive long-lived animals cannot be iden-
tical with those on short-term annual crops).
Surveys using statistical methods have been
conducted on an equally wide range of tem-
perate and tropical practices in agriculture
and animal husbandry. Indeed, the use of
statistical methods now permeates the whole
of research and development in agriculture
and related disciplines throughout the world.
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AIDS STOCHASTIC MODELS

AIDS is an infectious disease caused by a
retrovirus called human immunodeficiency
virus (HIV) [17]. The first AIDS case was
diagnosed in Los Angeles, CA, USA in 1980
[14]. In a very short period, the AIDS epi-
demic has grown into dangerous proportions.
For example, the World Health Organiza-
tion (WHO) and the United Nation AIDS
Program (UNAIDS) estimated that 5 million
had acquired HIV in 2003, and about 40 mil-
lion people are currently living with AIDS. To
control AIDS, in the past 10 years, significant
advances had been made in treating AIDS
patients by antiviral drugs through cocktail
treatment protocol [10]. However, it is still far
from cure and the disease is still spreading,
especially in Africa and Asia. For preventing
the spread of HIV, for controlling AIDS, and
for understanding the HIV epidemic, math-
ematical models that take into account the
dynamic of the HIV epidemic and the HIV
biology are definitely needed. From this per-
spective, many mathematical models have
been developed [1,8,11,22,24–26,29,42,55].
Most of these models are deterministic mod-
els in which the state variables (i.e., the num-
bers of susceptible people, HIV-infected peo-
ple, and AIDS cases) are assumed as deter-
ministic functions, ignoring completely the
random nature of these variables. Because
the HIV epidemic is basically a stochastic
process, many stochastic models have been
developed [5–7,18,33–37,39–44,46–49,53–
54,57–64, 66–68,73–76]. This is necessary
because as shown by Isham [23], Mode et al.
[40,41], Tan [48,54], Tan and Tang [62], and
Tan et al. [63], in some cases, the difference
between the mean numbers of the stochastic
models and the results of deterministic mod-
els could be very substantial; it follows that in
these cases, the deterministic models would
provide very poor approximation to the cor-
responding mean numbers of the stochastic
models, leading to misleading and sometimes
confusing results.
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STOCHASTIC TRANSMISSION MODELS OF
HIV EPIDEMIC IN POPULATIONS

Stochastic transmission models for the spread
of HIV in populations were first developed
by Mode et al. [40,41] and by Tan and Hsu
[59,60] in homosexual populations; see also
References 5–7, 18, 47–49, 54, 57, 66–68,
73, and 74. These models have been extended
to IV drug populations [19,53,62] and to het-
erosexual populations [39,46,75–76]. Many of
these models have been summarized in books
by Tan [55] and by Mode and Sleeman [42].
Some applications of these models have been
illustrated in Reference 55.

To illustrate the basic procedures for deriv-
ing stochastic transmission models for the
HIV epidemic, consider a large population
at risk for AIDS. This population may be a
population of homosexual men, or a popu-
lation of IV drug users, or a population of
single males, single females, and married
couples, or a mixture of these populations.
In the presence of HIV epidemic, then there
are three types of people in the population:
S people (susceptible people), I people (infec-
tive people), and A people (AIDS patients).
S people are healthy people but can contract
HIV to become I people through sexual con-
tact and/or IV drug contact with I people
or A people or through contact with HIV-
contaminated blood. I people are people who
have contracted HIV and can pass the HIV
to S people through sexual contact or IV drug
contact with S people. According to the 1993
AIDS case definition [15] by the Center of Dis-
ease Control (CDC) at Atlanta, GA, USA, an
I person will be classified as a clinical AIDS
patient (A person) when this person develops
at least one of the AIDS symptoms specified
in Reference 15 and/or when his/her CD4(+)

T-cell counts fall below 200/mm3. Then, in
this population, one is dealing with a high-
dimensional stochastic process involving the
numbers of S people, I people and AIDS cases.

To develop realistic stochastic models for
this process, it is necessary to incorporate
many important risk variables and social
and behavior factors into the model, and
to account for the dynamics of the epidemic
process. Important risk variables that have
significant impacts on the HIV epidemic are
age, race, sex, and sexual (or IV drug use)

activity levels defined by the average num-
ber of sexual (or IV drug use) partners per
unit time; the important social and behav-
ior factors are the IV drug use, the mixing
patterns between partners, and the condom
use that may reduce the probability of trans-
mission of the HIV viruses. To account for
these important risk variables and for IV
drug use, the population is further stratified
into subpopulations.

Given that the population has been strat-
ified into sub populations by many risk fac-
tors, the stochastic modeling procedures of
the HIV epidemic essentially boils down to
two steps. The first step involves modeling
the transmission of HIV from HIV carriers to
susceptible people. This step would trans-
form S people to I people (S −→ I). This
step is the dynamic part of the HIV epi-
demic process and is influenced significantly
by age, race, social behavior, sexual level, and
many other factors. This step is referred to
as the transmission step. The next step is the
modeling of HIV progression until the devel-
opment of clinical AIDS and death in people
who have already contracted HIV. This step
is basically the step transforming I people
into A people (I −→ A) and is influenced
significantly by the genetic makeup of the
individual and by the person’s infection dura-
tion that is defined by the time period elapsed
since he/she first contracts the HIV. This
step is referred to as the HIV progression
step. By using these two steps, the numbers
of S people, I people, and AIDS cases are
generated stochastically at any time given
the numbers at the previous time. These
models have been referred by Tan and his
associates [48–49,54,57,61,63,66–68,73–76]
as chain multinomial models since the prin-
ciple of random sampling dictates that aside
from the distributions of recruitment and
immigration, the conditional probability dis-
tributions of the numbers of S people, I
people, and AIDS cases at any time, given the
numbers at the previous time, are related to
multinomial distributions.

THE TRANSMISSION STEP: THE PROBABILITY
OF HIV TRANSMISSION

The major task in this step is to construct
the probabilities of HIV transmission from
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infective people or AIDS cases to S people
by taking into account the dynamic aspects
of the HIV epidemic. These probabilities are
functions of the mixing pattern that describes
how people from different risk groups mix
together and the probabilities of transmis-
sion of HIV from HIV carriers to susceptible
people given contacts between these people.
Let Si(t) and Ii(u, t)(u = 0, . . . , t) denote the
numbers of S people and I people with infec-
tion duration u at time t in the ith risk
group respectively. Let the time unit be a
month and denoted by pi(t;S), the condi-
tional probability that an S person in the
ith risk group contracts HIV during the tth
month given {S(t), I(u, t), u = 0, 1, . . . , t}. Let
ρij(t) denote the probability that a person in
the ith risk group selects a person in the jth
risk group as a partner at the tth month and
αij(u, t) the probability of HIV transmission
from an infective person with infection dura-
tion u in the jth risk group to the susceptible
person in the ith risk group given contacts
between them during the tth month. Assume
that because of the awareness of AIDS, there
are no contacts between S people and AIDS
cases and that there are n risk groups or
subpopulations. Then pi(t;S) is given by:

pi(t;S) = 1− {1− ψi(t)}Xi(t) (1)

where Xi(t) is the number of partners of the
S person in the ith risk group during the tth
month and ψi(t) =

∑n
j=1 ρij(t){Ij(t)/Tj(t)}αij(t)

with Tj(t) = Sj(t)+
∑t

u=0 Ij(u, t) and αij(t) =
1

Ij(t)

∑t
u=0 Ij(u, t)αij(u, t) with Ij(t) =

∑t
u=0 Ij

(u, t).
If the αij(u, t) are small, then {1− ψi(t)}Xi(t)

∼= {1− Xi(t)ψi(t)} so that

pi(t;S) ∼= Xi(t)ψi(t)

= Xi(t)
n∑

j=1

ρi,j(t)
Ij(t)
Tj(t)

αij(t). (2)

Notice that in Equations 1 and 2, the
pi(t;S) are functions of {Si(t), Ii(u, t), u = 0, 1,
. . . , t} and hence in general are random vari-
ables. However, some computer simulation
studies by Tan and Byer [57] have indicated
that if the Si(t) are very large, one may
practically assume pi(t;S) as deterministic
functions of time t and the HIV dynamic.

THE PROGRESSION STEP: THE
PROGRESSION OF HIV IN HIV-INFECTED
INDIVIDUALS

The progression of HIV inside the human
body involves interactions between CD4(+)T
cells, CD8(+)T cells, free HIV, HIV antibodies,
and other elements in the immune system,
which will eventually lead to the develop-
ment of AIDS symptoms as time increases.
It is influenced significantly by the dynamics
of the interactions between different types
of cells and HIV in the immune system,
treatment by antiviral drugs, and other risk
factors that affect the speed of HIV progres-
sion. Thus, it is expected that the progression
of I to A depends not only on the calendar
time t but also on the infection duration u of
the I people as well as the genetic makeup of
the I people. This implies that the transition
rate of I −→ A at time t for I people with
infection duration u is in general a function
of both u and t; this rate will be denoted by
γ (u, t). Let Tinc denote the time from HIV
infection to the onset of AIDS. Given γ (u, t),
the probability distribution of Tinc can read-
ily be derived [55, chapter. 4]. In the AIDS
literature, Tinc has been referred to as the
HIV incubation period and the probability
distribution of Tinc the HIV incubation distri-
bution. These distributions have been derived
by Bachetti [4], Longini et al. [33], and by
Tan and his associates [50–53,57,61,64–65]
under various conditions. These probabil-
ity distributions together with many other
distributions, which have been used in the
literature have been tabulated and summa-
rized in Reference 55, chapter 4.

STOCHASTIC MODELING OF HIV
TRANSMISSION BY STATISTICAL APPROACH

To develop stochastic models of HIV trans-
mission, it is necessary to take into account
the dynamic of the HIV epidemic to con-
struct the probabilities pS(i, t) = βi(t)�t of
HIV transmission. To avoid the dynamic
aspect, statisticians assume pi(t;S) as deter-
ministic functions of i and t and proceed to
estimate these probabilities. This is a non-
parametric procedure, which has ignored all
information about the dynamics of the HIV
epidemic; on the other hand, it has minimized
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the misclassification or misspecification of
the dynamic of the HIV epidemic. In the
literature, these probabilities are referred to
as the infection incidence.

To illustrate the statistical approach, let
TI denote the time to infection of S people and
fi(t) the probability density of TI in the ith
risk group. Then, fi(t) = βi(t)exp{−∫ t

0 βi(x)dx}.
The fi(t) have been referred by statisticians
as the HIV infection distributions.

To model the HIV progression, let TA
denote the time to AIDS of S people and
hi(t) the probability density of TA in the ith
risk group. Then TA = TI + Tinc, where Tinc
is the HIV incubation period. If TI and Tinc
are independently distributed of each other,
then

hi(t) =
∫ t

0
fi(x)gi(x, t)dx, (3)

where gi(s, t) is the density of the HIV incuba-
tion distribution given HIV infection at time
s in the ith risk group. Notice that since
the transition rates of the infective stages
are usually independent of the risk group,
gi(s, t) = g(s, t) are independent of i. In what
follows, it is thus assumed that gi(s, t) = g(s, t)
unless otherwise stated.

Let ωi denote the proportion of the ith
risk group in the population. For an individ-
ual taken randomly from the population, the
density of TA is given by:

h(t) =
n∑

i=1

wihi(t) =
∫ t

0

{
n∑

i=1

wifi(x)gi(x, t)

}
dx

=
∫ t

0
f (x)g(x, t)dx, (4)

where
∑n

i=1 ωifi(t) = f (t) is the density of the
HIV infection distribution for people taken
randomly from the population.

Equation 4 is the basic equation for the
backcalculation method. By using this equa-
tion and by interchanging the order of sum-
mation and integration, it can easily be shown
that the probability that a S person at time
0 taken randomly from the population will
become an AIDS case for the first time during

(tj−1, tj] is

P(tj−1, tj) =
∫ tj

tj−1

∫ t

0
f (u)g(u, t) dudt

=
{∫ tj

0
−

∫ tj−1

0

}∫ t

0
f (u)g(u, t) dudt

=
∫ tj

0
f (u)

{
G(u, tj)−G(u, tj−1)

}
, du,

(5)

where G(u, t) = ∫ t
u g(u, x) dx is the cumulative

distribution function (cdf) of the HIV incuba-
tion period, given HIV infection at time u.

Equation 5 is the basic formula by means
of which statisticians tried to estimate the
HIV infection or the HIV incubation based
on AIDS incidence data [8,55]. This has been
illustrated in detail in Reference 8 and in Ref-
erence 55. There are two major difficulties in
this approach, however. One difficulty is that
the problem is not identifiable in the sense
that one cannot estimate simultaneously the
HIV infection distribution and the HIV incu-
bation distribution. Thus, one has to assume
the HIV incubation distribution as known if
one wants to estimate the HIV infection dis-
tribution; similarly, one has to assume the
HIV infection distribution as known if one
wants to estimate the HIV incubation dis-
tribution. Another difficulty is that one has
to assume that there are no immigration, no
competing death, and no other disturbing fac-
tors for Equation 5 to hold; see Reference 55,
chapter 5. These difficulties can readily be
resolved by introducing state space models;
see References 55, 56, 73, and 74.

STOCHASTIC TRANSMISSION MODELS OF
HIV EPIDEMIC IN HOMOSEXUAL
POPULATIONS

In the United States, Canada, Australia,
New Zealand, and Western European coun-
tries, AIDS cases have been found predom-
inantly amongst the homosexual, bisexual,
and intravenous drug-user community with
only a small percentage of cases being due
to heterosexual contact. Thus, most of the
stochastic models for HIV spread were first
developed in homosexual populations [5–7,
40–41,47,49,57,59–60,62,66–68,73–74].
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To illustrate how to develop stochastic
models for the HIV epidemic, consider a large
homosexual population at risk for AIDS that
has been stratified into n risk groups of differ-
ent sexual activity levels. Denote by Ai(t) the
number of new AIDS cases developed during
the tth month in the ith risk group and let the
time unit be a month. Then, one is entertain-
ing a high-dimensional discrete-time stochas-
tic process U∼

(t) = {Si(t), Ii(u, t), u = 0, . . . ,

t, Ai(t), i = 1, . . . , n}. To derive basic results
for this process, a convenient approach is
by way of stochastic equations. This is the
approach proposed by Tan and his associates
in modeling the HIV epidemic [49,54–57,63–
64,66–68,73–76].

THE STOCHASTIC DIFFERENCE EQUATIONS
AND THE CHAIN MULTINOMIAL MODEL

To develop the stochastic model for the above
process, let {�i(S, t),µi(S, t)} and {�i(u, t),
µi(u, t)} denote the recruitment and immigra-
tion rate, and the death and migration rate of
S people and I(u) people at the tth month in
the ith risk group respectively. Then, given
the probability pi(t;S) that the S person in
the ith risk group would contract HIV dur-
ing the tth month, one may readily obtain
U∼

(t+ 1) from U∼
(t) by using multinomial dis-

tributions, for t = 0, 1, . . .,. This procedure
provides stochastic difference equations for
the numbers of S people, I(u) people, and the
number of new A people at time t. These mod-
els have been referred to by Tan [48,49,54,55]
and by Tan and his coworkers [57,61,63,64,
66–68,73,74] as chain multinomial models.

To illustrate, let Ri(S, t), Fi(S, t), and
Di(S, t) denote respectively the number of
recruitment and immigrants of S people, the
number of S→ I(0) and the total number of
death of S people during the tth month in the
ith risk group. Similarly, for u = 0, 1, . . . , t,
let Ri(u, t), Fi(u, t) and Di(u, t) denote respec-
tively the number of recruitment and immi-
grants of I(u) people, the number of I(u)→ A
and the total number of death of I(u) people
during the tth month in the ith risk group.
Then, the conditional probability distribution
of {Fi(S, t), Di(S, t)} given Si(t) is multino-
mial with parameters {Si(t), pi(t;S),µi(S, t)}
for all i = 1, . . . , n; similarly, the conditional

probability distribution of {Fi(u, t), Di(u, t)}
given Ii(u, t) is multinomial with parame-
ters {Ii(u, t), γi(u, t),µi(u, t)}, independently of
{Fi(S, t), Di(S, t)} for all {i = 1, . . . , n, u = 0, 1,
. . . , t}. Assume that E{Ri(S, t)|S(t)} = Si(t)�i
(S, t) and E{Ri(u, t)|Ii(u, t)} = Ii(u, t)�i(u, t).
Then, one has the following stochastic differ-
ence equations for {Si(t), Ii(u, t), i = 1, . . . , n}:

Si(t+ 1) = Si(t)+Ri(S, t)

−Fi(S, t)−Di(S, t)

= Si(t){1+�i(S; t)− pi(t;S)

−µi(S, t)} + εi(S, t+ 1), (6)

Ii(0, t+ 1) = Fi(S, t) = Si(t)pi(t;S)

+εi(0, t+ 1), (7)

Ii(u+ 1, t+ 1) = Ii(u, t)+Ri(u, t)

−Fi(u, t)−Di(u, t)

= Ii(u, t){1+�i(u, t)

−γi(u, t)− µi(S, t)}
+εi(u+ 1, t+ 1), (8)

Ai(t+ 1) =
t∑

u=0

Fi(u, t)

=
t∑

u=0

Ii(u, t)γi(u, t)+ εi(A, t).

(9)

In Equations 6 to 9, the random
noises {εi(S, t), εi(u, t), u = 0, 1, . . . , t, εi(A, t)}
are derived by subtracting the conditional
mean numbers from the corresponding ran-
dom variables. It can easily be shown that
these random noises have expected values 0
and are uncorrelated with the state variables.

Using the above stochastic equations, one
can readily study the stochastic behaviors of
the HIV epidemic in homosexual populations
and assess effects of various risk factors on
the HIV epidemic and on some intervention
procedures. Such attempts have been made
by Tan and Hsu [59,60], Tan [48,54], and Tan,
Tang and Lee [63] by using some simplified
models. For example, Tan and Hsu [59–60]
have shown that the effects of intervention
by decreasing sexual contact rates depend
heavily on the initial number of infected peo-
ple; when the initial number is small, say 10,
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then the effect is quite significant. On the
other hand, when the initial number is large,
say 10000, then the effect of decreasing sex-
ual contact rates is very small. The Monte
Carlo studies by Tan and Hsu [59,60] have
also revealed some effects of ‘‘regression on
the mean’’ in the sense that the variances
are linear functions of the expected num-
bers. Thus, although the variances are much
larger than their respective mean numbers,
effects of risk factors on the variance curves
are quite similar to those of these risk factors
on the mean numbers.

By using the above equations, one may
also assess the usefulness of deterministic
models in which Si(t), Ii(r, t), r = 1, · · · , k, Ai(t)
are assumed as deterministic functions of
i and t, ignoring completely randomness of
the HIV epidemic process. The system of
equations defining the deterministic models
is derived by ignoring the random noises from
Equations 6 to 9. Thus, one may assume
that the deterministic models are special
cases of the stochastic models. However, the
above equations for Si(t) and Ii(0, t) are not
the same as the equations for the mean
numbers of Si(t) and Ii(0, t) respectively. This
follows from the observation that since the
pS(i, t) are functions of Si(t) and Ii(u, t), u = 1,
. . . , k, E[Si(t)pS(i, t)] �= E[Si(t)]× E[pS(i, t)].
As shown in Reference 55, the equations
for the mean numbers of Si(t) and Ii(0, t)
differ from the corresponding ones of the
deterministic model in that the equations for
the means of Si(t) and Ii(0, t) contain addi-
tional terms involving covariances Cov{Si(t),
pS(i, t)} between Si(t) and pS(i, t). Thus, un-
less these covariances are negligible, results
of the deterministic models of the HIV epi-
demic would in general be very different
from the corresponding mean numbers of the
stochastic models of the HIV epidemic. As
shown by Isham [23], Mode et al. [40,41], Tan
[48,54], Tan and Tang [62], and Tan, Tang
and Lee [63], the difference between results
of deterministic models and the mean num-
bers of the stochastic models could be very
substantial. The general picture appears to
be that the stochastic variation would in gen-
eral speed up the HIV epidemic. Further, the
numbers of I people and A people computed
by the deterministic model would underesti-
mate the true numbers in the short run but

overestimate the true numbers in the long
run. These results imply that, in some cases,
results of the deterministic model may lead
to misleading and confusing results.

THE PROBABILITY DISTRIBUTION OF THE
STATE VARIABLES

Let X = {X(0), . . . , X(tM)} with X(t) =
{Si(t), Ii(u, t), u = 0, 1, . . . , t, i = 1, . . . , n}. To
estimate the unknown parameters and to
assess stochastic behaviors of the HIV epi-
demic, it is of considerable interest to
derive the probability density P(X|�) of
X. By using multinomial distributions for
{Ri(S, t), Fi(S, T)} and for {Ri(u, t), Fi(u, T)} as
above, this probability density can readily
be derived. Indeed, denoting by gi, s{j; t|X(t)}
and gi,u{j; t|X(t)} the conditional densities of
Ri(S, t) given X(t) and of Ri(u, t) given BX(t)
respectively, one has

P(X|�) = P{X(0)|�}
tM∏
t=1

P{X(t)|X(t− 1)}

= P{X(0)|�}
tM∏
t=1

n∏
i=1

P{Si(t)|X(t− 1)}

×
{

t∏
u=0

P[Ii(u, t)|X(t− 1)]

}
. (10)

In Equation 10, the P{Si(t+ 1)|X(t)} and
the P{Ii(u+ 1, t+ 1)|X(t)} are given respec-
tively by

P{Si(t+ 1)|X(t)}

=
(

Si(t)
Ii(0, t+ 1)

)
[pi(S, t)]Ii(0,t+1)hi(t|S),

(11)

P{Ii(u+ 1, t+ 1)|X(t)}

=
Ii(u,t)∑
r=0

(
Ii(u, t)

r

)
[γi(u, t)]rhi,r(u, t|I)

for u = 0, 1, . . . , t, (12)

where the hi(t|S) and the hi,r(u, t|I) are given
respectively by:
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hi(t|S) =
Si(t+1)−Si(t)+Ii(0,t+1)∑

j=0

gi,S{j, t|X(t)}

×
(

Si(t)− Ii(0, t+ 1)
ai,S(j, t)

)
[di(S, t)]ai,S(j,t)

×{1− pi(S, t)− di(S, t)}bi,S(j,t),

with ai,S(j, t) = Si(t)− Si(t+ 1)− Ii(0, t+ 1)
+ j and bi,S(j, t) = Si(t+ 1)− j, and

hi,r(u, t|I) =
Ii(u+1,t+1)−Ii(u,t)+r∑

j=0

gi,u[j, t|X(t)]

×
(

Ii(u, t)− r
ai,u(r, j, t)

)
[di(u, t)]ai,u(r,j,t)

×{1− γi(u, t)− di(u, t)}bi,u(r,j,t),

with ai,u(r, j, t) = Ii(u, t)− Ii(u+ 1, t+ 1)− r
+ j and bi,u(r, j, t) = Ii(u+ 1, t+ 1)+ r− 2j.

In the above equations, notice that aside
from the immigration and recruitment, the
distribution of X is basically a product of
multinomial distributions. Hence, the above
model has been referred to as a chain multi-
nomial model; see References 48, 49, 54, 57,
61, 63, 64, 66–68, 73, and 74. Tan and Ye [74]
have used the above distribution to estimate
both the unknown parameters and the state
variables via state space models.

THE STAGED MODEL OF HIV EPIDEMIC IN
HOMOSEXUAL POPULATIONS

In the above model, the number of state vari-
ables Ii(u, t) and hence the dimension of the
state space increases as time increases; that
is, if the infection duration is taken into
account, then the size of the dimension of
the state space increases as time increases.
To simplify matters, an alternative approach
is to partition the infective stage into a finite
number of substages with stochastic tran-
sition between the substages and assume
that within the substage, the effects of dura-
tion is the same. This is the approach pro-
posed by Longini and his associates [33–37].
In the literature, such staging is usually
achieved by using the number of CD4(+)

T-cell counts per mm3 blood. The staging
system used by Satten and Longini [43,44] is
I1, CD4 counts � 900/mm3; I2, 900/mm3 >

CD4 counts � 700/mm3; I3, 700/mm3 > CD4
counts � 500/mm3; I4, 500/mm3 > CD4
counts � 350/mm3; I5, 350/mm3 > CD4
counts � 200/mm3; I6, 200/mm3 > CD4
counts. (Because of the 1993 AIDS defini-
tion by CDC [15], the I6 stage is merged with
the AIDS stage (A stage).)

The staging of the infective people results
in a staged model for the HIV epidemic. Com-
paring these staged models with the previous
model, the following differences are observed:
(i) Because of the infection duration, the non-
staged model is in general not Markov. On
the other hand, if one assumes that the tran-
sition rates of the substages are independent
of the time at which the substage were gener-
ated, the staged models are Markov. (ii) For
the nonstaged model, the number of different
type of infectives always increase nonstochas-
tically as time increases. These are referred
to as expanding models by Liu and Chen [32].
On the other hand, the number of substages
of the infective stage in the staged model
is a fixed number independent of time. (iii)
For the nonstaged model, the infective people
increase its infection duration nonstochasti-
cally, always increasing by one-time unit with
each increase of one-time unit. However, they
transit directly to AIDS stochastically. On the
other hand, for the staged model, the transi-
tion from one substage to another substage is
stochastic and can either be forward or back-
ward, or transit directly to AIDS. Because of
the random transition between the infective
substages, one would expect that the staging
has introduced more randomness into the
model than the nonstaged model.

Assuming Markov, then one may use
some standard results in Markov chain the-
ory to study the HIV epidemic in staged
models. This has been done by Longini
and his associates [33–37]. Alternatively,
by using exactly the same procedures as
in the previous model, one may derive
the stochastic equation for the state vari-
ables as well as the probability distribu-
tions of the state variables. By using these
equations and the probability distributions,
one can then study the stochastic behaviors
and to assess effects of risk variables and
the impact of some intervention procedures.
This has been done by Tan and his asso-
ciates [48–49,54–55,57,63–64,66–68]. By
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using the San Francisco homosexual popu-
lation as an example, they have shown that
the staged model gave similar results as the
previous model and hence the same conclu-
sions. These results indicates that the errors
of approximation and the additional varia-
tions due to stochastic transition between the
substages imposed by the staging system are
in general quite small for the HIV epidemic in
homosexual populations. On the other hand,
because of the existence of a long asymp-
tomatic infective period with low infectivity,
it is expected that the staged model would
provide a closer approximation to the real
world situations then the nonstaged model.

Another problem in the staged model is
the impacts of measurement error as the
CD4 T-cell counts are subject to consider-
able measurement error. To take this into
account, Satten and Longini [44] have pro-
posed a hidden Markov model by assuming
the measurement errors as Gaussian vari-
ables. The calculations done by them did not
reveal a significant impact of these errors
on the HIV epidemic, however, indicating
that the effects of measurement errors on the
HIV epidemic of the staged model is not very
significant.

STOCHASTIC MODELS OF HIV
TRANSMISSION IN COMPLEX SITUATIONS

In Africa, Asia, and many south American
countries, although homosexual contact and
IV drug use may also be important avenues,
most of the HIV epidemic are developed
through heterosexual contacts and prosti-
tutes [38]. The dynamics of HIV epidemic
in these countries are therefore very differ-
ent from those in the United States, Canada,
and the western countries, where the major
avenues of HIV transmission are homosex-
ual contact and sharing needles and IV drug
use. It has been documented that even in
homosexual populations, race, age, and risk
behaviors as well as many other risk vari-
ables would significantly affect the HIV epi-
demic [66–67,75–76]. To account for effects
of many risk factors such as sex, race, and
age, the above simple stochastic model has
been extended into models under complex
situations [19,39,46,53,66–67,75–76].

To develop stochastic models of HIV trans-
mission in complex situations, the basic pro-
cedures are again the same two steps as
described above: (i) Stratifying the popula-
tion into subpopulations by sex, race, and risk
factors, derive the probabilities of HIV trans-
mission from infective people to susceptible
people in each subpopulation. These proba-
bilities usually involve interactions between
people from different risk groups and the
structure of the epidemic. (ii) Develop steps
for HIV progression within each subpopula-
tion. It appears that because the dynamics
of HIV epidemic are different under differ-
ent situations, the first step to derive the
probabilities of HIV transmission varies from
population to population depending on differ-
ent situations. Given that the probabilities
of HIV transmission from infective people
to susceptible people have been derived for
each subpopulation, the second step is simi-
lar to the progression step of the procedures
described above. That is, the only major dif-
ference between different models lies in the
derivation of the probabilities pi(t;S) for the
ith subpopulation. Assuming that there are
no sexual contacts with AIDS cases, the gen-
eral form of pi(t;S) is

pi(t;S) = Xi(t)
∑

j

ρij(t)
Ij(t)
Tj(t)

αij(t) (13)

Notice that Equation 13 is exactly of the
same form as Equation 2; yet, because of
the different dynamics in different models,
the ρij(t)’s are very different between dif-
ferent models. In populations of IV drug
users, HIV spread mainly through sharing
IV needles in small parallel groups. In these
populations, therefore, ρij(t) is derived by first
forming small groups and then spread HIV
by sharing needles between members within
the group. This is the basic formulation by
means of which Capasso et al. [9], Gani and
Yakowitz [19], Kaplan [28], and Kaplan et al.
[30] derived the probabilities of HIV infec-
tion of S people by infective people. Along
this line, Tan [55, Chap. 4] has formulated a
general procedure to derive this probability.

In populations stratified by race, sex, age,
sexual activity levels, and risk behaviors and
involving married couples, to derive ρij(t) one
needs to take into account some realistic
preference patterns. These realities include
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(i) People tend to mix more often with people
of the same race, same age group, and same
sexual activity level; (ii) people with high
sexual activity levels and/or old age tend to
select sexual partners indiscriminately; (iii)
if the age difference between the two part-
ners is less than five years, then age is
not an important factor in selecting sexual
partners, and (vi) race and sexual activity
level may interact with each other to affect
the selection of sexual partners; (v) a happy
marriage would reduce external marital rela-
tionship. Taking many of these factors into
account and assuming that members of small
populations select members from larger pop-
ulations, Tan and Xiang [66,67] and Tan and
Zhu [75,76] have proposed a selective mixing
pattern through the construction of accep-
tance probabilities. Intuitively, this mixing
can be expressed as a product of two proba-
bility measures: The first is the probability of
selecting members from subpopulations with
larger effective population size via acceptance
probabilities; the second is the conditional
probability of selecting members of infective
people with different infection duration from
the selected population.

By using the selective mixing pattern, Tan
and Xiang [66,67] have developed stochastic
models for the HIV epidemic in homosexual
populations taking into account race, age,
and sexual activity levels. Their results indi-
cate that race and age affect the HIV epidemic
mainly through the numbers of different sex-
ual partners per partner per month and
their interactions with the mixing pattern.
Increasing the transition rates of infective
people by race and/or by age seems to have
some impact on the HIV progression but the
effects are much smaller than those from the
average numbers of different sexual partners
per partner per month and the mixing pat-
terns. Thus, the observed result that there
is a much larger proportion of AIDS cases
from black people than from white people
in the US population ([16]) is a consequence
of the following observations: (i) Black peo-
ple in general have larger number of sexual
partners per unit time than white people. (ii)
There is a large proportion of restricted mix-
ing pattern and mixing patterns other than

proportional mixing while under these mix-
ing patterns, black people appear to contract
HIV much faster than white people.

By using selective mixing pattern, Tan
and Zhu [75,76] have developed stochastic
models involving single males, single females,
married couples, and prostitutes. Their re-
sults indicate that the prostitute factor may
be the main reason for the rapid growth
of the HIV epidemic in some Asian coun-
tries such as Thailand and India, which have
a large prostitute population. Their Monte
Carlo studies also suggest that rapid growth
of the HIV epidemic in some Asian countries
may be arrested or controlled by promoting
extensive use of condoms by prostitutes com-
bined with a campaign of AIDS awareness in
the younger and sexually active populations.

STATE SPACE MODELS OF THE HIV EPIDEMIC

State space models of stochastic systems are
stochastic models consisting of two submod-
els: The stochastic system model, which is the
stochastic model of the system, and the obser-
vation model, which is a statistical model
based on available observed data from the
system. That is, the state space model adds
one more dimension to the stochastic model
and to the statistical model by combining
both of these models into one model. This is
a convenient and efficient approach to com-
bine information from both stochastic models
and statistical models. It takes into account
the basic mechanisms of the system and the
random variation of the system through its
stochastic system model and incorporate all
these into the observed data from the system;
and it validates and upgrades the stochas-
tic model through its observation model and
the observed data of the system and the
estimates of the state variables. It is advan-
tageous over both the stochastic model and
the statistical model when used alone since it
combines information and advantages from
both of these models. Specifically, one notes
that (i) Because of additional information,
many of the identifiability problems in statis-
tical analysis are nonexistent in state space
models; see References 73 and 74 for some
examples. (ii) It provides an optimal proce-
dure to update the model by new data that
may become available in the future. This is
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the smoothing step of the state space models;
see References 2, 12, and 20. (iii) It provides
an optimal procedure via Gibbs sampling to
estimate simultaneously the unknown para-
meters and the state variables of interest; see
References 55, chapter 6; 56, chapter 9; 73;
and 74. (iv) It provides a general procedure
to link molecular events to critical events
in population and at the cellular level; see
Reference 58.

The state space model (Kalman-filter
model) was originally proposed by Kalman
and his associates in the early 60s for
engineering control and communication [27].
Since then it has been successfully used as
a powerful tool in aerospace research, satel-
lite research, and military missile research.
It has also been used by economists in econo-
metrics research [21] and by mathematician
and statisticians in time series research
[3] for solving many difficult problems that
appear to be extremely difficult from other
approaches. In 1995, Wu and Tan [78,79] had
attempted to apply the state space model and
method to AIDS research. Since then many
papers have been published to develop state
space models for the HIV epidemic and the
HIV pathogenesis; see References 13, 68–73,
77, and 78. Alternatively, by combining the
Markov staged model with Gaussian mea-
surement errors for the CD4 T-cell counts,
Satten and Longini [44] have proposed a
Hidden Markov model for the HIV epidemic;
however, it is shown by Tan [56] that this is
a special case of the state space models.

Although Tan and Ye [74] have applied
the state space model for the HIV epidemic
in the Swiss population of IV drug users, to
date, the state space models for HIV epidemic
are primarily developed in homosexual pop-
ulations. To illustrate how to develop state
space models for the HIV epidemic, we will
thus use the San Francisco homosexual pop-
ulation as an example, although the general
results apply to other populations as well.

A STATE SPACE MODEL FOR THE HIV
EPIDEMIC IN THE SAN FRANCISCO
HOMOSEXUAL POPULATION

Consider the San Francisco homosexual pop-
ulation, in which HIV spread primarily by
sexual contact [16]. For this population, Tan

and Ye [73] have developed a state space
model for the HIV epidemic. For this state
space model, the stochastic system model was
represented by stochastic difference equa-
tions. The observation model of this state
space model is based on the monthly AIDS
incidence data (i.e., data of new AIDS cases
developed during a month period). This data
is available from the gofer network of CDC.
This is a statistics model used by statistician
through the backcalculation method. Com-
bining these two models into a state space
model, Tan and Ye [73] have developed a
general Bayesian procedure to estimate the
HIV infection, the HIV incubation, as well as
the numbers of susceptible people, infective
people, and AIDS cases. Notice that this is
not possible by using the stochastic model
alone or by using the statistic model alone
because of the identifiability problem.

THE STOCHASTIC SYSTEM MODEL

To develop a stochastic model for the San
Francisco population, Tan and Ye [74] have
made two simplifying assumptions: (i) By
visualizing the infection incidence and hence
the infection distribution as a mixture of
several sexual levels, one sexual activity
level may be assumed. (ii) Because the
population size of the city of San Francisco
changes very little, for the S people and I
people it is assumed that the number of
immigration and recruitment is about the
same as the number of death and migration.
Tan and Ye [74] have shown that these
assumptions have little impacts on the
probability distributions of the HIV infection
and the HIV incubation. On the basis of
these assumptions, then the state variables
are U∼

(t) = {S(t), I(u, t), u = 0, 1, . . . , t, A(t)}.
Assuming that the probability pS(t) of
HIV infection of S people and the prob-
ability γ (s, t) = γ (t− s) of I(u)→ AIDS
as deterministic functions of time, then
the parameters are θ∼

(t) = {pS(t), γ (u, t) =
γ (t− u), u = 0, 1, . . . , t}′. The densities of
the HIV infection and the HIV incu-
bation are given by fI(t) = pS(t)�t−1

i=0[1−
pS(i)] = GS(t− 1)pS(t), t = 1, . . . ,∞ and
g(t) = γ (t)�t−1

j=0[1− γ (j)] = GI(t− 1)γ (t), t =
1, . . . ,∞ respectively.
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Let FS(t) be the number of S people who
contract HIV during the t-th month and
FI(u, t) the number of I(u, t)→ A during the
tth month. Then,

S(t+ 1) = S(t)− FS(t), (14)

I(0, t+ 1) = FS(t), (15)

I(u+ 1, t+ 1) = I(u, t)− FI(u, t), (16)

u = 0, . . . , t,

where FS(t)|S(t) ∼ B{S(t), pS(t)} and FI(u, t)|
I(ut) ∼ B{I(u, t), γ (u)}, u = 0, 1, . . . , t.

Put � = {θ∼(t), t = 1, . . . , tM}, X∼
(t) = {S(t),

I(u, t), u = 0, 1, . . . t} and X = {X∼ (1), . . . ,

X∼
(tM)}, where tM is the last time point. Then,

the probability distribution of X given � and
given X∼

(0) is

P{X|X∼ (0)} =
tM−1∏
j=0

P{X∼ (j+ 1)|X∼ (j),�}

where

Pr{X∼ (j+ 1)|X∼ (j),�}

=
(

S(t)
I(0, t+ 1)

)
[pS(t)]I(0,t+1)

×[1− pS(t)]S(t)−I(0,t+1)

×
t∏

u=0

(
I(u, t)

I(u, t)− I(u+ 1, t+ 1)

)
×[γ (u)]I(u,t)−I(u+1,t+1)

×[1− γ (u)]I(u+1,t+1). (17)

Notice that the above density is a product
of binomial densities and hence has been
referred to as the chain binomial distribution.

For the HIV epidemic in the San Francisco
homosexual population, Tan and Ye [73] have
assumed January 1, 1970, as t = 0 since the
first AIDS case in San Francisco appeared in
1981 and since the average incubation period
for HIV is about 10 years. It is also assumed
that, in 1970, there are no infective people
but to start the HIV epidemic, some HIV
were introduced into the population in 1970.
Thus, one may take I(0, 0) = 36 because this
is the number of AIDS in San Francisco in
1981. Tan and Ye [73] have assumed the size

of the San Francisco homosexual population
in 1970 as 50000 because with a 1% increase
in population size per year by the US census
survey [77], the estimate of the size of the San
Francisco homosexual population is 58,048 =
50,000× (1.01)15 in 1985, which is very close
to the estimate 58,500 of the size of the San
Francisco homosexual population in 1985 by
Lemp et al. [31].

THE OBSERVATION MODEL.

Let y(j+ 1) be the observed AIDS incidence
during the jth month and A(t+ 1) the number
of new AIDS cases developed during the tth
month. Then the stochastic equation for the
observation model is

y(j+ 1) = A(j+ 1)+ ξ (j+ 1)

=
j∑

u=0

FI(u, j)+ ξ (j+ 1)

=
j∑

u=0

[I(u, t)− I(u+ 1, t+ 1)]

+ξ (t+ 1)

=
j∑

u=0

I(u, j)γ (u)+ εA(j+ 1)+ ξ (j+ 1)

=
j∑

u=0

I(u, j)γ (u)+ e(j+ 1), (18)

where ξ (t+ 1) is the random measurement
error associated with observing y(j+ 1) and
εA(j+ 1) = [Fs(t)− S(t)ps(t)]+

∑j
u=1[FI(u, t)

− I(u, t)γ (u)].
Put Y = {y(j), j = 1, . . . , tM}. Assuming that

the ξ (j) are independently distributed as nor-
mal with means 0 and variance σ 2

j , then
the likelihood function P{Y|X,�} = L(�|Y, X)
given the state variables is

P{Y|X,�}

∝
tM∏
j=1

(
σ−1

j exp

{
− 1

2σ 2
j

[y(j)− A(j)]2

})
.

(19)
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Notice that under the assumption that
{ps(t), γ (t)} are deterministic functions of t,

E[S(t+ 1)] = E[S(t)][1− ps(t)]

= E[S(t− 1)]
t∏

i=t−1

{1− ps(i)}

= E[S(0)]
t∏

i=0

{1− ps(i)}

= E[S(0)]Gs(t), (20)

E[Fs(t)] = E[S(t)]ps(t)

= E[S(0)]Gs(t− 1)ps(t)

= E[S(0)]fI(t), (21)

E[I(u+ 1, t+ 1)] = E[I(u, t)][1− γ (u)]

= E[I(0, t− u)]
u∏

j=0

[1− γ (j)]

= E[I(0, t− u)]GI(u)

= E[S(0)]fI(t− u)GI(u). (22)

Hence,

E[I(u, t)− I(u+ 1, t+ 1)]

= E[S(0)]fI(t− u){GI(u− 1)−GI(u)}
= E[S(0)]fI(t− u)GI(u− 1)γ (u)

= E[S(0)]fI(t− u)g(u). (23)

It follows that

t∑
u=0

E[I(u, t)− I(u+ 1, t+ 1)]

= E[S(0)]
t∑

u=0

fI(t− u)g(u)

= E[S(0)]
t∑

u=0

fI(u)g(t− u), (24)

so that

y(j+ 1) = E[S(0)]
t∑

u=0

fI(u)g(t− u)+ e(j+ 1).

(25)

Notice that Equation 25 is the convolution
formula used in the backcalculation method
[4,55]. This implies that the backcalculation
method is the observation model in the state

space model. The backcalculation method is
not identifiable because using Equation 25
alone and ignoring information from the sto-
chastic system model, the information is not
sufficient for estimating all the parameters.

A GENERAL BAYESIAN PROCEDURE FOR
ESTIMATING THE UNKNOWN PARAMETERS
AND THE STATE VARIABLES

By using the state space model, Tan and
Ye [73,74] have developed a generalized
Bayesian approach to estimate the unknown
parameters and the state variables. This
approach will combine information from
three sources: (i) Previous information and
experiences about the parameters in terms of
the prior distribution of the parameters, (ii)
biological information via the stochastic sys-
tem equations of the stochastic system, and
(iii) information from observed data via the
statistical model from the system.

To illustrate the basic principle of this
method, let P(�) be the prior distribution of
�. Then, the joint distribution of {�, X, Y} is
given by P(�, X, Y) = P(�)P(X|�)P(Y|X,�).
From this, the conditional distribution P(X|�,
Y) of X given (�, Y) and the conditional pos-
terior distribution P(�|X, Y) of � given (X,
Y) are given respectively by

(A): P(X|�, Y) ∝ P(X|�)P(Y|X,�)
(B): P(�|X, Y) ∝ P(�)P(X|�)P(Y|X,�)

Given these probability densities, one may
use the multilevel Gibbs sampling method to
derive estimates of� and X given Y [45]. This
is a Monte Carlo sequential procedure alter-
nating between two steps until convergence:
(i) Given {�, Y}, one generates X by using
P(X|�, Y) from (A). These are the Kalman-
filter estimates. (ii) Using the Kalman-filter
estimates of X∼

from (A) and given Y, one

generates values of � by using P(�|X, Y)
from (B). Iterating between these two steps
until convergence, one then generates ran-
dom samples from the conditional probabil-
ity distribution P(X|Y) independently of �,
and from the posterior distribution P(�|Y)
independently of X, respectively. This pro-
vides the Bayesian estimates of � given data
and the Bayesian estimates of X given data,
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respectively. The proof of the convergence can
be developed by using basic theory of station-
ary distributions in irreducible and aperiodic
Markov chains; see Reference 56, chapter 3.

Using the above approach, one can read-
ily estimate simultaneously the numbers of
S people, I people, and AIDS cases as well
as the parameters {pS(t), γ (t)}. With the esti-
mation of {pS(t), γ (t)}, one may then estimate
the HIV infection distribution fI(t) and the
HIV incubation distribution g(t). For the San

Francisco homosexual population, the esti-
mates of fI(t) and g(t) are plotted in Figs. 1
and 2. Given below are some basic findings
by Tan and Ye [73]:

(a) From Fig 1; the estimated density of
the HIV infection clearly showed a
mixture of distributions with two obvi-
ous peaks. The first peak (the higher
peak) occurs around January 1980 and
the second peak around March 1992.
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Figure 1. Plots of the estimated HIV infection distribution
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Figure 2. Plots of the estimated HIV incubation distribution
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The mixture nature of this density
implies that there are more than one
sexual activity levels with a high pro-
portion of restricted mixing (like-with-
like) mixing. The second peak also
implies a second wave of infection al-
though the infection intensity is much
smaller than the first wave.

(b) From Fig 2, the estimated density of
the HIV incubation distribution also
appeared to be a mixture of distribu-
tions with two obvious peaks. The first
peak is around 75 months after infec-
tion and is much lower than the second
peak which occurs around 140 months
after infection. This result suggests a
multistage nature of the HIV incuba-
tion.

(c) The Kalman-filter estimates of the
AIDS incidence by the Gibbs sam-
pler are almost identical to the cor-
responding observed AIDS incidence
respectively. This result indicates that
the Kalman-filter estimates can trace
the observed numbers very closely if
observed numbers are available.

(d) Figuring a 1% increase in the popula-
tion size of San Francisco yearly, Tan
and Ye [73] have also estimated the
number of S people and the I peo-
ple in the San Francisco population.
The estimates showed that the total
number of S people before January
1978 were always above 50,000 and
were between 31,000 and 32,000 dur-
ing January 1983 and January 1993.
The total number of people who do
not have AIDS were estimated around
50,000 before January 1993. It appear-
ed that the total number of infected
people reached a peak around the mid-
dle of 1985 and then decreased grad-
ually to the lowest level around 1992.
The estimates also showed that the
number of infected people had two
peaks, with the higher peak around
the middle of 1985, the second peak
around the year 2000 and with the
lowest level around 1992.

Extending the above state space model
to include immigration and death, Tan and

Ye [74] have also analyzed the data of the
Swiss population of homosexual men and IV
drug users by applying the above generalized
Bayesian method. The estimated density of
the HIV infection in the Swiss homosexual
population is quite similar to that of the San
Francisco population except that in the Swiss
population, the first peak appears about 6
months earlier and the second peak about 2
years earlier. Similarly, the estimated den-
sity of the HIV incubation distribution in
the Swiss population is a mixture of distri-
butions with two obvious peaks. The higher
peak occurs around 320 months after infec-
tion and the lower peak occurs around 232
months after infection. In the Swiss popula-
tion, the estimates of the immigration and
recruitment rates are about 10 times greater
than those of the estimates of the death and
retirement rates of the I people, suggest-
ing that the size of the Swiss homosexual
and bisexual population is increasing with
time. Another interesting point is that, in
the Swiss population, the estimates of the
death and retirement rates of infective peo-
ple were much greater (at least 100 times
greater) than those of S people, suggesting
that HIV infection may have increased the
death and retirement rates of HIV infected
people.
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AITCHISON DISTRIBUTIONS

These form a class of multivariate distribu-
tions with density functions:
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fX(X|α,β) ∝
[ p∏

i=1

xαi−1
i

]

× exp

−1
2

p∑∑
i<j

βij(log xi − log xj)2

 ,

0 < xi,
p∑

i=1

xi = 1,

αi � 0, β nonnegative definite.

Although there are p variables x1, . . . , xp,
the distribution is confined to the (p− 1)-
dimensional simplex: 0 � xi,

∑p
i=1 xi = 1.

If β = 0 we have a Dirichlet distribution∗;
if αi = 0 for all i we have a multivariate
logistic-normal distribution.

Methods of estimating the parameters (α
and β) are described by Aitchison [1, pp.
310–313].

REFERENCE

1. Aitchison, J. (1986). Statistical Analysis of
Compositional Data. Chapman and Hall, Lon-
don and New York.

See also COMPOSITIONAL DATA; DIRICHLET DISTRIBUTION;
FREQUENCY SURFACES, SYSTEMS OF; and
LOGISTIC-NORMAL DISTRIBUTION.

AITKEN, ALEXANDER CRAIG

Alexander Craig Aitken was born April 1,
1885 in Dunedin, New Zealand, and died in
Edinburgh, Scotland, on November 3, 1967,
where he had spent his working life. Dunedin
is a rather Scottish community on the south-
ern tip of New Zealand. His father was a
farmer. Aitken made important contributions
to statistics, numerical analysis, and alge-
bra. His extraordinary memory, musical gift,
attractive personality, work, and teaching
talents are well described in the obituary
articles [1,2].

After attending Otago Boys High School,
he studied at Otago University classical lan-
guages for two years. In April, 1915 he en-
listed in the New Zealand Infantry and served
in Gallipoli, Egypt, and France in World
War I—experiences movingly described in

a manuscript (written while he was recov-
ering from wounds in 1917), but not turned
into a book [3] until 1962—his last publica-
tion. Aitken had total recall of his past, and
this section of it always gave him great pain.
His platoon was all but wiped out in the bat-
tle of the Somme along with all records. He
was able to remember and write down all the
information in the records of all these men.
Upon recovery, he returned to Otago Univer-
sity. He could not study mathematics there,
though it was realized that he had a gift for
it. He then taught languages in his old school
for three years. Upon graduating in 1920, he
married a fellow student, and later they had
a son and a daughter.

Fortunately, in 1923 he was given a schol-
arship to study mathematics under E. T.
Whittaker in Edinburgh. The first edition
of Whittaker and Robinson’s The Calculus of
Observations [4] (W&R) appeared in 1924.
Whittaker had earlier considered gradua-
tion∗ or smoothing of data as a statistical
problem; his motivation was mainly actu-
arial. So arose—almost—what we now call
splines. The function chosen to be minimized
was the sum of the squares of the differences
on the observed un and ‘‘true’’ values u′n plus a
multiple of the sum of squares of the third dif-
ferences of the ‘‘true’’ values. How to execute
this was Aitken’s Ph.D. problem. Whittaker
was so pleased with Aitken’s results that
he was awarded a D.Sc. instead and a staff
appointment. His method is given in W&R. In
a preceding section in W&R, they speak of the
method of interlaced parabolas, in which they
fit a cubic polynomial to each successive four
graduated values u′n —this allows interpola-
tion. Had the second term in the minimand
been the integral of the square of the third
derivative of the interpolating function, they
would have invented the modern method of
getting a spline.

The Mathematics Department in Edin-
burgh had over many years very broad inter-
ests that spanned all of applied mathemat-
ics, and Whittaker was a towering figure in
many fields. In particular, it was then the
only place in Britain that taught determi-
nants and matrices, and these immediately
appealed to Aitken. In 1932 he published
with H. W. Turnbull, An Introduction of
the Theory of Canonical Matrices [5]. Its
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last chapter gives, among other applications,
some to statistics. So by then he had shown
his real interests—algebra, numerical anal-
ysis, and statistics. Aitken succeeded Whit-
taker in the Chair in Mathematics in 1946,
holding it until he retired in 1965.

Aitken was a renowned teacher. In 1939 he
published the first two volumes in the Oliver
& Boyd series (of which he was a joint editor
with D. E. Rutherford) University Mathemat-
ical Texts. They were Statistical Mathematics
[6] and Determinants and Matrices [7]. These
two books were my first acquaintance with
his work. When I was an undergraduate there
were very few books on these topics with any
style to them.

Around 1949, as a graduate student, I
became aware of his research, largely writ-
ten in the preceding ten years, in statistics,
especially of his matrix treatment of least
squares (see e.g. ref. [8])—idempotents like
X(XtX)−1Xt, the use of the trace operator
(e.g. ExtAx = Tr EAxxt), etc. This has now
become standard. Indeed, with the linear
model y = Xβ + u where the random error
vector has mean 0 and nonsingular covari-
ance matrix V, the estimating equations
XtV−1y = XtV−1Xβ̂ are known as the Aitken
equations∗. But he never mentioned vector
spaces, although he would have been aware
of the background geometry. He wrote many
papers about least squares and especially
about the fitting of polynomials and on other
statistical topics. We have only singled out
here three areas to mention.

In the late thirties he gave a student
from New Zealand, H. Silverstone, a Ph.D.
topic—the optimal estimation of statisti-
cal parameters—which he had apparently
already worked out for a scalar parame-
ter. (See Aitken & Silverstone (1941) [9].)
In a 1947 paper [10] Aitken completed the
work for many parameters. But he has never
received credit for this work, which seems
unfair to me. For the time at which it was
written, the formulation is correct, as are
the answers. But instead of a direct proof
of a minimum, they simply give the ‘‘Euler
equation’’ that the calculus of variations (C of
V) throws up, though with the full knowledge
that that method has difficulties. This was
very natural, as the study of minimal sur-
faces was then of great interest, and much

use was made of the C of V in mathemati-
cal physics.

To take the simpler problem with his
notation, let �(x, θ ) be the density of the
vector x, which ranges over a region which
is the same for all θ , and be uniformly dif-
ferentiable with respect to θ . Suppose there
exists t(x), a minimum-variance estimator of
θ . Then

∫
t∂�/∂θ dx = 1, and

∫
(t− θ )2�dx

must be a minimum. Writing I(t) = ∫
(t−

θ )2�dx− 2λ
∫

t∂�/∂θdx, consider any other
estimator t+ h. Then

I(t+ h) = I(t)+
∫

h
(

2(t− θ )�− 2λ
∂�

∂θ

)
dx

+
∫

h2�dx � I(t)

if and only if t− θ = λ∂�/∂θ , where λ may be
a function of θ . This is the ‘‘Euler’’ equation
they give (and, I would guess, the proof they
had), and from which they correctly draw all
the now well-known conclusions. It took how-
ever many other statisticians many years to
clarify these questions and to find what other
assumptions are necessary. M. S. Bartlett
has published some correspondence [11] with
Aitken.

Several other features of Aitken’s life are
his love of music, his awesome memory, and
his arithmetic ability. He played the violin
well and for a time was leader of the Edin-
burgh University Musical Society Orchestra,
which was sometimes conducted by his close
friend Sir Donald Tovey. His violin was par-
ticularly important to him when in the Army,
and it now is displayed in his old school. He
said that 75% of the time his thoughts were
musical. On occasion he would demonstrate
his arithmetic feats. He wrote a book [12]
against the decimalization of the English
coinage—the use of twelve, which has so
many factors, appealed to him. He was able
to dictate rapidly the first 707 digits of π .

Among his honors, he was a Fellow of the
Royal Societies of Edinburgh and London and
of the Royal Society of Literature.
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G. S. WATSON

AITKEN EQUATIONS

One of the most important results in the the-
ory of linear models is the Gauss—Markov
theorem∗. It establishes that for the linear
model Y = Xβ + e with

E(e) = φ and E(eeT) = σ 2I (1)

the minimum variance linear unbiased esti-
mator for an estimable function λTβ is given
by λTβ̂, where β̂ is a solution of the normal
equations∗

XTXβ̂ = XTy. (2)

The case of equal variances and zero corre-
lations for the elements of e, as given in (1),
was generalized first by Aitken∗ [1] to the

case where the observations and hence the
elements of e have different variances and/or
are correlated, i.e., (1) is replaced by

E(e) = φ, E(eeT) = � = σ 2V. (3)

In (3), � represents a known (positive defi-
nite) variance—covariance matrix, but since
it needs to be known only up to a constant,
� is often rewritten as σ 2V, where V rep-
resents a known matrix (note that for the
case of equal variances σ 2, V is a correla-
tion matrix). As a consequence of the vari-
ance—covariance structure (3) the equations
(2) are replaced by the Aitken equations

XTV−1Xβ̂ = XTV−1y, (4)

which are obtained by minimizing the expres-
sion (see [1])

(y− Xβ)TV−1(y− Xβ).

It is for this reason that the method is
also referred to as weighted least squares∗
or generalized least squares, as compared to
ordinary least squares (OLS), which leads
to (2).

With the conditions (3) the minimum-
variance linear unbiased estimator for an
estimable function λTβ is given by λTβ̂, where
β̂ is a solution to the Aitken equations (4). A
proof can be found in ref. [2].

An interesting and important question
is: For V �= I. when are the OLS and the
weighted least squares estimators for λTβ

the same? The answer is (see e.g. [2]), when
VX = XQ for some matrix Q. This condition
holds, for example, for mixed linear models
with balanced data.
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AKAIKE’S INFORMATION CRITE-
RION. See MODEL SELECTION: AKAIKE’S
INFORMATION CRITERION

ALEATORY VARIABLE

An obsolete term for random variable.

ALGEBRA OF EVENTS

Let � be a space whose points correspond
to the possible outcomes of a random experi-
ment. Certain subsets of � are called events,
and probability is assigned to these subsets.
A collection F of subsets of � is called an
algebra (the term field is also used) if the
following conditions are satisfied:

(a) The space � belongs to F (� ∈ F ).
(b) The collection F is closed under com-

plementation and finite union. For-
mally:

b1: If A ∈ F , then the complement A (also
denoted as Ac) belongs to F .

b2: If A1, . . . , An ∈ F , then union ∪n
i=1Ai

(also denoted as A1 ∪ . . . ∪ An) ∈ F .

[Since (∪n
i=1Ai) = ∩n

i=1Ai, b1 and b2 imply
that an algebra is also closed under finite
intersection.]

If in place of b2 we require F to be closed
under countable union, namely, if A1, A2, . . . ∈
F , then∪∞i=1Ai ∈ F , the collection F is called
a σ -algebra (or σ -field). The notion of the
σ -algebra of events is a basic concept for
theoretical probability theory.

See also AXIOMS OF PROBABILITY.

ALGORITHM

An algorithm is a rule for performing a cal-
culation—usually, although not necessarily,
numerical. For example, one might have algo-
rithms for classificatory purposes, as well
as for evaluation of roots of determinantal
equations. Algorithms do not provide any
background for the calculations to which they

refer, either in terms of motivation or justifi-
cation.

Algorithms for specific purposes are des-
cribed in separate entries, in particular in
the article ALGORITHMS, STATISTICAL.

ALGORITHMIC INDEPENDENCE.
See ALGORITHMIC INFORMATION THEORY

ALGORITHMIC INFORMATION
THEORY

The Shannon entropy∗ concept of classical
information theory∗ [9] is an ensemble notion;
it is a measure of the degree of ignorance con-
cerning which possibility holds in an ensem-
ble with a given a priori probability distribu-
tion∗

H(p1, . . . , pn) ≡ −
n∑

k=1

pk log2 pk.

In algorithmic information theory the pri-
mary concept is that of the information con-
tent of an individual object, which is a mea-
sure of how difficult it is to specify or describe
how to construct or calculate that object. This
notion is also known as information-theoretic
complexity. For introductory expositions, see
refs. 1, 4, and 6. For the necessary back-
ground on computability theory and mathe-
matical logic, see refs. 3, 7, and 8. For a more
technical survey of algorithmic information
theory and a more complete bibliography, see
ref. 2. See also ref. 5.

The original formulation of the concept of
algorithmic information is independently due
to R. J. Solomonoff [22], A. N. Kolmogorov∗
[19], and G. J. Chaitin [10]. The information
content I(x) of a binary string x is defined to be
the size in bits (binary digits) of the smallest
program for a canonical universal computer
U to calculate x. (That the computer U is
universal means that for any other computer
M there is a prefix µ such that the program
µp makes U do exactly the same computation
that the program p makes M do.) The joint
information I(x, y) of two strings is defined
to be the size of the smallest program that
makes U calculate both of them. And the
conditional or relative information I(x|y) of x
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given y is defined to be the size of the small-
est program for U to calculate x from y. The
choice of the standard computer U introduces
at most an O (1) uncertainty in the numerical
value of these concepts. [O(f ) is read ‘‘order
of f ’’ and denotes a function whose absolute
value is bounded by a constant times f .]

With the original formulation of these def-
initions, for most x one has

I(x) = |x| +O(1) (1)

(here |x| denotes the length or size of the
string x, in bits), but unfortunately

I(x, y) � I(x)+ I(y)+O(1) (2)

holds only if one replaces the O(1) error esti-
mate by O(log I(x)I(y)).

Chaitin [12] and L. A. Levin [20] indepen-
dently discovered how to reformulate these
definitions so that the subadditivity property
(2) holds. The change is to require that the
set of meaningful computer programs be an
instantaneous code, i.e., that no program be a
prefix of another. With this modification, (2)
now holds, but instead of (1) most x satisfy

I(x) = |x| + I(|x|)+O(1)

= |x| +O(log |x|).

Moreover, in this theory the decomposition of
the joint information of two objects into the
sum of the information content of the first
object added to the relative information of
the second one given the first has a different
form than in classical information theory. In
fact, instead of

I(x, y) = I(x)+ I(y|x)+O(1), (3)

one has

I(x, y) = I(x)+ I(y|x, I(x))+O(1). (4)

That (3) is false follows from the fact
that I(x, I(x)) = I(x)+O(1) and I(I(x)|x) is
unbounded. This was noted by Chaitin [12]
and studied more precisely by Solovay [12,
p. 339] and Gač [17].

Two other concepts of algorithmic infor-
mation theory are mutual or common infor-
mation and algorithmic independence. Their

importance has been emphasized by Fine [5,
p. 141]. The mutual information content of
two strings is defined as follows:

I(x : y) ≡ I(x)+ I(y)− I(x, y).

In other words, the mutual information∗ of
two strings is the extent to which it is more
economical to calculate them together than
to calculate them separately. And x and y
are said to be algorithmically independent if
their mutual information I(x : y) is essentially
zero, i.e., if I(x, y) is approximately equal to
I(x)+ I(y). Mutual information is symmetri-
cal, i.e., I(x : y) = I(y : x)+O(1). More impor-
tant, from the decomposition (4) one obtains
the following two alternative expressions for
mutual information:

I(x : y) = I(x)− I(x|y, I(y))+O(1)

= I(y)− I(y|x, I(x))+O(1).

Thus this notion of mutual information, al-
though it applies to individual objects rather
than to ensembles, shares many of the for-
mal properties of the classical version of this
concept.

Up until now there have been two prin-
cipal applications of algorithmic informa-
tion theory: (a) to provide a new concep-
tual foundation for probability theory and
statistics by making it possible to rigorously
define the notion of a random sequence∗,
and (b) to provide an information-theoretic
approach to metamathematics and the lim-
itative theorems of mathematical logic. A
possible application to theoretical mathemat-
ical biology is also mentioned below.

A random or patternless binary sequence
xn of length n may be defined to be one of
maximal or near-maximal complexity, i.e.,
one whose complexity I(xn) is not much less
than n. Similarly, an infinite binary sequence
x may be defined to be random if its ini-
tial segments xn are all random finite binary
sequences. More precisely, x is random if and
only if

∃c∀n[I(xn) > n− c]. (5)

In other words, the infinite sequence x is
random if and only if there exists a c such that
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for all positive integers n, the algorithmic
information content of the string consisting
of the first n bits of the sequence x, is bounded
from below by n− c. Similarly, a random real
number may be defined to be one having
the property that the base 2 expansion of its
fractional part is a random infinite binary
sequence.

These definitions are intended to capture
the intuitive notion of a lawless, chaotic,
unstructured sequence. Sequences certified
as random in this sense would be ideal for
use in Monte Carlo∗ calculations [14], and
they would also be ideal as one-time pads for
Vernam ciphers or as encryption keys [16].
Unfortunately, as we shall see below, it is
a variant of Göel’s famous incompleteness
theorem that such certification is impossi-
ble. It is a corollary that no pseudorandom
number∗ generator can satisfy these defini-
tions. Indeed, consider a real number x, such
as
√

2, π , or e, which has the property that it
is possible to compute the successive binary
digits of its base 2 expansion. Such x satisfy

I(xn) = I(n)+O(1) = O(log n)

and are therefore maximally nonrandom.
Nevertheless, most real numbers are ran-
dom. In fact, if each bit of an infinite binary
sequence is produced by an independent toss
of an unbiased coin, then the probability that
it will satisfy (5) is 1. We consider next a par-
ticularly interesting random real number, �,
discovered by Chaitin [12, p. 336].

A. M. Turing’s theorem that the halting
problem is unsolvable is a fundamental result
of the theory of algorithms [4]. Turing’s theo-
rem states that there is no mechanical proce-
dure for deciding whether or not an arbitrary
program p eventually comes to a halt when
run on the universal computer U. Let � be
the probability that the standard computer
U eventually halts if each bit of its program
p is produced by an independent toss of an
unbiased coin. The unsolvability of the halt-
ing problem is intimately connected to the
fact that the halting probability � is a ran-
dom real number, i.e., its base 2 expansion is
a random infinite binary sequence in the very
strong sense (5) defined above. From (5) it fol-
lows that� is normal (a notion due to E. Borel
[18]), that � is a Kollectiv∗ with respect to

all computable place selection rules (a con-
cept due to R. von Mises and A. Church [15]),
and it also follows that � satisfies all com-
putable statistical tests of randomness∗ (this
notion being due to P. Martin-Löf [21]). An
essay by C. H. Bennett on other remarkable
properties of �, including its immunity to
computable gambling schemes, is contained
in ref. 6.

K. Gödel established his famous incom-
pleteness theorem by modifying the paradox
of the liar; instead of ‘‘This statement is
false’’ he considers ‘‘This statement is unprov-
able.’’ The latter statement is true if and
only if it is unprovable; it follows that not
all true statements are theorems and thus
that any formalization of mathematical logic
is incomplete [3,7,8]. More relevant to algo-
rithmic information theory is the paradox
of ‘‘the smallest positive integer that cannot
be specified in less than a billion words.’’ The
contradiction is that the phrase in quotes only
has 14 words, even though at least 1 billion
should be necessary. This is a version of
the Berry paradox, first published by Rus-
sell [7, p. 153]. To obtain a theorem rather
than a contradiction, one considers instead
‘‘the binary string s which has the shortest
proof that its complexity I(s) is greater than
1 billion.’’ The point is that this string s can-
not exist. This leads one to the metatheorem
that although most bit strings are random
and have information content approximately
equal to their lengths, it is impossible to prove
that a specific string has information content
greater than n unless one is using at least
n bits of axioms. See ref. 4 for a more com-
plete exposition of this information-theoretic
version of Gödel’s incompleteness theorem,
which was first presented in ref. 11. It can
also be shown that n bits of assumptions or
postulates are needed to be able to determine
the first n bits of the base 2 expansion of the
real number �.

Finally, it should be pointed out that these
concepts are potentially relevant to biology.
The algorithmic approach is closer to the
intuitive notion of the information content
of a biological organism than is the classical
ensemble viewpoint, for the role of a com-
puter program and of deoxyribonucleic acid
(DNA) are roughly analogous. Reference 13
discusses possible applications of the concept
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of mutual algorithmic information to theo-
retical biology; it is suggested that a living
organism might be defined as a highly cor-
related region, one whose parts have high
mutual information.
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An Eternal Golden Braid. Basic Books, New
York. (The longest and most lucid introduction
to computability theory and mathematical
logic.)

9. Shannon, C. E. and Weaver, W. (1949). The
Mathematical Theory of Communication. Uni-
versity of Illinois Press, Urbana, Ill. (The first
and still one of the very best books on classical
information theory.)

ADDITIONAL REFERENCES

10. Chaitin, G. J. (1966). J. ACM, 13, 547–569;
16, 145–159 (1969).

11. Chaitin, G. J. (1974). IEEE Trans. Inf. Theory,
IT-20, 10–15.

12. Chaitin, G. J. (1975). J. ACM, 22, 329–340.
13. Chaitin, G. J. (1979). In The Maximum

Entropy Formalism, R. D. Levine and M.
Tribus, eds. MIT Press, Cambridge, Mass.,
pp. 477–498.

14. Chaitin, G. J. and Schwartz, J. T. (1978).
Commun. Pure Appl. Math., 31, 521–527.

15. Church, A. (1940). Bull. AMS, 46, 130–135.
16. Feistel, H. (1973). Sci. Amer., 228 (5), 15–23.
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G. J. CHAITIN

ALGORITHMS, STATISTICAL

Traditionally, in mathematics, the term
‘‘algorithm’’∗ means ‘‘some special process for
solving a certain type of problem’’ [3].1 With
the advent of automatic computing, the term
was adopted to refer to the description of a
process in a form suitable for implementa-
tion on a computer. Intuitively, an algorithm
is useful in mathematics or in computing if
the ‘‘type of problem’’ is well defined and if
the ‘‘special process’’ can be used effectively
for these problems. A reasonable definition of
the term for our purposes is:

An algorithm is a process for the solution of a
type of problem, such that the process can be
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implemented computationally without signifi-
cant difficulty and that the class of problems
treated is computationally specific and well
understood.

Statistical algorithms are those algorithms
having useful application to problems en-
countered in statistics. They are not, it should
be emphasized, restricted to algorithms writ-
ten by or specifically for statisticians. Such
a restriction would exclude a wide range of
useful work and, unfortunately, would still
include a number of inferior approaches to
some problems.

In the general process of using comput-
ers to assist in statistical analysis of data,
three aspects are frequently important: the
recognition of the need for an algorithm (more
generally, the role of algorithms in the overall
approach); the attempt to find or implement
a suitable algorithm; and judgments about
the quality of an algorithm. Let us consider
each of these questions in turn.

ALGORITHMS AND STATISTICAL
COMPUTING

The importance of good algorithms derives
from their role as building blocks support-
ing reliable, flexible computing. Statisticians
(and equally, physicists, chemists, engineers,
and other users of computers) have tended to
plunge in with ad hoc attacks on specific com-
puting problems, with relatively little use of
existing algorithms or research in comput-
ing. Many arguments, some of them quite
sound, support this approach. The end user
is interested in the ‘‘answer’’ (in our case,
the statistical analysis), not in the process
that produces it. Particularly at early stages
of statistical computing, the statistician was
often not familiar with computing, either in
the sense of a user or in the more impor-
tant sense of understanding some of the
basic principles of computation. The problem
to be solved often appeared straightforward,
with a solution that was qualitatively obvi-
ous to the statistician. In this case, finding
or developing an algorithm seems a waste
of valuable time. Furthermore, it may not
be at all obvious how a statistical problem
can be formulated in appropriate terms for

algorithms which frequently were devised for
other problem areas.

Paradoxically, some of the statistical sys-
tems and packages developed to assist statis-
ticians aggravate the tendency to take ad
hoc rather than algorithmic approaches. The
many conveniences of using high-level sys-
tems make it tempting to rig an intuitively
plausible solution within the system rather
than reach outside to find a high-quality
algorithm for the problem. In many systems,
the process of integrating such an algorithm
into the system may require a high degree
of programming skill and knowledge of the
system’s inner workings.

Although arguments for casual solutions
to statistical computing problems have some
force, there are stronger arguments that stat-
isticians should try to integrate high-quality
algorithms into their computing. Two argu-
ments are particularly important. First, the
use of good computational algorithms gener-
ally improves the use of our own time, in spite
of the widely held intuition to the contrary.
Second, the quality and the defensibility of
the statistical analysis of data is eventually
inseparable from the quality of the underly-
ing computations.

Support for the first argument is that well-
chosen algorithms will not only increase the
chance that a particular statistical compu-
tation succeeds relatively quickly, but will
usually greatly simplify the (inevitable) pro-
cess of adapting the computation to new
data or to a change in the analysis. As
for the second argument, this is asserting
both that the statistician should understand
what an analysis has produced, in clear and
precise terms, and also that the operational
steps should be communicable and indepen-
dently reproducible by others. Well-defined
and correct computations are needed if sta-
tistical analysis is to satisfy fundamental
criteria of scientific validity. This requires, in
turn, that computations in statistical systems
and specially programmed data analysis be
based on algorithms that are accepted as cor-
rect implementations of valid computational
methods.

As computing evolves, statisticians should
be able to combine the convenience of statis-
tical systems with the use of high-quality
algorithms. Statistical systems increasingly
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incorporate good algorithms for the common
operations. Advances in techniques of lan-
guage design and implementation can sim-
plify the process of integrating new algo-
rithms into such systems, gradually merging
the process of user programming and system
extension [2].

SPECIFYING ALGORITHMS

(This section is directed largely to persons
writing algorithms.) Our definition of an
algorithm requires that it be suitable for
implementation on a computer but deliber-
ately does not restrict the form in which
the algorithm is specified. The specifica-
tion may be translatable mechanically into
computer steps, i.e., may be given in a pro-
gramming language. Alternatively, the spec-
ification may be instructions that someone
familiar with a programming language can
understand and implement. An important
goal of computer science is to merge the
two forms by improving programming lan-
guages and the art of algorithm design to
the point that algorithms can be presented
in a computer-readable form which is at the
same time comprehensible to reasonably well
informed human beings. Steps toward this
goal, such as techniques of structured pro-
gramming, are of value in that they increase
the chance that one can understand what
an algorithm does and hence the degree of
confidence in its correctness.

The most convenient specification of an
algorithm would intuitively seem to be in a
programming language that is locally avail-
able, so that a running program could in
principle be generated directly. This conve-
nience has to be tempered by the need to
understand the algorithm and occasionally
by the unsuitability of the common program-
ming languages (e.g., FORTRAN) to han-
dle certain problems (e.g., random number
generation∗). Clear verbal descriptions are
still important as supplements to program
code. In some cases, semiverbal presenta-
tions can be used either as supplements or
as replacement for actual code. Two styles of
semiverbal description are used: natural lan-
guage statements organized into numbered
steps, usually with iteration among the steps;

and ‘‘pidgin’’ programming languages, with
most of the description identical to some lan-
guage, but with natural language inserted
where the actual code would be harder to
understand and with details omitted.

Given that an algorithm is to be presented
in a programming language, which one will
be most helpful? The overwhelming majority
of published and otherwise generally circu-
lated algorithms are written in FORTRAN,
at least for scientific computing. Presenting
an algorithm in this language is then likely
to make it implementable widely (at least
on the larger computers) and allow it to be
used with many existing programs. Other,
older languages are less frequently used.
ALGOL60 was designed specifically to bridge
the previously mentioned gap between read-
ability and implementability; however, at the
time of its design, it could take only a par-
tial step in this direction. Although many
early published algorithms were written in
ALGOL60 (for a time the only accepted lan-
guage for algorithm sections), FORTRAN has
largely taken over, in spite of its deficien-
cies in generality and readability. Many of
the ALGOL60 algorithms were subsequently
translated into FORTRAN (some examples
will be mentioned in the section ‘‘Finding
Algorithms’’). Other languages, such as PL-1
and COBOL, have at most marginal rele-
vance to algorithms for statistics.

Three other languages do, however, need
to be considered: APL, BASIC, and PASCAL.
These are all important for interactive com-
puting, particularly on the smaller machines.
APL is widely used in statistical analysis; its
advantages are its interactive nature and
a general, convenient approach to arrays∗.
Some existing algorithms written in APL
have been ad hoc and poorly designed. Never-
theless, there is a large community of users.
Also, improvements in APL have made the
description of some calculations more attrac-
tive (in particular, the inclusion in APL of
some key operators to support the kind of
calculations done in regression∗ and multi-
variate analysis∗).

BASIC is also interactive, but in appear-
ance is a (simplified) language of the FOR-
TRAN family. It shares the advantages of
availability on small computers, relative ease
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of initial learning, and a sizable user commu-
nity. As with APL, the language has suffered
at times from algorithms written without
enough understanding of the problem. Both
languages have been somewhat neglected
by the computer-science community involved
in developing high-quality algorithms. The
neglect is a combination of professional isola-
tion and some intrinsic flaws in the languages
themselves. For example, both languages are
rather clumsy for expressing the iterative
calculations that most algorithms involve.
BASIC, in addition, may make the process
of separate definition of algorithms difficult.

PASCAL is again oriented to the use
of small, interactive computers and can be
learned fairly easily. It derives, however,
from the ALGOL family of languages. PAS-
CAL is a simple, structured language, well
adapted to writing many types of algorithms
in a clear and readable form. One of its
attractions, in fact, is to the portion of the
computer-science community interested in
writing programs whose correctness can be
formally verified. For these reasons, PASCAL
is perhaps the most attractive new language
for the specification of algorithms. At the
time of writing, however, its applications to
statistical computing are minimal. Applica-
tions of PASCAL are mostly to non-numerical
problems. Its importance as a vehicle for sta-
tistical algorithms is largely in the future.

FINDING ALGORITHMS

There are several sources for statistical algo-
rithms, with no simple process for searching
them all. Algorithms from the various sources
will tend to differ in reliability and in the
convenience of implementation. Roughly in
descending order of overall reliability, the
major sources are:

Published Algorithm Sections

Several computing journals have published
algorithms in one of a set of accepted pro-
gramming languages (typically FORTRAN
and ALGOL60). These algorithms have
been independently referred and (in prin-
ciple) tested. They should conform to spec-
ified requirements for quality (see the next
section) established by journal policy. The

journal Applied Statistics∗ publishes such an
algorithm section specifically for statistical
computing. Some statistical algorithms have
also appeared in Communications in Statis-
tics∗ (B). Major general algorithm sections
appear in Transactions on Mathematical
Software and The Computer Journal. The
publication Collected Algorithms of the Asso-
ciation of Computing Machinery reprints the
former set of general algorithms and con-
tains an important cumulative index, cover-
ing most published algorithm sections as well
as many algorithms published separately in
scientific journals.

General Algorithm Libraries

These are collections of algorithms, usually
distributed in machine-readable form, for a
wide range of problems. Although the algo-
rithms are often the work of many people,
the libraries usually exert some central edi-
torial control over the code. As a result,
from the user’s viewpoint, greater uniformity
and simplicity can be achieved. However,
the distributors may not be as disinterested
judges of the library contents as are edi-
tors of algorithm sections. Confidence in the
quality of the library rests to a large extent
on evaluation of the organization distribut-
ing it. The International Mathematical and
Statistical Library (IMSL), specifically ori-
ented to statistical algorithms, is distributed
by an independent organization in suitable
FORTRAN source for many computer sys-
tems. The National Algorithm Group (NAG)
is a publicly sponsored British organization
designed to coordinate the distribution and
development of algorithms. In this work it
has had the cooperation of a number of profes-
sional groups, including the Royal Statistical
Society∗. A number of scientific laboratories
also maintain and distribute general algo-
rithm libraries, e.g., the PORT library (Bell
Laboratories), Harwell Laboratory (U.K.
Atomic Energy Research Establishment), and
the National Physical Laboratory.

Specialized Algorithm Packages

These are less general collections of algo-
rithms than the previous. They provide a
range of solutions to a set of related prob-
lems, frequently in greater detail than that
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provided by general libraries. In addition,
they attack some problem areas that tend
to be ignored by published algorithms, such
as graphics∗. Questions of reliability will be
similar to the general algorithm libraries.
A series of specialized packages has been
developed with the cooperation of Argonne
National Laboratories, covering topics such
as eigenvalue problems, linear equations,
and function approximation. Graphics pack-
ages include the GR-Z package (Bell Lab-
oratories) for data analysis and the DISS-
PLA package (a general-purpose system dis-
tributed commercially).

Scientific Journals

In addition to published algorithm sections,
many published papers contain algorithm
descriptions, either in one of the semiverbal
forms or in an actual programming language.
A qualified referee should have examined
the paper, but unless given an explicit state-
ment, it is probably unwise to assume that
the algorithm has been independently imple-
mented and tested. Nevertheless, there are
a number of problems for which the only
satisfactory published algorithms are of this
form (e.g., some random number generation∗

techniques).

Unpublished Papers; Program Sharing

These categories are perhaps last resorts—
least in average quality but certainly not
least in quantity. It may be that more algo-
rithms exist in these forms than in all other
categories combined. They are usually not
referred, except unintentionally by users, and
one should expect to spend time testing them
before putting them into regular use. Sim-
ply finding out about the algorithms requires
considerable effort. Of most help are library
search techniques and centralized clearing-
houses for technical reports (such as the
National Technical Information Service in
the United States).

With increased familiarity, the process of
searching the various sources will become
more straightforward. Services provided
by technical libraries, such as literature
searches (now often computerized and rel-
atively inexpensive) and centralized list-
ings of papers, books, and memoranda, are

extremely valuable. Modern library person-
nel are often very knowledgeable and helpful
in searching through the jungle of technical
literature. Of course, once one or more algo-
rithms have been found, there remains the
question of whether they are adequate and,
if not, what steps can be taken to improve or
replace them.

THE QUALITY OF ALGORITHMS

The problem of evaluating algorithms has no
simple solution. For most statistical applica-
tions, a sensible judgment about algorithms
requires some understanding of the compu-
tational methods being used. The discussion
in Chambers [1] and in the further refer-
ences cited there provides background to
some of the computational methods impor-
tant for statistics. Although it is tempting
to hope that some mechanical evaluation of
algorithms could resolve their quality thor-
oughly, this is rarely the case. Most problems
are too complex for an evaluation that treats
the algorithm as a black box∗; i.e., as a phe-
nomenon to be judged only by its empirical
performance, without regard for the tech-
niques used. A tendency to use only this
approach to evaluate statistical software is
regrettable, particularly since it reinforces
the overall ad hoc approach which has been
detrimental to statistical computing in the
past.

In the process of evaluating algorithms,
both empirically and in terms of the method
used, one may apply some general guide-
lines. Four helpful classes of questions are
the following.

Is The Algorithm Useful? Does it solve the
problem at hand? Is it general enough for
all the cases likely to be encountered? Will it
adapt to similar problems to be encountered
later, or will a new algorithm have to be found
essentially from scratch?

Is The Algorithm Correct? Will it run suc-
cessfully on all the cases? If not, will it
detect and clearly indicate any failures? For
numerical calculations, what guarantees of
accuracy are available? (If not theoretical
estimates beforehand, are there at least reli-
able measures of accuracy after the fact?)
We emphasize again that such judgments
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require understanding of what numerical me-
thods can do to solve the problem.

How Hard Is It To Implement And Use?
Does the form of the algorithm require consid-
erable local effort (e.g., because the algorithm
is written in English or in a programming lan-
guage not locally available)? Does the algo-
rithm as implemented make inconvenient
assumptions (such as limits on the size of
problem that can be handled)? Is it written
portably, or are there features that will need
to be changed locally? Most important, is
the algorithm comprehensible, so that there
is some hope of fixing problems or making
modifications after one is committed to its
use?

Is The Algorithm Efficient? Will its require-
ments for storage space, running time, or
other computer resources be modest enough
to make it practical for the problems at hand?
Are there convenient, general estimates of
these requirements? Issues of efficiency are
often overemphasized, in the sense that the
human costs involved in the previous ques-
tions are far more important in most appli-
cations. Nevertheless, we can still encounter
problems that exceed the capacity of cur-
rent computing, and it is good to be careful of
such situations. As with accuracy, it is impor-
tant to understand what computing science
can do for the problem. Both theoretical esti-
mates (of the order of difficulty, frequently)
and empirical estimates are helpful.

NOTE

1. For the general reader, the complete
Oxford English Dictionary gives algo-
rithm (preferably algorism) as meaning
the arabic numerals, with the chas-
tening added meaning of a cipher or
nonentity.
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ALIAS

When two (or more) parameters affect the dis-
tribution of a test statistic∗ in similar ways,
each is said to be an alias of the other(s). The
term is especially associated with fractional
factorial designs∗, in the analysis of which
certain sums of squares have distributions
that can reflect the existence of any one, or
some, of a number of different effects.

See also CONFOUNDING and FRACTIONAL FACTORIAL

DESIGNS.
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ALIAS GROUP. See FRACTIONAL FACTORIAL

DESIGNS

ALIASING. See CONFOUNDING

ALIAS MATRIX. See FRACTIONAL FACTORIAL

DESIGNS

ALLAN VARIANCE. See SUCCESSIVE

DIFFERENCES

ALLGEMEINES STATISTISCHES
ARCHIV

The Allgemeines Statistisches Archiv is the
Journal of the Deutsche Statistische Gesells-
chaft∗ (German Statistical Society) and began
publication in 1890.

The journal provides an international
forum for researchers and users from all
branches of statistics. The first part (Articles)
contains contributions to statistical theory,
methods, and applications. There is a focus
on statistical problems arising in the anal-
ysis of economic and social phenomena. All
papers in this part are refereed. In order to
be acceptable, a paper must either present a
novel methodological approach or a result,
obtained by substantial use of statistical
methods, which has a significant scientific
or societal impact. For further information,
readers are referred to the parent society
website, www.dstatg.de.

See also STATISTISCHE GESELLSCHAFT, DEUTSCHE.

ALLOKURTIC CURVE

An allokurtic curve is one with ‘‘unequal’’ cur-
vature, or a skewed∗, as distinguished from
an isokurtic∗ curve (which has equal curva-
ture and is symmetrical). This term is seldom
used in modern statistical literature.

See also KURTOSIS and SKEWNESS: CONCEPTS AND

MEASURES.

ALLOMETRY

It is rare, in nature, to observe variation
in size without a corresponding variation
in shape. This is true during the growth
of an organism when radical shape changes
are commonplace; when comparing different
species from the same family; and even when
comparing mature individuals from the same
species. The quantitative study of this rela-
tionship between size and shape is known
loosely as allometry and the main tool is the
log-log plot. If X and Y are two dimensions
that change with size, then the way each
changes relative to the other is best studied
by plotting log X vs. log Y. In the past this was
usually done on special log-log graph paper,
but calculators have rendered such devices
obsolete. Natural algorithms will be used in
this article (and are recommended).

Some examples are shown in Figs. 1 to 3.
In Fig. 1 the points represent different indi-
viduals, each measured at one point during
growth. In Fig. 2 the points refer to mature
individuals. In Fig. 3 the points refer to dif-
ferent species, and X and Y now refer to mean
values (or some other typical values) for the
species. The value of the log-log plot is that
it provides a simple summary of departures
from isometric∗ size variation, i.e., variation
in which geometric similarity is maintained.
If X and Y are both linear dimensions, then
isometric variation corresponds to a constant
ratio Y/X, which in turn corresponds to a line

Figure 1. Growth of crabs (redrawn from Huxley
[10]). The slope of the line is approximately 0.6.
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Figure 2. Variation between mature pine
martens (redrawn from Jolicoeur [11]). The slope
of the line is approximately 1.3.

of slope 1 on the log-log plot. If Y is linear but
X is a volume (or weight), then isometric
variation corresponds to a constant value for
Y/X1/3, i.e., a line of slope 0.33 in the log-log
plot. In a similar fashion the slope is 0.50
when Y is linear and X an area and 0.67
when Y is an area and X a volume. Slopes of
X on Y are the reciprocals of the slopes of Y
on X.

The log-log plot was first used system-
atically by Huxley [9,10] and Teissier [23].
They found that for growth studies, using a
wide variety of dimensions and organisms,
the plot could often be adequately summa-
rized by a straight line, i.e., a power law of
the type Y = bXα in original units. The coef-
ficient α is the slope in the log-log plot and
log b is the intercept: log Y = α log X + log b.
For linear dimensions α = 1 corresponds to
isometry∗ and α �= 1 is referred to as allo-
metric growth: positive if α > 1 and negative
if α < 1. Departures from a simple straight-
line relationship are not uncommon, the best
known being where there is a sudden change
in relative growth rate during development.

Some importance was initially attached to
providing a theoretical basis for the power
law, but today the relationship is recognized
as being purely empirical. It is the ‘‘roughly
linear relationship’’ so widely used in biology,
but it happens to be in log units because this

is the natural scale on which to study depar-
tures from isometric size variation. Linear
plots using original units have also been used,
but these have the disadvantage that isome-
try now corresponds to a line passing through
the origin rather than a line of slope 1 (in log
units), and there are usually no measure-
ments in the region of the origin.

The log-log plot has also been widely used
when comparing species in the general study
of the effect of scale on form and function.
Once again a linear relationship often proves
adequate, but it is not only departures from
isometry that are important but also devia-
tions of individual species from the allometric
line.

Gould [6] should be consulted for further
details about the history of allometry and for
a review of applications.

STATISTICAL METHODS FOR ESTIMATING A
STRAIGHT LINE

The central problem is to estimate the
straight-line relationship displayed in the
log-log plot. To avoid too many ‘‘logs,’’ the
values of log X and log Y will be referred

Figure 3. ‘‘Mouse-to-elephant’’ line (redrawn from
Schmidt-Nielsen, p. 5, in Pedley [21]). The dashed
line has slope 1.
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to as x and y. The equation of a straight
line passing through (x0, y0) with slope
α(y on x) is y− y0 = α(x− x0). This corre-
sponds to the power law Y = bxα, where
log b = y0 − αx0. Figure 4 shows four differ-
ent approaches to fitting a line. In the first
two the lines are chosen to minimize the sum
of squares of deviations∗

∑
d2 and correspond

to regression∗ of y on x, and x on y. In the third
the line minimizing

∑
d2 is called the major

axis and in the fourth the value of
∑

d1d2 is
minimized to produce the reduced major axis
[14] or D-line [25]. All four lines pass through
the centroid of points (x, y) and differ only in
their values for α the slope of y on x. All the
estimates may be expressed in terms of r, Sx,
and Sy, the sample correlation∗ and standard
deviations∗ of x and y. They are:

1. α̂ = rSy/Sx (regression of y on x)
2. α̂ = r−1Sy/Sx (regression of x on y)
3. α̂ = slope of the major axis (given

below)
4. α̂ = Sy/Sx with sign the same as that of

r.

The two regression estimates differ from one
another and there is no natural way of resolv-
ing the question of which to choose. For this
reason regression theory is not as helpful
in allometry as in other branches of applied
statistics. The slope of the major axis is found
by first obtaining the positive root of the
equation in t,

t/(1− t2) = rλ/(1− λ2), (1)

where λ = Sy/Sx or Sx/Sy, whichever is less
than 1. If λ = Sy/Sx < 1, then t is the slope in

Figure 4. Four methods of fitting a straight line.

units of y on x. If λ = Sx/Sy < 1, then t is the
slope in units of x on y and t−1 is the slope in
units of y on x. When r is negative, the same
numerical value is used for t but the sign is
now negative.

Of the last two estimates the most popular
has been the reduced major axis. The major
axis has been criticized because it depends
on the ratio λ = Sy/Sx in a nonlinear way
so that a change of units for x and y does
not affect t in the same way as it affects λ.
This has no validity when x and y refer to log
measurements because a change of units for
the measurements X and Y leaves r, Sx, and
Sy unchanged. The major axis has also been
criticized as being more difficult to compute
than the others, but in fact (1) is easy to
solve either as a quadrate or graphically.
For values of λ in the range 0.2 to 0.8 a
good approximation is t � λ+ 0.3 log r. As λ
approaches 1, the right-hand side of (1) tends
to ∞, so t tends to 1. There is no general
agreement as to which of these two estimates
is to be preferred. Fortunately, when r is
high, they give very similar answers.

Statistical sampling properties of the
estimates are based on the bivariate nor-
mal distribution∗. Approximate large sample
standard errors∗ are given by Kermack and
Haldane [14]:

SE(α̂) �
√(

1− r2

r2n

)
t

for the major axis

SE(α̂) �
√(

1− r2

n

)
Sy

Sx

for the reduced major axis.

Since t > Sy/Sx, the standard error for the
major axis is always greater than that for
the reduced major axis (considerably greater
if r is low). This is an argument in favor
of the reduced major axis, but such an esti-
mate would make little sense if r were too
low. When Sx = Sy and r = 0, it amounts to
drawing a line of slope 1 through a circular
cloud of points. At least the large sampling
error of the major axis serves as a warn-
ing that the line is difficult to determine
when r is low. As a numerical example, con-
sider the case r = 0.8, n = 20, λ = Sy/Sx =
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0.6. The slope of the major axis is found from
t/(1− t2) = 0.75, a quadratic equation yield-
ing t = 0.5352 (t = tan{ 12 tan−1(2× 0.75)} on
a calculator). The slope of the reduced major
axis is λ = 0.6 and the approximation for
t is λ+ 0.3 log 0.8 = 0.5331. The two esti-
mates for α are 0.54± 0.09 (major axis) and
0.60± 0.08 (reduced major axis). When r =
0.4 they become 0.33± 0.17 and 0.60± 0.12,
respectively.

An alternative to basing estimates directly
on the bivariate normal distribution∗ is to
assume that x and y would lie exactly on a
straight line if it were not for ‘‘errors.’’ The
errors are due to biological variation rather
than to measurement errors∗ in this context.
The model is called the linear functional rela-
tionship model. It is possible to estimate α
provided that the ratio of error variances is
assumed known. In fact, if they are assumed
equal, the estimate turns out to be the major
axis. However, no sampling theory based on
the model is available and the approach has
not proved very fruitful. Further details are
given in Sprent [22] and Kendall and Stuart
[13]. Bartlett’s estimate of slope also belongs
to this class [2]. It is an example of the use
of an instrumental variate∗ (see Kendall and
Stuart [13]). the estimate has enjoyed some
popularity in allometry, but unfortunately
the assumptions underlying its use are not
usually fulfilled unless the scatter∗ is low.
A detailed numerical example of the use of
Bartlett’s estimate has been given by Simp-
son et al. [21].

STATISTICAL TESTS

The most commonly required test is for depar-
ture from isometry. For both the major axis
and reduced major axis, α = 1 implies that
σy = σx (in terms of population parameters),
and this is most conveniently tested for by
computing z = y− x and w = y+ x for each
individual. Since cov(z, w) = σ 2

y − σ 2
x , the test

for σy = σx is equivalent to testing for zero
correlation∗ between z and w. If the isometric
value of α is 0.33 (for example) rather than
1, then z = y− 0.33x and w = y+ 0.33x are
used to test whether σy = 0.33σx in the same
way.

Confidence intervals∗ for α may be ob-
tained using the approximate large sample

standard errors for log α̂. These are easily
derived from those given earlier and are

SE(log α̂) �
√(

1− r2

r2n

)
for the major axis

SE(log α̂) �
√(

1− r2

n

)
for the reduced major axis.

There is some advantage to using the SE
of log α̂ rather than α̂ since the formulas do
not involve the population value α. A better
approximation for the reduced major axis has
been given by Clarke [4]. See also Jolicoeur
[12].

An important question in allometry is
whether or not one group of individuals or
species is an allometric extension of another.
Figure 5 illustrates a case where this is so
and also shows why the use of different lines
can give different answers to this question.
Group A is a linear extension of group B only
along the major axis, not along the regression
line of y on x. There seems to be no generally
recommended statistical test for this situa-
tion. Analysis of covariance∗ would be used
with regression lines,∗ and this suggests a
rough test for use with the major axis. First
obtain a pooled estimate∗ of the common slope
of the axis in the two groups as α̂ = 1

2 (α̂1 + α̂2)
and then test for differences between groups
in a direction perpendicular to this slope,
ignoring any sampling error in α̂. This is
equivalent to calculating z = y− α̂x for each
individual (or species) in each group and then
testing whether the mean of z differs between
groups.

Figure 5. Allometric extension.
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Statistical tests are often omitted in allom-
etry and there are a number of reasons for
this. One is that in many growth studies
the random error∗ is small compared to the
systematic change and the conclusions are
apparent. Another is that where points rep-
resent species, which cannot be thought of as
randomly sampled from a population, the rel-
evance of statistical sampling theory is slight.
Even in growth studies the individuals are
rarely a proper random sample from a defined
population, so that significance tests∗ play a
less important role than they do in random-
ized experiments∗. Finally, the inadequacy
of statistical methods based on the bivariate
normal distribution or the linear functional
relationship model is an important factor.

MULTIVARIATE ALLOMETRY

When more than two measurements of an
organism are studied, an overall view of the
joint variation is desirable. For p measure-
ments X1, . . . , Xp the log-log plot generalizes
to a plot of x1 = log X1, . . . , xp = log Xp in p
dimensions, a useful concept even though it is
not possible to actually plot the points. Isom-
etry corresponds to the direction vector α0 =
(1/
√

p, . . . , 1/
√

p ) with the usual provision
that if Xi represents an area or volume it is
replaced by X1/2

i or X1/3
i , respectively. Allom-

etry again corresponds to departures from
isometry, but clearly the possibilities are con-
siderably wider in p dimensions than in two
dimensions. A further problem is that there
is no longer a large body of empirical evidence
to suggest that departures from isometry are
usually adequately summarized by a straight
line. However, such a departure is a sensi-
ble starting point, and it may be summarized
by a direction vector α = (α1, . . . ,αp), where
|α| = 1 (i.e.,

∑
α2

i = 1). The angle between α

and α0 is given by cos θ =∑
αi/
√

p.
The direction α may be estimated using

either the major or the reduced major axis.
In the latter α̂ is taken to be the direction
vector proportional to (S1, . . . , Sp) where Si
is the sample standard deviation of xi. Using
the major axis, α̂ is taken equal to the direc-
tion of the first eigenvector∗ of the covariance
matrix∗ of x1, . . . , xp. This eigenvector is often
referred to as the first principal component∗.

Corruccini and Henderson [5] give a good
example of the use of the major axis. The
linear functional relationship model has also
been generalized to many variables [8,22],
but there are few examples of its actual use.

The statistical sampling theory for many
variables encounters a major difficulty that
does not exist in the bivariate case. This
is the need to specify the error structure
about the allometric line. In the bivariate
case variation perpendicular to the line is in
one dimension only and may be summarized
by a standard deviation. In p dimensions the
space perpendicular to the allometric line has
p− 1 dimensions, so that covariation as well
as variation must be specified. The simplest
thing is to assume zero covariance perpen-
dicular to the line, which implies that all
eigenvalues∗ of the covariance matrix apart
from the first are equal. A fairly straight-
forward test for this hypothesis has been
described by Morrison [16, p. 250]. The eigen-
vector corresponding to the first eigenvalue
is the allometric direction, and for this to be a
sensible summary of the data the first eigen-
value must be considerably greater than the
p− 1 (equal) eigenvalues. This is the same
qualitative judgment that has to be made
in the bivariate case. The first eigenvalue
is the variance in the allometric direction
and the others are the variances in direc-
tions perpendicular to the line. Variation
along the line should be much greater than
that about the line. Isometry corresponds
to a further specialization of this situation
to the case where the first eigenvector is
(1/
√

p, . . . , 1/
√

p). Kshirsagar [15] gives an
overall χ2 test∗ for both the isometric direc-
tion and independent variation about the line
and also shows how to partition the χ2 into
its two components. Morrison [16] describes
a test for the isometric direction which does
not rest on the assumption that all other
eigenvalues are equal. Anderson [1] should
be consulted for the detailed derivation of the
tests described in Morrison’s book.

Mosimann [17,18] has proposed a more
general approach which avoids the very re-
strictive assumption of independent varia-
tion orthogonal to α0 or α. He defines size
as a function G of the original measure-
ments X, with the property that G(X) > 0 and
G(aX) = aG(X) for a > 0. A shape vector Z(X)
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is defined to be any dimensionless vector with
p− 1 components. Isometry is then defined
to be statistical independence∗ of shape and
size, and it is shown that for a given choice of
size, either all shape vectors are independent
of size or none are. Mosimann also shows
that if shape is independent of one measure
of size, then it cannot be independent of any
other measure of size.

A test for isometry of shape with respect to
a given size can be carried out on a log scale
using multiple regression∗ techniques to test
independence∗. For example, if (x1, . . . , xp)
are the measurements on a log scale, then a
common measure of size is x =∑

xi/p and a
possible shape vector is (x1 − x, . . . , xp−1 − x).
If R2 is the multiple correlation∗ between x
and (x1 − x, . . . , xp−1 − x) based on n individu-
als, then {R2(n− p)}/{(1− R2)(p− 1)}may be
used to test the independence of shape and
size. Provided that (x1, . . . , xp) have a multi-
variate normal distribution∗, the statistic has
the F-distribution∗ with p− 1, n− p degrees
of freedom when the null hypothesis is true.
Mosimann and James [19] give an example of
this test, but no attempt is made to quantify
departures from isometry, and this seems to
be a weakness of the approach so far.

The problem of whether one group of points
is an allometric extension of another in p
dimensions does not seem to have been dealt
with explicitly. There have been some ad-
vances in the wider problem of making com-
parisons between groups, ignoring variation
in certain given directions (e.g., the isometric
direction). Burnaby [3] has extended discrim-
inant analysis∗ to deal with this situation
and Gower [7] has extended Burnaby’s work
to cover the case where the direction to be
ignored is an estimated allometric direction.
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FURTHER READING

D’Arcy Thompson’s book Growth and Form
(Cambridge University Press, Cambridge,
1917, 1942) provides the standard intro-
duction to problems of scale in form and
function. An account of some recent work
is given in Scale Effects in Animal Locomo-
tion by T. J. Pedley (Academic Press, New
York, 1977). S. J. Gould’s article ‘‘Allome-
try and size in ontogeny and phylogeny’’
(Biol. Rev., 41, 587–640) gives a compre-
hensive survey of the uses of allometry,
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and Sprent’s 1972 article ‘‘The mathematics
of size and shape’’ (Biometrics, 28, 23–37)
reviews the mathematical and statistical
side. D. L. Pilbeam and S. J. Gould, in their
1974 contribution ‘‘Size and scaling in human
evolution’’ (Science, 186, 892–901), give an
interesting account of the use of allometry
to investigate evolutionary relationships. A
variety of different allometric studies are
reported in Problems of Relative Growth
by J. S. Huxley (Methuen, London, 1932),
and a good discussion of some of the prob-
lems with allometry is given in Essays on
Growth and Form Presented to D’Arcy Went-
worth Thompson, edited by W. E. Le Gros
Clark and P. B. Medewar (Clarendon Press,
Oxford, 1945).

See also ANTHROPOLOGY, STATISTICS IN; PRINCIPAL

COMPONENT ANALYSIS, GENERALIZED; REGRESSION

(Various); and SIZE AND SHAPE ANALYSIS.

M. HILLS

ALMOST CERTAIN CONVERGENCE.
See CONVERGENCE OF SEQUENCES OF RANDOM

VARIABLES

ALMOST-LACK-OF-MEMORY (ALM)
DISTRIBUTIONS

A random variable X is defined to have
an almost-lack-of-memory (ALM) distribu-
tion [1] if the Cauchy functional equation

Pr(X − b < x|X � b) = Pr(X < x) > 0,

here given in probabilistic form, holds for
infinitely many values of b, b > 0. Continu-
ous distributions with this property possess
a density f (·), almost surely, that satisfies
(see Ref. 1)

fX (nc+ x) = αn(1− α)f (x), 0 < x < c, (1)

0 < α < 1, n = 0, 1, 2 . . ., for any arbitrary
positive integer c.

Let S(·) be a survival function defined in
[0,∞), so that S(x) = 1− F(x) for a cumula-
tive distribution function (cdf) F(·), and for c,
a positive integer, the functional equation

S(nc+ x) = S(nc)S(x), x � 0, (2)

n = 1, 2, . . . , is a particular case of the ALM
property (1). If (2) holds for a nonnegative
random variable with cdf F(x) = Pr(X � x),
x > 0, then [2] F(·) is of the form

F(x) = 1− α[x/c] + α[x/c]F(x− [x/c]c),

x � c > 0, (3)

where α = S(c) < 1 and [x] is the smallest
integer less than or equal to x. Hence, each cdf
F(·) satisfying Equation 1 is uniquely deter-
mined by the values of F(x) for 0 � x < c.

As an application, consider a queueing
system with instantaneous repairs after any
failure of a constant-lifetime server. Then
each cdf satisfying Equation 3 is the cdf of
the ‘‘blocking time,’’ that is, the total time
taken by a customer, and conversely [1,2].

REFERENCES

1. Chukova, S. and Dimitrov, B. (1992). On dis-
tributions having the almost-lack-of-memory
property. J. Appl. Probab., 29, 691–698.

2. Lin, G. D. (1999). Letter to the editor. J. Appl.
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See also EXPONENTIAL DISTRIBUTION and QUEUEING

THEORY.

α-LAPLACE DISTRIBUTION. See
LINNIK DISTRIBUTION

ALTERNATIVE HYPOTHESIS

A hypothesis that differs from the hypothe-
sis being tested is an alternative hypothesis,
usually one to which it is hoped that the test
used will be sensitive. Alternative hypotheses
should be chosen having regard to (1) what
situation(s) are likely to arise if the hypoth-
esis tested is not valid and (2) which ones,
among these situations, it is of importance to
detect.

Usually, a whole class of alternative hypo-
theses, rather than a single one, is used.

See also CRITICAL REGION; HYPOTHESIS TESTING; LEVEL OF

SIGNIFICANCE; NULL HYPOTHESIS; and POWER.
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AMERICAN JOURNAL OF HUMAN
GENETICS

The American Journal of Human Genetics
(AJHG) was founded in 1948, and is pub-
lished monthly by the University of Chicago
Press in two volumes per year, six issues
per volume. The website for the journal is
www.journals.uchicago.edu/AJHG

As stated on the website:

‘‘AJHG is [sm1]a record of research and review
relating to heredity in humans and to the appli-
cation of genetic principles in medicine, psychol-
ogy, anthropology, and social services, as well as
in related areas of molecular and cell biology.
Topics explored by AJHG include behavioral
genetics, biochemical genetics, clinical genetics,
cytogenetics, dysmorphology, genetic counsel-
ing, immunogenetics, and population genetics
and epidemiology’’.

AJHG is the official scientific publication
of the American Society of Human Genetics.

AMERICAN SOCIETY FOR QUALITY
(ASQ)

[This entry has been updated by the Editors.]
The United States is generally considered

the country that founded modern quality con-
trol. The work of Walter Shewhart∗ of the
American Telephone and Telegraph Com-
pany and his associates George Edwards,
Harold Dodge, and Harry Romig forms the
nucleus around which the movement grew.
However, it was the crisis of World War II
that gave impetus to the field. Business man-
agers realized that government-mandated
quality control programs for defense prod-
ucts had an equally important application in
civilian products.

During World War II a series of short
courses were conducted throughout the coun-
try on statistical quality control∗. Those who
attended were encouraged to get together
to exchange ideas and to reinforce their
new-found knowledge. A series of local soci-
eties and several regional ones were founded
throughout the country. In 1946, they formed
a confederation called the American Soci-
ety for Quality Control, which acts as the
primary professional society for the United

States, Mexico, and Canada. The headquar-
ters office, initially in New York, was later
transferred to Milwaukee, Wisconsin, where
it is now located.

In 1997 the society dropped ‘Control’ from
its title, and, as the American Society for
Quality (ASQ), adopted a new mission of pro-
moting performance excellence worldwide.

The ASQ has encouraged community col-
leges and universities to offer courses in the
field. Despite the demand, most institutions
of higher education choose not to have sepa-
rate curricula; rather, courses are woven into
other curricula.

The society is organized in modified matrix
fashion. There are in 2004 more than 250
local geographic sections throughout major
industrial areas of the United States, Canada
and Mexico. Some members also choose to
join one or more of the 27 industrial or
subdiscipline-oriented divisions. They usu-
ally hold one or more national conferences
per year. The divisions are listed on the ASQ’s
website, www.asq.org.

By 1991 the membership of ASQ exceeded
100,000, and in 2001 membership extended
to 122 countries. Members are classified as
Members, Senior Members, or Fellows.

Honors are presented by the society at
the national, divisional, and sectional levels.
Best known are the Shewhart Medal, the
Edwards Medal, the Grant Award, and the
Brumbaugh Award.

The initial journal of ASQC was Indus-
trial Quality Control, later renamed Quality
Progress. The Journal of Quality Technology∗

has been published since 1969. Technomet-
rics∗ is a journal published jointly with the
American Statistical Association. In addition,
the Transactions of the Annual Technical
Conference have been found to be a use-
ful source of practical information. Quality
Management Journal and Software Quality
Professional began publication in 1993 and
1998, respectively. Many other publications
are published centrally and by the divisions,
conference boards, and local sections.

In the early days of the ASQC the empha-
sis was primarily on the statistical basis of
sampling schemes∗ for raw materials com-
ing into a plant or warehouse. There was
also interest in reducing the cost of final
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inspection. The early emphasis was on detec-
tion of nonconforming products. A bit later
the emphasis changed to the prevention of
defects. Shewhart’s work in the economic
control of quality∗ in manufacturing pro-
vided the basis for this work. Today, manage-
rial, motivational, and engineering aspects
get a more balanced hearing. The ASQ is
the primary vehicle for teaching these con-
cepts. It has an important educational arm
which conducts courses in quality and relia-
bility throughout North America. In addition,
educational materials are available for per-
sons wishing to conduct courses under local
auspices. Examinations for certification as
Certified Quality Engineer (CQE), Certified
Reliability Engineer (CRE), Certified Quality
Technician (CQT), Certified Quality Manager
(CQM), and Certified Reliability Technician
(CRT) are available throughout the world for
both members and nonmembers.

The savings due to reliable quality con-
trol programs initiated since World War II
approached $1 trillion worldwide.

In later years ASQ became involved in
coordinating national quality standards on
behalf of the American National Standards
Institute. These have worldwide impact.

The society maintains close relations with
societies associated with quality in various
parts of the world. These include the Euro-
pean Organization for Quality, the Japanese
Union of Scientists and Engineers, the New
Zealand Organization for Quality Assurance,
the Australian Organization for Quality Con-
trol, and a variety of others.

See also JOURNAL OF QUALITY TECHNOLOGY; QUALITY

CONTROL, STATISTICAL; and TECHNOMETRICS

W. A. GOLOMSKI

AMERICAN SOCIETY FOR QUALITY
CONTROL (ASQC). See AMERICAN

SOCIETY FOR QUALITY (ASQ)

AMERICAN STATISTICAL
ASSOCIATION

[This entry has been updated by the Editors.]
The American Statistical Association,

founded in 1839 as a nonprofit corporation,

has as its purpose ‘‘to foster, in the broad-
est manner, statistics and its applications,
to promote unity and effectiveness of effort
among all concerned with statistical prob-
lems, and to increase the contribution of
statistics to human welfare.’’ It is a profes-
sional association whose membership is open
to individuals with interest and background
in the development and use of statistics in
both methodology and application.

The Association is governed by an
elected board of directors, which represents
geographical areas, subject-matter areas,
and the offices of President, Past Pres-
ident, President-elect, Secretary-treasurer,
and three Vice-presidents. There is also a
council made up of representation from each
of the chapters of the association as well
as the sections, as noted below. There are
presently (in 2004) 78 chapters. Membership
at the end of 2003 exceeded 17,000 in the
U.S., Canada and other countries.

A central office is maintained at 1429
Duke Street, Alexandria, VA - 22314-3415;
tel. (703) 684-1221. The staff includes an
Executive Director, Director of Programs,
Director of Operations, and support staff.
Technical editing for some journals is main-
tained at this office.

The chapters of the ASA have individual
programs throughout the year. These vary
from one or two to as many as 20 meetings
in a single year. Each chapter is autonomous
in its program of activities. Chapters vary
in size from 25 to 1800 members. A chapter
may sponsor a seminar of one or more days
or a short course in a subject-matter area or
a set of methodological techniques. Chapters
often collaborate with local or regional units
of other professional associations.

Within ASA there are 21 sections. These
represent different areas of activity and
include Bayesian Statistical Science, Gov-
ernment Statistics, Health Policy Statistics,
Nonparametric Statistics, Quality and Pro-
ductivity, Risk Analysis, Statistical Con-
sulting, Statistical Graphics, Statistics and
the Environment, Statistics in Defense
and National Security, Statistics in Epi-
demiology, Statistics in Sports, Business
and Economics, Social Statistics, Statisti-
cal Education, Physical and Engineering
Sciences, Biometrics, Statistical Computing,
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Survey Research Methods, Biopharmaceu-
tics, Teaching of Statistics in the Health
Sciences, and Statistics in Marketing. The
sections develop various activities which
are useful to statistical practitioners and
researchers. These include (1) cosponsorship
of regional meetings with other professional
associations, (2) review of statistical com-
puter packages, (3) development of visual-
aids materials, (4) appraisal of surveys, and
(5) recommendations of statistical curric-
ula in health sciences, computer sciences,
industrial statistics, etc. Sections cospon-
sor symposia, workshops, and special topic
meetings. A number of the sections partici-
pate in advisory capacities in such areas as
national and international standards, edu-
cational programs, and federal statistical
activities.

One of the strengths of the association
is its committees, which vary from advi-
sory boards to government agencies to joint
committees with other professional associa-
tions. There are approximately 90 commit-
tees within the association. Although some
are the usual ‘‘in-house’’ committees and some
are short-term ad hoc committees, 23 relate
to activities and programs outside the statis-
tical profession, as well as to key issues and
concerns on national and international lev-
els. For example, the Committee on Law and
Justice Statistics reviews the programs and
structure of statistical data collection and
analysis in the U.S. Department of Justice.
Advisory committees serve the U.S. Bureau
of the Census∗ and the Energy Information
Administration of the Department of Energy.
Possibilities for similar committees are con-
tinually being studied. The areas of privacy
and confidentiality, as well as the statistical
components of legislative action, are ser-
viced by active committees. For the latter,
a consortium of 10 professional associations
was formed. A joint committee of the Ameri-
can Statistical Association and the National
Council of Teachers of Mathematics works
on developing the teaching of Statistics and
Probability at every level of school education
from grades K-12. Some activities are in close
communication with similar groups in other
countries.

The association holds an annual meeting.
Often, this is in cooperation with other statis-
tical and related societies, e.g., the Interna-
tional Biometric Society∗, Eastern and West-
ern North American Regions, and the Insti-
tute of Mathematical Statistics∗. This is usu-
ally preceded by one- or two-day short courses
in statistical methodology. There is also joint
sponsorship in national and regional activi-
ties with such professional organizations as
the American Society for Quality (ASQ)∗, the
Society of Actuaries, etc.

The association engages in programs of
research and development in various areas of
statistics in the types of activities that would
not ordinarily be considered appropriate for a
particular university or research institution.
At times, the association engages in national
and international projects in an attempt to
make statistics even more useful to the pro-
fession and to the public at large. An example
of this was the international seminar on the
Transfer of Methodology between Academic
and Government Statisticians.

Some of the programs in which the ASA
has been engaged have far-reaching conse-
quences in the areas of social science, survey
research methods, physical and engineering
sciences, and health sciences, to state a few.
For example, beginning in 1977, the associa-
tion engaged in a joint venture with the U.S.
Bureau of the Census, ‘‘Research to Improve
the Social Science Data Base.’’ This included
research fellows and trainees in time series∗,
demography∗, computer software, editing∗ of
large data sets, and a number of related
areas. Another research program concerns
the quality of surveys.

Educational programs, often in conjunc-
tion with other professional associations, in-
clude the development of resource material
and visual aids for the teaching of statistics∗,
a visiting lecturer program, development and
testing of a statistical curriculum for sec-
ondary schools, and short courses. The associ-
ation also sponsors research fellowships and
traineeships in which an individual spends a
major portion of a year at a federal statistical
agency. In the area of continuing education,
videotapes of short courses and special lec-
tures are made available to a wide segment
of professional statisticians, not only in ASA
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chapters, but at universities and in industrial
organizations.

In 1976, in collaboration with ASA mem-
bers in several Latin American countries, the
association initiated a program of symposia
and site visits to stimulate the development
of statistics in these countries. The result has
been increased professional activity and the
development of new statistical associations
in some of the host countries.

The American Statistical Association is
affiliated with a number of national and inter-
national organizations. It is one of approx-
imately 50 national statistical associations
affiliated with the International Statistical
Institute∗. Furthermore, it maintains repre-
sentation in sections of the American Associ-
ation for the Advancement of Science (AAAS).
Through its representatives the ASA is active
in some AAAS programs, such as scientific
freedom and human rights and the inter-
national consortium of professional associa-
tions. The ASA maintains representation on
the councils of the American Federation of
Information Processing Societies, the Con-
ference Board of the Mathematical Sciences,
the Social Science Research Council, and the
National Bureau of Economic Research.

The Association publishes seven journals;
Journal of the American Statistical Associ-
ation∗, The American Statistician∗, Techno-
metrics∗ (jointly with the American Society
for Quality Control), the Journal of Agricul-
tural, Biological and Environmental Statis-
tics∗ (jointly with the International Biometric
Society∗), the Journal of Business and Eco-
nomic Statistics∗, the Journal of Computa-
tional and Graphical Statistics (jointly with
the Institute of Mathematical Statistics∗ and
Interface Foundation of North America), and
the Journal of Educational and Behavioral
Statistics∗ (jointly with the American Educa-
tional Research Association). ASA also pub-
lishes Current Index to Statistics∗ (with the
Institute of Mathematical Statistics∗) and the
three magazines Amstat News, Chance and
Stats, the last-named reaching more than
3,000 student members of ASA. Beyond this,
there are proceedings of its annual meetings
by sections and various reports on confer-
ences, symposia, and research programs.

The American Statistical Association is
dedicated to be of service to its members

abroad as well as its members within the
United States and Canada, and has from
time to time assisted other associations in the
development of programs. Its services extend
to the entire profession and to society in gen-
eral. New programs are developed as needs
become evident. Occasionally, the Associa-
tion is called upon to provide an independent
review or appraisal of statistical programs or
the statistical content of a critical program in
science or technology.

The website for ASA and its publications
is www.amstat.org.

FRED C. LEONE

AMERICAN STATISTICIAN, THE

[This entry has been updated by the Editors.]
The American Statistician is one of the

principal publications of the American Sta-
tistical Association* (ASA). The Journal of
the American Statistical Association* (JASA)
is devoted largely to new developments in
statistical theory and its extensions to a wide
variety of fields of application. The Ameri-
can Statistician emphasizes the professional
development of ASA members by publishing
articles that will keep persons apprised of
new developments in statistical methodology
through expository and tutorial papers deal-
ing with subjects of widespread interest to
statistical practitioners and teachers. It is
published quarterly.

The origins of The American Statistician
can be traced to the American Statistical
Association Bulletin, which, from 1935 until
1947, served as the organ of information
relating to ASA chapter activities, members,
annual meetings, and employment opportu-
nities for statisticians. At the end of World
War II, the need was recognized for a more
ambitious publication, providing expanded
news coverage as well as serving the needs
for professional development, and publica-
tion of The American Statistician was autho-
rized. The first issue appeared in August
1947.

The contents of the first issue provide a
preview of the major emphases that pre-
vailed for many years. A major portion of
the issue (11 of a total of 25 pages) was
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devoted to news items, including information
about ASA programs, government statistics,
other statistical societies, chapter activities,
and news about members. The articles dealt
with statistical applications in engineering
and process control (‘‘Statistical Engineering’’
by Tumbleson), electronic computing (‘‘New
High-Speed Computing Devices’’ by Alt), and
the teaching of statistics (‘‘A Well-Rounded
Curriculum in Statistics’’ by Neiswanger and
Allen). In addition, a note by Haemer on
graphic presentation, the first in a series,
appeared, and a ‘‘Questions and Answers’’
department to serve as a consulting forum,
edited by Mosteller, was begun. The early
emphasis on teaching of statistics contin-
ued throughout the period 1947–1979. Simi-
larly, the early recognition of electronic com-
putation was matched by continuing atten-
tion to statistical computing, with particular
emphasis on this area found since the mid-
1970s. The current ‘‘Statistical Computing
and Graphics’’ section dates back to
1974.

Teaching of statistics has always been a
major focus of The American Statistician. The
section ‘‘The Teacher’s Corner’’ was begun
in 1962 and is still current in 2004. Other
sections are ‘‘Statistical Practice’’, ‘‘General’’,
‘‘Reviews of Books and Teaching Materials’’,
‘‘Statistical Computing and Graphics’’, and
‘‘Letters’’.

The professional interests of statisticians
were the focus of several early papers. In the
1970s, renewed interest in statistical con-
sulting led to more frequent articles on this
subject. It is interesting to note that an arti-
cle ‘‘The Outlook for Women is Statistics,’’ by
Zapoleon, appeared in 1948.

Occasionally, special symposia papers
have been published, such as a series of
papers on ‘‘Reliability and Usability of Soviet
Statistics’’ (1953) and the papers of a sym-
posium on unemployment statistics (1955).
During 1981, the ‘‘Proceedings of the Sixth
Symposium on Statistics and the Environ-
ment’’ was published as a special issue of The
American Statistician.

The year 1974 represented a major turn-
ing point for The American Statistician.
Beginning in that year, all news items were
moved to the new ASA publication Amstat
News. In 1973, these items accounted for

about one-third of the journal’s pages, and
a drop in the number of pages published
from 1973 to 1974 corresponds largely to this
shift. Since 1974, The American Statistician
has devoted its pages exclusively to papers
and notes on statistics.

The special departments of The Ameri-
can Statistician varied during the period
1947–1980. For example, the two initial
departments ‘‘Questions and Answers’’ (a
statistical consulting* forum) and ‘‘Hold
That Line’’ (concerned with graphic pre-
sentation*) were terminated in 1953 and
1951 respectively. The department ‘‘Ques-
tions and Answers’’ was revived in 1954,
but was modified from a consulting forum
to a section containing essays on a variety
of statistical subjects. The new ‘‘Questions
and Answers’’ department was edited by
Ernest Rubin from 1954 until 1973, when
the department was terminated. Rubin wrote
many of the essays published during this
period.

In 1948, an editorial committee of six per-
sons was organized to assist the editor. In
1954, this committee gave way to seven asso-
ciate editors, a number that grew to 31 by the
end of 2004.

The editorial review process for manu-
scripts is similar to that used by many other
professional journals. All manuscripts that
are potentially suitable for the journal are
assigned to an associate editor for
review.

The publication policy for The American
Statistician is developed by the ASA Commit-
tee for Publications. The policy in effect dur-
ing the late 1970s called for articles of general
interest on (i) important current national and
international statistical problems and pro-
grams, (ii) public policy matters of interest
to the statistical profession, (iii) training of
statisticians, (iv) statistical practice, (v) the
history of statistics*, (vi) the teaching of
statistics, and (vii) statistical computing. In
addition, expository and tutorial papers on
subjects of widespread interest to statisti-
cal practitioners and teachers are strongly
encouraged.

The website for the journal can be accessed
via that for the ASA, www.amstat.org

JOHN NETER
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ANALYSIS OF COVARIANCE

The analysis of covariance is a special form of
the analysis of variance∗ and mathematically
need not be distinguished from it, although
there are differences in utilization. (Any read-
er who is unfamiliar with the analysis of
variance is advised to read the article on that
topic before proceeding.) Using the analysis
of covariance, an experiment or other investi-
gation is planned and the analysis of variance
is sketched out, based upon the model

y =Mθ + η,

where y is the vector of n data and η of
n independent residuals∗, θ is a vector of p
parameters, and M is an n× p matrix relat-
ing to the data to the parameters. It is then
realized that there are q variates that could
be measured which might explain some of
the variation in y, so the model is extended
to read

y =Mθ +Dβ + η =
(

M
..
.D

) θ

· · ·
β

+ η,

where D is an n× q matrix of supplemen-
tary data and β is a vector of q regression
coefficients∗, one appropriate to each variate.
By this extension it is hoped to improve the
estimate of θ . Following the nomenclature
usual in correlation∗ and regression∗, the val-
ues of y make up the dependent variate and
those in the columns of D the independent
variates.

As has been said, that is not different
in its essentials from an ordinary analysis of
variance. Thus there is nothing novel in intro-
ducing parameters that are not themselves
under study but might serve to explain irrele-
vant variation. The blocks of an experimental
design∗ will serve as an example. Further,
the effect of blocks can be removed in either
of two ways. If there were three of them,
three block parameters could be introduced
in θ , probably with some implied constraint

to reduce them effectively to two. Alterna-
tively, two independent variates, x1 and x2,
could be introduced, such that x1 was equal
to +1 in block I, to −1 in block II, and to
0 in block III, while x2 took the values +1,
+1, and −2 in the three blocks, respectively.
The outcome would be the same. Where a
variate is thus derived from characteristics
of the design rather than from measurement
it is called a ‘‘pseudo-variate’’∗. The device is
one that links the analyses of variance and
covariance as a single technique.

Nevertheless, the user will continue to see
them as different, usually thinking of the
analysis of variance as the form visualized at
the inception of the investigation and of the
analysis of covariance as a means of coping
with accidents and afterthoughts.

HISTORY AND DEVELOPMENT

The idea of allowing for an independent
variate originated with Fisher∗ [4], who
unfortunately did not appreciate that a
covariance adjustment necessarily intro-
duces nonorthogonality. The derivation of
standard errors∗ of means is due to Wishart
[6]. Bartlett [1] considerably extended the
usefulness by introducing pseudo-variates for
incomplete data. Later developments have
tended to assimilate the method to the anal-
ysis of variance.

FORM OF THE CALCULATIONS

Nowadays, there are numerous computer
packages able to carry out the necessary cal-
culations. Nevertheless, some more detailed
understanding of them can be helpful.

To take first the case of only one inde-
pendent variate, the analysis of variance
for its data, x, will give a sum of squared
deviations∗ for error that has a quadratic
form, i.e., it can be written as x′Hx, where H
is some positive semidefinite matrix derived
from the design. A corresponding quantity,
y′Hy, exists for the dependent variate, y. It
will also be necessary to know y′Hx = x′Hy.
Then, for a single independent variate, β,
the regression coefficient of y on x, equals
y′Hx/x′Hx. Also, the sum of squared devia-
tions is reduced from y′Hy with f degrees
of freedom to y′Hy− (y′Hx)2/(x′Hx) with
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(f − 1) when all values of y are adjusted to a
standard value of x. This new mean-squared
deviation∗ will be written as σ 2.

In the analysis of covariance the variation
in x is regarded as a nuisance because it
disturbs the values of y, the variate actually
under study. Accordingly, any mean of y, e.g.,
a treatment mean∗, is adjusted to a standard
value of x. If the corresponding mean of x
differs from this standard by d, the mean of
y needs to be adjusted by βd. Similarly, if a
difference of means of y is under study and
the corresponding means of x differ by d, the
same adjustment needs to be applied to make
the y-means comparable.

An adjustment of βd will have a vari-
ance of σ 2d2/(x′Hx). If no adjustment had
taken place, the variance of the y-mean (or
difference of y-means) would have been, say,
A(y′Hy)/f , where A is a constant derived from
the design. After adjustment the correspond-
ing figure is [A+ d2/(x′Hx)]σ 2, which is not
necessarily a reduction, although sometimes
the advantage will be considerable.

These results are readily generalized to
cover p independent variates. Let C be a
(p+ 1)× (p+ 1) matrix; the first row and the
first column relate to the dependent variate
and the others to the independent variates
taken in some standard order. The element
in the row for variate u and the column for
variate ν is u′Hv. Then writing C in parti-
tioned form,

C =
(

Y P′
P X

)
,

the new error sum of squared deviations is
Y −P′X−1P with (f − p) degrees of freedom,
thus giving σ 2, and the vector of regression
coefficients, β, is X−1P. If an adjustment of
β ′d is applied to a mean, it will have a vari-
ance of d′X−1dσ 2.

Some special points need attention. For
example, in the analysis of variance some
lines, e.g., the treatment line in the anal-
ysis of data from an experiment in ran-
domized blocks∗, can be obtained directly
without a second minimization. This is not
so when covariance adjustments are intro-
duced; it is necessary first to find E = y′Hy−
(x′Hy)2/x′Hx and then to ignore treatments
in order to find yH′0y, x′H0y, and x′H0x,

where H0 is some other matrix, and to attri-
bute (E0 − E) to treatments, where E0 =
y′H0y− (x′H0Y)2/x′H0x; i.e., it is necessary
to allow for the possibility that β0, the regres-
sion coefficient when treatments are included
with error, will be different from β, the regres-
sion coefficient∗ based on error alone. Some
have argued against this complication on the
grounds that the two cannot really be dif-
ferent, but reflection shows that they could
be. In an agricultural field experiment, for
example, the error may derive chiefly from
differences in available nutrient from one
part of the field to another. If treatments
are the exaggeration of such differences by
fertilizer applications, all may be well, but if
they are something entirely different, such as
pruning or a change of variety, it is not rea-
sonable to expect that β0 will be the same as
β. Now that computation is so easy, the com-
plication should be accepted at all times. It
is, in any case, required by the mathematics.

Similar complications arise in split-plot∗

situations, because the two regression coeffi-
cients derived from the two error lines, one
for main plots and the other from subplots,
are often different. Since the two errors can
be made up from quite different sources, i.e.,
the balance of different kinds of uncontrolled
variation depends on the plot size, a com-
parison of the two regression coefficients can
be illuminating. The difficulties are chiefly
those of presentation and are much relieved
if an intelligible explanation can be given
for why adjustments, which may necessarily
depend upon different regressions, behave as
they do.

NUMERICAL EXAMPLE

The experiment described in the article on
the analysis of variance has an available
independent variate, namely x, the number
of boxes of fruit, measured to the nearest
tenth of a box, for the four seasons previous
to the application of treatments. Full data
are set out in Table 1. There need be no
difficulty about the sums of squared devia-
tions. The sums of products of deviations are
here found simply by multiplying correspond-
ing deviations from each plot and adding. In
general, wherever in the calculation of sums
of squared deviations a function of x or y
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Table 1. Yields from a Soil Management Trial on Apple Trees

Blocka

I II III IV

Treatment x y x y x y x y

A 8.2 287 9.4 290 7.7 254 8.5 307
B 8.2 271 6.0 209 9.1 243 10.1 348
C 6.8 234 7.0 210 9.7 286 9.9 371
D 5.7 189 5.5 205 10.2 312 10.3 375
E 6.1 210 7.0 276 8.7 279 8.1 344
S 7.6 222 10.1 301 9.0 238 10.5 357

ax represents boxes of fruit per plot in the 4 years preceding the application of treatments; y, the crop
weight in pounds during the 4 years following.
Source: These data were first presented by S. C. Pearce [5] and have been considered in some detail by
D. R. Cox [3] and C. I. Bliss [2].

is squared, the sum of products of devia-
tions is found by multiplying the function
of x by the corresponding function of y. To
cope with the plot feigned to be missing, it
will be convenient to use a pseudo-variate,
w, that has the value 1 for treatment A
in block 1, and 0 elsewhere. Once that is
done it does not matter what values for x
and y are assigned to the missing plot∗.
Here, where it is intended to calculate the
analysis with the plot first included and
later excluded, it will be convenient to use
the actual values throughout—8.2 and 287,
respectively.

Allowing only for blocks, sums of squares
and products are:

y w x
y 24,182 51.50 710.1
w 51.50 0.8333 1.100
x 710.1 1.100 31.63

Allowing for treatments as well, they are:

y w x
y 23,432 42.75 688.3
w 42.75 0.6250 0.958
x 688.3 0.958 24.23

Ignoring w and the missing plot for the
moment, the sum of squared deviations allow-
ing only for blocks is

24,182− (710.1)2/31.63 = 8240

with 19 degrees of freedom. Allowing for
treatments also, it is

23,432− (688.3)2/24.23 = 3880

with 14 degrees of freedom. The analysis of
variance now reads

Source d.f.
Sum of
Squares

Mean
Square F

Treatments 5 4360 872 3.15
Error 14 3880
Treatments+

error
19 8240

The new picture is very different. The
F-value∗ of 3.15 is significant (P < 0.05).
Clearly, the independent variate has effected
an improvement. If there is any doubt, an
analysis of variance establishes it, namely,

Source d.f.
Sum of
Squares

Mean
Square F

Regression 1 19,552 19,552 70.58
Error 14 3,880 277
Regression+

error
15 23,432

The regression coefficient is 688.3/24.23 =
28.41. Adjusting treatment means for y to a
standard value of x = 8.308 (its mean), that
for A is

274.5− 28.41(8.450− 8.308) = 280.5

and for S

279.5− 28.41(9.300− 8.308) = 251.3.
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The last figure shows a large effect of the
adjustment. It appears that the randomiza-
tion∗ had assigned treatment S to some heav-
ily cropping trees, as the values of x show,
and it had therefore shown up better than
it should. To take the difference between the
adjusted means of treatments A and S, i.e.,
29.2 = 280.5− 251.3, the standard error is√

277
{

1
4
+ 1

4
+ (9.300− 8.450)2

24.23

}
= 12.1,

which suggests that A is, in fact, a more
fruitful treatment than S. The other treat-
ments can be investigated in the same way.
The covariance adjustment has had two ben-
eficial effects. It has markedly reduced the
error variance and it has given better-based
treatment means.

The case of the ‘‘missing plot’’ could have
been dealt with in the same way. Adjust-
ing y by w instead of x, the error sum of
squared deviations would have been 23,432−
(42.75)2/0.6250 = 20,508 with 14 degrees of
freedom, as before. For treatments and error
together, the corresponding figure would
have been 24,182− (51.50)2/0.8333 = 20,999
with 19 degrees of freedom, which leaves 491
with 5 degrees of freedom for treatments. The
error variance is now 1465 = (20,508/14).
The method has the advantage of giving
easily a figure for the standard error of the
difference between treatment means. Thus,
that for treatment A and any other treat-
ment is√

1465
{

1
4
+ 1

4
+ (0.2500− 0.0000)2

0.6250

}
= 29.6

There is, however, no objection to using
two independent variates, e.g., both w and x.
In that case the new sum of squared devia-
tions ignoring treatments is

24, 182− (51.50 710.1)
(

0.8333 1.100
1.100 31.63

)−1

×
(

51.50
710.1

)
= 7295 with 18 degrees of freedom.

For the error alone the corresponding figure
is 3,470 with 13 degrees of freedom. That
leads to the following analysis of variance:

Source d.f.
Sum of
Squares

Mean
Square F

Treatments 5 3825 765 2.87
Error 13 3470 267
Treatments+

error
18 7295

CHOICE OF INDEPENDENT VARIATES

Modern computer packages permit the simul-
taneous use of several independent variates,
and thus they extend the usefulness of the
techniques. Nevertheless, the temptation to
introduce every available independent vari-
ate is to be resisted.

The original use of covariance was to effect
adjustments where some disturbing factor
had not been controlled. That remains the
most common application. For example, a
suspicion may arise that a thermostat is
not functioning properly. Pending its replace-
ment, the investigator may introduce peri-
odic measurements of temperature, which
are then used as an independent variate in
the analysis of data. Assuming that there is a
straight-line relationship between the data,
y, and the temperature, the outcome might be
much the same apart from the loss of a degree
of freedom from the error and an arbitrary
loss of regularity in the standard errors∗.
Again, in an agricultural context it may be
found that an experiment has been laid down
on variable soil, a crisis that could be resolved
by a covariance adjustment on measurements
of soil texture or soil acidity. Sometimes, too,
there are quantities that cannot be controlled
precisely. It is not possible, for example, to
grow test animals of exactly the same body
weight or to find patients with identical blood
counts. In these instances covariance adjust-
ments may be used as a matter of course.

At one time the technique had a bad
reputation, arising, it is said, from one much-
publicized example. The story goes that a
field experiment was conducted on the yield of
barley, a covariance adjustment being made
on germination rates. As a result the error
sum of squared deviations∗ was gratifyingly
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reduced, but the treatment effects also dis-
appeared. An obvious explanation is that
the treatments had affected yield by way of
the germination rates and in no other man-
ner. If so, the conclusion could have been of
some importance. The story is not a warn-
ing against using covariance adjustments at
all; indeed, it shows their value in revealing
mechanisms, but it does warn against facile
interpretations, especially when the indepen-
dent variate does not justify its name but is
dependent upon the treatments.

If the covariate is measured before the
application of treatments, which are then
allocated at random, no question need arise.
Nor does any arise when the aim is to find
what the treatments do to the dependent
variate apart from the obvious indirect effect
through the independent. Sometimes, how-
ever, the user cannot be sure whether the
treatments do or do not affect the indepen-
dent variate∗. It is wise in such cases to
be very cautious. It is true that subjecting
the figures to an analysis of variance may
decide the matter. If, however, the proposed
independent variate is an array of ones and
zeros, indicating the presence or absence of
some feature, the user is unlikely to obtain
any useful guidance. Even a more amenable
variate may give an inconclusive response.

CONSTANCY OF THE REGRESSION
COEFFICIENT

It is by no means obvious that the regression
coefficients will be independent of the treat-
ments, and in some instances the assumption
may verge on the absurd. Occasionally, the
difficulty can be met by transformation of
the variates. Where that is not feasible, an
algebraic solution by least squares is usually
not possible. Thus, with data from a designed
experiment it is simple to fit separate regres-
sion coefficients if the design is completely
randomized but not if there are blocks, as
usually there will be. Although with the aid
of a computer some kind of minimization
can often be achieved, it is open to question
whether a constant block effect regardless
of treatments in conjunction with variable
regression coefficients makes a convincing
and realistic model.

ACCIDENTS AND MISHAPS

It has been recognized for a long time that
the analysis of covariance provides a theoret-
ically sound way of dealing with data from
damaged experiments. For example, suppose
that an experiment has been designed in such
a way that a program is available for calculat-
ing an analysis of variance, but m plots (i.e.,
units) have been lost. (It must be reasonable
to assume that the loss is not a result of
the treatments that have been applied.) Each
gap in the data is filled with a convenient
value such as zero, the treatment mean, or
even an arbitrary number. It is now required
to estimate the deviation between the value
for the missing plot given by the method of
least squares and the value that has been
assigned. That is done by writing down a
pseudo-variate for each missing value. It
equals zero for all plots except the one to
which it refers, when it equals 1. A covariance
adjustment on the pseudo-variates will give
a correct analysis, the regression coefficient
of the dependent variate on any pseudo-
variate being minus the required deviation
for the plot. The method has several advan-
tages. For one thing, unlike many methods
for dealing with incomplete data, it gives a
correct F-value for any effect. For another,
it gives correct standard errors for treatment
contrasts∗. Also, it obtains degrees of freedom
without special adjustment.

A similar problem can arise when the
data for any plot (or unit) is the sum of
an unspecified number of observations, such
as weighings. If someone makes a mistake,
there can be doubt whether a certain observa-
tion belongs to this plot or that. The difficulty
can sometimes be resolved by attributing it
first to one and then to the other. If residuals
look extraordinary in one case but are unre-
markable in the other, the difficulty is over,
but sometimes doubt will remain. A similar
problem arises when samples are taken, say
for chemical analyses, and some labels are
lost. The samples can still be analyzed and
a total found. In both examples it is possi-
ble to state the total for the two plots without
knowing how to apportion it between them. It
suffices to attribute the total to one plot and
zero to the other and to adjust by a pseudo-
variate equal to +1 and −1 for the two plots
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and to zero for all others. If three plots are
involved in the muddle, two pseudo-variates
are required. The total is attributed to one
plot and zero to the others. The first pseudo-
variate equals +2 for the plot with the total,
−1 for the other two involved, and zero for
the others. It therefore serves to apportion
a correct amount to the plot credited with
the total. A second pseudo-variate apportions
the rest between the other two affected plots,
being equal to +1 and −1 for those plots and
to zero for all others. The method can be
extended easily to more complicated cases.

Adjustments of this sort can be made in
conjunction. Thus provided that the program
can manage so many, it is permissible to have
some independent variates for adjustment by
related quantities, others to allow for missing
values, and still others to apportion mixed-
up values. All these adjustments can be made
correctly and simultaneously.

TRANSFORMATION OF VARIATES

It should be noted that the independent vari-
ates, despite their name, play a role in the
model analogous to that of M rather than
that of y, i.e., no assumptions are involved
about their distributions, which are perhaps
known, but nothing depends upon them. Ac-
cordingly, there is no need to seek variance-
stabilizing transformations∗ for them. It is,
however, still necessary to consider if y needs
one, since not only must the elements of η

be distributed independently but also they
should have equal variances. In the case of
the independent variates, the need is for
them to be linearly related to y (or to the
transformation of y) and that may call for a
transformation of a different kind. Alterna-
tively, it may be desirable to introduce the
same variate twice but in different forms.
Thus, it has already been mentioned that
a field experiment on variable land might
be improved by an adjustment on soil acid-
ity. However, unless the species is one that
favors extremely acid or extremely alkaline
soils, there will almost certainly be an opti-
mal value somewhere in the middle of the
range of acidity and it would be sensible to
introduce both soil pH and its square to allow
the fitting of a parabola.

The correct choice of transformation for
the independent variate is especially impor-
tant if the intention is to enquire how far
treatments affect the dependent variate other
than through the independent. It is then
essential to fit the right relationship; an inept
choice of transformations can do harm.

An additional variate does little harm
but it is not wise to load an analysis with
adjustments in the hope of something emerg-
ing. A further independent variate should be
included only for good reason, but it should
not be omitted if there are good reasons for
regarding it as relevant. If it does nothing,
there should be reserve about taking it out
again. Clearly, if variates are included when
they reduce the error variance and excluded if
they do not, bias must result. Also, in present-
ing results it is more convincing to report that
some quantity or characteristic was allowed
for but had in fact made little difference than
to ignore it.

LEVEL OF ADJUSTMENT OF AN
INDEPENDENT VARIATE

Basically, the method consists of estimat-
ing the partial regression coefficients∗ of the
dependent variate upon each of the indepen-
dent variates and then adjusting the depen-
dent variate to correspond to standard val-
ues of the independent variates. What these
standard values should be requires some
thought.

First, as long as only linear relations are
in question, it does not much matter, because
differences in adjusted means of the depen-
dent variate will be unaffected, although not
the means themselves. If, however, the first
independent variate is some measured quan-
tity, x, and the second is x2 introduced to
allow for curvature, a computer package,
which does not know that the two are related,
will adjust the first to x, the mean of x,
and the second to (x2), which will not be
the same as (x)2. Probably little harm will
have been done, but the point needs to be
noted.

Pseudo-variates do not usually cause much
trouble with their standard values as long as
only differences are in question. When they
are used for missing plots, the adjustment
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should be to zero, corresponding to the pres-
ence of the plot and not to a mean value, if
actual means of the dependent variate are to
relate to those given by other methods.

INTERPRETATION OF AN ANALYSIS OF
COVARIANCE

An analysis of covariance having been calcu-
lated, the first step usually is to look at the
error-mean-squared deviation to see if it is as
small as was hoped. If it is not, there are two
possibilities. One is that, as with the analysis
of variance, some important source of varia-
tion has been left in error; the other comes
from the independent variates having had
little effect. The latter case needs to be noted
because a research team can go on using
adjustments believing them to be a sovereign
remedy, even though in fact they do no good.
To test the matter formally, it is sufficient to
carry out an F-test∗ using the two minimiza-
tions provided by the analysis of variance
with and without the independent variates.
Sometimes only one of the independent vari-
ates is in question; it may be helpful to repeat
the calculations omitting that variate to see
if it has really had a useful effect.

The testing of effects is the same as for the
analysis of variance. They should be exam-
ined in logical order and tables prepared to
show all effects of importance. Where there
is any possibility of an independent variate
having been affected by the treatments, it
may be advisable to examine the position
using the analysis of variance.

The standard error of a treatment mean
depends party upon the design and the error
variance, as in the analysis of variance, and
partly on the magnitude of the adjustments
that have been required. In one sense these
modifications of standard errors are a help.
Cases commonly dealt with using pseudovari-
ates, missing plots, for example, require mod-
ifications that are not easy to make except
by covariance and then they are made auto-
matically. On the other hand, a measured
independent variate will give arbitrary varia-
tion in the standard errors, which can be very
awkward, for instance, in a multiple com-
parison test∗. Incidentally, some computer
packages disguise the situation by giving a

common mean standard error for a set of
quantities which, but for the adjustments,
would all have been determined with the
same precision. Although often convenient,
the practice can also be misleading.
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FURTHER READING

The general literature on the subject is rather
scanty. Biometrics∗ devoted Part 2 of Vol-
ume 13 (1957) to a series of papers on the
analysis of covariance. Later Communica-
tions in Statistics∗ similarly devoted Volume
A8, Part 8 (1979) to the topic. There is a valu-
able account of the method in C. I. Bliss’s
Statistics in Biology, Volume II, Chapter 20
(McGraw-Hill, New York). Also, there are
short but illuminating descriptions by D.
J. Finney in An Introduction to Statistical
Science in Agriculture (Munksgaard, Copen-
hagen, 1962) and by D. R. Cox in Chapter 4 of
Planning of Experiments (Wiley, New York,
1958).
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ANALYSIS OF MEANS FOR RANKS
(ANOMR)

The analysis of means for ranks (ANOMR)
procedure, attributed to Bakir [1], assumes k
independent samples of sizes ni, i = 1, . . . , k.
Observations

Xij, i = 1, . . . , k; j = 1, . . . , ni,

are selected from k continuous populations
that may differ only in their location param-
eters µi, i = 1, . . . , k. We test H0 : µ1 = µ2 =
· · · = µk versus the alternative that not all
µis are equal.

Replacing Xij by its rank Rij in the com-
bined sample of size N =∑K

i=1 ni−1, we calcu-
late

Ri =
ni∑

j=1

(Rij/ni).

The null hypothesis is rejected if for any i

|Ri − R| � C,

where R = 1
2 (N + 1) is the grand mean of all

the ranks, and where the critical value C
is a function of the size α of the test, of k,
and of n1, . . . , nk. Tables of values of C for
selected combinations for α, k = 3, 4, and for
small values of ni have been provided [1].
For equal sample sizes (ni = n, i = 1, . . . , k),
a Bonferroni* approximation based on the
Wilcoxon rank sum* statistic is available [1],
which turns out to be satisfactory when α is
in the vicinity of 0.072.

An asymptotically normal procedure is
suggested [1]. Specifically, under H0 and
when the sample sizes are equal, each Ri has
the expected value (N + 1)/2 and variance

σ 2 = Var(Rij)
n

·
(

N − n
N − 1

)
= (N − n)(N + 1)

12n

= (k− 1)(kn+ 1)
12

,

since Var(Rij) = (N2 − 1)/12. Note that
H0 here corresponds to the classical
Kruskal–Wallis test* that, however, involves

more general alternatives than does the
ANOMR procedure here.

The standard differences Wi = |Ri − R|/σ
define the random vector W = (W1, . . . , Wk)′.
As N→∞, the limiting distribution of W
is a (singular) multivariate distribution with
equicorrelated structure, given by

Corr(Wi, Wj) = 1/(k− 1).

The large-sample ANOMR test is based on
the following rule: reject H0 if for any i

|Wi| � w,

where the critical value w is obtained from
the analysis of means (ANOM) table of Nel-
son [2] with appropriate values of k and
infinite degrees of freedom. Further details
are provided in Reference 3.
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ANALYSIS OF VARIANCE

The analysis of variance is best seen as a way
of writing down calculations rather than as a
technique in its own right. For example, a sig-
nificance of a correlation coefficient∗, r, based
on n pairs of observations, can be tested in
several ways. Using the analysis of variance
the calculations are set out thus:

Source
Degrees of
Freedom

Sum of
Squared
Deviations

Mean
Squared
Deviation

Correlation 1 Sr2 Sr2

Error n− 2 S(1− r2) S(1− r2)/
(n− 2)

Total n− 1 S
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The significance is then judged by an F-test∗,
i.e., from the ratio of the two mean squared
deviations, which is (n− 2)r2/(1− r2) with
one and (n− 2) degrees of freedom. By using
a standard format, standard tests are avail-
able, thus obviating the need for numerous
formulas and a range of tables, but in general
the same conclusions will be reached however
the calculations are set out.

HISTORY AND DEVELOPMENT

In its origins the method was devised by
Fisher [1] for the study of data from agricul-
tural experiments. At first the only designs,
i.e., randomized blocks∗ and Latin squares∗,
were orthogonal, but later F. Yates [4] showed
how to deal with those that were nonorthog-
onal, like balanced incomplete blocks∗, and
those with a factorial structure of treatments
[5]. From this point development was rapid,
so that the analysis of variance was being
used for a wide range of problems that in-
volved the studying of a linear hypothesis∗.
The original problem of analyzing data from
block designs acquired a new dimension from
the use of matrices, due to Tocher [3], and the
solution of the normal equations in terms of
generalized inverses∗. See GENERAL LINEAR

MODEL.

THE METHOD DESCRIBED

In essentials the method depends upon the
partition of both degrees of freedom and the
sums of squared deviations between a compo-
nent called ‘‘error’’ and another, which may
be termed the ‘‘effect,’’ although generally it
will have a more specific name. Thus, in the
example above the effect was the correlation.
The nomenclature should not mislead. The
sum of squared deviations for the effect is
influenced by error also, which is thought of
as an all-pervading uncertainty or noise∗ dis-
tributed so that, in the absence of the effect
i.e., on the null hypothesis∗, the expectation
of the two sums of squared deviations will
be in the ratio of their respective degrees
of freedom. Hence the mean squared devi-
ations, i.e., the sums of squares divided by
their degrees of freedom, should have simi-
lar expectations. If, however, the effect does
exist, it will inflate its own mean squared

deviation but not that of the error, and if
large enough, will lead to significance being
shown by the F-test. In this context, F equals
the ratio of the mean squared deviations for
the effect and for error.

In practice, analyses of variance are usu-
ally more complicated. In the example, the
total line was obtained by minimizing the
sum of squared residuals∗,

∑
i η

2
i , in

yi = α + ηi,

whereas that for error came from minimizing
a similar quantity in

yi = α + βxi + ηi.

In short, the test really investigated the exis-
tence or non-existence of β. In the example α
is common to both minimizations, represent-
ing as it does a quantity needed to complete
the model but not itself under test, whereas
β was in question. That is the general pat-
tern. Thus in a randomized block design the
blocks form a convenient ‘‘garbage can’’ where
an ingenious experimenter can dispose of
unwanted effects such as spatial position,
different observers, sources of material, and
much else that would disturb the experiment
if not controlled. Consequently, they must
be allowed for, although no one is study-
ing the contents of garbage cans. There will
also be parameters for treatments∗, which
are under study. Minimization with respect
to the block parameters alone gives a mea-
sure of the remaining variation, i.e., that
due to treatments and uncontrollable error.
A further minimization on block and treat-
ments parameters together gives the error
line, that for treatments being found by dif-
ference. (The fact that it can be found more
easily by direct calculation obscures its real
origins.) The block line, relating as it does
to variation that has been eliminated, is not
really relevant but is ordinarily included.

Such an analysis is called ‘‘intrablock’’∗,
studying as it does variation within blocks
and discarding any between them. In some
instances it is possible to derive an ‘‘inter-
block’’∗ analysis, in which the block parame-
ters are regarded as random variables. The
procedure then is to minimize the sum of their
squares, both when the treatment parame-
ters are included and when they are excluded.
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The additional information can be worth-
while, but not necessarily so. For example,
if each block is made up in the same way
with respect to treatments, a study of the
differences between blocks can provide no
information about the effects of treatments.
Also, unless the number of blocks appreciably
exceeds that of treatments, there will not be
enough degrees of freedom to determine the
interblock error properly. Not least, if good
use has been made of blocks as garbage cans,
the distribution of their parameters must be
regarded as arbitrary.

Complications arise when there are sev-
eral effects. Here it is advisable to form the
error allowing for them all, although that
will be considered in more detail below. The
problems arise rather in deciding the order
of testing, but that is often a matter of logic
rather than statistics. For example, with a
factorial design∗ of treatments, if it appears
that there is an interaction∗ of factors A and
B, the conclusion should be that the response
to the various levels of A depends on the level
of B, and vice versa. If that is so, there is no
point in examining the main effects of factors
A and B, since each relates to the response
to the levels of one factor when it has been
averaged over levels of the other. The only
true interpretation must rest upon a two-
way table∗ of means. Again, if the example is
extended to cover parabolic effects, i.e.,

yi = α + βxi + γ x2
i + ηi,

and if it appears that γ should be included in
the model, i.e., the relationship of xi and yi is
not a straight line, there need be no detailed
study of β, since it has no meaning except as
the slope of such a line. However, it is always
necessary to consider what really is under
test. For example, it could be that

yi = α + γ x2
i + ηi

was the expected relationship and doubts had
arisen whether βxi was not needed as well.
The analysis of variance is an approach of
wonderful subtlety, capable of adaptation to
a wide range of problems. It is used to best
advantage when it reflects the thinking and
questioning that led to the inception of the
investigation in the first place. Consequently,
each analysis should be individual and should

Table 1. Yields in Pounds per Plot over Four
Seasons from an Experiment on Soil
Management with Apple Trees

Blocks

Treatment I II III IV Totals

A 287 290 254 307 1138
B 271 209 243 348 1071
C 234 210 286 371 1101
D 189 205 312 375 1081
E 210 276 279 344 1109
S 222 301 238 357 1118

Totals 1413 1491 1612 2102 6618

study each question in logical order. There is
no place for automated procedures, as if all
research programs raised the same questions.
Also, although the analysis of variance had
its origins in the testing of hypotheses∗, there
is no reason for leaving it there. It can shed
light on the sources of experimental error∗; it
can suggest confidence limits∗ for means and
differences of means and much else. In the
hands of a thoughtful user it has unimagined
potentiality; as an unthinking process it leads
to few rewards.

NUMERICAL EXAMPLE

The data in Table 1 [2] represent yields per
plot from an apple experiment in four ran-
domized blocks, I through IV. There were six
treatments. One of them, S, was the standard
practice in English apple orchards of keeping
the land clean during the summer, letting the
weeds grow up in the fall, and turning them
in for green manure in the spring. The rest,
A through E, represented alternative meth-
ods in which the ground was kept covered
with a permanent crop. The interest then lay
in finding out if any of the other methods
showed any improvement over S.

It is first necessary to find the sum of
squared deviations ignoring treatments and
considering only blocks. The estimated value
for each plot, i, is

yi = βj + ηi,

where βj is the parameter for the block, j, in
which it finds itself. It will quickly appear
that the sum of η2

i = (yj − βj)2 is minimized
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where βi is taken to be the appropriate block
mean, i.e.,

β1 = 235.50, β2 = 248.50,

β3 = 268.67, β4 = 350.33.

With these values known it is possible to
write down ηi for each plot; e.g., those for
blocks I and II and treatments A and B are

51.50 41.50 . . .

35.50 −39.50 . . .

..

.
..
.

The sum of these quantities squared comes
to 24,182; it has 20(= 24− 4) degrees of free-
dom, since there are 24 data to which four
independent parameters have been fitted. It
is now required to fit treatment parameters
as well, i.e., to write

yi = βj + γk + ηi.

In a randomized block design∗ in which
all treatment totals are made up in the same
way with respect to block parameters, i.e.,
the design is orthogonal∗, it is sufficient to
estimate a treatment parameter, γk, as the
difference of the treatment mean from the
general mean. The table of deviations, ηi,
now starts

42.75 32.75 . . .

43.50 −31.50 . . .

..

.
..
.

The sum of these squares is now 23,432
with 15 degrees of freedom, because an addi-
tional five degrees of freedom have been used
to estimate how the six treatment means
diverge from the general mean. (Note that
only five such quantities are independent.
When five have been found, the sixth is
known.) The analysis of variance is there-
fore

Sum of Mean
Source d.f. Squares Square

Treatment 5 750 150
Error 15 23,432 1562
Treatments+ error 20 24,182

There is no suggestion that the treatment
mean square has been inflated relative to
the error, and therefore no evidence that the
treatments in general have had any effect.
However, the study really relates to compar-
isons between A through E and S. In view
of the orthogonality of the design and the
fact that each treatment mean is based on
four data, the variance of a difference of two
means is ( 1

4 + 1
4 )1562 = 781, the standard

error being the square root of that quantity,
i.e., 27.9. There is no question of any other
treatment being an improvement on the stan-
dard because all except A give smaller means.
(However, the situation can be changed; see
ANALYSIS OF COVARIANCE.)

The analysis above was for an orthogonal
design. If, however, the datum for treatment
A in block 1 had been missing, a more compli-
cated situation would have arisen. (It is true
that in practice a missing plot value would
be fitted, but it is possible to carry out a valid
analysis of variance without doing that.) The
deviations allowing only for blocks start

— 32.75 . . .

45.80 −47.50 . . .

.

..
.
..

the mean for block I being now 225.2. The
sum of squared deviations is 20,999 with
19 degrees of freedom. The so-called nor-
mal equations∗, derived from the block and
treatment totals, are

1126=5β1+
∑
γ − γ1 1138 =∑β − β1 + 3γ1

1491=6β2+
∑
γ 1071 =∑β + 4γ2

1612=6β3+
∑
γ 1101 =∑β + 4γ3

2102=6β4+
∑
γ 1081 =∑β + 4γ4

1109 =∑β + 4γ5
1118 =∑β + 4γ6,

where
∑
β = β1 + β2 + β3 + β4 and

∑
γ =

γ1 + γ2 + γ3 + γ4 + γ5 + γ6. At this point it
is necessary to say that no one in practice
solves the normal equations as they stand
because better methods are available, e.g.,
the Kuiper–Corsten iteration∗ or the use of
generalized inverses∗. However, there is no
objection in principle to a direct solution, the
difficulty being that there are not enough
equations for the parameters. An equation of
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constraint, e.g.,

3γ1 + 4γ2 + 4γ3 + 4γ4 + 4γ5 + 4γ6 = 0,

can always be used. Further, the one just sug-
gested, which makes the treatment parame-
ters sum to zero over the whole experiment,
is very convenient. It follows that

β1 = 224.34 γ1 = −5.74
β2 = 248.74 γ2 = −5.39
β3 = 268.91 γ3 = 2.11
β4 = 350.57 γ4 = −2.89

γ5 = 4.11
γ6 = 6.36.

Hence subtracting the appropriate param-
eters from each datum, the values of ηi are

— 47.00 . . .

52.05 −34.35 . . .

..

.
..
.

The sum of their squares is now 20,508
with 14 degrees of freedom, yielding the fol-
lowing analysis of variance:

Sum of Mean
Source d.f. Squares Square

Treatments 5 491 98
Error 14 20,508 1465
Treatments+ error 19 20,999

MULTIPLE COMPARISONS∗

Over the years there has grown up an alter-
native approach to testing in the analysis of
variance. As long as there are only two treat-
ments or two levels of a factor, the F-test
has a clear meaning but if there are three or
more, questions arise as to where the differ-
ences are. Some care is needed here, because
background knowledge is called for. If, for
example, it had appeared that different vari-
eties of wheat gave different percentages of a
vegetable protein in their grain, the result
would surprise no one and would merely
indicate a need to assess each variety sepa-
rately. At the other extreme, if the treatments
formed a highly structured set, it might be
quite obvious what should be investigated
next. Thus if it had appeared that the out-
come of a chemical reaction depended upon

the particular salt used to introduce a metal-
lic element, the science of chemistry is so
developed that a number of lines of advance
could probably be suggested immediately,
some of which might receive preliminary
study from further partition of the treatment
line. (Of course, no body of data can confirm
a hypothesis suggested by itself.) Sometimes,
however, the experimenter is in the position
of suspecting that there could be a structure
but he does not know what it is. It is then that
multiple comparison tests have their place.
Like much else in the analysis of variance,
their unthinking use presents a danger, but
that is not to deny them a useful role. Also,
an experimenter confronted with a jumble of
treatment means that make no sense could
well adopt, at least provisionally, the treat-
ment that gave the highest mean, but would
still want to know how it stood in relation to
its nearest rivals. It might be so much bet-
ter that the others could be discarded, or it
might be so little better that further study
could show that it was not really to be pre-
ferred. Such a test can be useful. Like others,
it can be abused.

COMPOSITION OF ERROR

In its original form the analysis of variance
was applied to data from agricultural field
experiments designed in randomized blocks.
The error was then clearly identified as the
interaction of treatments and blocks, i.e., the
F-test investigated the extent to which treat-
ment differences were consistent from block
to block. If a difference of means was much
the same in each block, it could clearly be
relied upon; if it had varying values, the sig-
nificance was less well established. In other
instances the error may be the interaction
of treatments and some other factor such as
occasion or operator. In all such cases the
purport of the test is clear.

Sometimes, however, the error is less open
to interpretation, being little more than a
measure of deviations from a hypothesis that
is itself arbitrary. Thus, if the agricultural
field experiment had been designed in a Latin
square∗, the error would have been made up
of deviations from parameters for treatments
added to those for an underlying fertility pat-
tern, assumed itself to derive from additive
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effects of rows and columns. If, as is usually
the case, there is no prior reason why the fer-
tility pattern should have that form, there is a
danger of the error sum of squared deviations
being inflated by sources that will not affect
the treatment line, thus reversing the usual
position. In fact, it is not unknown for the
error mean square deviation to be the larger,
and sometimes there is good reason for it.

The subject of error is sometimes
approached by distinguishing fixed effects∗

from random∗. In the first, the levels are
determinate and reproducible, like pressure
or temperature, whereas in the latter they
are to be regarded as a random selection of
possible values, like the weather on the suc-
cessive days of an investigation. For many
purposes the distinction is helpful. The ideal,
as has been suggested, is an error that rep-
resents the interaction between a fixed effect
and a random effect of the conditions over
which generalization is required, but other
possibilities can be recognized. For example,
an error made up of interactions between
fixed effects is nearly useless unless it can be
assumed that there will be no real interac-
tion.

Further questions arise when confoun-
ding∗ is introduced. The experimenter may
have decided that there can be no interac-
tion of factors A, B, and C and would then
be ready to have it confounded. The exper-
imenter may get rid of it in that way if
possible, but if it remains in the analysis
it should be as part of error. However, if the
experimenter believes that A× B × C never
exists, he or she cannot believe that its value
depends upon the level of D, so A× B× C×D
also should either be confounded or included
in error. Such decisions can be made read-
ily enough before analysis begins; they are
more difficult afterward. Plainly, it would
be wrong to start with an error that was
acceptable and add to it those high order
interactions∗ that were small and to exclude
from it those that were large. The error that
finally resulted would obviously be biased∗.
On the other hand, there are occasions when
sight of the data convinces the experimenter
that his or her preconceptions were wrong.
In that case the experimenter usually does
well to confine the analysis to an indubitable

error, e.g., the interaction of blocks and treat-
ments, and to regard all else as subject to
testing. As with the Latin square∗, mistaken
assumptions about the composition of error
can lead to the inflation of its sum of squared
deviations.

The question of what is and what is not
error depends to some extent upon the ran-
domization∗. Let there be b blocks of xy
treatments, made up factorially by x levels of
factor X and y levels of factor Y. The obvious
partition of the (bxy− 1) degrees of freedom
between the data is

Blocks (b− 1)
X (x− 1)
Y (y− 1)
X × Y (x− 1)(y− 1)
Blocks× X(I) (b− 1)(x− 1)
Blocks× Y(II) (b− 1)(y− 1)
Blocks× X × Y(III) (b− 1)(x− 1)(y− 1).

No one need object if each of the effects
X, Y and X× Y is compared with its own
interaction with blocks, i.e., with I, II, and
III, respectively. If, however, all treatment
combinations have been subject to the same
randomization procedure, the components I,
II, and III can be merged to give a common
error with (b− 1) (xy− 1) degrees of freedom.
In a split-plot∗ design, where X is allocated
at random to the main plots, II and III can
together form a subplot error, leaving I to
form that for main plots. Given a strip-plot∗

(or crisscross) design, on the other hand, each
component of error must be kept separate.
The example illustrates the old adage: ‘‘As the
randomization is, so is the analysis.’’ Some-
times there are practical difficulties about
randomization and they can raise problems
in the analysis of data, but they are not nec-
essarily insuperable ones. For example, in
the split-plot case it may not be feasible to
randomize the main plot factor, X, in which
case it is vitiated and so is its interaction with
blocks (component I), but it might still be per-
missible to use the subplot analysis∗. Again,
if the subplot factor, Y, has to be applied sys-
tematically (it might be different occasions
on which the main plot was measured), com-
ponent II may be vitiated, but X× Y can still
be compared with component III.
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SUITABILITY OF DATA

With so many computer packages available
it is easy to calculate an analysis of vari-
ance that is little better than nonsense. Some
thought therefore needs to be given to the
data before entering the package.

Strictly, the data should be continuous.
In fact, it is usually good enough that they
spread themselves over 10 or more points
of a scale. When they do not, e.g., as with
a body of data that consists mostly of ones
and zeros, the sum of squared deviations for
error is inflated relative to those for effects
with consequent loss of sensitivity. Discrete
data often come from Poisson∗ or binomial∗

distributions and may call for one of the
variance-stabilizing transformations∗ to be
considered below.

It is also required that the residuals∗ (the
ηi in the examples) should be distributed
independently and with equal variance. Inde-
pendence is most important. Where the data
come from units with a spatial or tempo-
ral relationship, independence is commonly
achieved by a randomization of the treat-
ments. If that is impracticable, the analysis of
variance in its usual forms is better avoided.
Equality of variance is more problematical.
Where treatments are equally replicated∗,
the F-test is fairly robust∗ against some
treatments giving a higher variance than
others. If, however, attention is directed to
a subset of treatments, as happens with mul-
tiple comparisons∗ and can happen when the
treatment line is partitioned, it is necessary
to have a variance estimated specifically for
that subset or serious bias could result. Here
two main cases need to be distinguished.
Some treatments may involve more opera-
tions than others and may therefore give rise
to larger errors. For example, the injection
of a plant or animal can itself give rise to
variation that is absent when other methods
of administration are adopted. In the other
case, the variance for any treatment bears a
functional relationship to the mean value for
that treatment.

To take the first case, if the error is the
interaction of treatment and blocks, it is an
easy matter to partition the treatment line
into three parts: (1) between the groups, one
with higher and one with lower variance; (2)

within one group; and (3) within the other.
The error can then be partitioned accord-
ingly. Depending upon circumstances, it may
be easier to regard each component of treat-
ments as having its own error or to concoct a
variance for each contrast of interest between
the treatment means. Alternatively, if the
treatments of high and low variance are
associated with two levels of a factor, e.g.,
administration by injection as compared with
some other method, a better way and one
that places fewer constraints on the nature
of error may be to group the data into pairs
according to the two levels, a pair being the
same with respect to other factors, and to
analyze separately the sum and difference of
data from the pair. In effect, that is virtu-
ally the same as regarding the design as if
it were in split plots, the factor associated
with the divergent variances being the one in
subplots.

In the other case, where the variance of
any observation depends upon the mean,
the usual solution is to find a variance-
stabilizing transformation∗. Thus, if the vari-
ance is proportionate to the mean, as in a
Poisson distribution∗, it may be better to ana-
lyze the square roots of the data rather than
the data themselves. Such transformations
can be useful, especially when they direct
attention to some quantity more fundamen-
tal than that measured. Thus given the end
product of a growth process, it is often more
profitable to study the mean growth rate
than the final size, because that is what the
treatments have been affecting, and simi-
larly the error has arisen because growth
rates have not been completely determined.
The approach can, however, cause problems
when the transformation is no more than
a statistical expedient, especially when it
comes to the interpretation of interactions.
Thus suppose that an untreated control has
led to 90% of insects surviving, applications
of insecticide A had given a survival rate of
60% while B had given 45%. A declaration
that the two insecticides had not interacted
would lead most people to suppose that A
and B in combination had given a survival
rate of 30% (30 = 60× 45/90). If the data
are analyzed without transformation, a zero
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interaction would imply 15% for the combi-
nation (15 = 60+ 45− 90). Using the appro-
priate angular transformation, the figures
become (0) 71.6, (A) 50.8, (B) 42.1, leading
to an expectation for (AB) of 21.3 for zero
interaction. This last figure corresponds to
13.2%, which is even further from the ordi-
nary meaning of independence∗.

INTERPRETATION OF AN ANALYSIS OF
VARIANCE

As has been said, the analysis of variance
is a subtle approach that can be molded to
many ways of thought. It is at its best when
the questions implicit in the investigation are
answered systematically and objectively. It is
not a method of ‘‘data snooping,’’ the treat-
ment line being partitioned and repartitioned
until something can be declared ‘‘significant.’’
Nor is it rigid, as if there were some royal way
to be followed that would ensure success. Its
function is to assist a line of thought, so any
unthinking procedure will be unavailing.

The first step is usually to look at the mean
squared deviation for error, which sums up
the uncontrolled sources of variation. An
experienced person may note that its value
is lower than usual, which could suggest that
improved methods have paid off, or it could be
so large as to show that something had gone
wrong. If that is the case, an examination of
residuals may show which observations are
suspect and provide a clue for another time.
It may even lead to a positive identification
of the fault and the exclusion of some data.
The fault, however, must be beyond doubt;
little credence attaches to conclusions based
on data selected by the investigator to suit his
own purposes.

Next, it is wise to look at the line for blocks
or whatever else corresponds to the control
of extraneous variation. It is possible for a
research team to fill their garbage cans again
and again with things that need not have
been discarded. If the block line rarely shows
any sign of having been inflated, it could
well be that a lot of trouble is being taken
to control sources of variation that are of
little importance anyway. Also, if the sources
of variation are indeed so little understood,
it could be that important components are
being left in error.

All this is a preliminary to the compar-
ison of treatment effects∗ and error. Here
some thought is needed. First, the partition
of the treatment line into individual effects
may be conventional but irrelevant to imme-
diate needs. For example, in a 2× p factorial
set of treatments, there may be no interest
in the main effects∗ and interactions∗, the
intention being to study the response of the
factor with two levels in p different condi-
tions. Even if the partition is suitable, the
order in which the effects should be studied
needs consideration. As has been explained,
a positive response to one test may render
others unnecessary.

However, the need may not be for testing
at all. The data may give a set of means, and it
is only necessary to know how well they have
been estimated. Even if the need is for test-
ing, there are occasions when an approach
by multiple comparisons∗ is called for rather
than by F-test. Also, there are occasions when
a significance test∗ has proved negative, but
interest centers on its power∗; that is, the
enquiry concerns the probability of the data
having missed a difference of specified size,
supposing that it does exist.

A difficult situation arises when a high-
order interaction appears to be significant
but without any support from the lower-order
interactions contained in it. Thus if A× B× C
gives a large value of F while B× C, A× C,
A× B, A, B, and C all seem unimportant,
it is always possible that the 1 : 20 chance,
or whatever it may be, has come off. Before
dismissing awkward effects, however, it is
as well to look more closely at the data.
The whole interaction could depend upon
one observation that is obviously wrong. If,
however, all data for a particular treatment
combination go the same way, whether up or
down, there is the possibility of some com-
plicated and unsuspected phenomenon that
requires further study.

Anyone who interprets an analysis of vari-
ance should watch out for the inflated error.
If there is only one treatment effect and that
is small, little can be inferred, but if several
F-values for treatment effects are well below
expectation, it is at least possible that the
error has been badly conceived. For example,
blocks may have been chosen so ineptly that,
instead of bringing together similar plots or
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units, each is composed of dissimilar ones.
Again, the distribution of the residuals may
be far from normal. Randomization∗ may
have been inadequate, or the error may rep-
resent deviations from an unlikely model.
The matter should not be left. A valuable
pointer might be obtained to the design of
better investigations in the future.
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FURTHER READING

A standard work is H. Scheffé’s book The
Analysis of Variance (Wiley, New York,
1959). Other useful books are Statistical
and Experimental Design in Engineering and
the Physical Sciences by N. L. Johnson and
F. C. Leone (Wiley, New York, 1966), espe-
cially Volume 2, and The Linear Hypothesis:
A General Theory by G. A. F. Seber (Charles
Griffin, London, 1966). In Experiments:
Design and Analysis (Charles Griffin, Lon-
don, 1977), J. A. John and M. H. Quenouille
discuss the analysis of variance for many
standard designs, and G. B. Wetherill’s Inter-
mediate Statistical Methods (Chapman &
Hall, London, 1980) looks with some care
at various models. In Chapter 9 of their book,
Applied Regression Analysis (Wiley, New
York, 1966), N. R. Draper and H. Smith show
the relationship of the analysis of variance to
regression methods. Other useful references
are Chapter 3 of C. R. Rao’s Advanced Sta-
tistical Methods in Biometric Research, and
Chapter 4 of G. A. F. Seber’s Linear Regres-
sion Analysis, both published by Wiley, New
York, the first in 1952 and the second in
1976.
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ANALYSIS OF VARIANCE,
WILK–KEMPTHORNE FORMULAS

For ANOVA∗ of data from cross-classified
experiment designs with unequal but pro-
portionate class frequencies, Wilk and
Kempthorne [3] have developed general for-
mulas for the expected values of mean
squares (EMSs) in the ANOVA table. We
will give appropriate formulas for an a× b
two-way cross-classification.

If the number of observations for the factor
level combination (i, j) is nij, then proportion-
ate class frequencies require

nij = nuivj, i = 1, . . . , a, j = 1, . . . , b.

In this case the Wilk and Kempthorne formu-
las, as presented by Snedecor and Cochran
[2] for a variance components∗ model, are:
For main effect∗ factor A,

EMS = σ 2 + nuv(1− u∗)
a− 1

×{(v∗ − B−1)σ 2
AB + σ 2

A};

for main effect of factor B,

EMS = σ 2 + nuv(1− v∗)
b− 1

×{(u∗ − A−1)σ 2
AB + σ 2

B};

for main interaction∗ A× B,

EMS = σ 2 + nuv(1− u∗)(1− v∗)
(a− 1)(b− 1)

σ 2
AB,

where

u =
a∑

i=1

ui, u∗ =
(

a∑
i=1

u2
i

)/
u2,

v =
b∑

j=1

vj, v∗ =
 b∑

j=1

v2
j

/
v2,
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σ 2
A, σ 2

B, σ 2
AB are the variances of the (random)

terms representing main effects of A and
B and the A× B interactions in the model,
respectively, and σ 2 is the (common) variance
of the residual terms.

Detailed numerical examples and discus-
sions are available, for example in Bancroft
[1].
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ANCILLARY STATISTICS—I

Let X be an observable vector of random
variables with probability density function∗
(PDF) fX (x; θ ), where θ is an unknown param-
eter taking values over a space �. If the
distribution of the statistic, or vector of statis-
tics, A = a(X) is not dependent upon θ , then
A is said to be ancillary for (the estimation
of) θ . Suppose now that X is transformed in a
1 : 1 manner to the pair (S, A). The joint PDF
of S, A can be written

fS|A(s; θ |a)fA(a), (1)

where the second term is free of θ . As the
examples below will make apparent, an ancil-
lary statistic often indexes the precision of an
experiment; certain values of A indicate that
the experiment has been relatively informa-
tive about θ ; others indicate a less informa-
tive result. For this reason, it is often argued
that procedures of inference should be based
on the conditional distribution∗ of the data
given the observed value of the ancillary.
For example, estimation∗ and hypothesis-
testing∗ procedures are based on the first
term of (1), and their frequency properties

are evaluated over the reference set in which
A = a is held fixed at its observed value.

In the simplest context, ancillary statis-
tics arise in experiments with random sam-
ple size.

Example 1. Contingent upon the outcome
of a toss of an unbiased coin, either 1 or
104 observations are taken on a random vari-
able Y which has a N(θ , 1) distribution. The
sample size N is ancillary and, in estimat-
ing or testing hypotheses about θ , it seems
imperative that N be regarded as fixed at
its observed value. For example, a size α

test of θ = 0 versus the one-sided alterna-
tive θ > 0 has critical region∗ Y > zα if N = 1
or Y > 10−2zα if N = 104, where Y is the
sample mean and zα is the upper α point
of a N(0, 1) distribution. Conditional on the
observed value of N, this test is uniformly
most powerful∗ (UMPT), and since this test
is conditionally of size α for each N, it is
also unconditionally of size α. It is discom-
forting, however, that power considerations
when applied to the unconditional experi-
ment do not lead to this test [5].

A second example illustrates further the
role of ancillary statistics.

Example 2. Let X1:n, . . . , Xn:n be the order
statistics∗ of a random sample from the den-
sity f (x− θ ), where f is of specified form and
−∞ < θ <∞. It is easily seen from consid-
erations of the group of location transfor-
mations that the statistics Ai = Xi:n − X1:n,
i = 2, . . . , n, are jointly ancillary for θ . R. A.
Fisher∗ [7] describes these statistics as giv-
ing the ‘‘configuration’’ of the sample and
their observed values can be viewed as being
descriptive of the observed likelihood∗ func-
tion. For example, if n = 2 and f (z) = π−1(1+
z2)−1, −∞ < z <∞, the likelihood is uni-
modal if A2 � 1 and bimodal if A2 > 1, while
X = (X1 + X2)/2 is the maximum likelihood
estimator∗ in the first case and a local mini-
mum in the second. Here again, a conditional
approach to the inference problem is sug-
gested.

By an easy computation, the conditional den-
sity of M = X1:n given A2 = a2, . . ., An = an is

c
n∏
1

f (m+ ai − θ ), (2)
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where a1 = 0 and c is a constant of integra-
tion. The choice of the minimum M is arbi-
trary; the maximum likelihood estimator T
or any other statistic that measures location
may be used in its place. All such choices will
lead to equivalent conditional inferences∗.
The essential point is that inferences can
be based on the conditional distribution∗ (2).

Both of the foregoing examples suggest
that, at least in certain problems, a condi-
tionality principle is needed to supplement
other statistical principles. The approach
then seems clear: In evaluating the sta-
tistical evidence, repeated sampling criteria
should be applied to the conditional experi-
ment defined by setting ancillary statistics at
their observed values. As will be discussed in
the section ‘‘Nonuniqueness and Other Prob-
lems,’’ however, there are some difficulties in
applying this directive.

It should be noted that some authors re-
quire that an ancillary A be a function of the
minimal sufficient statistic∗ for θ . This is dis-
cussed further in the section just mentioned
and in ‘‘Conditionality and the Likelihood
Principle.’’

RECOVERY OF INFORMATION

Ancillary statistics were first defined and
discussed by Fisher [7], who viewed their
recognition and use as a step toward the com-
pletion of his theory of exhaustive estimation
[8, pp. 158 ff.]. For simplicity, we assume that
θ is a scalar parameter and that the usual
regularity conditions apply so that the Fisher
information∗ may be written

IX (θ ) = E[∂ log fX (x; θ )/∂θ ]2

= −E[∂2 log fX (x; θ )/∂θ2].

If the maximum likelihood estimator T =
θ̂ (X) is sufficient∗ for θ , then IT(θ ) = IX (θ ) for
all θ ∈ �. Fisher calls T exhaustive because
all information is retained in reducing the
data to this scalar summary.

It often happens, however, that T is not
sufficient and that its sole use for the estima-
tion of θ entails an information loss measured
by IX (θ )− IT(θ ), which is nonnegative for all
θ and positive for some θ . Suppose, how-
ever, that T can be supplemented with a

set of ancillary statistics A such that (T, A)
are jointly sufficient∗ for θ . The conditional
information in T given A = a is defined as

IT|A = a(θ )

= −E[∂2 log fT|A(t; θ |a)/∂θ2|A = a]

= −E[∂2 log fT,A(t, a; θ )/∂θ2|A = a],

since fA(a) is free of θ . Thus since T, A are
jointly sufficient,

E[IT|A(θ )] = IT,A(θ ) = IX (θ ).

The average information in the conditional
distribution of T given A is the whole of the
information in the sample. The use of the
ancillary A has allowed for the total recov-
ery of the information on θ . Depending on
the particular observed outcome A = a, how-
ever, the conditional information IT|A = a(θ )

may be greater or smaller than the expected
information IX (θ ).

Viewed in this way, an ancillary statistic A
quite generally specifies the informativeness
of the particular outcome actually observed.
To some extent, the usefulness of an ancillary
is measured by the variation in IT|A(θ ).

Although only a scalar parameter θ has
been considered above, the same general
results hold also for vector parameters. In
this case, IX (θ ) is the Fisher information
matrix∗ and IX (θ )− IT(θ ) is nonnegative def-
inite. If T is the vector of maximum like-
lihood estimators, A is ancillary and T, A
are jointly sufficient, the conditional infor-
mation matrix, IT|A(θ ), has expectation IX (θ )
as above.

NONUNIQUENESS AND OTHER PROBLEMS

Several difficulties arise in attempting to
apply the directive to condition on the ob-
served values of ancillary statistics.

1. There are no general constructive tech-
niques for determining ancillary statis-
tics.

2. Ancillaries sometimes exist which are
not functions of the minimal sufficient
statistic∗, and conditioning upon their
observed values can lead to procedures
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that are incompatible with the suffi-
ciency principle.

3. There is, in general, no maximal ancil-
lary.

In this section we look at problems 2 and 3.
It should be noted that in certain problems
(e.g., Example 2), group invariance∗ argu-
ments provide a partial solution to problem 1.
Even in such problems, however, there can be
ancillaries present which are not invariant.
An interesting example is given by Padman-
abhan [10]. In the context of Example 2 with
f (·) a standard normal density∗ and n = 2, he
defines the statistic

B =
{

X1 − X2 if X1 + X2 � 1,
X2 − X1 if X1 + X2 < 1,

and shows that B is ancillary but not invari-
ant.

Basu [2] has given several examples
of nonunique ancillary statistics. The first
of these concerns independent bivariate
normal∗ variates (Xi, Yi), i = 1, . . . , n, with
means 0, variances 1, and correlation ρ.
In this example, (X1, . . . , Xn) and (Y1, . . . , Yn)
are each ancillary and conditional inference
would clearly lead to different inferences on
ρ. this is an example of problem 2 above,
and to avoid this difficulty many authors
require that the ancillary be a function of
the minimal sufficient statistic (e.g., ref. 5).
If an initial reduction to the minimal suffi-
cient set,

∑
X2

i +
∑

Y2
i and

∑
XiYi, is made,

there appears to be no ancillary present.
Not all examples of nonuniqueness are

resolved by this requirement. Cox [4] gives
the following example, which derives from
another example of Basu.

Example 3. Consider a multinomial
distribution∗ on four cells with respective
probabilities (1− θ )/6, (1+ θ )/6, (2− θ )/6,
and (2+ θ )/6, where |θ | < 1. Let X1, . . . , X4
represent the frequencies in a sample of size
n. Each of the statistics

A1 = X1 + X2 A2 = X1 + X4

is ancillary for θ , but they are not jointly
ancillary.

If conditional inference∗ is to be useful in
such problems, methods for selecting from
among competing ancillaries are needed. Cox
[4] notes that the usefulness of an ancillary
is related to the variation in IT|A(θ ) (see the
preceding section) and suggests (again with
scalar θ ) that the ancillary be chosen to max-
imize

var{IT|A(θ )}.

In general, this choice may depend on θ . In
the example above, however, Cox shows that
A1 is preferable to A2 for all θ . The choice
of variance as a measure of variation is, of
course, arbitrary.

Barnard and Sprott [1] argue that the
ancillary’s role is to define the shape of the
likelihood function, and that, in some prob-
lems, invariance∗ considerations lead to a
straightforward selection between compet-
ing ancillaries. In the example above, the
estimation problem is invariant under reflec-
tions with θ ↔ −θ and X1 ↔ X2, X3 ↔ X4.
Under this transformation, the ancillary A1
is invariant while A2 ↔ n− A2. Thus under a
natural group of transformations, the ancil-
lary A1 and not A2 is indicated. This type of
argument suggests that invariance∗, and not
ancillarity, is the key concept.

CONDITIONALITY AND THE LIKELIHOOD
PRINCIPLE∗

In a fundamental paper, Birnbaum [3] formu-
lates principles of sufficiency, conditionality,
and likelihood and shows that the sufficiency∗
and conditionality principles are jointly equi-
valent to the likelihood principle. In this
section we outline Birnbaum’s arguments
and some of the subsequent work in this
area.

Birnbaum introduces the concept of the
‘‘total evidential meaning’’ (about θ ) of an
experiment E with outcome x and writes
E ↓ (E, x). Total evidential meaning is left
undefined but the principles are formulated
with reference to it, as follows.

The Sufficiency Principle (S). Let E be an
experiment with outcomes x, y and t be a
sufficient statistic. If t(x) = t(y), then

E ↓ (E, x) = E ↓ (E, y).
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This principle (S) is almost universally
accepted by statisticians, although some
would limit the types of experiments E to
which the principle applies.

Let L(θ; x, E) denote the likelihood∗ func-
tion of θ on the data x from experiment E.

The Likelihood Principle∗ (L). Let E1 and
E2 be experiments with outcomes x1 and x2,
respectively. Suppose further that

L(θ; x1, E1) ∝ L(θ; x2, E2).

Then E ↓ (E1, x1) = E ↓ (E2, x2).
This principle (L) (sometimes called the

strong likelihood principle) asserts that only
the observed likelihood is relevant in assess-
ing the evidence. It is in conflict with methods
of significance testing∗, confidence interval
procedures, or indeed any methods that are
based on repeated sampling∗. The sufficiency
principle is sometimes called the weak like-
lihood principle since, by the sufficiency of
the likelihood function, it is equivalent to the
application of the likelihood principle to a
single experiment.

An experiment E is said to be a mixture
experiment∗ with components Eh if, after
relabeling of the sample points, E may be
thought of as arising in two stages. First, an
observation h is made on a random variable
H with known distribution, and then xh is
observed from the component experiment Eh.
The statistic H is an ancillary statistic.

The Conditionality Principle∗ (C). Let E be
a mixture experiment with components Eh.
Then

E ↓ (E, (h, xh)) = E ↓ (Eh, xh).

This principle asserts that the inference
we should draw in the mixture experiment
with outcome (h, xh) should be the same as
that drawn from the simpler component exp-
eriment Eh when xh is observed.

Birnbaum’s Theorem. (S)+ (C)⇔ (L).

Proof. It follows immediately that (L) im-
plies (C). Also (L)⇒ (S) since, by the factor-
ization theorem∗, two outcomes giving the
same value of a sufficient statistic yield pro-
portional likelihood functions. To show that
(C) and (S) together imply (L), let E1 and
E2 be two experiments with outcomes x1 and

x2, respectively, such that L(θ; x1, E1) ∝ L
(θ; x2, E2). Let Pr[H = 1] = 1− Pr[H = 2] = p
be a specified nonzero probability. In the mix-
ture experiment E with components Eh, h =
1, 2, the outcomes (H = 1, x1) and (H = 2, x2)
give rise to proportional likelihoods. Since
the likelihood function is itself minimally
sufficient, (S) implies that

E ↓ (E, (H = 1, x1)) = E ↓ (E, (H = 2, x2)).

On the other hand, (C) implies that

E ↓ (E, (H = h, xh)) = E ↓ (Eh, xh), h=1, 2,

and hence E ↓ (E1, x1) = E ↓ (E2, x2). Thus
(S)+ (C)⇒ (L).

Since almost all frequency-based methods
of inference contradict the likelihood prin-
ciple, this result would seem to suggest that
sufficiency and conditionality procedures are
jointly incompatible with a frequency theory.
It should be noted, however, that the fore-
going argument pertains to the symmetric
use of sufficiency and conditionality argu-
ments. The likelihood principle would appear
to follow only under such conditions.

Durbin [6] restricted the conditionality
principle to apply only after an initial reduc-
tion to the minimal sufficient statistic. He
defined a reduced experiment E′ in which
only T is observed and considered a revised
conditionality principle (C′) which applied
to this reduced experiment. In essence, this
restricts attention to ancillary statistics that
are functions of the minimal sufficient statis-
tic. This change apparently obviates the pos-
sibility of deducing (L).

A second approach [9] classifies ancillar-
ies as being experimental or mathematical.
The former are ancillary by virtue of the
experimental design and the purpose of the
investigation. They are ancillary statistics
regardless of the parametric model chosen for
the chance setup being investigated. Mathe-
matical ancillaries, on the other hand, are
ancillary because of the particular paramet-
ric model assumed. In the examples given
above, N is an experimental ancillary in
Example 1 while the ancillaries A1 and A2
in Example 3 are mathematical. Example 2
may be interpreted in two ways. If this is a
measurement model∗ whereby the response
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X arises as a sum, X = θ + e, e being a
real physical entity with known distribution,
then the ancillaries A2, . . . , An are experi-
mental. (The purpose of the experiment is
to determine the physical constant θ .) More
usually, an experiment with data of this type
is designed to determine the distribution of
X and the model f (x− θ ) is a preliminary
specification. In this case, the ancillaries are
mathematical. The primary principle is taken
to be the experimental conditionality prin-
ciple and other principles (e.g., sufficiency)
are applied only after conditioning on any
experimental ancillaries present.

REFERENCES

1. Barnard, G. A. and Sprott, D. A. (1971). In
Waterloo Symposium on Foundations of Sta-
tistical Inference. Holt, Rinehart and Winston,
Toronto, pp. 176–196. (Investigates relation-
ships between ancillaries and the likelihood
function.)

2. Basu, D. (1964). Sankhyā A, 26, 3–16. (Dis-
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ANCILLARY STATISTICS—II

Since the original entry ‘‘Ancillary Statis-
tics’’ appeared in ESS Vol. 1 in 1982, further
study has been devoted to the properties and
applications of ancillary statistics. This entry
will emphasize some of the practical develop-
ments, such as methods of approximating
conditional distributions and of construction
of ancillaries, as well as further problems
of nonuniqueness. We also address the role
of ancillaries when a nuisance parameter is
present, an area not covered in the original
article.

ANCILLARIES WITH NO NUISANCE
PARAMETERS

The first mention of the term ‘‘ancillary’’
occurs in Fisher [12], where it is pointed
out that, when the maximum-likelihood esti-
mator is not fully efficient, the information
it provides may be enhanced by the adjunc-
tion as an ancillary statistic of the second
derivative of the likelihood function, giving
the weight to be attached to the value of the
estimator. In Fisher [13], he also requires
that the distribution of an ancillary statis-
tic be free of the unknown parameter. This
requirement is now generally recognized as
the characteristic property. In fact the second
derivative of the likelihood function, more
commonly called the observed information,
is not generally ancillary; however, Efron
and Hinkley [11] showed that, under cer-
tain conditions, it is a better estimator of the
conditional variance of the estimator than is
the expected Fisher information∗.

Useful surveys of the properties of ancil-
lary statistics have been given by Buehler [6]
and by Lehmann and Scholz [15]. These sur-
veys discuss, among other things, the sense
in which one type of ancillary may func-
tion as an index of precision of the sample.
There is an important distinction to be made
between those ancillary statistics that are
part of the minimal sufficient statistic (for
the parameter of interest) and those that are
not. Fisher’s applications refer to the former
cases of which he states: ‘‘The function of the
ancillary statistic is analogous to providing
a true, in place of an approximate, weight
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for the value of the estimate.’’ Ancillaries
that are a function of the minimal sufficient
statistic we term internal, and those that are
not we term external.

External ancillaries are of interest primar-
ily when nuisance parameters are present, a
discussion of which forms the second part
of our contribution. Internal ancillaries are
available for location and scale families of
distributions, and indeed to all transforma-
tion models (see below). For such families
Fisher [13] provided the initial analysis,
which was developed and clarified by Pit-
man [22]. Pitman estimators have optimal
properties within the conditional framework
of evaluation. These were covered in the orig-
inal article.

Approximate Ancillaries

In the first section of our discussion we will
understand the term ancillary to mean inter-
nal ancillary. For many statistical models
ancillary statistics do not exist. Indeed, for-
mulation of precise conditions under which
an ancillary does exist remains an open prob-
lem. Certainly, a model which does admit an
ancillary statistic may not admit one upon
minor modification. If such minor modifica-
tions are not to make a radical difference to
the mode of inference, then we are driven to
condition on statistics that are approximately
ancillary in an appropriate sense.

This problem was pursued by Cox [7]. Con-
centrating on the problem of testing θ = θ0,
we argue that, whatever test statistic is to be
used, its distribution should be computed con-
ditional on a statistic A, possibly depending
on θ0, chosen so that its distribution depends
on θ as little as possible, locally near θ0.
Assuming appropriate regularity, consider
the Taylor expansion

E(A; θ ) ≈ E(A; θ0)+ c1(θ − θ0)

+ c2(θ − θ0)2

of the mean of A about θ0. The statistic A
is first-order local ancillary if the coefficient
c1 = 0. In this case, for values of θ close to
θ0, the mean of A depends little on θ . For
instance, at θ = θ0 + δ/

√
n, close to θ0, where

n is the sample size, the error in the above
approximation is O(n−3/2) and dependence on

θ occurs in the O(n−1) term, assuming that
A is scaled to have asymptotic unit variance.
The statistic A is second-order local ancil-
lary if both coefficients c1 and c2 are zero as
well as the first coefficient in an expansion of
the second moment. In many cases, such as
for curved exponential families∗, local ancil-
laries are simply constructed from linear or
quadratic forms in the canonical sufficient
statistics. Barndorff-Nielsen [2] uses a statis-
tic A which, for fixed θ̂ , is an affine (i.e., linear)
function of the canonical sufficient statistics
and is approximately free of θ in its mean
and variance.

Example. Let (X, Y) be bivariate normal
with standard mean and variance, and cor-
relation θ . From an identical independent
sample, the sufficient statistic for θ is

S =
n∑

i=1

(XiYi, X2
i + Y2

i ).

In this case S2 has mean 2n, entirely free of
θ , but has variance 4n(1+ θ2). Then

A = S2 − 2n√
4n(1+ θ2

0 )

is first-order local ancillary for θ near θ0.
A locally conditional confidence region for θ
can be given approximately by inverting an
Edge-worth expansion for the conditional dis-
tribution of S1 given A; a general expression
is given by Cox [7].

Information Recovery

When the sufficient statistic S is expressed
as (T, A), then, using standard notation,

E{IT|A(θ )} = IS(θ )− IA(θ ).

Thus, conditioning on approximate ancillar-
ies involves loss of information, on average
equal to the amount of information in the
conditioning variable. On the other hand, the
conditional analysis delivers a more relevant
evaluation of the precision of estimation, as
discussed earlier.

An alternative requirement of an approx-
imate ancillary A is hence that the Fisher
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information∗ in it should be small. Statis-
tics typically have information of order n
in the sample size. A first-order approxi-
mate ancillary has information O(1). This
can be achieved by requiring that the deriva-
tive of E(A) with respect to θ should be
O(n−1/2) (Lloyd [17]). By arranging a spe-
cial condition on the variance and skewness
of A and their derivatives, the information
can be reduced to O(n−1). Where a statistic
is first-order ancillary not only locally but
globally, it will be first-order approximate
ancillary. Conversely, a statistic that is first-
order approximate ancillary locally will be
first-order local ancillary.

Balancing Information Loss Against Relevance

Cox’s criterion judges the effectiveness of A as
a conditioning variable by how large Var(IT|A)
is. On the other hand, information IA is lost
on average. An exact ancillary may be quite
ineffective while another statistic, which is
only approximately ancillary, is much more
effective. The statistic most ‘‘θ -free’’ in its
distribution is not necessarily the best condi-
tioning variable.

It is not clear how to balance the effec-
tiveness against the information loss. Some
progress has been made (Lloyd [18]); how-
ever, at present there seems to be no entirely
objective way of making this tradeoff.

Nonuniqueness of Conditional Inference∗

McCullagh [20] has given an example where
the minimal sufficient statistic∗ may be ex-
pressed either as (θ̂ , A) or as (θ̂ , A∗), where A
and A∗ have exactly the same distributions
and where var(IT|A) is identical for both A and
A∗. Thus there is no hope of deciding which to
condition on from consideration of marginal
or conditional distributions. Further, (A, A∗)
together are not ancillary.

The example is beautifully simple. An
independent sample is taken from the Cauchy
distribution with location θ1 and scale θ2. The
entire parameter θ = (θ1, θ2) is of interest.
The configuration ancillary A is the n-vector
with ith component (xi − θ̂1)/θ̂2. Fisher [13]
and Pitman [22] recommend using the distri-
bution of θ̂ conditional on the configuration
A. Now for any real numbers a, b, c, d the

transformed data

X∗i =
aXi + b
cXi + d

is also Cauchy in distribution with parame-
ters θ∗, a simple transformation of θ . The X∗i
data are equivalent to the original data; it
makes no difference which we use. However
the configuration A∗ of the X∗i data is not the
same as A. Which density do we use to assess
θ̂ , the one conditional on A or on A∗?

McCullagh shows that for large devia-
tions, i.e., when θ̂ − θ is O(1), the two condi-
tional densities differs relatively by O(n−1/2),
which is of the same magnitude as the differ-
ence between conditional and unconditional
densities. When the observed value of the
configuration statistic is atypically extreme,
this difference is even larger. The conclu-
sion is that the general recommendation to
condition on exact ancillaries is ambiguous.

The Likelihood-Ratio Statistic

Let L(θ ) be the likelihood function maximized
at θ̂ . Then the likelihood-ratio statistic is

w(θ0) = 2 log{L(θ̂ )/L(θ0)}.

Confidence intervals are set by collecting val-
ues of θ0 for which w(θ0) is less than a quantile
of its sampling distribution which is approx-
imately χ2

p , where p is the dimension of θ .
The approximation improves as cumulants
of derivatives of the log-likelihood (usually
proportional to sample size n) diverge. A
slight adjustment to w(θ0), called the Bartlett
correction (see BARTLETT ADJUSTMENT—I),
reduces the error of this distributional appro-
ximation to O(n−2).

Such intervals are attractive because they
produce sensible confidence sets even for
anomalous likelihood functions, such as those
with multiple maxima, divergent maximum,
or regions of zero likelihood. Classical con-
fidence regions based on the estimator and
standard error are, in contrast, always ellipti-
cal in shape. Thus, likelihood-based intervals
seem, in an informal sense, to better summa-
rize what the data say about the parameter.
Making inference more relevant to the par-
ticular data set is a fundamental reason for
conditioning.
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It has been shown that to high order,
w(θ0) is independent of the local ancillary
A(θ0), and when there are several choices for
A(θ0) it is approximately independent of all
of them; see Efron and Hinkley [11], Cox
[7], McCullagh [19]. Intervals based directly
on the likelihood-ratio statistic are there-
fore automatically approximately conditional
on the local ancillary, whereas alternative
approaches via the score or Wald statistics
are not. Seen another way, conditioning on
the local ancillary leads to inference that
agrees qualitatively with the likelihood func-
tion.

Approximate Conditional Distributions

Once an appropriate conditioning statistic
is identified, there remains the problem of
computing the conditional distribution of
the information-carrying statistic. A remark-
able amount such conditional distributions
in more recent years. Among several remark-
able properties of these approximations, the
most important is that the conditioning
statistic need not be explicitly identified.

Let A be an approximately ancillary statis-
tic, as yet unspecified explicitly. Barndorff-
Nielsen [2,3] gives the approximation

P∗
θ̂ |A=a(t) = c|Ĵ|1/2 L(t)

L(θ̂)
(1)

to the density function of θ̂ given A = a, where
Ĵ is minus the second derivative matrix of
the log-likelihood function evaluated at the
maximum, and |Ĵ| denotes the determinant
of this nonnegative definite matrix. The con-
stant c(a, t) is a norming constant, although
in important cases it does not depend on the
argument t. The norming constant possibly
excepted, the formula is well suited to prac-
tical use, involving only a knowledge of the
likelihood function.

The p∗-formula∗ is a synthesis and exten-
sion of the results of Fisher [13] and Pitman
[22] for location and scale parameters. They
showed that the distribution of the estima-
tor conditional on the configuration ancil-
lary was essentially the likelihood function
itself, renormalized to integrate to 1. The
p∗-formula, while approximate in general,

establishes a similar link between condi-
tional inference∗ and the shape of the likeli-
hood function. The presence of |Ĵ| allows for
the particular parametrization.

Transformation models are models that
are closed under the action of a group of trans-
formations, and that induce the same trans-
formation on the parameter. An example is a
location model where translation of the data
translates the mean by the same amount. For
transformation models an exact analogue of
the configuration ancillary exists and the p∗-
formula gives the exact conditional distribu-
tion. A curved exponential family is a multidi-
mensional exponential family with a smooth
relation between the canonical parameters.
In this case the p∗-formula gives the distri-
bution of the maximum-likelihood estimator
conditional on the affine ancillary with accu-
racy O(n−3/2) and the norming constant is
a simple power of 2π . This has been estab-
lished by relating the formula to the so-called
saddle-point approximation∗.

ANCILLARIES WITH NUISANCE
PARAMETERS∗

Let λ now represent the unknown parameter
vector for a set of data {x} with density func-
tion f (x; λ). Only rarely are all components of
λ of equal interest; we are typically interested
in separately summarizing what the data say
about specific components of interest.

Consider the case where λ = (θ ,φ). We
take θ to be the parameter of interest and φ
a nuisance (sometimes also called accessory)
parameter. An inferential statement about θ
is desired without regard to the value of φ. For
instance we require a confidence region for θ
whose coverage is at least close to nominal
not only for all θ but for all φ.

A host of methods exist for achieving this
under specific circumstances and a wide rang-
ing survey was given by Basu [5]. The use of
ancillary statistics, defined in an extended
and appropriate sense, is central to many of
these methods.

Pivotals and External Ancillaries

If R is a 100(1− α)% confidence region for θ ,
then the indicator function of the event θ ∈ R
is a binary random variable taking value 1
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with probability 1− α. It thus has a distribu-
tion free of both θ and φ. A function P({x}, θ )
which has a distribution free of λ is called a
pivotal. When θ is known, P is an ancillary
statistic in the model f (x; θ ,φ) with θ known,
i.e. ancillary with respect to φ. Thus a neces-
sary and sufficient condition for construction
of a confidence interval for θ is that for any
θ one can construct an ancillary with respect
to φ.

Note that the pivotal is used directly for
inference on θ , for instance by collecting
all those values of θ for which P({x}, θ ) lies
within the central part of its known dis-
tribution. There is no suggestion that it be
conditioned on, and the rationale for its con-
struction is quite distinct from arguments
given earlier.

While such an ancillary should be a func-
tion of the minimal sufficient statistic for λ,
the sufficiency principle would not require
it to be a function of the minimal sufficient
statistic for φ. External ancillary statistics
therefore have some relevance to the elimina-
tion of nuisance parameters from inference.
In a wide class of cases, external ancillaries
will actually be independent of the sufficient
statistic for φ; see Basu [4].

For continuous distributions admitting a
complete sufficient statistic, an external an-
cillary may always be constructed as the
distribution function of the data, conditional
on the sufficient statistic. This construction
is discussed by Rosenblatt [23] and extends
to the construction of a pivotal by considering
the interest parameter θ known. The pivotal
is the distribution function of the data con-
ditional on a complete sufficient statistic for
φ. This ‘‘statistic’’ may also depend on θ ; see
Lloyd [16] for theory and for the following
example.

Example. Let X, Y be independently dis-
tributed exponentially with means φ−1 and
(θ + φ)−1 respectively. From a sample of n
independent pairs, inferences about θ are
required, free of the nuisance parameter φ.
The sufficient statistic for φ, whose distri-
bution also involves θ , is S = �(Xi + Yi). (In
other examples, S may even involve θ in its
definition.) The conditional distribution func-
tion of the remaining element of the minimal

sufficient statistics T = �Xi is∫ s

s−x
g(u, θ ) du

/∫ s

0
g(u, θ ) du,

where g(u, θ ) = [u(s− u)]n−1e−θu. For n = 1
the expression simplifies to

P(X, θ ) = 1− e−θX

1− e−θ (X+Y)
,

a probability that gives directly the signifi-
cance of any proposed value of θ .

For the normal and gamma distributions,
which admit complete sufficient statistics for
location and scale respectively, the indepen-
dence of external ancillaries (location- and
scale-free statistics, respectively) are partic-
ularly important and useful, as the following
examples show.

Example. A sample of size n is drawn from
a population of unknown mean µ and stan-
dard deviation σ and is to be tested for
normality. The mean X and standard devia-
tion S of the sample are calculated. Then a
sample of n from a standard normal popula-
tion is drawn, and its mean X

∗
and standard

deviation S∗ calculated. The standardized
members of the original sample are

Xi − µ
σ

= Xi − X
σ

+ X − µ
σ

.

Now X is complete sufficient for µ, and the
external ancillary comprises the statistics
Xi − X, which are independent of X and there-
fore of the last term above. Thus the distri-
bution is unchanged if we replace it with the
equidistributed X

∗
. Further,

Xi − X
σ

= Xi − X
S

S
σ
.

The statistics Ai = (Xi − X)/S are external
ancillary for (µ, σ ) and independent of both
X and S, and so we may replace S/σ by the
equidistributed S∗. Hence finally we have

Xi − µ
σ

d= AiS∗ + X
∗
,
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and these statistics are available for testing
normality in the absence of knowledge of the
unknown parameters. This device is due to
Durbin [10], who used a different method of
proof.

Example. In some sampling situations the
probability of an item appearing in the sam-
ple is inversely proportional to its measured
values (such as lifetime), and a weighted
mean W = S2/S1, where S1 = �Xi and S2 =
�X2

i , is a reasonable estimator. The expec-
tation and other moments of this estimator
are readily determined if the Xi are �(m)-
distributed, where the scale parameter is
suppressed. The effect of the method of sam-
pling is to reduce the shape parameter to
m− 1. For a sample of n, the total S1 is
�(n(m− 1))-distributed, is sufficient for the
scale parameter, and is independent of any
scale-free statistic, such as W/S1 = S2/S2

1.
Hence E(W) = E(W/S1)E(S1) and E(S2) =
E(W/S1)E(S2

1), so that, in terms of the mo-
ments,

E(W) = E(S1)S(S2)
E(S2

1)
= nm(m− 1)

nm− n+ 1
.

Thus W has a small negative bias, O(n−1).

Ancillarity in the Presence of a Nuisance
Parameter

Suppose we have the following factorization
of the density function:

f (x; λ) = f (x;a, θ )f (a; θ;φ)

for some statistic A. The first factor is the
density conditional on A = a, and the second
the marginal distribution of A; the salient
feature is that the first factor depends on λ
only through θ .

It is generally agreed that we must have
this feature present in the factorization of
f (x; λ) before we can say that A is ancillary
for θ in any sense (Barndorff-Nielsen [1]).
An alternative description is that A is ‘‘suffi-
cient’’ for φ. However, the requirement that
the marginal distribution of A be completely
free of θ seems too strong. Even when the
distribution of A depends on θ , A may be
incapable of providing information (in the
common usage of the term) about θ by itself,

because information concerning θ cannot be
separated from φ in the experiment described
by f (a; θ ,φ). One definition that makes this
notion precise requires

1. that for every pair θ1, θ2 and for every
a, f (a; θ1,φ)/f (a; θ2,φ) run through all
positive values as φ varies,

2. that given possible values θ1, θ2,φ, and
a, there exist possible values θ ,φ1,φ2
such that

f (a; θ1,φ)
f (a; θ2,φ)

= f (a; θ ,φ1)
f (a; θ ,φ2)

.

In this case we say that A is ancillary for θ
and inference should be carried out using the
distribution conditional on A = a (see ref. 1).
Under slightly different conditions, Godambe
[14] has shown that the conditional likelihood
leads to an estimating function∗ that is opti-
mal amongst those not depending on φ. Yip
[24,25] provides examples of this type where
the information loss is negligible.

Approximate Conditional Likelihood

Maximum-likelihood estimates are not
always consistent. The first example was
given by Neyman and Scott [21]. Another
simple example involves pairs of twins, one
of each pair being given a treatment that
increases the odds of a binary response by θ .
The underlying rate of response φ1 is specific
to each pair. As more twins are collected, θ̂
converges to θ2 rather than θ . This example is
not artificial. Moreover, maximum-likelihood
estimation is generally poor whenever a
model involves a large number of nuisance
parameters.

Let L(θ ,φ) be the likelihood function max-
imized at (θ̂ , φ̂), and let φ̂0 partially maximize
L with respect to φ for fixed θ . The profile
likelihood function

Lp(θ ) = L(θ , φ̂θ )

shares many logical properties of likelihood
and is maximized at θ = θ̂ . However, we have
seen that it may perform very poorly. When a
sufficient statistic A for φ exists, the density
function f (x;a, θ ) conditional on A = a is free
of φ. The conditional likelihood Lc(θ ) is just
this conditional density considered as a func-
tion of θ . The conditional likelihood avoids the



152 ANCILLARY STATISTICS—II

bias and consistency problems of the uncon-
ditional likelihood. Thus, in the presence of
nuisance parameters, another role of condi-
tioning on the ancillary A is to reduce the
bias of estimation. To perform this alterna-
tive function A need not be ‘‘free of θ ’’ in any
sense.

When the model f (x; λ) is an exponential
family with canonical parameter θ , such a
conditional likelihood is always obtained sim-
ply by conditioning on φ̂. The resulting con-
ditional likelihood can be treated much as an
ordinary likelihood, and standard asymptotic
theory often applies, conditional on any value
φ̂. Davison [9] has applied these ideas to gen-
eralized linear models∗ as well as the approx-
imation to be described below. Appropriately
conditional inferences are easily computed
within a standard computer package.

More generally, when a sufficient statistic
A(θ0) for θ exists for fixed θ0, the conditional
likelihood may be calculated. Barndorff-
Nielsen [3] gives an approximation, called
modified profile likelihood, which is

LM(θ ) ≈
∣∣∣∣∣ ∂φ̂∂φ̂θ

∣∣∣∣∣ |Ĵθ |−1/2Lp(θ ),

where Ĵθ is the observed information for φ
when θ is known. The only difficult factor to
compute is the first, which can be made to
approximately equal unity if φ is chosen to
be orthogonal to θ ; see Cox and Reid [8]. The
factor involving jθ penalizes values of θ that
give relatively high information about φ. In
examples where the estimate θ̂ is inconsis-
tent, use of LM(θ ) reduces the inconsistency
but may not completely eliminate it. The
attraction is that conditioning has implicitly
been performed merely by directly using a
likelihood function, albeit approximately.

It is unclear what the conceptual and
practical properties of LM(θ ) are when no
sufficient statistics for φ exist (even when
allowed to be functions of θ ). There are also
cases where conditioning produces a degen-
erate distribution, primarily when the data
are discrete. A simple example is a logistic
regression∗ where interest is in the intercept.
The use of modified profile likelihood in such
cases has not yet been fully justified.
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ANCILLARY STATISTICS, FIRST
DERIVATIVE

The usual definition of an ancillary statistic∗

a(y) for a statistical model {f (y; θ ) : θ ∈ �}
requires that the distribution of a(y) be fixed
and thus free of the parameter θ in �. A
first derivative ancillary (at θ0) requires, how-
ever, just that the first derivative at θ0 of the
distribution of a(y) be zero; in an intuitive
sense this requires ancillarity for θ restricted
to a small neighborhood (θ0 ± δ) of θ0 for δ
sufficiently small. The notion of a first deriva-
tive ancillary was developed in Fraser [4] and
named in Fraser and Reid [6].

Fisher’s discussion and examples of ancil-
laries [3] indicate that he had more in mind
than the fixed θ -free distribution property,
but this was never revealed to most readers’
satisfaction. One direction was to require that
y in some sense measure θ , as in the location
model (see ANCILLARY STATISTICS—I); this

notion was generalized in terms of structural
models∗ which yield a well-defined ancillary
and a well-defined conditional distribution
to be used for conditional inference∗. In a
related manner the usefulness of first deriva-
tive ancillaries arises in a context where the
variable y in a sense measures θ , locally at a
value θ0, and particularly in some asymptotic
results that will be described briefly below.

First we give a simple although somewhat
contrived example of a first derivative ancil-
lary. Consider a sample (y1, . . . , yn) from the
model ϕ(y− θ )(1+ y2θ2)/(1+ θ2 + θ4), where
ϕ denotes the standard normal density. Then
(y1 − y, . . . , yn − y) is first derivative ancillary
at θ = 0, as this model agrees with the model
ϕ(y− θ ) at θ = 0, and the first derivatives
with respect to θ of the two models are also
identical at θ = 0. Also (y1 − y, . . . , yn − y) is
the standard configuration ancillary for the
model ϕ(y− θ ); see ANCILLARY STATISTICS—I.

There are a number of likelihood-based
methods that lead to highly accurate test
procedures for scalar parameters. The typical
context has a continuous model f (y; θ ), where
y has dimension n and θ has dimension p,
and interest centers on a component scalar
parameter ψ , where θ = (λ,ψ), say.

In cases where the dimension of the min-
imal sufficient statistic is the same as the
dimension of θ , as in an exponential model or
via conditionality with a location or transfor-
mation model, there are now well-developed,
very accurate methods for obtaining a p-
value, p(ψ0), for testing the value ψ0 for the
parameter ψ ; see, for example, Barndorff-
Nielsen [1], Fraser and Reid [5,6], and Reid
[8].

Extension to the n > p case requires a
dimension reduction by sufficiency or condi-
tionality. In this context, sufficiency turns
out to be too specialized and conditionality
requires an ancillary or approximate ancil-
lary statistic. While suitable approximate
ancillary statistics have long been known to
exist, there seems not to be any generally
applicable construction method. Particular
examples are discussed in Barndorff-Nielsen
and Cox [2]. The first derivative ancillary [6]
provides the ingredients for a simple con-
struction method.

Consider an independent coordinate y of a
model with scalar parameter θ , and suppose
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the distribution function F(y; θ ) is stochas-
tically monotone at θ0. Then a transforma-
tion x = x(y) to a new variable with distribu-
tion function G(x;0) exists such that G(x; θ )
and G(x− (θ − θ0); θ0) agree up to their first
derivatives at θ = θ0. If this property holds
for each coordinate, then (x1 − x, . . . , xn − x)
is first derivative ancillary at θ = θ0, as in
the simple example above.

The conditional distribution given this
ancillary has tangent direction (1, . . . , 1)′

in terms of the x-coordinates and tangent
direction υ = (υ1, . . . ,υn)′ in terms of the y-
coordinates, where

υi = ∂Fi(yi; θ )
∂θ

/
∂Fi(yi; θ )
∂yi

∣∣∣∣
(y0,θ̂0)

;

the calculation is at the observed data y0 with
corresponding maximum likelihood estimate
θ̂0, and the subscript i is to designate the ith
coordinate distribution function. More con-
cisely, we can write υ = ∂y/∂θ |(ỹ0,θ̂0), where
the differentiation is for a fixed value of the
distribution function. In most problems this
is easy to calculate.

An interesting feature of the above type
of first derivative ancillary is that it can
be adjusted to give an approximate ancil-
lary statistic to third order without altering
its tangent directions at the data point. (A
third-order approximate ancillary statistic is
a statistic whose distribution is free of θ in
a specific sense: see Reid [7]). It turns out
that for approximation of p-values to third
order [meaning with relative error O(n−3/2)],
the only needed information concerning the
ancillary is information on the tangent direc-
tions at the data point. As a result the first
derivative ancillary at the maximum likeli-
hood value provides a means to generalize
third-order likelihood asymptotics from the
case n = p to the typical general case with
n > p [6].
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ANDERSON, OSKAR NIKOLAEVICH

Born: August 2, 1887, in Minsk, Russia.
Died: February 12, 1960, in Munich, Fed-

eral Republic of Germany.
Contributed to: correlation analysis,

index numbers, quantitative economics,
sample surveys, time-series analysis,
nonparametric methods, foundations of
probability, applications in sociology.

The work and life of Oskar Anderson received
a great deal of attention in the periodical
statistical literature following his death in
1960. In addition to the customary obituary
in the Journal of the Royal Statistical Society
(Series A), there was a relatively rare long
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appreciative article—written by the famous
statistician and econometrist H. O. A. Wold,∗

whose biography also appears in this vol-
ume—in the Annals of Mathematical Statis-
tics, with an extensive bibliography, and a
remarkable obituary and survey of his activ-
ities in the Journal of the American Statis-
tical Association, written by the well-known
statistician G. Tintner, also containing a bib-
liography. Furthermore there was detailed
obituary in Econometrica. The first entry in
the International Statistical Encyclopedia (J.
M. Tanur and W. H. Kruskal, eds.) contains
a rather detailed biography and an analysis
of Anderson’s contributions.

Some of this special interest may be associ-
ated with unusual and tragic events the first
40 years of Anderson’s life, as aptly noted by
Wold (1961):

The course of outer events in Oskar Anderson’s
life reflects the turbulence and agonies of a
Europe torn by wars and revolutions. [In fact
Fels (1961) noted that ‘‘a daughter perished
when the Andersons were refugees; a son a
little later. Another son fell in the Second World
War.’’]

Both German and Russian economists and
statisticians compete to claim Oskar Ander-
son as their own. His father became a pro-
fessor of Finno-Ugric languages at the Uni-
versity of Kazan (the famous Russian math-
ematician I. N. Lobachevsky, who was born
in Kazan, was also a professor at the Uni-
versity). The Andersons were ethnically Ger-
man. Oskar studied mathematics at the Uni-
versity of Kazan for a year, after graduat-
ing (with a gold medal) from gymnasium in
that city in 1906. In 1907, he entered the
Economics Department of the Polytechnical
Institute at St. Petersburg. From 1907 to
1915 he was a assistant to A. A. Chuprov∗ at
the Institute, and a librarian of the Statis-
tical-Geographical ‘‘Cabinet’’ attached to it.
He proved himself an outstanding student
of Chuprov’s, whose influence on Anderson
persisted throughout his life. Also, during
the years 1912–1917, he was a lecturer at a
‘‘commercial gymnasium’’ in St. Petersburg,
and managed to obtain a law degree. Among
his other activities at that time, he organized
and participated in an expedition in 1915 to

Turkestan to carry out an agricultural survey
in the area around the Syr Darya river. This
survey was on a large scale, and possessed a
representativity ahead of contemporary sur-
veys in Europe and the USA. In 1917 he
worked as a research economist for a large
cooperative society in southern Russia.

In 1917, Anderson moved to Kiev and
trained at the Commercial Institute in that
city, becoming a docent, while simultaneously
holding a job in the Demographic Institute of
the Kiev Academy of Sciences, in association
with E. Slutskii.∗

In 1920, he and his family left Russia,
although it was said that Lenin had offered
him a very high position in the economic
administration of the country. It is possible
that his feelings of loyalty to colleagues who
were in disfavor with the authorities influ-
enced this decision. For a few years he worked
as a high-school principal in Budapest, and
then for many years (1924–1943) except for
a two-year gap he lived in Bulgaria, being
a professor at the Commercial Institute in
Varna from 1924 to 1933, and holding a sim-
ilar position at the University of Sofia from
1935 to 1942. (In the period 1933–1935 he
was a Rockefeller Fellow in England and Ger-
many, and his first textbook on mathematical
statistics was published.) While in Bulgaria
he was very active in various sample surveys
and censuses, utilizing, from time to time, the
methodology of purposive sampling. In 1940
he was sent to Germany by the Bulgarian
government to study rationing, and in 1942,
in the midst of World War II, he accepted an
appointment at the University of Kiel.

After the war, in 1947, Anderson became
a professor of statistics in the Economics
Department of the University of Munich, and
he remained there till his death in 1960.
His son Oskar Jr. served as a professor of
economics in the University of Mannheim.

Anderson was a cofounder—with Irving
Fisher and Ragnar Frisch—of the Economet-
ric Society. He was also a coeditor of the
journal Metrika. In the years 1930–1960 he
was one of the most widely known statisti-
cians in Central and Western Europe, serving
as a link between the Russian and Anglo-
American schools in statistics, while work-
ing within the German tradition exempli-
fied by such statisticians as Lexis∗ and von
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Bortkiewicz.∗ He contributed substantially
to the statistical training of economists in
German universities. His main strengths lay
in systematic coordination of statistical the-
ory and practice; he had good intuition and
insight, and a superb understanding of statis-
tical problems. His second textbook, Probleme
der Statistischen Methodenlehre, published
in 1954, went through three editions in his
lifetime; a fourth edition appeared posthu-
mously in 1962. He was awarded honorary
doctorates from the Universities of Vienna
and Mannheim and was an honorary Fellow
of the Royal Statistical Society.

His dissertation in St. Petersburg, ‘‘On
application of correlation coefficients in
dynamic series,’’ was a development of
Chuprov’s ideas on correlation. He later pub-
lished a paper on this topic in Biometrika,
and a monograph in 1929. While in Varna,
he published a monograph in 1928 (reprinted
in Bonn in 1929), criticizing the Harvard
method of time-series analysis, and devel-
oped his well-known method of ‘‘variate
differences’’ (concurrently with and inde-
pendently of W. S. Gosset∗). This method
compares the estimated variances of differ-
ent orders of differences in a time series to
attempt to estimate the appropriate degree of
a polynomial for a local fit. In 1947, Anderson
published a long paper in the Schweizerische
Zeitschrift für Volkswirtschaft und Statistik,
devoted to the use of prior and posterior
probabilities in statistics, aiming at unify-
ing mathematical statistics with the prac-
tices of statistical investigators. Anderson
was against abstract mathematical studies in
economics, and often criticized the so-called
‘‘Anglo-American school,’’ claiming that the
Econometric Society had abandoned the goals
originally envisioned by its founders.

During the last period of his life, he turned
to nonparametric methods, advocating, inter
alia, the use of Chebyshev-type inequali-
ties, as opposed to the ‘‘sigma rule’’ based
on assumptions of normality. Some of his
endeavors were well ahead of his time, in
particular, his emphasis on causal analysis
of nonexperimental data, which was devel-
oped later by H. Wold,∗ and his emphasis
on the importance of elimination of system-
atic errors in sample surveys. Although he
had severed physical contact with the land of

his birth as early as 1920, he followed with
close attention the development of statistics
in the Soviet Union in the thirties and for-
ties, subjecting it to harsh criticism in several
scorching reviews of the Marxist orientation
of books on statistics published in the USSR.
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ANDREWS FUNCTION PLOTS

Function plots are displays of multivariate
data in which all dimensions of the data are
displayed. Each observation is displayed as
a line or function running across the display.
The plots are useful in detecting and assess-
ing clusters∗ and outliers∗. Statistical prop-
erties of the plots permit tests of significance∗

to be made directly from the plot.
The display of data of more than two

dimensions requires special techniques. Sym-
bols may be designed to represent simultane-
ously several dimensions of the data. These
may be small symbols used in a scatter plot
with two dimensions of the data giving the
location of the symbol of the page. Anderson
[1] gives examples of such glyphs∗. Patterns
involving one or more of the plotting dimen-
sions are most easily detected.

Alternatively, these may be larger sym-
bols displayed separately. Chernoff faces∗ are
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an example of this type. Although no two
dimensions have special status as plotting
coordinates, the detection of patterns is more
awkward. Function plots are a method of
displaying large (page size) symbols simulta-
neously.

CONSTRUCTION OF PLOTS

Although only few statisticians have experi-
ence in displaying items of more than three
dimensions, all statisticians are familiar with
displays of functions f (t). These may be con-
sidered as infinite dimensional. This suggests
a mapping of multivariate data, observation
by observation, into functions and then dis-
playing the functions. Many such mappings
are possible, but the mapping proposed here
has many convenient statistical properties.

For each observation involving k dimen-
sions x′ = (x1, . . . , xk), consider the function

fx(t) = x1
√

2+ x2 sin t+ x3 cos t

+ x4 sin 2t+ x5 cos 2t+ · · ·

plotted for values −π < t < π . Each obser-
vation contributes one line running across
the display. The completed display consists
of several such lines.

STATISTICAL PROPERTIES

The mapping x→ fx(t) preserves distances.
For two points x, y the equation

k∑
i=1

(xi − yi)2 = π−1
∫ π

−π

[
fx(t)− fy(t)

]2 dt

implies that two functions will appear close if
and only if the corresponding points are close.

The mapping is linear. This implies that

f x(t) = fx(t).

If the data have been scaled so that the
variates are approximately independent with
the same variance σ 2, then the variance of
fx(t) is constant, independent of t, or almost
constant. Since

var(fx(t)) = σ 2( 1
2π + sin2 t+ cos2 t

+ sin2 2t+ cos2 2t+ . . .)
= σ 2( 1

2 + k/2+ R),

where R = 0 if k is odd and sin2[(k+ 1)/2]
if k is even. This relation may be used to
produce and display confidence bands∗ and

Figure 1. All species—150 observations.
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tests for outliers∗. These tests may be made
for preselected values of t or marginally for
all values of t. Scheffé’s method of multiple
comparison∗ may be used here.

EXAMPLE

Figure 1 is a plot of the Fisher iris data. These
data consist of observations of four variables
(log units) on 150 iris flowers. The example is
commonly used to demonstrate multivariate
techniques. Figure 1 clearly demonstrates
the separation of one group. This group con-
sists of one species. This is verified in Fig. 2,
which is the plot of this species alone. Note
the presence of two ‘‘outliers’’ represented by
two straggling lines.

FURTHER NOTES

In some applications, with large data sets,
the data may be summarized for each value
of t by selected order statistics∗ of the values
fx(t). Thus a complex plot may be reduced to
a plot of the median, the quartiles, the 10%
points, and the outlying observations. The
order statistics were chosen so that the lines
will be almost equally spaced for Gaussian
(normal) data.

The order of the variables included in the
specification of the function has no effect on
the mathematical of statistical properties,
although it does affect the visual appearance
of the display. Some experience suggests that
dominant variables should be associated with
the lower frequencies.
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Figure 2. One species—50 observations.
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ANGLE BRACKETS

Tukey [4] used angle brackets for symmet-
ric means. These are power product sum∗

(augmented monomial symmetric functions)
divided by the number of terms forming the
sum, thus giving the mean power product [5,
p. 38].

If observations in a sample are x1, . . . , xn,
the power product sum [P] = [p1 . . .pπ ] =∑n
�= xp1

i xp2
j . . . xpπ

l , where the sum is over all
permutations of the subscripts, and no two
subscripts are equal. The number of terms
forming the sum is n(n− 1) . . . (n− π + 1) =
n(π ). The symmetric mean or angle bracket is
then 〈P〉 = [P]/n(π ). Thus

〈1〉 = 1
n

[1] = 1
n

n∑
1

xi = x,

〈r〉 = 1
n

[r] = 1
n

n∑
1

xr
i = m′r,

〈rs〉 = 1
n(2)

[rs] = 1
n(n− 1)

n∑
i�=j

xr
i x

s
j ,

〈11〉 = 1
n(2)

[11] = 1
n(n− 1)

n∑
i�=j

xixj.

But

[1]2 = [2]+ [11]

as (
n∑
1

xi

)2

=
n∑
1

x2
i +

n∑
i�=j

xixj.

Hence

〈11〉 = 1
n− 1

{n〈1〉2 − 〈2〉}.

Tukey [4] and Schaeffer and Dwyer [3] give
such recursion formulas for the computation
of angle brackets. Elementary examples of
computing angle brackets are given in Keep-
ing [2]. Two angle brackets may be multiplied
by the rule

〈r〉〈s〉 = n− 1
n
〈rs〉 + 1

n
〈r+ s〉.

A similar symmetric mean may be defined
for the population x1, . . . , xN , and denoted
by 〈P〉N = [P]N/N(π ), where [P]N denotes the
power product sum

∑N
�= for the population.

Then, if EN denotes the expected value for
the finite population, it follows from an argu-
ment of symmetry [3,4] that EN〈P〉 = 〈P〉N .
Tukey [4] calls this property ‘‘inheritance on
the average.’’ It makes angle brackets attrac-
tive in the theory of sampling from finite
populations∗, as sample brackets are unbi-
ased estimates∗ of corresponding population
brackets.

Every expression that is (1) a polynomial,
(2) symmetric, and (3) inherited on the aver-
age can be written as a linear combination
of angle brackets with coefficients that do
not depend on the size of the set of numbers
concerned [4].

Since Fisher’s k-statistic∗ kp is defined
as kp =

∑
p(−1)π−l(π − 1)!C(P)〈P〉 and the

finite population K-parameter is Kp =∑
p(−1)π−l(π − 1)!C(P)〈P〉N , it directly fol-

lows that EN(kp) = Kp. For infinite popula-
tions, E〈P〉 = µ′p1

. . . µ′pπ , and hence E(kp) =
κp. See FISHER’S k-STATISTICS for more details.

Tukey [5] defines polykays∗ by a sym-
bolic multiplication of the k-statistics written
as linear combinations of angle brackets.
The symbolic product of the brackets is a
bracket containing the elements in the brack-
ets multiplied, i.e., 〈p1 . . .pπ 〉◦〈q1 . . .qx〉 = 〈p1
. . .pπq1 . . .qx〉. Thus k21 = k2◦k1 = {〈2〉 −
〈11〉}◦〈1〉 = 〈21〉 − 〈111〉. Tukey [4] uses angle
brackets in the consideration of randomized
(or random) sums. Hooke [1] extends them to
generalized symmetric means for a matrix.
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See also FISHER’S k-STATISTICS; POLYKAYS; and POWER

PRODUCT SUMS.

D. S. TRACY

ANGULAR TRANSFORMATION. See
VARIANCE STABILIZATION

ANIMAL POPULATIONS,
MANLY–PARR ESTIMATORS

The Manly—Parr estimator of population
size can be calculated from data obtained by
the capture-recapture method∗ of sampling
an animal population. The assumption made
by Manly and Parr [5] is that an animal pop-
ulation is sampled on a series of occasions in
such a way that on the ith occasion all the
Ni animals then in the population have the
same probability pi of being captured. In that
case the expected value of ni, the number of
captures, is E(ni) = Nipi, so that

Ni = E(ni)
/

pi. (1)

Manly and Parr proposed that pi be esti-
mated by the proportion of the animals known
to be in the population at the time of the ith
sample that are actually captured at that
time. For example, in an open population
(where animals are entering through births
and leaving permanently through deaths and
emigration) any animal seen before the time
of the ith sample and also after that time
was certainly in the population at that time.
If there are Ci individuals of this type, of
which ci are captured in the ith sample,
then p̂i = ci/Ci is an unbiased estimator of
pi. Using equation (1) the Manly—Parr esti-
mator of Ni is then

N̂i = ni/p̂i = niCi/ci. (2)

Based upon a particular multinomial∗
model for the capture process, Manly [4] gives
the approximate variance

var(N̂i) � Ni(1− pi)(1− θi)/(piθi), (3)

where θi is the probability of one of the Ni
animals being included in the class of Ci ani-
mals known to certainly be in the population

at the time of the ith sample. This variance
can be estimated by

Vâr(N̂i) = N̂i(Ci − ci)(ni − ci)/c2
i . (4)

Manly and Parr also proposed estima-
tors for survival rates and birth numbers
in the open population situation. Let ri
denote the number of animals that are
captured in both the ith and the (i+ 1)th
samples. The expected value of this will be
E(ri) = Nisipipi+1, where si is the survival
rate over the period between the two samples
for the population as a whole. This relation-
ship together with equation (1) suggests the
Manly—Parr survival rate estimator

ŝi = ri/(nip̂i+1), (5)

where p̂i+1 = ci+1/Ci+1.
At the time of the (i+ 1)th sample the

population size Ni+1 will be made up of the
survivors from the previous sample time,
Nisi, plus the number of new entries Bi to
the population (the births). On this basis
the Manly—Parr estimator of the number
of births is

B̂i = N̂i+1 − ŝiN̂i. (6)

As an example of the use of the Manly—Parr
equations consider the data shown in Table 1.
The values of ni, ci, Ci, and ri that are needed
for equations (2), (4), (5), and (6) are shown
at the foot of the table. Using these, eq. (2)
produces the population size estimates N̂2 =
94.5 and N̂3 = 82.9. The square roots of the
estimated variances from equation (4) then
give the estimated standard errors Sê(N̂2) =
16.9 and Sê(N̂3) = 16.7. Eq. (5) gives the
estimated survival rates ŝ1 = 0.812 and ŝ2 =
0.625. Finally, Eq. (6) produces the estimated
birth number B̂2 = 23.8. The data in this
example are part of the illustrative data used
by Manly and Parr [5].

Seber [7], Southwood [8], and Begon [1]
discuss the Manly—Parr method in the con-
text of capture—recapture methods in gen-
eral. There are two principal competitors
for the analysis of data from open popula-
tions, the Jolly—Seber method [3,6] and the
Fisher—Ford method [2]. The main theoret-
ical advantage of the Manly—Parr approach
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is that it does not require the assumption
that the probability of survival is the same
for animals of all ages.
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ANIMAL SCIENCE, STATISTICS IN

INTRODUCTION AND HISTORY

The introduction of modern statistical meth-
ods has been a slower process in animal
science than in agriculture∗. In designing
experiments there have been limitations in
the maintenance costs and duration of some
of the experiments. Sampling methods for
estimating animal numbers have been diffi-
cult to adopt, because animals, being mobile,
may be counted repeatedly.

The first application of statistical meth-
ods to animal populations was in 1890 when

Weldon [44] showed that the distributions
of different measurements (ratios to total
length) made on four local races of shrimp
(Crangon vulgaris) closely followed the nor-
mal law. Weldon [45] found that the frontal
breadths of Naples crabs formed into asym-
metric curves with a double hump. It was this
problem of dissection of a frequency distribu-
tion into two normal components that led
to Karl Pearson’s [27] first statistical mem-
oir. The capture—mark—recapture method
was first used by Petersen [28] in his stud-
ies of the European plaice and the earliest
beginnings in the quantitative study of bird
populations were made by Jones [21].

Some developments in the planning and
analysis of animal experiments and in sam-
pling methods for estimating animal num-
bers will be reviewed in the following sections.

DESIGN OF EXPERIMENTS

Choice of Experimental Unit

In feeding trials the experimental unit may
be a pen. Often one pen of animals is fed on
each treatment. The animals are assigned at
random to each pen and the treatments are
assigned at random to the pens. With a single
pen of animals receiving a treatment, the
effect of factors such as breed and age cannot
be separated from treatment differences to
provide a valid estimate of error [19,23].

Change-over Designs

One way of controlling the variation among
animals in experiments is to adopt change-
over designs∗ in which different treatments
are tested on the same animal, such that
each animal receives in sequence two or more
treatments in successive experimental peri-
ods. The analysis of switchback trials for
more than two treatments is dealt with in
ref. 24. Incomplete block designs∗, where the
number of treatments exceeds the number
of experimental units per block, are given in
refs. 25 and 26.

Complete Block Designs

Randomized block designs (RBD) and Latin
squares are common in animal experiments.
A series of Latin squares is recommended
for use in large experiments on rodents [39].
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Alternatively, analysis of covariance∗ has
been used in which a concomitant observa-
tion is taken for eliminating the effect of
variations arising out of the peculiarities of
individual animals. Thus, to test the effect of
treatments on milk production of cows, the
yield in the previous lactation is used as a
concomitant variate to reduce the error in
the experimental yield. The method assumes
that (i) the regression of y on the concomitant
variate x is significant and (ii) x does not vary
significantly among treatments.

Scientists often object to use of RBDs
or Latin squares∗, which make dosing and
sampling procedures difficult to operate in
practice. In such cases, a standard order of
groups may be used within each block, e.g.,
use of a standard Latin square within a bat-
tery of cages in rodent studies.

Split-Plot Designs∗

Incomplete blocks or fractional replication
designs may be used to eliminate the influ-
ence of litter differences from treatment
effects when the number of treatments is
large. An experiment on mice in which larger
units are split into smaller ones is described
in ref. 8 to provide increased precision on the
more interesting comparisons.

Repeated Measurements∗ Experiments

A RBD in which the experimental units are
animals that receive each treatment in turn
is a repeated measurement experiment. This
is generally analyzed as a split-plot design,
which assumes equal correlation for every
pair of subplot treatments. Multivariate
methods that do not require this assumption
are given in ref. 5.

Regression∗

A common problem in animal studies is the
estimation of x from the regression of y on x
when y is easy to measure but x is difficult
and expensive. Thus y and x may represent
the length and age of a fish and we may want
to estimate the age composition to predict
the status of the stock in future years. Other
examples are given in ref. 16. A polynomial
regression∗ of average daily gains of each of
several Holstein calves on time was fitted
in ref. 1 and analysis of variance∗ (ANOVA)

done on the regression coefficients. Nonlin-
ear regressions for describing weight—age
relationship in cattle are compared in ref.
3. Fitzhugh [14] reviewed analysis of growth
curves∗ and strategies for altering their
shape.

Anova Models

Sometimes observations may be lost due to
death or premature drying of lactation. The
estimation of variance components∗ in mixed
models with unbalanced data are dealt with
in ref. 17 and illustrations from animal exper-
iments are given in ref. 2. Analysis of bal-
anced experiments for linear and normal
models is discussed in ref. 18.

Transformations

Often the data violate basic assumptions of
the methods of analysis. For violations due
to heterogeneity, transformation of the indi-
vidual observations into another scale may
reduce heterogeneity, increase precision in
treatment comparisons, and reduce nonaddi-
tivity [41]. Illustrations from animal experi-
ments are given in ref. 16.

In management trials with pigs a score
of x (out of 100) is assigned to each pig
for treatment comparisons. Treatment effects
will not be additive and the transforma-
tion log[(x+ 1

2 )/(100+ 1
2 − x)] given in ref. 8

would rectify this.

Categorical Data

Log-linear∗ and generalized least-squares
approaches have been used for categorical
data∗ on the incidence of pregnancy in ewes
and of buller steers [33]. Log-linear mod-
els for capture—recapture∗ data from closed
populations are mainly discussed in refs. 6
and 34; extensions to open populations are in
ref. 7.

ESTIMATION OF ANIMAL NUMBERS OR
DENSITY

Two important reasons for using sampling
methods for estimation of animal numbers or
density are (1) limitation of funds, time, and
resources and (2) lesser disturbance of the
population and its environment than by total
count operations. Some important methods
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for estimating animal numbers will be sum-
marized in the following sections.

Strips, Transects, Or Quadrats

A common method is to count the number
within a long rectangle of known area called
a transect, a short rectangle called a strip,
or a square called a quadrat. The average
density per unit area is estimated by taking
total counts over randomly chosen areas. The
total population is estimated by multiplying
average density by the total area of the pop-
ulation. Quadrat sampling∗ is preferred for
some big game species and its size and shape
will depend upon the habitat, abundance,
and mobility of the species. When a popula-
tion is randomly distributed, the number(s) of
quadrats to be sampled in an area is given by
s = S/(1+NC2), where S is the total number
of quadrats, N is the size of the population
being sampled, and C is the coefficient of
variation∗ of N̂ [34].

When the population density varies over
large areas, stratified sampling with opti-
mum allocation∗ is recommended. Siniff and
Skoog [40] allocated a sampling effort for
six caribou strata on the basis of prelim-
inary population estimates of big game in
aerial surveys of Alaska caribou conducted
in 22,000 square miles of the Nelchina area.
The method was based on rectangular sam-
ple plots 4 square miles in area on which
observers attempted to count all animals.
Two important advantages of the method
were (i) reduction of the observer bias in
sighting by using large transects and (ii)
the use of an efficient design through opti-
mum allocation of effort based on available
information on caribou distribution. Sam-
pling effort allocated to strata reduced the
variance by more than half over simple ran-
dom sampling∗. Other examples are given in
refs. 13 and 36. Where it is difficult or time
consuming to count all animals in all the
sampled quadrats, two-phase sampling using
ratio or regression methods may be adopted.
Somewhat similar to quadrat sampling in
birds and mammals is the use of sampling
in estimating fish population in a section of
a stream. Sample areas are selected and fish
captured by seining or electrical shocking.
The areas are screened to prevent the disper-
sal of the fish while they are being caught.

Stratification in weirs or seines [20] is com-
mon to the Atlantic herring or sardine fishing
off the New England and New Brunswick
coasts.

Strip Sampling. Parallel lines one strip
width (2W, say) apart determine the popu-
lation of strips. All the n animals observed
within the sampled strips are counted. The
estimate of total number of animals (N) is
given by A · n/(2LW), where L and A repre-
sent the length and population area of the
strip. Strip sampling involves less risk of
repeated counting and is generally recom-
mended in aerial surveys [42,43].

Line Transect Sampling. An observer
walks a fixed distance L along a transect
or set of transects and records for each of
the n sighted animals, its right angle dis-
tance yi(i = 1, 2, . . . , n) from the transect or
its distance ri from the observer or both.
The technique is most useful when the ani-
mals move so fast that they can only be seen
when they are flushed into the open. Var-
ious parametric estimators have been sug-
gested in refs. 15 and CAPTURE–RECAPTURE

METHODS—I. Nonparametric estimators are
given in refs. 4 and 10. References 15 and 34
deal with consequences for departures from
the assumptions. All the estimates are of the
form A · n/(2LW), where W is some measure
of one-half the ‘‘effective width’’ of the strip
covered by the observer as he moves down
the transect. The transect method can also
be used in aerial surveys. The procedure is
the same as for walking or driving and is like-
wise subject to error. See also LINE INTERCEPT

SAMPLING and LINE INTERSECT SAMPLING.

Capture—Mark—Recapture (CMR) Methods

A number of M animals from a closed popu-
lation are caught, marked, and released. On
a second occasion, a sample of n individuals
are captured. If m is the number of marked
animals in the sample, a biased estimate of
N and its variance are

N̂ = n
m

M,

υ(N̂) = N̂2(N̂ −m)(N̂ − n)

Mn(N̂ − 1)
.

This was first given in ref. 28 using tagged
plaice. Because the coefficient of variation of
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N̂ is approximately given by 1/m1/2, it fol-
lows that for N̂ to be efficient, we should
have sufficient recaptures in the second sam-
ple. For closed populations N̂ appears to be
the most useful estimate of N if the basic
assumptions [34] underlying the method are
met. CAPTURE–RECAPTURE METHODS—I con-
tains recent developments in estimating N
for ‘‘closed’’ and ‘‘open’’ populations when
marking is carried over a period of time. A
capture—recapture design robust to unequal
probability of capture is given in ref. 29. The
linear logistic binary regression model has
been used in ref. 30 to relate the probability of
capture to auxiliary variables for closed pop-
ulations. With tag losses due to nonreporting
or misreporting of tag returns by hunters, N̂
will be an overestimate of N [35]. A treat-
ment of response and nonresponse errors in
Canadian waterfowl surveys is given in refs.
37 and 38; response errors were found larger
than the sum of sampling and nonresponse
errors.

Change-In-Ratio and Catch-Effort Meth-
ods. The Change-In-Ratio method estimates
the population size by removing individual
animals if the change in ratio of some attri-
bute of the animal, e.g., age or sex composi-
tion, is known. For a closed population the
maximum-likelihood estimator (MLE) of the
population total Nt(t = 1, 2), based on sam-
ples nt at the beginning and end of the
‘‘harvested period,’’ is given by

N̂t =
(
Rm − RP̂t

)
/
(
P̂1 − P̂2

)
,

where Rm and Rf (R = Rm + Rf ) are, respec-
tively, the males and females caught dur-
ing the harvested period P̂t = mt/nt(t = 1, 2),
where mt is the number of males at time
t. The method assumes (i) a closed popu-
lation, (ii) P̂t = P = const for all t, and (iii)
Rm and Rf are known exactly. A detailed dis-
cussion when the assumptions are violated
is given in ref. 34. In fisheries attempts have
been made to estimate populations using har-
vest and age structure data [32].

In the catch-effort method, one unit of
sampling effort is assumed to catch a fixed
proportion of the population. It is shown in
refs. 9 and 22 that

E(Ct|kt) = K(N − kt),

where Ct is the catch per unit effort in the
tth period, kt is the cumulative catch through
time period (t− 1), K is the catchability coef-
ficient, and N is the initial population size. Ct
plotted against kt provides estimates of the
intercept KN and the slope K, whence N can
be estimated.

Indices

Indices are estimates of animal population
derived from counts of animal signs, e.g., pel-
let group, roadside count of breeding birds,
nest counts, etc. The investigator records the
presence or absence of a species in a quadrat
and the percentage of quadrats in which the
species is observed, giving an indication of its
relative importance. Stratified sample sur-
veys are conducted annually in U.S.A. and
Canada for measuring changes in abundance
of nongame breeding birds during the breed-
ing season [12,31].

Big game populations are estimated by
counting pellet groups in sample plots or
transects. A method for calibrating an index
by using removal data is given in ref. 11.

SUMMARY

A basic problem in experimental design with
animals is substantial variation among ani-
mals owing to too few animals per unit.
Hence, the need for concomitant variables∗

and their relationship with the observations
for reducing the effect of variations due to
individual animals in a unit. The alternative
approach, to reduce this variation by picking
experimental animals from a uniform pop-
ulation is not satisfactory, since the results
may not necessarily apply to populations with
much inherent variability.

Animal scientists are often not convinced
of the importance of good experimentation,
so that laboratory experiments are not nec-
essarily the best to detect small differences.
Closer cooperation is needed between the ani-
mal scientist and the statistician to yield the
best results. Where the underlying assump-
tions are false, it is important to investigate
whether this would invalidate the conclu-
sions. Animal scientists should be alert to
the severity of bias in the use of regression
for calibration of one variable as an indicator
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for another when the problem is an inverse
one and the relation between the variables is
not very close.

In experiments with repeated observa-
tions, with successive observations correlated
on the same animal, the animal scientist
should consult the statistician in the use of
the most appropriate method of analysis.

Sampling techniques for estimating the
size of animal populations are indeed diffi-
cult to implement since animals often hide
from us or move so fast that the same animal
may be counted more than once. The choice
of method would depend on the nature of the
population, its distribution, and the method
of sampling. Where possible, the design
should be flexible enough to enable the use of
more than one method of estimation.

In the past, the Petersen method has
been used with too few captures and recap-
tures, leading to estimates with low precision.
As far as possible, more animals should be
marked and recaptured to ensure higher pre-
cision. Planning for a known precision has
been difficult owing to lack of simple expres-
sions for errors. Where the total sample can
be split into a number of interpenetrating
subsamples∗, separate estimates of popula-
tion size can be formed, resulting in simpler
expressions for overall error. This point needs
examination for population estimates.

The CMR method assumes that both mor-
tality and recruitment are negligible during
the period of data collection∗. Another assum-
ption underlying the method is that marked
and unmarked animals have the same proba-
bility of being caught in the second sample.
When these assumptions are violated, it is
useful to compare the results with other esti-
mating procedures and, if possible, test on a
known population. The latter is recommended
for use in animal populations when the meth-
ods are likely to vary widely in accuracy.

Nonresponse and response errors often
form a highproportionof the total error inesti-
mation of animal numbers or their density. As
an example of such errors, visibility bias of the
observer in aerial surveys, which results in
a proportion of the animal being overlooked,
may be cited. In such cases, the population
total or its density should be estimated by dif-
ferent groups of experienced observers, either

through the use of interpenetrating subsam-
ples or bias corrected by use of alternative
methods, e.g., air—ground comparisons.
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The Annales de l’Institut Henri Poincaré,
Section B, Probabilités et Statistiques pub-
lishes articles in French and English, and is
an international journal covering all aspects
of modern probability theory and mathemat-
ical statistics, and their applications.

The journal is published by Elsevier; web-
site links are www.elsevier.com/locate/
anihpb and www.sciencedirect.com/science/
journal/02460203 . The Editor-in-Chief works
with an international Editorial Board of
twelve or so members.

ANNALS OF APPLIED PROBABILITY

[This entry has been updated by the Editors.]
The Annals of Applied Probability (AAP)

is the youngest of the ‘‘Annals’’ series to
be created by the Institute of Mathematical
Statistics* (IMS).

The website for AAP is www.imstat.org/
aap/.

In 1973 the original Annals of Mathemat-
ical Statistics was split into the Annals of
Statistics* and the Annals of Probability*.
Over the next two decades both of these
expanded noticeably in size: the 1973–1979
volumes of Annals of Probability contained
around 1100 pages, but the 1993 volume more
than doubled this.

By the late 1980s, the Council of the IMS
had decided to further split its publications
in probability theory and its applications into
two journals—the continuing Annals of Prob-
ability and the Annals of Applied Probability.
There were factors other than increasing size
involved in this decision. Paramount amongst
them was the feeling that the Annals of
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Probability was failing to attract outstanding
papers in applied probability with the ease
that it was attracting such papers in the the-
ory of probability. The IMS felt that this was
partly because the Annals of Probability was
seen as being aimed at an audience and an
authorship interested in the purer aspects
of probability theory, despite the efforts of
successive editors to solicit papers with appli-
cations.

The first volume of the Annals of Applied
Probability appeared in 1991, and AAP
quickly established itself as one of the leading
journals in the area, seamlessly carrying on
the tradition of the other Annals published
by the IMS.

EDITORIAL POLICY

The Annals of Applied Probability has two
overriding criteria for accepting papers, other
than formal correctness and coherence. These
are

1. that the results in the paper should be
genuinely applied or applicable; and

2. that the paper should make a serious
contribution to the mathematical theory
of probability, or in some other sense
carry a substantial level of probabilis-
tic innovation, or be likely to stimulate
such innovation.

The first criterion in particular can be
hard to define, and in some cases it has
a broad interpretation. But in differentiat-
ing this journal from its sibling journal, the
Annals of Probability, it is a criterion that is
applied with some care. The Editorial Board
has rejected a number of excellent papers
because the authors did not make a con-
vincing case for applicability, and indeed
several of these have been forwarded (with
the author’s permission) to the other journal,
and some have been accepted there.

The second, more mathematical criterion
is also taken seriously, and in this the Annals
of Applied Probability follows the tradition of
the original Annals of Mathematical Statis-
tics, which was set up to provide an outlet
for the more mathematical papers written by
members of the American Statistical Associ-
ation. Thus the Annals of Applied Probability

has rejected a number of excellent papers in,
say, queueing theory, or in the theory of bio-
logical models, where the applications were
indeed of interest but where the contribution
to the mathematical or probabilistic theory
was felt to be limited.

The editorial policy of AAP is stated on
the website exhibited above. In addition to
the two criteria just discussed, it states:

‘‘The Annals of Applied Probability aims to
publish research of the highest quality reflect-
ing the varied facets of contemporary Applied
Probability. Primary emphasis is placed on
importance and originality ... .
‘‘Mathematical depth and difficulty will not be
the sole criteria with respect to which submis-
sions are evaluated. Fundamentally, we seek a
broad spectrum of papers which enrich our pro-
fession intellectually, and which illustrate the
role of probabilistic thinking in the solution of
applied problems (where the term ‘‘applied’’ is
often interpreted in a side sense).’’
‘‘Most papers should contain an Introduction
which presents a discussion of the context and
importance of the issues they address and a
clear, non-technical description of the main
results. The Introduction should be accessible
to a wide range of readers. Thus, for example, it
may be appropriate in some papers to present
special cases or examples prior to general,
abstract formulations. In other papers a dis-
cussion of the general scientific context of a
problem might be a helpful prelude to the main
body of the paper. In all cases, motivation and
exposition should be clear’’.

All papers are refereed.

TYPES OF PAPERS CARRIED

Stating such general criteria for publication
is one thing; seeing them in operation in
practice is another. The style of a journal is
always best described in terms of its actual
content, and although this is by no means
stationary in time, the following areas are
ones in which the Annals of Applied Prob-
ability carried very significant contributions
in its first years:

1. Queueing networks, with the Lanch-
ester Prize-winning paper on loss net-
works by Frank Kelly, papers on unex-
pectedly unstable networks, and much
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of the seminal literature on fluid model
approximations;

2. Stochastic models in finance*, with
applications to investment strategies,
options analysis, arbitrage models, and
more;

3. Rates of convergence papers for Markov
chains*, with contributions ranging
from finite to general space chains;

4. Foundational work on Markov-chain
Monte Carlo* models (see also GIBBS

SAMPLING);
5. Development of stochastic algorithms in

computing, and analysis of their prop-
erties.

This list is by no means exhaustive; the
behavior of diffusion processes*, branching
processes*, and the like is of course widely
studied in applied probability, and excellent
papers in these areas have appeared in the
Annals of Applied Probability. However, to be
encouraged by the Editors, there needs to be
more than formal technical novelty in such
papers, and authors are encouraged to con-
sider this carefully when submitting to the
journal.

STRUCTURE AND ACCEPTANCE PROCESS

Currently, the Annals of Applied Probabil-
ity has an Editorial Board, consisting of the
Editor (appointed by the IMS Council for
a three-year term), a Managing Editor (with
shared responsibilities for the Annals of Prob-
ability) and 25 or so Associate Editors from
around the world. Past Editors of the Annals
of Probability are:

J. Michael Steele, 1991–1993,
Richard L. Tweedie, 1994–1996,
Richard T. Durrett, 1997–1999,
Søren Asmussen, 2000–2002,
Robert Adler, 2003–.

FUTURE PLANNING

As with many journals, the Annals of Applied
Probability is moving towards an era of im-
proved publication speed using electronic
means.

See also ANNALS OF PROBABILITY; ANNALS OF STATISTICS;
and INSTITUTE OF MATHEMATICAL STATISTICS.

PAUL S. DWYER

ANNALS OF EUGENICS. See ANNALS OF

HUMAN GENETICS

ANNALS OF HUMAN GENETICS

The Annals of Human Genetics was one of the
earliest and has remained one of the foremost
journals concerned with research into genet-
ics*; it is specifically concerned with human
genetics*. The home page for the journal is
www.gene.ucl.ac.uk/anhumgen.

The original title was Annals of Eugen-
ics, subtitled ‘‘A Journal for the scientific
study of racial problems.’’ The word ‘‘Eugen-
ics’’ had been coined by Sir Francis Galton*,
who defined it in 1904 as ‘‘the science which
deals with all the influences that improve
the inborn qualities of a race; also those
that develop them to the utmost advantage.’’
In his foreword to the first volume of the
Eugenics Review in 1909 he said that ‘‘the
foundation of Eugenics is laid by applying
mathematical statistical treatment to a large
collection of facts.’’ He was a man of wide sci-
entific interests, which included stockbreed-
ing, psychology, and the use of fingerprints
for identification, and he was a cousin of
Charles Darwin. He was also one of the early
white explorers of Africa and a prolific writer
on these and many other subjects.

The journal was founded in 1925 by Karl
Pearson*, who was head of the Department
of Applied Statistics and of the Galton Lab-
oratory at University College; it was printed
by Cambridge University Press. The Galton
Laboratory had been founded under Galton’s
will, and Karl Pearson was the first occupant
of the Galton Chair of Eugenics. He had been
an intimate friend and disciple of Galton and
remained faithful to many of his ideas. The
journal’s aims were set out in a foreword to
the first volume, where eugenics is defined
as ‘‘the study of agencies under social control
that may improve or impair the racial quali-
ties of future generations either physically or
mentally.’’ The quotations from Galton and
Darwin still retained on the cover of the
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Annals indicate its commitment to mathe-
matical and statistical techniques. Until the
arrival of the computer and the resulting
enormous increase in the amount of infor-
mation collected, the journal emphasized the
necessity of publishing data with papers; this
is now most often deposited in record offices
when it is extensive.

Karl Pearson retired in 1933 and was suc-
ceeded as editor in 1934 by Ronald A. Fisher*,
who was also keenly interested in the devel-
opment of statistical techniques, but was
critical of some of Pearson’s statistical meth-
ods. He became Galton Professor in 1934,
and the editorship of the Annals went with
the Chair then as now.

Fisher innovated many well-known statis-
tical techniques and showed how they could
be applied to genetical problems. He changed
the subtitle of the Annals to ‘‘A Journal
devoted to the genetic study of human popu-
lations.’’ He co-opted several members of the
Eugenics Society on to the editorial board.
This society had been founded independently
in 1908 as the Eugenics Education Society;
its purpose was to propagate Galton’s ideas
and the work of the Laboratory, and Galton
had accepted the presidency. Ronald Fisher
had been an active member from its early
days. This partnership seems only to have
lasted until the outbreak of war, when Fisher
returned to Rothamsted Experimental Sta-
tion. He stayed there until 1943, when he
accepted the Chair of Genetics at Cambridge
and his editorship ended. In the foreword
to the first volume of the Annals which he
edited, Vol. 6, he announces its policy to be
consistent with the aims of its founder:

The contents of the journal will continue to be
representative of the researches of the Labora-
tory and of kindred work, contributing to the
further study and elucidation of the genetic sit-
uation in man, which is attracting increasing
attention from students elsewhere. The two pri-
mary disciplines which contribute to this study
are genetics and mathematical studies.

In 1945, Lionel S. Penrose succeeded him
as editor of the Annals. He was a distin-
guished medical man and alienist, and under
him the journal became more medical in con-
tent. Some of his papers on Down’s anomaly,

a permanent interest of his, and other aspects
of inherited mental illness appeared in the
journal. A feature of it in his time was the
printing of pedigrees of inherited diseases
covering several generations. He was respon-
sible for changing the title from Annals of
Eugenics to Annals of Human Genetics, a
change for which it was necessary for an
act of Parliament to be passed. The subti-
tle was also changed again to ‘‘A Journal of
Human Genetics.’’ He retired in 1965, and so
did M. N. Karn, who had been the assistant
editor since prewar days. Penrose was editor
for a longer period than either of his prede-
cessors and under his guidance the journal
broadened its coverage and drew its contri-
butions from a wider field.

Harry Harris, also a medical man and bio-
chemist, succeeded to the Galton Chair and
the editorship in 1965, and coopted C. A. B.
Smith, mathematician and biometrician, who
had been on the editorial board since 1955, to
be coeditor. Professor Harris was also head
of a Medical Research Council Unit of Bio-
chemical Genetics which became associated
with the Galton Laboratory. Reflecting the
editors’ interests, the contents of the Annals
inevitably became more concerned with bio-
chemical genetics and statistics; Annals of
Eugenics was dropped from the title page.

In 1975, Harris accepted the Chair of
Human Genetics at the University of Penn-
sylvania, and for the next two years Cedric
Smith was virtually the sole editor, as the
Galton Chair remained vacant. In 1978, Eliz-
abeth B. Robson was appointed to it, and she
and C. A. B. Smith became the editors. The
journal has always been edited at the Galton
Laboratory.

The journal is a specialized one dealing
with human genetics, but has changed with
the progress of research and changing meth-
ods, currently publishing material related
directly to human genetics or to scientific
aspects of human inheritance.

As the website for the journal points out,
during the latter part of the twentieth cen-
tury it became clear that our understanding
of variation in the human genome could
be enhanced by studying the interaction
between the fields of population genetics and
molecular pathology. Accordingly, contempo-
rary topics included in the Annals of Human
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Genetics include human genome variation,
human population genetics, statistical genet-
ics, the genetics of multifactorial diseases,
Mendelian disorders and their molecular
pathology, and pharmacogenetics. Animal as
well as human models may be considered in
some of these areas.

Most articles appearing in the journal
report full-length research studies, but many
issues include at least one review paper.
Shorter communications may also be pub-
lished.

For many years the journal was published
by the Galton Laboratory under the owner-
ship of University College London. Since 2003
it is published by Blackwell. It has an Editor-
in-Chief, a Managing Editor, five or so Senior
Editors, a Reviews Editor and an interna-
tional Editorial Board of 30 or so members.
All papers are rigorously referred.

See also ENGLISH BIOMETRIC SCHOOL; FISHER, RONALD

AYLMER; GALTON, FRANCIS; HUMAN GENETICS,
STATISTICS IN—II; and PEARSON, KARL—I.

JEAN EDMISTON

The Editors

ANNALS OF MATHEMATICAL STATIS-
TICS. See ANNALS OF STATISTICS

ANNALS OF PROBABILITY

[This entry has been updated by the Editors.]
The Annals of Probability (AP) was one of

two journals that evolved from the Annals of
Mathematical Statistics (AMS) in 1973, the
other being the Annals of Statistics* (AS).
All three journals are (or were) official pub-
lications of the Institute of Mathematical
Statistics* (IMS).

Readers are referred to the entries
ANNALS OF STATISTICS and INSTITUTE OF

MATHEMATICAL STATISTICS for the evolution
both of AP and AS out of AMS.

The Annals of Probability is published
bimonthly, each volume consisting in the
six issues of each calendar year. Due to the
expansion of AP in the 1970s and 1980s,
the IMS Council decided to split AP into
two journals; Annals of Probability contin-
ued publication, but with a theoretical focus,
and Annals of Applied Probability* (AAP)

Table 1. Editors, The Annals of Probability

Ronald Pyke,
1972–1975

Burgess Davis,
1991–1993

Patrick Billingsley,
1976–1978

Jim Pitman,
1994–1996

R. M. Dudley,
1979–1981

S. R. S. Varadhan,
1996–1999

Harry Kesten,
1982–1984

Thomas K. Kurtz,
2000–2002

Thomas M. Liggett,
1985–1987

Steve Lalley,
2003–2005

Peter Ney,
1988–1990

with a focus on applications began publica-
tion in 1991. See the entry on AAP for further
discussion on the rationale for the split.

The editorship of AP has been held roughly
for three-year periods; see Table 1. In the
first issue (Feb. 1973) appeared the policy
statement:

‘‘The main aim of the Annals of Probability and
the Annals of Statistics is to publish original
contributions related to the theory of statistics
and probability. The emphasis is on quality,
importance and interest; formal novelty and
mathematical correctness alone are not suffi-
cient. Particularly appropriate for the Annals
are important theoretical papers and applied
contributions which either stimulate theoreti-
cal interest in important new problems or make
substantial progress in existing applied areas.
Of special interest are authoritative expository
or survey articles, whether on theoretical areas
of vigorous recent development, or on specific
applications. All papers are referred.

The current editorial policy of AP appears
on the journal website www.imstat.org/aop/:

‘‘The Annals of Probability publishes re-
search papers in modern probability theory,
its relation to other areas of mathematics,
and its applications in the physical and bio-
logical sciences. Emphasis is on importance,
interest, and originality—formal novelty and
correctness are not sufficient for publication.
The Annals will also publish authoritative
review papers and surveys of areas in vigor-
ous development.’’

Currently the Editorial Board is comprised
of the Editor, a Managing Editor, and 25 or
so Associate Editors from around the world.
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See also ANNALS OF APPLIED PROBABILITY; ANNALS OF

STATISTICS; and INSTITUTE OF MATHEMATICAL

STATISTICS.

ANNALS OF STATISTICS

[This entry has been updated by the Editors.]
The Annals of Statistics (AS), first pub-

lished in 1973, is one of the two journals
resulting from a split of the old Annals of
Mathematical Statistics, the other journal
being the Annals of Probability*. Three cur-
rent Annals are official publications of the
Institute of Mathematical Statistics* (IMS);
in the late 1980s the IMS Council decided
to split its publications on probability theory
and its applications further; see ANNALS OF

APPLIED PROBABILITY.
The website for the Annals of Statistics is

www.imstat.org/aos/.
The original Annals of Mathematical

Statistics (AMS) started before the Institute
existed, and in fact was originally published
by the American Statistical Association∗ in
1930. At that time it had become apparent
that the Journal of the American Statisti-
cal Association∗ (JASA) could not adequately
represent the interests of mathematically
inclined statisticians, who were beginning to
do important research. Willford King, writ-
ing in a prefatory statement to the first issue
of AMS, said:

The mathematicians are, of course, interested
in articles of a type which are not intelligible
to the non-mathematical readers of our Jour-
nal. The Editor of our Journal [JASA] has,
then, found it a puzzling problem to satisfy
both classes of readers.
Now a happy solution has appeared. The Associ-
ation at this time has the pleasure of presenting
to its mathematically inclined members the first
issue of the ANNALS OF STATISTICS, edited
by Prof. Harry C. Carver of the University of
Michigan. This Journal will deal not only with
the mathematical technique of statistics, but
also with the applications of such technique
to the fields of astronomy, physics, psychology,
biology, medicine, education, business, and eco-
nomics. At present, mathematical articles along
these lines are scattered through a great vari-
ety of publications. It is hoped that in the future
they will be gathered together in the Annals.

The seven articles that followed in that first
issue covered a very wide range indeed, as
their titles suggest:

Remarks on Regression
Synopsis of Elementary Mathematical

Statistics
Bayes Theorem
A Mathematical Theory of Seasonal

Indices
Stieltjes Integrals in Mathematical Statis-

tics
Simultaneous Treatment of Discrete and

Continuous Probability by Use of Stielt-
jes Integrals

Fundamentals of Sampling Theory

Harry Carver, the founding editor, took on
sole responsibility for the young journal when
in 1934 the ASA stopped its financial sup-
port. He continued to publish privately until
1938 when the IMS took over the financial
responsibility. Actually, the IMS had come
into existence in 1935, and the Annals had
been its official publication from the start.
But Carver, a prime mover in starting the
IMS, insisted that it not be tied down by
support of the journal.

After the crucial period of Carver’s editor-
ship, S. S. Wilks was appointed editor, a post
he held from 1938 until 1949. Since that time
the editorship has been held for 3-year peri-
ods, initially by Wilks’s appointed successors
(Table 1).

Each editor has headed a distinguished
editorial board, but none compares to the
illustrious board established in 1938: Wilks,
Craig, Neyman (co-editors), Carver, Cramér,
Deming, Darmois, R. A. Fisher∗, Fry, Hotell-
ing∗, von Mises, Pearson, Rietz, and Shew-
hart.

With this auspicious start, the AMS be-
came the focal point for developments in the-
oretical statistics, particularly those devel-
opments associated with the general mathe-
matical theories of estimation, testing, distri-
bution theory, and design of experiments. The
full impact of the Annals, past and present,
is clearly seen in the bibliographies of most
books on theoretical statistics. Many of the
newer statistical methods can be traced back
to pioneering research papers in AMS.
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Table 1.

Editors of Annals of Mathematical Statistics

H. C. Carver (1930–1938) William H. Kruskal (1958–1961)
S. S. Wilks (1938–1949) J. L. Hodges, Jr. (1961–1964)
T. W. Anderson (1950–1952) D. L. Burkholder (1964–1967)
E. L. Lehmann (1953–1955) Z. W. Birnbaum (1967–1970)
T. E. Harris (1955–1958) Ingram Olkin (1970–1972)

Editors of Annals of Statistics

Ingram Olkin (1972–1973) Lawrence D. Brown and
I. R. Savage (1974–1976) John A. Rice, 1995–1997
R. G. Miller, Jr. (1977–1979) James O. Berger and
David Hinkley (1980–1982) Hans R. Kunsch, 1998–2000
Michael D. Perlman, 1983–1985 John I. Marden and
Willem R. Van Zwet, 1986–1988 Jon A. Wellner, 2001–2003
Arthur Cohen, 1989–1991 Morris L. Eaton and
Michael Woodroofe, 1992–1994 Jianqing Fan, 2004–2006

After some 40 years of growing strength
and size, the AMS was split in 1972 dur-
ing the editorship of I. Olkin, who continued
as first editor of AS. Each volume of AS is
devoted entirely to research articles. (The
news items and notices that used to appear
in AMS until 1972 are published in the IMS
Bulletin, issued bimonthly.) The journal does
not publish book reviews. A volume currently
consists of six bimonthly issues. All papers
are referred under the general guidelines of
editorial policy.

EDITORIAL POLICY

The following statement was made in the
1938 volume of JASA:

The Annals will continue to be devoted largely
to original research papers dealing with top-
ics in the mathematical theory of statistics,
together with such examples as may be use-
ful in illustrating or experimentally verifying
the theory. However, in view of the purpose of
the Institute of Mathematical Statistics which,
interpreted broadly, is to stimulate research in
the mathematical theory of statistics and to
promote cooperation between the field of pure
research and fields of application, plans are
being made to extend the scope of the Annals
to include expository articles from time to time
on various fundamental notions, principles, and
techniques in statistics. Recognizing that many
theoretical statistical problems have their ori-
gin in various fields of pure and applied science

and technology, papers and shorter notes deal-
ing with theoretical aspects of statistical prob-
lems arising in such fields will be welcomed by
the editors.

The current editorial policy of the journal
is stated on its website www.imstat.org/aos/,
as follows:

‘‘The Annals of Statistics aims to publish
research papers of highest quality, reflecting
the many facets of contemporary statistics.
Primary emphasis is placed on importance
and originality, not on formalism.

The discipline of statistics has deep roots
in both mathematics and in substantive sci-
entific fields. Mathematics provides the lan-
guage in which models and the properties
of statistical methods are formulated. It is
essential for rigor, coherence, clarity and
understanding. Consequently, our policy is
to continue to play a special role in present-
ing research at the forefront of mathemati-
cal statistics, especially theoretical advances
that are likely to have a significant impact
on statistical methodology or understand-
ing. Substantive fields are essential for con-
tinue vitality of statistics, since they provide
the motivation and direction for most of the
future developments in statistics. We thus
intend to also publish papers relating to the
role of statistics in inter-disciplinary investi-
gations in all fields of natural, technical and
social sciences. A third force that is reshap-
ing statistics is the computational revolution,
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and the Annals will also welcome develop-
ments in this area. Submissions in these two
latter categories will be evaluated primarily
by the relevance of the issues addressed and
the creativity of the proposed solutions.

‘‘Lucidity and conciseness of presentation
are important elements in the evaluation of
submissions. The introduction of each paper
should be accessible to a wide range of read-
ers. It should thus discuss the context and
importance of the issues addressed and give
a clear, nontechnical description of the main
results. In some papers it may, for example,
be appropriate to present special cases or
specific examples prior to general, abstract
formulations, while in other papers discus-
sion of the general scientific context of a
problem might be a helpful prelude to the
body of the paper.”

Currently two Editors, a Managing Edi-
tor, and 40 or so Associate Editors in many
countries serve on the Editorial Board.

AS continues to recognize its singular and
historic role as publisher of general theory,
while reflecting the impact that theory does
and should have on practical problems of cur-
rent interest. For that reason, relevance and
novelty are at least as important as mathe-
matical correctness.

See also ANNALS OF APPLIED PROBABILITY; ANNALS OF

PROBABILITY; and INSTITUTE OF MATHEMATICAL

STATISTICS.

D. V. HINKLEY

ANNALS OF THE INSTITUTE OF
STATISTICAL MATHEMATICS

The first issue of this journal appeared in
1949. It is published in English by Kluwer.

The aims and scope of AISM are presented
at the journal’s website www.kluweronline
.com/issn/0020-3157, as follows:

‘‘Annals of the Institute of Statistical Mathemat-
ics (AISM) provides an international forum for
open communication among statisticians and
researchers working with the common purpose
of advancing human knowledge through the
development of the science and technology of
statistics.
AISM will publish broadest possible coverage
of statistical papers of the highest quality. The

emphasis will be placed on the publication of
papers related to: (a) the establishment of new
areas of application; (b) the development of
new procedures and algorithms; (c) the devel-
opment of unifying theories; (d) the analysis
and improvement of existing procedures and
theories; and the communication of empirical
findings supported by real data.
‘‘In addition to papers by professional statis-
ticians, contributions are also published by
authors working in various fields of application.
Authors discussing applications are encouraged
to contribute a complete set of data used in their
papers to the AISM Data Library. The Insti-
tute of Statistical Mathematics will distribute
it upon request from readers (see p. 405 and
606, Vol. 43, No. 3, 1991). The final objective
of AISM is to contribute to the advancement of
statistics as the science of human handling of
information to cope with uncertainties. Special
emphasis will thus be placed on the publication
of papers that will eventually lead to significant
improvements in the practice of statistics.”

AISM currently has an Editor-in-Chief, six
Editors and 40 Associate Editors. All papers
published in the journal are refereed.

ANOCOVA TABLE. See ANALYSIS OF

COVARIANCE; ANOVA TABLE

ANOVA TABLE

An ANOVA (analysis of variance) table is a
conventional way of presenting the results of
an analysis of variance∗. There are usually
four columns, headed

1. Source (of variation)
2. Degrees of freedom∗

3. Sum of squares
4. Mean square∗

Columns 1 and 2 reflect the size and pattern
of the data being analyzed and the model
being used. Column 4 is obtained by dividing
the entry (in the same row) in column 3 by
that in column 2.

Sometimes there is a fifth column, giving
the ratios of mean squares to a residual mean
square∗ (or mean squares). These statistics
are used in applying the standard F-test∗
used in the analysis of variance.
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The value of the ANOVA table is not only
in its convenient and tidy presentation of
the quantities used in applying analysis-of-
variance tests. The juxtaposition of all the
quantities used for a number of different
tests (or the mean squares for many differ-
ent sources of variation) can provide valuable
insight into the overall structure of variation.
For example, in the analysis of a factorial
experiment∗, the groups of interactions∗ of
specified order can provide evidence of rela-
tively great variation arising when a partic-
ular factor (or group of factors) is involved.

The term ‘‘ANOCOVA table’’ is also used
(although rather infrequently) to describe
similar tables relevant to the analysis of
covariance∗.

See also ANALYSIS OF VARIANCE.

ANSARI—BRADLEY W-STATISTICS.
See SCALE TESTS, ANSARI—BRADLEY

ANSCOMBE DATA SETS

A celebrated classical example of role of resid-
ual analysis and statistical graphics in sta-
tistical modeling was created by Anscombe
[1]. He constructed four different data sets
(Xi, Yi), i = 1, . . . , 11 that share the same des-
criptive statistics (X Y, β̂0, β̂1, MSE, R2, F)
necessary to establish linear regression fit
Ŷ = β̂0 + β̂1X.

The following statistics are common for
the four data sets:

Set 1
X 10 8 13 9 11 14 6 4 12 7 5
Y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Set 2
X 10 8 13 9 11 14 6 4 12 7 5
Y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Set 3
X 10 8 13 9 11 14 6 4 12 7 5
Y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Set 4
X 8 8 8 8 8 8 8 19 8 8 8
Y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.50 5.56 7.91 6.89

Sample size N 11
Mean of X(X) 9
Mean of Y(Y) 7.5
Intercept (β̂0) 3
Slope (β̂1) 0.5
Estimator of σ , (s) 1.2366
Correlation rX,Y 0.816

A linear model is appropriate for Data
Set 1; the scatterplots and residual analy-
sis suggest that the Data Sets 2–4 are not
amenable to linear modeling.

REFERENCE

1. Anscombe, F. (1973). Graphs in Statistical
Analysis, American Statistician, 27 [February
1973], 17–21.

FURTHER READING

Tufte, E. R., The Visual Display of Quantitative
Information, Graphic Press, 1983.

ANSCOMBE, FRANCIS JOHN

Frank Anscombe was born in Hertfordshire
and grew up in Hove, England. His parents
were Francis Champion Anscombe (1870–
1942) and Honoria Constance Fallowfield
Anscombe (1888–1974). His father worked
for a pharmaceutical company in London
and his mother was an early female grad-
uate of the University of Manchester. Frank
attended Trinity College, Cambridge, on a
merit scholarship. He obtained a B.A. in
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Mathematics in 1939 with first class honors,
and an M.A. in 1943. During the war years,
he was with the British Ministry of Supply,
concerned with assessment of weapons and
quality control of munitions production. From
1945 to 1948, he was in the statistics depart-
ment at Rothamsted Experimental Station,
Hertfordshire. In 1954, he married John
Tukey’s sister-in-law, Phyllis Elaine Rapp.
They had four children (Francis, Anthony,
Frederick, and Elizabeth). Anscombe died in
2001 after a long illness.

ACADEMIC CAREER

From 1948 to 1956, Frank Anscombe was
lecturer in mathematics at the Statistical
Laboratory, the University of Cambridge in
England. In 1956, he moved to the mathe-
matics department of Princeton University,
as associate and then full professor. He left
Princeton in 1963 to found the statistics
department at Yale University. He chaired
that department for six years, developing a
graduate program. The department became
known for its careful balance of theory and
applications. He was a member of impor-
tant advisory and evaluation committees. He
retired in 1988.

STATISTICAL CONTRIBUTIONS

Anscombe made important contributions to
the British World War II effort. In particu-
lar, he was concerned with the deployment
of weapons, the aiming of anti-aircraft rock-
ets, and the development of strategies for
massing guns. After the war, he worked at
Rothamsted on the applications of statistics
to agriculture. During these years, he pub-
lished papers in Nature, Biometrika, and
Biometrics, and had a discussion paper in
the Journal of the Royal Statistical Society
[1–3,12]. He often wrote on the problems of
sampling inspection and sequential estima-
tion. One in particular [5] is a discussion
paper on sequential analysis invited by the
Royal Statistical Society. Later, however [7],
he wrote, ‘‘Sequential analysis is a hoax.’’

The next decade saw Anscombe evolving
into a subjective Bayesian on the one hand,
but on the other delving directly into data
analysis concerned with uses of residuals∗

and into tricky problems created by outliers∗.
The Fourth Berkeley Symposium paper [6]
and the Technometrics paper with John
Tukey [13] were landmarks in the history
of residual analysis.

The final stages of Anscombe’s research
career saw a move into computing [8,9]. In
the Preface of the book [9], he writes that
the work is ‘‘a festivity in . . . honor’’ of J.
W. Tukey and K. E. Iverson. Anscombe’s
last published paper [10] concerned testing
in clinical trials∗.

Two of Anscombe’s theoretical papers
are often referred to. Reference 4 presents
Anscombe’s Theorem, which provides condi-
tions for replacing a fixed sample size by a
random stopping time. The result was later
extended by Rényi [14]. Reference 11 con-
tains the Anscombe–Auman work showing
that Savage’s derivation of expected utility∗

can be considerably simplified.

CONCLUDING REMARKS

Anscombe was an elected member of the
International Statistical Institute∗ and a
charter member of the Connecticut Academy
of Science and Engineering. He was the R.
A. Fisher Lecturer in 1982. Throughout his
career, he prepared pithy book reviews and
contributed to discussions in a lively manner.

Anscombe was concerned with the popu-
larization and simplification of statistics. For
example, he had papers in The American
Statistician and once wore a sombrero at an
Institute of Mathematical Statistics meeting
in an attempt to enliven it. He had impor-
tant interests outside of statistics, including
classical music, poetry, art, and hiking.
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DAVID R. BRILLINGER

ANTHROPOLOGY, STATISTICS IN

Statistical methods were introduced into phy-
sical anthropology by Adolphe Quetelet∗ and
Francis Galton∗ during the nineteenth cen-
tury. From their work grew the ‘‘Biometrics
School,’’ headed by Pearson∗ and Karl Wel-
don W.F.R.∗, whose members studied the
variation between local races in an attempt
to clarify the processes of inheritance and
evolution. Human skulls, in particular, were
intensively studied because of the availability
of historical material. The statistical treat-
ment of data from skulls raised many new
problems, and Pearson [23] took one of the
first steps in multivariate analysis∗ by intro-
ducing the coefficient of racial likeness∗, a

statistic based on all measurements and
used to assess the significance of differences
between groups. There is less emphasis on
craniometry today than there was in Pear-
son’s time, but the basic statistical problem
is still with us. How should variation in the
shape of complex objects such as bones be
described?

Pearson believed passionately in measure-
ment∗ as the basis of all science, although he
recognized that most advances in the study
of shape had actually relied on visual com-
parisons. Unfortunately, the measurement
of shape is very difficult. In the majority
of published examples the procedure has
been to identify common landmarks on the
objects and then to measure angles and lin-
ear distances. The hope is that a statis-
tical summary of these data will embody
a summary of shape. The early biometri-
cians were restricted to simple statistical
summaries by primitive computing equip-
ment, but techniques of multivariate analysis
are now commonly used to attempt a more
explicit description of shape variation within
a group and to make comparisons between
groups.

Landmarks are hard to find on some
objects, and an alternative approach is to
record the coordinates of a large number
of points on the object. Measures of shape
must then be based on geometric properties
of the surfaces containing the points, and
should be independent of which points are
chosen. The technique has so far been lim-
ited to outlines from sections of the original
objects for which curves rather than surfaces
are relevant. This has been for practical
rather than theoretical reasons. A plot of
radial distance versus angle has been used to
summarize outlines, but this has the disad-
vantage of depending on the choice of origin.
An alternative is a plot of tangent direction
versus distance round the outline [27]. In
both cases the plots may be described quanti-
tatively using Fourier series∗. The geometric
approach is well reviewed in Bookstein [5].

SHAPE AND SIZE

The special problem of determining the extent
to which shape is related to size is referred
to as allometry∗. Apart from this concern,
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size variation is usually of little interest in
studies of shape. However, linear distances
inevitably reflect the size of an object so
that size variation can be a nuisance. Since
only the relative magnitude of distances is
important for shape, the distances are often
replaced by ratios of one distance to another.
If shape is related to size, such ratios still
might well be related to size, but the degree
of relationship will be much less than for
the original distances. It is usual to choose
one distance that is strongly influenced by
size and to use this as the denominator when
expressing other distances as ratios. Mosi-
mann [18] and Corruccini [7] have suggested
the use of a symmetric function of all the
size-dependent variables as the denominator.

VARIATION WITHIN A GROUP

Measurements made on an object are regar-
ded as a vector of observations x on a vector of
variables X. The individual variables in X are
referred to as X1, . . . , Xυ . Data from a group
of n objects consists of n vectors, x1, . . . , xn,
which together form a n× υ data matrix. The
rows of this matrix, which are the vectors xi,
may be represented as n points in υ-space
and the columns as υ points in n-space. The
two representations are sometimes referred
to as Q and R, respectively. The Euclidean
metric is used in both spaces so that in row
space (Q) the distance between two objects is,
in matrix notation, (x− y)T(x− y). Thus two
objects that are close in row space are similar
in respect of the υ measurements.

The usual statistical summary is based on
the mean∗ and standard deviation∗ of each
variable, together with correlations∗ between
pairs of variables. This depends on the distri-
bution being roughly multivariate normal∗,
an assumption that may be partially tested
by inspecting the distribution of each vari-
able separately (which should be normal) and
each possible bivariate plot (which should be
linear). If there is no correlation, then the
variation in shape is uninteresting: objects
vary, but not in any consistent way. Suppose
now that all objects are roughly the same
size. Then a high correlation (positive or neg-
ative) is regarded as evidence that the two
variables are constrained by the necessity
for the object to stay in the same class of

shapes and that jointly they are measuring
a single aspect of shape. A negative corre-
lation can be converted to a positive one by
using the reciprocal of a measurement or
ratio, or the complement of an angle, and
this is usually done to ensure positive cor-
relations as far as possible. If a group of
variables has high positive intercorrelations,
then the group is taken to be measuring a
single aspect of shape. Different aspects of
shape will have relatively low correlation,
by definition. Statistically, this amounts to
grouping the variables on the basis of their
correlations. It may be done by eye for a
small number of variables or by extracting
principal components for a larger number
(υ > 10). If the objects do not have the same
size, then the interpretation of correlations
depends on the nature of the variables. Cor-
relation among linear distances will almost
certainly be partly, perhaps largely, due to
size variation. Correlation among angles and
ratios will generally indicate constraints of
shape.

Principal component analysis∗ extracts
the components (Z1, . . . , Zυ ) from the
covariances∗ between the original variables.
Each component is a linear combination
of the variables (X1, . . . , Xυ ). If Z1 = a1X1 +
· · · + aυXυ , then ai is called the loading∗ of
Xi on the first component and is propor-
tional to the covariance between Z1 and Xi.
When the data have been standardized by
reducing each variable by its mean and scal-
ing each to have unit standard deviation,
then covariance equals correlation. In this
case the loadings are used to group vari-
ables according to their correlations with the
first few components and hence with each
other. Sometimes the procedure is reversed
and the first few components are ‘‘named’’
according to the variables they are associated
with. This is logically equivalent to group-
ing the variables∗. Howells [14] gives a good
example.

If the observed values of X for an object
are substituted in the expression for Z1, the
result is a score for that object on Z1. The
scores on Z1 and Z2 may be plotted, using
rectangular axes, to give an approximation
to the representation of objects in row space.
The quality of the approximation depends on
how much of the overall variability between
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objects has been reproduced by Z1 and Z2.
The plot is useful for spotting any lack of
homogeneity∗ in the group of objects. (Rao
[25] gives a very detailed account of the dif-
ferent uses of principal components.)

VARIATION BETWEEN GROUPS

If the comparison of several groups is to be
meaningful, each must have a representative
shape. In other words, the groups must be
homogeneous, displaying some variation, but
not too much. We shall assume that there are
k groups in all, distinguishing between them
by using different letters (x, y, z, . . .) to refer
to a typical vector of measurements in each
group. The vector of means for each group
is regarded as representing a mean shape.
For example, McLearn et al. [16] reconstruct
a typical profile from the mean of measure-
ments taken from a large number of indi-
vidual profiles of the human face. In this
example the result still looked like a human
face, i.e., x satisfied the same geometric con-
straints as each xi in x =∑

xi/n, but since
these constraints are in general nonlinear,
this will not always be the case.

When comparing groups there are two
kinds of questions: comparison between pairs
of groups and an overall comparison. The lat-
ter requires some metric∗ enabling one to
decide whether group x is closer to y than
to z, and a wide variety have been pro-
posed. A good review is given in Weiner
[26]. The most commonly used metric is now
(x− y)T�−1(x− y), where � is a positive def-
inite p× p matrix. This may be interpreted
as follows. If a multivariate normal density
with covariance � is centered at x, then all
points y that are equiprobable in this den-
sity are equidistant from x in this metric. If
� = I, the contours of equal probability are
spheres; otherwise, they are ellipsoids. The
metric is satisfactory only for groups with
similar patterns of covariance, in which case
� is taken equal to S, the pooled covari-
ance matrix within groups. This leads to D2,
equal to (x− y)TS−1(x− y), as the measure
of distance between groups. It is clear from
the derivation that the comparison of two
large values of D2 is unlikely to be satisfac-
tory. In fact, although D2 takes account of

correlations within groups, it is, like all met-
rics, rather a blunt instrument when used for
assessing affinity.

With a lot of groups the pairs of D2 values
can be confusing, so a visual overall picture of
the interrelationships between groups is pro-
duced using principal components∗. A k× υ
data matrix in which the rows are now the
group means is used and principal compo-
nent analysis is carried out in the D2 metric
[12]. The resulting components are called
canonical variates or sometimes discriminant
functions∗. Scores for each group on the first
two or three canonical variates are plotted
using rectangular axes. Good examples of the
use of canonical variates are those of Ashton,
et al. [2], Day and Wood [9], and Oxnard [19].

If something is known about the function
of the objects, then it may be possible to
order the groups according to this function,
at least roughly, e.g., low, medium, and high.
We assume that function is not quantifiable,
so that only a rough ordering is possible.
The plot will show whether or not this order-
ing is associated with the major dimensions
of shape variation. Of course, there may
well be other measures of shape more highly
associated with function than the first few
canonical variates. Aspects of shape that are
highly variable are not necessarily those most
highly associated with function.

The D2-metric itself is not without dis-
advantages. First the assumption that the
pattern of variation is constant for all groups
is inherently unlikely with shape studies.
Second, when a large number of variables
is used to ensure that shape is adequately
described, they often contain redundancies
which lead to nearly singular matrices S
and hence to very large and meaningless D2-
values. Some progress has been made in over-
coming these and other difficulties. To avoid
distortion from studying scores on just the
first two or three canonical variates, Andrews
[1] has suggested representing each group
by a weighted combination of trigonomet-
ric functions of θ with weights equal to the
scores on all υ canonical variates. As θ varies,
each group is represented by a smooth curve.
Burnaby [6] has shown how the D2-metric
may be adjusted to measure change only in
certain directions in row space. This can be
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useful when it is required to avoid a direc-
tion corresponding to growth or size change.
Penrose [24] showed how the adjusted D2-
metric becomes equal to the Euclidean metric
when all correlations are equal. To avoid
D2 altogether, some authors have pooled the
groups and studied the extent to which the
individual objects can be clustered, either
visually using principal components and the
Euclidean metric, or automatically using var-
ious clustering∗ algorithms [20]. The tech-
niques of multidimensional scaling∗ [15] and
principal coordinates∗ [11] are also relevant
here.

FOSSILS

The stimulus to study variation in modern
groups of man often comes from a particularly
important fossil find. If canonical variates for
the modern groups have been evaluated, then
scores on these variates can be obtained for
the fossil, and it can be placed on the plot
of modern group means relative to the first
two or three canonical variates. This plot
indicates its position relative to the modern
groups, but the result must be treated with
caution. Both the modern groups and the
fossil should fit well into the two- or three-
dimensional plot, for otherwise their relative
positions will be distorted. If the fit is poor,
then the actual D2 distances of the fossil from
the modern groups should be compared, but
if these are all large, then the assessment
of affinity is bound to be unsatisfactory. Day
and Wood [9], after associating a canonical
variate with function, used it to predict func-
tion for a fossil that was very different from
the modern groups used to derive the canon-
ical variate. This situation is in some ways
analogous to that encountered when using a
regression line∗ to predict values outside the
range on which the line was based.

PREVALENCE OF ATTRIBUTES∗

Consider υ attributes of an object measured
by X1, . . . , Xυ , where these now take only
two possible values (presence/absence). The
comparison between groups rests on a com-
parison of the prevalence for each attribute. If
p(Xi) is the prevalence for Xi, then the differ-
ence between two groups is measured on the

transformed scale θ = sin−1√p. On this scale
the standard deviation of θ is approximately
1/(4n). See VARIANCE STABILIZATION. If the
υ attributes are independent, then υ differ-
ences, θi − θ ′i , may be combined to provide an
overall distance d2 =∑

(θi − θ ′i )2. Berry and
Berry [4] give an example based on attributes
of the skull. Edwards [10] has generalized
this to cover attributes with more than two
states, such as blood groups.

STATISTICAL TESTS AND PREDICTION

Since there is rarely any element of randomi-
zation∗ in data collection for physical anthro-
pology, the role of significance tests∗ is less
important than that of description. Three
tests are commonly performed: equality of
covariance matrices between groups, differ-
ence between two groups based on D2, and
zero intercorrelation within a set of variables.
All three are based on the multivariate nor-
mal distribution∗. Full details are given in
Morrison [17].

A vector x which is incomplete cannot be
used in multivariate analysis∗ without the
missing values being replaced by some esti-
mates. The group means for the relevant
variables are sometimes used, but a better
method is to use the set of complete vectors
to predict the missing values using multiple
regression∗ [3].

Predicting the sex of bones can be dealt
with statistically if reference groups of known
sex are available. Each unknown bone is allo-
cated to the closer of the male and female
reference groups using the D2-metric. Day
and Pitcher–Wilmott [8] give an example.
The maturity of bones is assessed from char-
acteristics that can be ordered with respect
to maturity. Scaling techniques∗ are used to
make the assessment quantitative [13].

REFERENCES

1. Andrews, D. F. (1972). Biometrics, 28,
125–136.

2. Ashton, E. H., Healy, M. J. R., and Lipton, S.
(1957). Proc. R. Soc. Lond. B, 146, 552–572.

3. Beale, E. M. L. and Little, R. J. A. (1975). J.
R. Statist. Soc. B, 37, 129–145.

4. Berry, A. C. and Berry, R. J. (1967). J. Anat.,
101, 361–379.



180 ANTIEIGENVALUES AND ANTIEIGENVECTORS

5. Bookstein, F. L. (1978). The Measurement of
Biological Shape and Shape Change. Lect.
Notes Biomath., 24. Springer-Verlag, Berlin.

6. Burnaby, T. P. (1966). Biometrics, 22, 96–110.
7. Corruccini, R. S. (1973). Amer. J. Phys.

Anthropol., 38, 743–754.
8. Day, M. H. and Pitcher-Wilmott, R. W. (1975).

Ann. Hum. Biol., 2, 143–151.
9. Day, M. H. and Wood, B. A. (1968). Man, 3,

440–455.
10. Edwards, A. W. F. (1971). Biometrics, 27,

873–881.
11. Gower, J. C. (1966). Biometrika, 53, 325–338.
12. Gower, J. C. (1966). Biometrika, 53, 588–590.
13. Healy, M. J. R. and Goldstein, H. (1976).

Biometrika, 63, 219–229.
14. Howells, W. W. (1972). In The Functional and

Evolutionary Biology of Primates: Methods of
Study and Recent Advances, R. H. Tuttle, ed.
Aldine-Atherton, Chicago, pp. 123–151.

15. Kruskal, J. B. (1964). Psychometrika, 29,
1–27.

16. McLearn, I., Morant, G. M., and Pearson, K.
(1928). Biometrika, 20B, 389–400.

17. Morrison, D. F. (1967). Multivariate Statisti-
cal Methods. McGraw-Hill, New York.

18. Mosimann, J. E. (1970). J. Amer. Statist. Ass.,
65, 930–945.

19. Oxnard, C. E. (1973). Form and Pattern in
Human Evolution. University of Chicago
Press, Chicago.

20. Oxnard, C. E. and Neely, P. M. (1969). J. Mor-
phol., 129, 1–22.

21. Pearson, E. S. (1936). Biometrika, 28,
193–257.

22. Pearson, E. S. (1938). Biometrika, 29,
161–248.

23. Pearson, K. (1926). Biometrika, 18, 105–117.
24. Penrose, L. S. (1954). Ann. Eugen. (Lond.), 18,

337–343.
25. Rao, C. R. (1964). Sankhyā A, 26, 329–358.
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FURTHER READING

The book by Oxnard [19] provides the best
available general introduction to the sub-
ject, and contains a good bibliography. The
series of papers by Howells (1951 onward;
see the bibliography in ref. [19]) contain

good examples of most of the important
methodological contributions made during
this period. The use of canonical variates
is well explained in Ashton et al. [2]. Book-
stein’s monograph [5] provides a useful anti-
dote to the uncritical use of interlandmark
distances; although more mathematical than
the other references cited it is well worth
the effort. Technical details about principal
components and canonical variates are best
obtained from Rao [25], Gower [11,12], and
Morrison [17]. For historical details the early
volumes of Biometrika should be consulted,
particularly Volume 1 and the account of
Karl Pearson’s life and work given by E. S.
Pearson [21,22].

See also ALLOMETRY; CLUSTER ANALYSIS; CORRELATION;
DISCRIMINANT ANALYSIS; MULTIDIMENSIONAL SCALING;
MULTIVARIATE ANALYSIS; PATTERN RECOGNITION;
PRINCIPAL COMPONENT ANALYSIS, GENERALIZED; and
REGRESSION.

M. HILLS

ANTIEIGENVALUES AND
ANTIEIGENVECTORS

INTRODUCTION

It follows from the celebrated Cauchy–
Schwarz* inequality that for a real sym-
metric positive definite matrix A of order
p× p, (x′Ax)2 � x′A2x · x′x, with equality if
and only if Ax is proportional to x. Thus, the
optimization problem

max
x�=0

x′Ax√
x′A2x · x′x

, (1)

has its optimum value at 1 and it is attained
when x is an eigenvector* of A. Thus, if
{γ 1, γ 2, . . . , γ p} is the set of orthogonal eigen-
vectors of A corresponding to the eigenval-
ues* λ1 � λ2 � . . . � λp, then any of these
eigenvectors will solve Equation 1. The cor-
responding minimization problem

min
x�=0

x′Ax√
x′A2x · x′x

, (2)

however, is solved by
(

λp
λ1+λp

)1/2
γ 1 ±(

λ1
λ1+λp

)1/2
γ p and the corresponding mini-

mum value is called the Kantorovich bound
[17] (see KANTOROVICH INEQUALITY),
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namely,
2
√
λ1λp

λ1+λp
. Since this corresponds to

the minimization problem rather than max-
imization, it may be appropriate to call the
quantity

µ1 =
2
√
λ1λp

λ1 + λp

an antieigenvalue and the solution vectors(
λp

λ1+λp

)1/2
γ 1 ±

(
λ1

λ1+λp

)1/2
γ p the correspond-

ing antieigenvectors. In an attempt to imitate
the theory of eigenvalues and eigenvectors,
we may call µ1 the smallest antieigenvalue
and the corresponding antieigenvector may
be denoted by η1 in a generic way. The
next antieigenvalue µ2 and corresponding
antieigenvector η2 are defined as the opti-
mized value and the solution to the optimiza-
tion problem

min
x�=0,x⊥η1

x′Ax√
x′A2x · x′x

. (3)

The other antieigenvalues and the cor-
responding antieigenvectors are similarly
defined by requiring that the corresponding
antieigenvector be orthogonal to all those pre-
viously obtained. A set of these orthogonal
antieigenvectors is given by {η1, η2, . . . , ηk},
where k = [ p

2 ] and

ηi =
(

λp−i+1

λi + λp−i+1

)1/2

γ i

+
(

λi

λi + λp−i+1

)1/2

γ p−i+1,

i = 1, 2, . . . , k. The corresponding antieigen-
values are given by

µi =
2
√
λiλp−i+1

λi + λp−i+1
.

Clearly, because of the arbitrariness of
the signs of the eigenvectors, there are 2k

such sets for a given set {γ 1, γ 2, . . . , γ p} of
eigenvectors. Further, if there were repeated
eigenvalues, say for example, if λi = λp−i+1
for some i, then any vector in the plane gen-
erated by γ i and γ p−i+1 is also an eigenvector.
Consequently, in this case, ηi are eigenvec-
tors as well as antieigenvectors of A. The
corresponding antieigenvalue µi is equal to 1,
which is the value of the maximum as well as
of the minimum. From a statistical point of

view, these antieigenvalues are uninterest-
ing.

The development of the mathematical the-
ory of antieigenvalues and antieigenvectors
can be traced to Gustafson [6] and Davis
[3]. Notable contributions were made by
Gustafson and his associates in a series of
papers [7–16]. Khattree [20–22] provides
some statistical interpretations and compu-
tational details involving antieigenvalues.
Khattree [21] also defines what he terms as
the generalized antieigenvalue of order r of a
symmetric positive definite matrix A and the
corresponding antieigenmatrix through the
optimization problem

min
X,X′X=Ir

|X′AX|√
|X′A2X|

, (4)

where the minimized valueµ[r] is the general-
ized antieigenvalue of order r(� [ p

2 ]), and the
corresponding p× r suborthogonal matrix X
solving the above problem is the antieigen-
matrix. Clearly, X is not unique; for a given
X, PX, where P is orthogonal, also solves
Equation 4. In fact [21] one choice of X is
the matrix whose columns are η1, η2, . . . , ηr.
Correspondingly,

µ[r] =
r∏

i=1

2
√
λiλp−i+1

λi + λp−i+1
= µ1µ2 . . . µr. (5)

A paper by Drury et al. [4] nicely con-
nects antieigenvalues and the generalized
antieigenvalue stated in Equation 5 with
many matrix inequalities. In that context,
although these authors also talk about the
quantity given in Equation 5 above, their
usage of the term ‘‘generalized antieigen-
value’’ should be contrasted with our defi-
nition. In fact, their generalization, as stated
in their Theorem 1, is toward replacing the
positive definiteness of A by nonnegative
definiteness, and in the context of Löwner
ordering.

Gustafson [11] provides an interesting
interpretation of cos−1(µ1) as the largest
angle by which A is capable of turning
any vector x. The quantities cos−1(µi), i =
2, 3, . . .. can be similarly defined, subject to
the orthogonality conditions as indicated in
Equation 3.
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STATISTICAL APPLICATIONS

The concepts of antieigenvalues and antiei-
genvectors were independently used in statis-
tics about the same time as these were dis-
covered in mathematics, although without
any such nomenclatures. It is appropriate to
interpret these quantities statistically and
provide a reference to the contexts in which
they naturally arise.

Let z be a p× 1 random vector with
variance-covariance matrix* proportional to
the identity matrix Ip. The problem of finding
a nonnull vector x, such that the correlation*
between the linear combinations z′x and z′Ax
(with A symmetric positive definite) is min-
imum, is essentially the problem stated in
Equation 2 [22]. Under certain conditions on
the correlation structure, it is also the min-
imum possible value of the parent-offspring
correlation [22].

Venables [27], Eaton [5], and Schuene-
meyer and Bargman [25] have shown that
a lower bound on certain canonical correla-
tion* is given by 1− µ2

1. Furthermore, this
bound is sharp. Bartmann and Bloomfield [1]
generalize this result by stating that

r∏
i=1

(1− ρ2
i ) � µ[r], (6)

where

� =
[

�11 �12
�21 �22

]
,

with �, �11, and �22 as symmetric posi-
tive definite variance-covariance matrices of
order p× p, r× r and (p− r)× (p− r), respec-
tively, and the canonical correlations ρi, i =
1, 2, . . . , r are defined by ρ2

i = ith eigenvalue
of �−1

11 �12�
−1
22 �21. Without any specific ref-

erence to the term antieigenvalue, their
problem of minimizing the left-hand side of
Equation 6 essentially boils down to that
stated in Equation 4.

Bloomfield and Watson [2] and Knott [23]
in two back to back articles in Biometrika*
consider the problem of determining the effi-
ciency of least square* estimator of β in
the linear model y = Xβ + ε, ε ∼ (0, A) set
up. Let X be of order n× k with k � [ n

2 ].
If the least squares estimator β̂ = (X′X)−1X′y
is used instead of the general least squares
estimator

β̃ = (X′A−1X)−1X′A−1y,

then the relative efficiency e of β̂ relative to β̃

may be defined as the ratio of the generalized
variances

e = |D(β̃)|
|D(β̂)| =

|X′X|2
|X′A−1X||X′AX| ,

where D(.) stands for the variance-covariance
matrix. The above-mentioned authors were
then interested in finding a lower bound on
the above, which if attained, would repre-
sent the worst-case scenario. This problem
can be reduced to Equation 4 with the trans-
formation Z = A−

1
2 X. Thus, the worst case

occurs when the columns of Z (or X) span
the subspace generated by the antieigenvec-
tors {η1, η2, . . . , ηk}. The minimum value of
the relative efficiency is given by µ[k] as in
Equation 5.

Venables [27] has considered the prob-
lem of testing sphericity* (H0 : � = σ 2I) of
a variance-covariance matrix �. The sample
variance-covariance matrix S is given as data
and fS ∼Wp(f , �), the Wishart distribution∗

with f degrees of freedom along with E(S) =
�. He argues that the null hypothesis is true
if and only if any arbitrary r-dimensional sub-
space (r � p) of � is an invariant subspace.
Thus, the null hypothesis is the intersection
of all such subhypotheses stating the invari-
ance, and the intersection is taken over all
such subspaces. The likelihood ratio test for
all such subhypotheses can be derived, and
with an argument that one accepts H0 if and
only if all such subhypotheses are accepted,
a test statistic for H0 can be obtained by
taking the maximum of such test statis-
tics. This maximization problem turns out
to be equivalent to Equation 4 and hence
the test statistic for testing H0 is given by
µ[r] computed from the matrix S. The result
can be intuitively justified from the fact that
each product term in Equation 5 provides a
measure of the eccentricity of the ellipsoids
defined by S. Another article [18] and its cor-
rection in Reference 19 deal with the same
problem but using a different mathematical
argument, and still arrives at µ[r] as the test
statistic. Also see Reference 26.

Since the Kantorovich inequality plays an
important role in determining the rates of
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convergence [24] in many mathematical opti-
mization problems, the smallest antieigen-
value

µ1 =
2
√
λ1λp

λ1 + λp
= 2

[√
λ1

λp
+

√
λp

λ1

]−1

,

has a one-to-one correspondence with the con-
dition number λ1/λp. Thus, µ1 and, more
generally, µ1,µ2 . . . as well as µ[r] can be
viewed as the condition indices. In linear
models, their applications hold promise in
assessing multicollinearity* problems.

The topic of antieigenvalues and antiei-
genvectors may not be very well known
among mathematicians. Perhaps statisti-
cians have been slightly ahead of mathe-
maticians in using the concepts implicit in
the definitions of the antieigenvalues and
antieigenvectors. It is anticipated that some
of the mathematical research done on this
topic will find further applications in statis-
tics and will provide insight into many other
statistical problems.
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RAVINDRA KHATTREE

ANTIMODE

An antimode is the opposite of a mode∗ in
the sense that it corresponds to a (local)
minimum frequency. As with the mode, it
is sometimes desired that the name should
be applied only to global, and not to local
minima. The more common use, however,
includes local minima.

Note that whereas x = 1 is a mode of the
PDF∗,

fX (x) =
{

2x 0 � x � 1,
0 elsewhere,

x = 0 is not an antimode of this PDF. On the
other hand,

fX (x) =
{
|x| −1 � x � 1,
0 elsewhere,

has an antimode at x = 0 (and modes at x =
−1 and x = 1).

The antimode itself refers to the frequency
(or PDF) at the antimodal value of the argu-
ment.

See also MEAN, MEDIAN, AND MODE.

ANTIRANKS

Nonparametric tests and estimates are gen-
erally based on certain statistics which

depend on the sample observations X1, . . . , Xn
(real-valued) only through their ranks∗
R1, . . . , Rn, where

Ri = number of indices r

(1 � r � n) : Xr � Xi, (1)

for i = 1, . . . , n. If Xn:1 � · · · � Xn:n stand for
the sample order statistics∗, then we have

Xi = Xn:Ri , i = 1, . . . , n. (2)

Adjustment for ties can be made by dividing
equally the total rank of the tied obser-
vations among themselves. Thus if Xn:k <

Xn:k+1 = · · · = Xn:k+q < Xn:k+q+1, for some
k, 0 � k � n− 1, and q � 1 (where Xn:0 =
−∞ and Xn:n+1 = +∞), then for the q tied
observations (with the common value Xn:k+1),
we have the midrank k+ (q+ 1)/2.

Let us now look at (2) from an opposite
angle: For which index (Sk), is XSk equal to
Xn:k? This leads us to define the antiranks
S1, . . . , Sn by

Xn:i = XSi , for i = 1, . . . , n. (3)

Note the inverse operations in (2) and (3) as
depicted below:

(4)

so that, we have

RSi = SRi = i, for i = 1, . . . , n, (5)

and this justifies the terminology: Antiranks.
Under the null hypothesis that X1, . . . , Xn

are exchangeable random variables, R =
(R1, . . . , Rn), the vector of ranks, takes on
each permutation of (1, . . . , n) with the com-
mon probability (n!)−1. By virtue of (5), we
obtain that under the same null hypothe-
sis, S = (S1, . . . , Sn), the vector of antiranks,
has the same (discrete) uniform permuta-
tion distribution. In general, for the case
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of ties neglected, (5) can be used to obtain
the distribution of S from that of R (or
vice versa), although when the Xi are not
exchangeable, this distribution may become
quite cumbrous. Under the null hypothesis of
exchangeability∗, for suitable functions of R
(i.e. rank- statistics), permutational central
limit theorems∗ provide asymptotic solutions,
and by virtue of (5), these remain applicable
to antirank statistics as well.

For mathematical manipulations, often S
may have some advantage over R. To illus-
trate this point, consider a typical linear
rank statistic∗ (Tn) of the form

∑n
i=1 cian(Ri),

where the ci are given constants and an(1),
. . . , an(n) are suitable scores. By (5), we have

Tn =
n∑

i=1

cSi an(i), (6)

and this particular form is more amenable to
censoring schemes (see PROGRESSIVE CENSOR-

ING SCHEMES). If we have a type II censoring
(at the kth failure), then the censored version
of Tn in (6) is given by

Tnk =
k∑

i=1

(cSi − cn)[an(i)− a∗n(k)], k � 0,

(7)

where

cn = n−1
n∑

i=1

ci,

a∗n(k) = (n− k)−1
n∑

j=k+1

an(j), k < n

and
a∗n(n) = 0.

For the classical Kolmogorov–Smirnov tests∗,
these antiranks may be used to express the
statistics in neat forms and to study their
distributions in simpler manners; we may
refer to Hájek and Šidák [1] for a nice account
of these.

In life-testing∗ problems and clinical
trials∗, for rank procedures in a time-
sequential setup, the antiranks play a vital
role; for some details, see Sen [2,3].
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CURVE ESTIMATION AND ANTISMOOTHING

ANTITHETIC VARIATES

If T1 and T2 are unbiased estimators
of a parameter θ , then T = 1

2 (T1 + T2) is
also unbiased and has variance 1

4 {var(T1)+
var(T2)+ 2 cov(T1, T2)}. This variance is
reduced (for fixed var(T1) and var(T2)) by
reducing cov(T1, T2) and making the corre-
lation between T1 and T2 negative and as
large, numerically, as possible. Pairs of vari-
ates constructed with this aim in view are
called antithetic variates.

The concept arose in connection with esti-
mation of integrals by simulation experi-
ments [2,3] (see MONTE CARLO METHODS).
The following example [1, p. 61] may help to
clarify ideas. If X is uniformly distributed∗

between 0 and 1, then for any function g(x),

E
[
g(X)

] = ∫ 1

0
g(x) dx,

so g(x) is an unbiased estimator∗ of
∫ 1

0 g(x)dx.
So is g(1− X), since (1− X) is also uniformly
distributed between 0 and 1. If g(x) is a
monotonic function of x, g(x) and g(1− X)
are negatively correlated and are ‘‘antithetic
variates.’’ In particular,

var(g(X)+ g(1− X)) � 1
2 var(g(X)).
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The construction of a variate antithetic to
g(X) can be extended in a simple way to cases
when the function g(x) is not monotonic, but
the interval 0 to 1 can be split into a finite
number of intervals in each of which g(x) is
monotonic.

The method can also be applied to estima-
tion of multivariate integrals by a straight-
forward extension. Use of antithetic variables
can be a powerful method of increasing accu-
racy of estimation from simulation in appro-
priate situations.
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APPLIED PROBABILITY

Applied probability is that field of mathemat-
ical research and scholarship in which the
theory and calculus of probability are applied
to real-life phenomena with a random com-
ponent. Such applications encompass a broad
range of problems originating in the biologi-
cal, physical, and social sciences, as well as
engineering and technology.

The term ‘‘applied probability’’ first appea-
red as the title of the proceedings of a sym-
posium on the subject, held by the American
Mathematical Society in 1955 [3]. It became
popular through its use by the Methuen Mono-
graphs in Applied Probability and Statis-
tics, edited from 1959 by M. S. Bartlett.
The two fields are closely related: applied
probability is concerned primarily with mod-
eling random phenomena∗ (see STOCHASTIC

PROCESSES), while statistics serves to esti-
mate parameters∗ and test the goodness of
fit∗ of models to observed data. Bartlett has
expressed the opinion that neither field could
exist without the other; this is a viewpoint
shared by many applied probabilists.

There are currently several periodicals
publishing material in applied probability;
the principal ones in order of their dates
of first publication are Teoriya Veroyatnostei
i ee Primeneniya∗ (1956), (English transla-
tion: Theory of Probability and Its Appli-
cations∗) Zeitschrift für Wahrscheinlichkeit-
stheorie (1962), the Journal of Applied Prob-
ability∗ (1964), Advances in Applied Proba-
bility∗ (1969), Stochastic Processes and Their
Applications∗ (1973), and Annals of Proba-
bility∗ (1973). Other mathematical or statis-
tical journals publish the occasional paper
in applied probability, and there is consider-
able discussion of applied probability models
in journals of biology, physics, psychology,
operations research, and engineering. Among
these are Theoretical Population Biology, the
Journal of Statistical Physics∗, Psychome-
trika, Operations Research∗, the Journal of
Hydrology, and the Journal of the Institute of
Electrical Engineers.

It is impossible to give a comprehensive
description of current work in applied prob-
ability; perhaps a few illustrative examples
selected at random from the recent literature
in each of the biological, physical, social, and
technological areas will serve to indicate the
breadth of the field.

BIOLOGICAL SCIENCES: BIRD NAVIGATION;
OPTIMAL HUNTING

David Kendall [2] investigated some interest-
ing models of bird navigation. Orni-
thologists have surmised that birds navi-
gate instinctively by reference to the sun
and stars; Kendall constructed two models
to simulate such navigation realistically.

The first is referred to as the Manx model,
after the Manx shearwater, which flies across
the Atlantic to its European breeding
grounds. In this model the bird flies laps
of approximately 20 miles each, at a speed
of roughly 40 mph. At the end of each lap
it redirects itself toward its goal but com-
mits an angular error, having the von Mises
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or wrapped normal distribution∗. When it
arrives within a radius of approximately 10
miles of its home, it recognizes its destina-
tion and heads directly for it. The second
Bessel model allows both the lap length and
the deflection from the correct direction to be
random. Under appropriate conditions, the
two models converge to Brownian motion∗.

In his paper, Kendall analyzes bird data on
which to base his models and tests these by
repeated simulations∗, leading to graphical
representations of Manx and Bessel flights.
He compares these models theoretically and
numerically, carries out some diffusion∗
approximations, and concludes with a lengthy
study of the hitting times to the circumfer-
ence of the homing target. Kendall’s work
is a model of what is most illuminating
in the applied probabilist’s approach to a
scientific problem. Practical data are care-
fully considered, and a suitable model is
found to fit it. The apprentice applied proba-
bilist could well base his methods and style
on Kendall’s work. See also ORNITHOLOGY,
STATISTICS IN.

Another of the many interesting problems
which arise in a biological context is that of
determining optimal hunting or harvesting
policies for animal populations. Abakuks [1]
has discussed such a policy for a population
growing according to a stochastic logistic∗

scheme, subject to natural mortality. The
object is to maximize the long-term average
number of animals hunted or harvested per
unit time. It is shown that there is a critical
population size xc such that hunting or har-
vesting is optimal if and only if the population
is greater or equal to this number.

PHYSICAL SCIENCES: ISING LATTICES

In statistical mechanics, one may need to
determine the partition function for large
lattices of points representing crystals, parti-
cles, or atoms. The Ising model, which helps
to characterize qualitative changes at critical
parameter values, is therefore important in
theoretical physics (see LATTICE SYSTEMS).

Consider a rectangular lattice of N = m×
n points in a plane; these points are labeled
1 to N. At each site i, the random variable
Xi may take the values ±1, where +1 may,

for example, correspond to the formation of
a crystal. The joint distribution of the site
variables is given by

P{X = x} = k−1(a) exp
(
a
∑

xixj

)
,

where k(a) =∑
x exp

(
a
∑

xixj
)

is the parti-
tion function, and the

∑
xixj is taken over

all nearest-neighbor∗ pairs; X is a simple
Markov random field∗.

Pickard [4] has recently obtained some
limit theorems for the sample correlation∗
between nearest neighbors in an Ising lattice
for the noncritical case. This provides a model
for asymptotic testing and estimation of the
correlation between nearest neighbors, based
on experimental data.

SOCIAL SCIENCES: MANPOWER SYSTEMS;
ECONOMIC OPTIMIZATION

A firm or company is a hierarchically graded
manpower system, usually modeled by a
Markov chain. The probabilities pij of this
chain denote annual promotion rates from
grade i to grade j of the firm; the state of the
graded manpower system is described from
year to year by the numbers of individuals in
each grade (see MANPOWER PLANNING).

The simpler manpower models are mainly
linear, but Vassiliou [7] considered a high-
order nonlinear Markovian model for promo-
tion based on three principles. The first is the
ecological principle that promotions should
be proportional to suitable staff available for
them, as well as to vacancies for promotion.
The second is that resignations from differ-
ent grades are different, and the third is an
inertia principle which prescribes that when
there is a reduced number of vacancies, pro-
motions may still be made faster than the
ecological principle suggests.

Difference equations∗ for the mean num-
ber of individuals in each grade are obtained,
and the model is used to provide detailed
numerical forecasts for probabilities of pro-
motion in organizations with five grades.
A comparison is made between predictions
based on an earlier linear model∗, and the
present nonlinear model∗; actual data from a
large British firm are found to be adequately
described by the latter.
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Optimization may be important in a vari-
ety of sociological contexts, some purely
economic, others more technological. Vered
and Yechiali [8] studied the optimization
of a power system for a private automatic
telephone exchange (PABX). Several mainte-
nance policies are considered, which depend
on the set of parameters (m, u,µ,υ) of the
PABX system, where n is the number of inde-
pendent rectifiers in parallel, m the minimal
number of units that will keep the system
operative, µ their mean time to failure∗ and
υ the period of time between regular mainte-
nance visits. Repairs are carried out every υ
units of time, or when the system fails. The
authors determine the optimal (m, n,µ,υ)
to minimize costs for a required level of
reliability∗ of the PABX system, and provide
tables of numerical results for the optimal
parameters in both the cases of periodic and
emergency maintenance.

TECHNOLOGICAL SCIENCES: RELIABILITY

All engineering components have a failure
point; it is therefore of importance to study
the reliability of mechanical or electronic
parts to determine the probability of their
failure times. In this context, two recent prob-
lems, the first studied by Szász [5] concerning
two lifts, and the second by Taylor [6] on the
failure of cables subjected to random loads,
will be of interest.

Szász [5] examines a building that has two
lifts working independently of each other.
The functioning of each lift forms an alter-
nating renewal process∗ with working-time
distribution F and repair-time distribution
G. Suppose that this latter distribution G =
G(x, ε) depends on ε > 0 in such a way that
its mean

∫
x dG(x, ε) tends to zero as ε → 0.

The author sets out to find the asymptotic
distribution of the first instant τ ε at which
both lifts are simultaneously out of order,
as ε → 0.

It is shown that under certain conditions,
as ε → 0, the normalized point process Wε :
wε

1 < wε
2 < · · ·, where wε

k = ετ εk , tends to a
Poisson process∗ with parameter 2λ−2, where
λ = ∫

x dF(x). Thus subject to certain very
general conditions, one must expect break-
downs of both lifts to occur according to a

Poisson process. For the favorable case in
which λ is very large, this process will have a
very small mean.

Taylor [6] is concerned with the reliability
of deep-sea cables made up of fiber bundles,
and the effect on them of random loads gen-
erated by waves that rock the ocean vessels
deploying them. A simple model with random
loads is studied, subject to power-law break-
down, such that the failure time T under
constant load L follows the negative expo-
nential distribution∗

Pr[T > x] = exp(−KLρx) (x � 0),

where K > 0 and ρ � 1.
The asymptotic distribution of T under

random loads is derived and Taylor shows
that random loads have a significant effect
on the lifetime of a cable. The loss in mean
lifetime cannot be predicted from the first few
moments of the load process; it depends on
the entire marginal probability distribution
of the load, as well as the power-law exponent
ρ. It is shown that the asymptotic variance
of the lifetime has two components, the first
due to the variation of individual fibers, and
the second to the variation of the load.

EXTENT AND FUTURE OF THE FIELD

It is of interest to know the methods of
probability theory that are most used in
attacking problems of applied probability.
The most commonly applied areas are found
to be Markov chains and processes (including
diffusion processes∗), branching processes∗

and other stochastic processes∗ (mostly sta-
tionary), limit theorems∗, distribution theory
and characteristic functions∗, methods of geo-
metrical probability∗, stopping times, and
other miscellaneous methods.

To list the subsections of the main cate-
gories given in the first four sections exhaus-
tively would be impossible, but in the bio-
logical sciences one finds that population
processes, mathematical genetics, epidemic
theory, and virology are the major subfields.
In the technological sciences, operations re-
search∗, queueing theory∗, storage (see DAM

THEORY), and traffic theory are possibly the
most active areas.
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Applied probability is a very broad sub-
ject; as we have seen, it encompasses real-life
problems in a variety of scientific and other
fields. Although the subject feeds on practi-
cal problems, it requires a very high level
of theoretical competence in probability. In
solving these problems, every approach that
proves successful is a useful one. Classical
mathematical analysis, numerical analysis,
statistical calculations, limit theorems∗, sim-
ulation, and every other branch of mathe-
matics are legitimate weapons in the search
for a solution. Applied probability, although
a relatively small branch of mathematics,
relies on the resources of the entire subject.
It maintains itself successfully without spe-
cific affiliation to any particular school or
tradition, whether it be British, French, Rus-
sian, or North American, while drawing on
the best aspects of them all. Its strength lies
in the universality of its traditions and the
versatility of its mathematical methods.

A further point of importance is the del-
icate interrelation of theory and practice in
applied probability. Without practice (which
involves computation and statistics), applied
probability is trivial; without theory, it be-
comes shallow. Close contact is required with
experiment and reality for the healthy devel-
opment of the subject. The collection and
analysis of data cannot be avoided, and a cer-
tain amount of numerical work will always
prove necessary. In attacking problems of
applied probability there is a complete cycle
from the examination of data to the devel-
opment of a theoretical model, followed by
the statistical verification of the model and
its subsequent refinement in the light of its
goodness of fit∗.

It seems possible that too much effort has
been diverted into model building for its own
sake, as well as in following through the
mathematical refinements of new models.
The further development of applied proba-
bility requires consideration of real-life prob-
lems and the validation of models for these
based on observed data. Research workers
in the field are aware that only by pay-
ing close attention to data and considering
genuine problems can their contributions to
the subject achieve full scientific stature. For
interested readers, a selected bibliography is
appended.
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[Journal of Applied Probability (JAP); Advan-
ces in Applied Probability (AAP)]

[This entry has been updated by the Edi-
tors.]

JAP is an international journal which first
appeared in June 1964; it is published by the
Applied Probability Trust, based in the Uni-
versity of Sheffield, England. For some years
it was published also in association with the
London Mathematical Society. The journal
provides a forum for research papers and
notes on applications of probability theory to
biological, physical, social, and technological
problems. A volume of approximately 900 to
1,250 pages is published each year, consist-
ing of four issues, which appear in March,
June, September, and December. JAP consid-
ers research papers not exceeding 20 printed
pages in length, and short communications
in the nature of notes or brief accounts of
work in progress, and pertinent letters to the
editor.

AAP is a companion publication of the
Applied Probability Trust, launched in 1969.
It publishes review and expository papers in
applied probability, as well as mathematical

and scientific papers of interest to proba-
bilists. A volume of approximately 900 to
1,200 pages is published each year; it also
consists of four issues appearing in March,
June, September, and December. AAP con-
siders review papers; longer papers in applied
probability which may include expository ma-
terial, expository papers on branches of math-
ematics of interest to probabilists; papers
outlining areas in the biological, physical,
social, and technological sciences in which
probability models can be usefully devel-
oped; and papers in applied probability pre-
sented at conferences that do not publish
their proceedings. In addition, AAP has a
section featuring contributions relating to
stochastic geometry and statistical applica-
tions (SGSA). Occasionally, a special AAP
supplement is published to record papers
presented at a conference of particular inter-
est.

JAP and AAP have a wide audience with
leading researchers in the many fields where
stochastic models are used, including oper-
ations research, telecommunications, com-
puter engineering, epidemiology, financial
mathematics, information systems and traffic
management.

EARLY HISTORY

In 1962, the editor-in-chief of the two jour-
nals, J. Gani, made his first attempts to
launch the Journal of Applied Probability.
At that time, a large number of papers on
applications of probability theory were being
published in diverse journals dealing with
general science, statistics, physics, applied
mathematics, economics, and electrical engi-
neering, among other topics. There were then
only two probability journals, the Russian
Teoriya Veroyatnostei (English translation:
Theory of Probability and Its Applications*)
and the German Zeitschrift für Wahrschein-
lichkeitstheorie*. Neither of these special-
ized in applications of probability theory,
although papers in applied probability occa-
sionally appeared in them.

Having assembled an editorial board in
1962, Gani attempted to launch the Jour-
nal of Applied Probability with assistance
from the Australian National University and
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the Australian Academy of Science. He was
not successful in this, and it was only after
raising private contributions from himself,
Norma McArthur, and E. J. Hannan*, both
of the Australian National University, that
he was able to provide half the finance neces-
sary for the publication of JAP. In May 1963,
with the support of D. G. Kendall of the Uni-
versity of Cambridge, he was able to persuade
the London Mathematical Society to donate
the remaining half of the funds required,
and thus collaborate in the publication of the
journal.

In February 1964, agreement was reached
that the ownership of JAP should be vested
in the Applied Probability Trust, a non-profit-
making organization for the advancement
of research and publication in probability,
and more generally mathematics. The four
trustees were to include the three Australian
sponsors of the journal and one trustee nom-
inated by the London Mathematical Society.
The agreement was ratified legally on June
1, 1964, although de facto collaboration had
already begun several months before.

The first issue of JAP appeared in June
1964. Every effort was made to prevent the
time lag between submission and publication
of a paper exceeding 15 months; this became
an established policy for both JAP and AAP.

ORGANIZATION

The office of the Applied Probability Trust is
located at the University of Sheffield, Eng-
land. The website for the Trust, and a link to
the journals, is www.shef.ac.uk/uni/
companies/apt.

Each of the two journals has an inter-
national Editorial Board consisting of an
Editor-in-Chief, two (JAP) or three (AAP)
Coordinating Editors and between 20 and
30 Editors, some of whom serve on the Board
for both journals.

It is impossible for the JAP and AAP to
collect together every diverse strand of the
subject, but probabilists can now find most
of the applied material they require in a few
periodicals. Among these are the two men-
tioned earlier, as well as the more recent
Stochastic Processes and Their Applications*,
and the Institute of Mathematical Statistics’

Annals of Probability*, both first published
in 1973, also the Annals of Applied Probabil-
ity*, launched by the IMS in 1991, and the
journal Bernoulli, since 1995 a publication of
the International Statistical Institute*. It is
the policy of JAP and AAP to contribute to
future development.

J. GANI

The Editors

APPLIED STATISTICS. See JOURNAL OF

THE ROYAL STATISTICAL SOCIETY

APPROGRESSION

Approgression is the use of regression func-
tions (usually linear) to approximate the
truth, for simplicity and predictive efficiency.
Some optimality results are available.

The term seems to be due to H. Bunke in

Bunke, H. (1973). Approximation of regression
functions. Math. Operat. Statist., 4, 314–325.

A forerunner of the concept is the idea of an
inadequate regression model in

Box, G. E. P. and Draper, N. R. (1959). A basis
for the selection of a response surface design.
J. Amer. Statist. Ass., 54, 622–654.

The paper:

Bandemer, H. and Näther, W. (1978). On ade-
quateness of regression setups. Biom. J., 20,
123–132

helps one to follow some of the treatment in
Section 2.7 of

Bunke, H. and Bunke, O., eds. (1986). Statis-
tical Inference in Linear Models. Wiley, New
York,

which is exceedingly general and notationally
opaque. The Bunke and Bunke account has
about 12 relevant references. More recent
work is to be found in

Zwanzig, S. (1980). The choice of appropriate
models in non-linear regression. Math. Operat.
Statist. Ser. Statist., 11, 23–47
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and in

Bunke, H and Schmidt, W. H. (1980). Asymp-
totic results on non-linear approximation of
regression functions and weighted least-
squares. Math. Operat. Statist. Ser. Statist., 11,
3–22,

which pursue the concept into nonlinearity.
A nice overview is now available in

Linhart, H. and Zucchini, W. (1986) Model
Selection. Wiley, New York.

See also LINEAR MODEL SELECTION; REGRESSION (VARIOUS

ENTRIES); and RESPONSE SURFACE DESIGNS.
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APPROXIMATING INTEGRALS,
TEMME’S METHOD

Let hn(x) be a sequence of functions of a real
variable x such that hn and its derivatives are
of order O(1) as n→∞. (We shall suppress
the subscript n in the sequel.) Consider the
integral ∫ ∞

z
h(x)
√

nφ(
√

nx)dx, (1)

where φ(·) is the standard normal density
function. Let g(x) = [h(x)− h(x)]/x, g1(x) =
[g′(x)− g′(0)]/x, and gj+1(x) = [g′j(x)−
g′j(0)]/x.

Temme [1] approximates the ‘‘incomplete’’
integral (1) by

[1−�(
√

nz)]
∫ ∞
−∞

h(x)
√

nφ(
√

nx)dx

+ 1
n
√

nφ(
√

nz)[g(z)+R(z)],

where �(·) denotes the standard normal cdf
and

R(z) = 1
n

g1(z)+ 1
n2 g2(z)+ . . . .

Let c be the constant such that

c
∫ ∞
∞

h(x)
√

nφ(
√

nx)dx = 1.

Assuming that c = 1+O(n−1), one can
approximate∫ ∞

z
ch(x)

√
nφ(
√

nx)dx. (2)

by

[1−�(
√

nz)]+ 1
n
√

nφ(
√

nz)
h(z)− h(0)

z
. (3)

Knowledge of the value of c is thus not
needed for this approximation. The error
of (3) as an approximation to (2) is φ(

√
nz)

O(n−
3
2 ).

For fixed z, the relative error of the approx-
imation is O(n−1).

These formulas provide approximations to
tail probabilities, which, unlike those derived
via the saddle-point* method, can be inte-
grated analytically.

REFERENCE

1. Temme, N. M. (1982). The uniform asymptotic
expansion of a class of integrals related to
cumulative distribution functions. SIAM J.
Math. Anal., 13, 239–253.

APPROXIMATIONS TO
DISTRIBUTIONS

HISTORICAL DEVELOPMENTS

The main currents of thought in the develop-
ment of the subject can be traced to the works
of Laplace∗ (1749–1827), Gauss∗ (1777–
1855), and other scientists of a century or
so ago. The normal∗ density played an impor-
tant role because of its alleged relation to
the distribution of errors of measurement,
and it is said that Gauss was a strong ‘‘nor-
malist’’ to the extent that departures were
due to lack of data. Natural and social phe-
nomena called for study, including the search
for stability, causality, and the semblance of
order. Quetelet∗ (1796–1874) exploited the
binomial∗ and normal∗ distributions, pay-
ing particular attention to the former in his
investigations of data reflecting numbers of
events. Being well versed in mathematics
and the natural sciences (he was a contem-
porary of Poisson∗, Laplace, and Fourier), he
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searched for order in social problems, such
as comparative crime rates and human char-
acteristics, posing a dilemma for the current
notions of free will. His contributions to social
physics, including the concepts for stability
and stereotypes, paved the way for modern
sociology. Lexis (1837–1914) opened up fresh
avenues of research with his sequences of
dependent trials, his aim being to explain
departures from the binomial exhibited by
many demographic∗ studies.

Urn problems∗, involving drawing of balls
of different colors, with and without replace-
ment, have played an important part in dis-
tributional models. Karl Pearson∗ [58] inter-
ested himself in a typical discrete distribution
(the hypergeometric∗) originating from urn
sampling, and was led to the formulation of
his system of distributions by a consideration
of the ratio of the slope to ordinate of the fre-
quency polygon∗. Pearson’s system (see the
section ‘‘The Pearson System’’), including a
dozen distinct types, was to play a dominant
role in subsequent developments.

The effect of transformation, with natural
examples such as the links between distri-
bution of lengths, areas, and volumes, also
received attention; for example, Kapteyn [40]
discussed the behavior of a nonlinear map-
ping of the normal.

Which models have proved useful and
enlightening? It is impossible to answer this
question purely objectively, for utility often
depends on available facilities. Statistical
development over this century has reacted
specifically, first to all applied mathematics,
and second, to the influence of the great dig-
ital computer invasion. So models exploiting
mathematical asymptotics have slowly given
way to insights provided by massive numeri-
cal soundings.

For example, the Pearson system
probability integrals, involving awkward
quadratures∗ for implementation, have
recently [56] been tabulated and comput-
erized. Its usefulness has become obvious
in recent times. Similarly, the Johnson [35]
translation system∗, at one time prohibitive
in numerical demands, now has extensive
tabulated solutions, which, however, present
no problem on a small computer.

Questions of validation of solutions are
still mostly undecided. As in numerical quad-
rature, different appropriate formulas on dif-
ferential grids form the basis for error analy-
sis, and so for distributional approximation,
we must use several approaches for compar-
ison; a last resort, depending on the circum-
stances, would be simulation∗ studies.

In fitting models by moments it should
be kept in mind that even an infinite set
of moments may not determine a density
uniquely; it turns out that there are strange
nonnull functions, mathematical skeletons,
for which all moments are zero. This aspect
of the problem, usually referred to as the
problem of moments, has been discussed by
Shohat and Tamarkin [66].

On the other hand, from Chebyshev-type
inequalities∗, distributions having the same
first r moments, cannot be too discrepant in
their probability levels. For the four-moment
case, the subject has been studied by Simpson
and Welch [67]. They consider Pr[x < y] = α
and the problem of bounds for y given α.
Also, it should be kept in mind that moments
themselves are subject to constraints; thus
for central moments, µ4µ2 − µ2

3 � µ3
2.

TEST STATISTICS IN DISTRIBUTION

The distribution of test statistics (Student’s
t∗, the standard deviation∗, the coefficient of
variation∗, sample skewness∗, and kurtosis∗)
has proved a problem area and excited inter-
est over many decades. Here we are brought
face to face with the fact that normality rarely
occurs, and in the interpretation of empirical
data conservatism loosened its grip slowly
and reluctantly.

Outstanding problems are many. For
example, consider statistics which give infor-
mation over and above that supplied by mea-
sures of scale and location. Skewness and
kurtosis are simple illustrations, the former
being assessed by the third central moment,
and the latter by the fourth. The exact distri-
butions of these measures under the null
hypothesis, normal universe sampled, are
still unknown, although approximations are
available (see ‘‘Illustrations’’). Similarly, Stu-
dent’s t and Fisher’s F∗, although known
distributionally under normality, are in gen-
eral beyond reach under alternatives. These
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problems direct attention to approximating
distributions by mathematical models.

In passing, we note that whereas large
sample assumptions usually slant the desired
distribution toward a near neighborhood of
normality, small-sample assumptions bring
out the amazing intricacies and richness of
distributional forms. McKay [44] showed the
density of the skewness in samples of four
from a normal universe to be a complete
elliptic integral; Geary [30] shows the den-
sity for samples of five and six to be a spline
function∗, and remarkably, smoothness of
density becomes evident for larger samples.
Hoq et al. [33] have derived the exact density
of Student’s ratio, a noncentral version, for
samples of three and four in sampling from
an exponential distribution∗. Again, spline
functions∗ appear, and it becomes evident
that the problem presents insuperable diffi-
culties for larger samples.

In this article we discuss the following
systems:

1. K. Pearson’s unimodal curves based on
a differential equation.

2. Translation systems∗ based on a map-
ping of a normal, chi-squared∗, or other
basic density.

3. Perturbation models based on the nor-
mal density, arising out of studies of the
central limit theorem∗.

4. Multivariate models.
5. Discrete distributions∗.

Literature

Johnson and Kotz [37] give an up-to-date
comprehensive treatment, the first of its
kind, with many references. Discrete, con-
tinuous univariate, and multivariate dis-
tributions are discussed. A comprehensive
account of distributions, with many illu-
minating examples and exercises, is pro-
vided by Kendall and Stuart [42]. Patil
and Joshi [53] give a comprehensive sum-
mary with most important properties. Bhat-
tacharya and Ranga Rao [4] give a theoretical
and mathematical account of approximations
related to the central limit theorem∗. Some
specialized approaches are given in Crain
[16] and Dupuy [22].

THE PEARSON SYSTEM

The Model

The model (see PEARSON SYSTEM OF

DISTRIBUTIONS) is defined by solutions of the
differential equation

y′ = −(x+ a)y/(Ax2 + Bx+ C), (1)

y(·) being the density. We may take here
(but not necessarily in the following dis-
cussion) E(x) = 0, var(x) = 1, so that E(x3) =√
β1, E(x4) = β2, where the skewness β1 =

µ2
3/µ

3
2 and the kurtosis β2 = µ4/µ

2
2. Arrang-

ing (1) as

xs(Ax2 + Bx+ C)y′ + xs(x+ a)y = 0 (2)

and integrating, using s = 0, 1, 2, 3, we find

A = (2β2 − 3β1 − 6)/�,

B =
√
β2(β2 + 3)/�,

C = (4β2 − 3β1)/�, a = B,

� = 10β2 − 12β1 − 18.

[If � = 0, then define A� = α, B� = β,
C� = γ , so that (1) becomes

y′ = 2y
√
β1/(x2 − 2x

√
β1 − 3),

leading to a special case of type 1.]
Note that

√
β1, β2 uniquely determine

a Pearson density. Moreover, it is evident
that solutions of (1) depend on the zeros of
the quadratic denominator. Although Karl
Pearson∗ identified some dozen types, it is
sufficient here, in view of the subsequent
usage of the system, to describe the main den-
sities. We quote noncentral (µ′s) or central (µs)
moments for convenience, and expressions for√
β1 and β2.
Normal:

y(x) = (2π )−1/2 exp(− 1
2 x2) (x2 <∞). (3a)

µ′1 = 0, µ2 = 1,√
β1 = 0, β2 = 3.
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Type 1 (or Beta∗):

y(x) = �(a+ b)xa−1(1− x)b−1/(�(a)�(b))

(0 < x < 1;a, b > 0). (3b)

µ′1 = a/α0, µ2 = ab/(α2
0α1),

µ3 = 2ab(b− a)/(α3
0α1α2),

µ4 = 3ab(ab(α0 − 6)+ 2α2
0)/(α4

0α1α2α3);
αs = a+ b+ s.

Gradient at x = 0 is finite if a > 1.

Gradient at x = 1 is finite if b > 1.√
β � 0 if b � a.

Type I may be U-,

U

-, or J-shaped according
to the values of a and b.

Type III (Gamma∗, Chi-Squared∗):

y(x) = (x/a)ρ−1 exp(−x/a)/(a�(ρ))

(0 < x <∞;a, ρ > 0). (3c)

µ′1 = aρ, µ2 = a2ρ,√
β1 = 2/

√
ρ, β2 = 3+ 6/ρ.

If the density is zero for x < −s, then Type III
becomes

y(x) = ((x+ s)/a)ρ−1

· exp(−(x+ s)/a)/(a�(ρ))

(−s < x <∞),

and the only modification in the moments is
that µ′1 = s+ aρ. For other types, see Elder-
ton and Johnson [26].

Recurrence for Moments

For the standardized central moments νs =
µs/σ

s(µ2 = σ 2), we have from (1),

νs+1 = s
Ds

{
(β2 + 3)νs

√
β1

+ (4β2 − 3β1)νs−1

}
(s = 1, 2, . . . ; ν0 = 1, ν1 = 0), (4)

where Ds = 6(β2 − β1 − 1)− s(2β2 − 3β1 − 6).
Note that if 2β2 − 3β1 − 6 < 0, then Ds > 0
since β2 − β1 − 1 > 0. Thus in the Type I

region of the (β1,β2) plane, all moments exist,
whereas below the Type III line, 2β2 − 3β1 −
6 > 0, only a finite number of moments exists;
in this case the highest moment νs occurs
when s = [x]+ 1, where x = 6(β2 − β1 − 1)/
(2β2 − 3β1 − 6) and [x] refers to the integer
part of x.

Evaluation of Percentage Points

First, for a given probability level α, we may
seek tα, where ∫ ∞

tα
y(x) dx = α (5)

and y(·) is a solution of the Pearson differ-
ential equation, with α = 1 when tα = −∞.
It is possible to solve (5) by fragmentation,
employing tailor-made procedures for each
subregion of the (

√
β1, β2) space. An alterna-

tive, encompassing the whole system, is to
use (5) and (1) as simultaneous equations for
the determination of tα . Computer programs
have been constructed by Amos and Daniel
[1] and Bouver and Bargmann [5].

The converse problem of finding α given tα
has also been solved by the two approaches.

This problem of the relation between tα
and α, as one might expect, transparently
reflects the fashions and facilities available
over its history of a century or so. Computer-
ized numerical analysis∗, in modern times,
has dwarfed the quadrature∗ and inverse
interpolation∗ problems involved, and direc-
ted attention away from applied mathemat-
ical expertise. Nonetheless, there is a rich
literature on probability integral problems,
much of it relating to various aspects of clos-
est approximation.

The Johnson et al. [39] tables have been
available for two decades and give lower and
upper points at the percent levels 0.1, 0.25,
0.5, 1.0, 2.5, 5.0, 10.0, 25.0, and 50.0 in terms
of (β1,β2); the tables are given with addi-
tions in the Pearson and Hartley tables [56].
Interpolation is frequently necessary, how-
ever. Approximation formulas for standard
percent levels 1.0, 5.0, etc., have been given
by Bowman and Shenton [8,9].

Illustrations

Pearson curves have been fitted to distribu-
tions of the following statistics.
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Skewness Statistic.
√

b1, defined as
m3/m

3/2
2 , where for the random sample

X1, X2, . . ., Xn, mi =
∑

(Xj − X)i/n, and X is
the sample mean. For sampling from the
normal, Fisher [28] demonstrated the inde-
pendence of

√
b1 and m2, from which exact

moments can be derived. E. S. Pearson [55]
gives comparisons of approximations, includ-
ing Pearson Type VII, for n = 25(5)40(10)60
and probability levels α = 0.05 and 0.01.

D’Agostino and Tietjen [20] also give com-
parisons for n = 7, 8, 15, 25, 35 at α = 0.1,
0.05, 0.025, 0.01, 0.005, and 0.001.

Mulholland [40] in a remarkable study of√
b1 has developed approximations to its den-

sity for samples 4 � n � 25. The work uses an
iterative integral process based on examina-
tion of the density discontinuities and to a
certain extent follows earlier work of this
kind by Geary [30].

When nonnormal sampling is involved,
independence property of X and S2 breaks
down, and a Taylor series∗ for

√
b1 and its

powers can be set up leading to an asymptotic
series in n−1. Examples of Pearson approx-
imations have been given by Bowman and
Shenton [9] and Shenton and Bowman [65].

Kurtosis Statistic b2. This is defined as
m4/m2

2, and the independence of X and S2

in normal sampling enables exact moments
to be evaluated. Pearson approximations are
given in Pearson [54].

Noncentral χ2. For independent Xi ∈
N(0, 1) define

χ
′2 =

∑
(ai + Xi)2.

Pearson approximations are given in Pear-
son and Hartley [56, pp. 10–11, 53–56]; see
also Solomon and Stephens [68].

Watson’s U2∗
N . For approximations to this

goodness-of-fit statistic, see Pearson and
Hartley [56,77].

Miscellaneous. Bowman et al. [11] have
studied Pearson approximations in the case
of Student’s t under nonnormality.

Four moments of Geary’s ratio∗ of the
mean deviation to the standard deviation in
normal samples show the density to be near
the normal for n � 5; Pearson curves give an
excellent fit [7].

Discussion

In approximating a theoretical density by
a four-moment Pearson density, we must
remember that the general characteris-
tics of the one must be reflected in the
other. Bimodel and multimodal densities,
for example, should in general be excluded.
Also, for

√
b1 and n = 4 under normality,

the true distribution consists of back-to-back
J-shapes. However, the Pearson curve is ∩-
shaped (see McKay [44], and Karl Pearson’s
remarks). A comparison is given in Table 1.

Since the four-moment fit ignores end
points of a statistic (at least they are not fit-
ted in the model), approximations to extreme
percentage points will deteriorate sooner or
later. Thus, the maximum value of

√
b1 is

known [61] to be (n− 2)/
√

n− 1, so a Type
1 model will either over or under estimate
this end point (see Table 1). Similarly, an
associated matter concerns tail abruptness;
Pearson models usually deteriorate at and
near the blunt tail.

Again, exact moments of a statistic may be
intractable. Approximations therefore induce
further errors, but usually percentage points
are not finely tuned to the measures of skew-
ness and kurtosis.

Finally, in general a unimodal density
near the normal (

√
β1 small, β2 = 3 approx-

imately) should be well approximated by a
Pearson density.

Literature

The classical treatise is Elderton’s Frequency
Curves and Correlation [25]. This has now
been revised and appears as Systems of Fre-
quency Curves [26] by W. P. Elderton and N.
L. Johnson (Cambridge University Press). It
contains a complete guide to fitting Pearson
curves to empirical data, with comments on
other approximation systems.

The basic papers by Karl Pearson are
those of 1894 [57], 1895 [58], and 1901 [59].
They are of considerable interest in show-
ing the part played by the normal law of
errors and modifications of it; for example,
Pearson argues that data might be affected
by a second normal component to produce
the appearance of nonnormality, and solves
the two-component normal mixture problem
completely. It has since been shown [10]
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Table 1. Pearson and Johnson Approximations

Population Statistic
Sample
Size Aa α = 0.01 0.05 0.10 0.90 0.95 0.99

Exponential
√

m2 n = 3b E 0.045 0.109 0.163 1.293 1.610 2.340
P 0.057 0.113 0.164 1.296 1.612 2.337
P∗ 0.368 0.368 0.369 1.290 1.632 2.374
SB 0.019 0.102 0.164 1.289 1.609 2.358

n = 4 E 0.095 0.180 0.245 1.342 1.632 2.303
P 0.108 0.184 0.245 1.343 1.633 2.293
P∗ 0.397 0.397 0.399 1.347 1.654 2.322
SB 0.083 0.178 0.246 1.340 1.632 2.308

υ = (sx/m′1) n = 10 M 0.481 0.587 0.648 1.231 1.351 1.617
P 0.499 0.591 0.646 1.237 1.353 1.598
P∗ 0.531 0.600 0.650 1.238 1.356 1.601
S∗B 0.509 0.596 0.650 1.237 1.355 1.604

α = 0.90 0.950 0.975 0.990 0.995 0.999

Normal
√

b1 n = 4c E 0.831 0.987 1.070 1.120 1.137 1.151
P 0.793 0.958 1.074 1.178 1.231 1.306
SB 0.791 0.955 1.071 1.179 1.237 1.327

n = 8 E 0.765 0.998 1.208 1.452 1.606 1.866
P 0.767 0.990 1.187 1.421 1.583 1.929

SU 0.767 0.990 1.187 1.421 1.583 1.929
α = 0.01 0.05 0.10 0.90 0.95 0.99

b2 n = 10 M 1.424 1.564 1.681 3.455 3.938 4.996
P 1.495 1.589 1.675 3.471 3.931 4.921
SB 1.442 1.577 1.677 3.456 3.921 4.933
D 1.39 1.56 1.68 3.53 3.95 5.00

AG 1.287 1.508 1.649 3.424 3.855 4.898
aE, exact; P, four-moment Pearson on statistic; P∗, four-moment Pearson on square of statistic; M, Monte Carlo of 100,000
runs; AG, Anscombe and Glynn [2]; D, D’Agostino and Tietjen [19]; E for √m2 derived by Lam [43]; SU, SB, Johnson; S∗B,
Johnson on square of statistic.
bFor n = 3, P∗ has density c0(m2 − 0.136)α/(m2 + 13.168)β , α = −0.740, β = 7.770; P has density c1(√m2 − 0.024)α/(√m2 + 13.076)β ,
α = 0.738, β = 39.078.
cFor n = 4, P is the density c2(1.8962 − b1)3.26; from theory

√
b1 max. is 1.155.

that if exact moments are available (five
are needed) then there may be one or two
solutions to the problem, or quite possibly
none at all. Pearson’s examples note these
cases.

Again, Pearson from time to time expres-
ses his displeasure at the sloppy tabula-
tion and abbreviation of data. One example
he considers concerns the distribution of
8,689 cases of enteric fever received into
the Metropolitan Asylums Board Fever Hos-
pitals, 1871–1893. There are 266 cases
reported for ‘‘under age 5’’ and 13 for ‘‘over
age 60.’’ Fitting types I and III to the data
by moments, he notes that both models sug-
gest an unlikely age for first onset of the
disease (−1.353 and −2.838 years, respec-
tively) and similarly an unlikely upper limit

to the duration of life (385 years). (It is quite
possible that he was well aware of the small
chances involved, and we should keep in mind
the point that to arrive at bounds of any kind
for the data was something not supplied by
conventional normal theory modeling.)

It should be emphasized that a model for
a distribution of experimental data encoun-
ters problems that are different from those of
the corresponding situation for a theoretical
statistic. In the latter, errors are due solely
to choice of model, although different solution
procedures are possible; for example, param-
eters may be determined by moments, or by
percentiles, and also in part from a knowl-
edge of end points. However, in the case of
experimental data, parameters are estimated
by different procedures (least squares∗, max-
imum likelihood∗, moments∗, etc.) and there
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is the question of biases∗, variances, etc.,
and more detailed knowledge of the sampling
distribution of the estimates.

Since higher moments of data are subject
to considerable sampling errors, a recent [48]
method of fitting is recommended when one
(or both) end point(s) is known. The procedure
calculates a modified kurtosis using the end
point and four moments.

TRANSLATION SYSTEMS

Early Ideas

Suppose that the berries of a fruit have radii
(measured in some decidable fashion) nor-
mally distributed N(R,σ 2). Then surface area
S = πr2 will no longer be normal and indeed
will be skewed distributionally. This idea was
developed a little later than the introduction
of the Pearson system by Kapteyn [40] in his
treatment of skew frequency curves in biol-
ogy. From a different point of view and using
a hypothesis relating to elementary errors,
Wicksell [71] traced the relation between cer-
tain transformation of a variate and a genetic
theory of frequency.

Kapteyn considered the transformations

y = (X + h)q −m [y ∈ N(0, 1)]

with −∞ < q <∞, the special case q→ 0
leading to a logarithmic transformation.

The development of the subject was per-
haps retarded because of overanxiety to trace
a transformation’s relation to natural phe-
nomena and mathematical difficulties. More-
over, the Kapteyn mapping proved intract-
able mathematically in most cases.

Johnson’s Systems

Johnson [35] introduced two transformations
of the normal density (see JOHNSON’S SYSTEM

OF DISTRIBUTIONS). His SU system relates to
a hyperbolic sine function, has doubly infinite
range, and

y = sinh
(

X−γ
δ

)
(−∞ < y <∞, δ > 0),

(6)

where X ∈ N(0, 1).

Similarly, the SB system relates to densi-
ties with bounded range, and

y = 1/(1+ e(γ−X)/δ) (0 < y < 1, δ > 0),
(7)

where again X ∈ N(0, 1).
These transformations are both one-to-

one, and the SU case readily yields to moment
evaluation, whereas SB does not.

For SU, the first four moments are

µ′1(y) = −√ω sinh�,

µ2(y) = (ω − 1)(ω cosh(2�)+ 1)/2,

µ3(y) = −(ω − 1)2√ω{(ω2 + 2ω) sinh(3�)

+ 3 sinh�}/4, (8)

µ4(y) = (ω − 1)2{d4 cosh(4�)

+ d2 cosh(2�)+ d0},

where

d4 = ω2(ω4 + 2ω3 + 3ω2 − 3)/8,

d2 = 1
2ω

2(ω + 2),

d0 = 3(2ω + 1)/8, and

lnω = 1/δ2, � = γ /δ.

Note that since ω > 1, µ3(y) has the sign of
(−�), and unlike the structure of the Pearson
system, here all moments are functions of
ω and �. (For the Pearson system, mean
and variance are not affected by

√
β1 and β2,

whereas they are for SU.)
If Y is a variate, then set

Y = (y+ p)/q (9a)
so that

ν ′1 = E(Y) = (µ′1(y)+ p)/q
ν2 = var(Y) = (µ2(y))/q2 (9b)

Determine p and q. The values of µ′1(y)
and µ2(y) are set by equating the skewness
(
√
β1), and kurtosis (β2) of Y to those of y;

assistance here is given in Tables 34 and 35
in Pearson and Hartley [56].

Johnson’s SU system [35] immediately pro-
vides percentiles from those of the normal,
and also an equivalent normal variate,

X = γ + δ sinh−1 y.
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However, one must keep in mind that the
SU density is still only a four-moment approx-
imation.

To fix the domain of validity of SU, let � =
−k and k→∞, so that the mean of y tends
to∞ and σ 2 ∼ ω(ω − 1)e2k/4. Then if t = y/σ
from (6), X = c+ ln t, which corresponds to a
log-normal transformation, and from (8)

√
β1 = (ω + 2)

√
ω − 1,

β2 = ω4 + 2ω3 + 3ω2 − 3, (10)

the parametric form of the boundary in the
(
√
β1,β2) plane.
Examples of SU and SB are given in

Table 1.

Literature

An adequate description of SU and SB is given
by Pearson and Hartley [56, pp. 80–87],
including tables to facilitate fitting. More-
over, the iterative scheme for the evaluation
of the parameters of SU given by Johnson [36]
is readily programmed for a small computer.
A rational fraction solution for ω, leading also
to a value of �, has been developed by Bow-
man and Shenton [10]; a similar scheme is
also available for the SB-system [13].

SERIES DEVELOPMENTS

These originated in the nineteenth century,
and are related to procedures to sharpen
the central limit theorem∗. For large n, for
z1, z2, . . . , zn mutually independent variates
with common standard deviation σ , the dis-
tribution of s = (

∑
z)/(σ

√
n) is approximately

normal. A better approximation appears from
Charlier’s A-series [14],

φ(x)+ (a3/3!)φ(3)(x)

+ (a4/4!)φ(4)(x)+ · · · (11)

where φ(x) = (2π )−1/2 exp
(− 1

2 x2
)

is the stan-
dard normal density. [This approximation
involves derivatives of φ(x).] Cramér [17,18]
has proved that certain asymptotic proper-
ties of (11) hold. Another version of the series

development (11) takes the form�(d/dx)φ(x),
where

�(t) ≡ exp
∑

εj(−t)j/j!, (12)

the operator changing the cumulants∗ (κr)
of φ(·) to (κr + εr). This, from Cramér’s work
(see his note and references in ref. 18), has
similar asymptotic properties with respect to
the central limit theorem∗.

Since the derivatives of the normal den-
sity are related to Hermite polynomials∗ (see
CHEBYSHEV–HERMITE POLYNOMIALS), (11)
may be written

[1− (a3/3!)H3(x)

+ (a4/4!)H4(x)− · · ·]φ(x), (13)

and if this approximates a density f (x), then
using orthogonality,

as = (−1)sE[Hs(x)],

where the expectation∗ operator refers to f (x).
Thus in terms of cumulants,

a3 = −κ3, a4 = κ4,

a5 = −κ5, a6 = κ6 + 10κ2
3 ,

etc., the coefficients a1, a2 being zero because
of the use of the standard variate x.

If empirical data are being considered,
only the first five or six terms of (1) can
be contemplated because of large sampling
errors of the moments involved. However,
this problem does not arise in the approx-
imation of theoretical structures, and cases
are on record (for example, ref. 47) in which
the twentieth polynomial has been included;
quite frequently the density terms turn out to
have irregular sign and magnitude patterns.

The Edgeworth∗ form [23,24],

φ(x){1+ (κ3/3!)H3(x)+ (κ4/4!)H4(x)

+ (κ5/5!)H5(x)

+ (κ6 + 10κ2
3 )H6(x)/6!+ · · ·}

has one advantage over (1), in that when
applied to certain statistics, the standardized
cumulants κr may be shown to be of order
1/n(1/2)r−1, where n is the sample size, so
that if carried far enough the coefficients will
tend to exhibit a regular magnitude pattern.
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Nonnormal Kernels

The basic function φ(·) need not be normal,
and Romanowsky [62] introduced generaliza-
tions such as gamma- and beta∗-type densi-
ties, with associated Laguerre∗ and Jacobi∗
orthogonal polynomials. The normal density
is, however, generally favored because of the
simplicity of the Chebyshev-Hermite system
of polynomials.

Cornish–Fisher Expansions

Using a differential series, such as (12)
with normal kernel, Cornish and Fisher
[15] derived a series for the probabil-
ity integral of a variate whose cumu-
lants are known (see CORNISH–FISHER AND

EDGEWORTH EXPANSIONS). By inversion of
series, they derived a series for the devi-
ate at a given probability level in terms
of polynomials in the corresponding normal
deviate. Fisher and Cornish [29] extended
the earlier study to include terms of order
n−3, these involving the eighth cumulant and
polynomials of degree seven. Further gener-
alizations are due to Finney [27], who treated
the case of several variates; Hill and Davis
[32], who gave a rigorous treatment indi-
cating the procedure for the derivation of a
general term; and Draper and Tierney [21],
who tabulated the basic polynomials involved
in the terms to order n−4 and cumulants up
to κ10; unpublished results of Hill and Davis
for the higher-order polynomials agreed with
those found by Draper and Tierney.

Some Applications

In his paper on testing for normality∗ (see
DEPARTURES FROM NORMALITY, TESTS FOR),
Geary [31] considered the distribution of t
under nonnormality, basing it on what he
called a differential series [expression (12)]
with kernel the density of t∗ under normality,
i.e., cn(1+ t2/(n− 1))−n/2. He derived a series
to order n−2 for the probability integral, using
it cautiously for a sample of 10 under only
moderate nonnormality. In an earlier study
[30] searching for precise forms for the den-
sity of the sample skewness under normality,
he used the Cornish-Fisher series to assess
probability levels using cumulants up to the
eighth. Mulholland [47] developed the sub-
ject further, providing a recursive scheme for

evaluating at least theoretically any moment
of
√

b1, and a Charlier series for the prob-
ability integral up to polynomials of degree
20.

Series involving Laguerre polynomials and
a gamma density have been exploited by
Tiku. For example, his study [69] of the vari-
ance ratio∗ and Student’s t [70], both under
nonnormality, involve terms up to order n−2.

Discussion

In approximating distributions, convergence∗

questions, and even to a less extent, asymp-
totic properties are irrelevant, for we are
concerned with a finite number of terms,
since very rarely can general terms be found.
Thus questions of nonnegativity of the den-
sity arise [3,64], and internal checks for close-
ness of approximation via convergence or
otherwise are not available. At best the Char-
lier and Edgeworth series can only serve as
backup models.

MULTIVARIATE DENSITIES

The Pearson system defined in (1) becomes,
in bivariate form,

1
y
∂y
∂xi
= Pi(x1, x2)

Qi(x1, x2)
(i = 1, 2),

where Pi and Qi are functions of x1 and x2
of degrees 1 and 2, respectively. There are
again several types, including the bivariate
normal∗ with density

φ(x1, x2) = (1− ρ2)−1/2(2π )−1

× exp

{
− 1

2 x2 − ρxy− 1
2 y2

1− ρ2

}
, ρ2 < 1,

in standard form, which reduces to a product
form when ρ = 0 (i.e., when the variates are
uncorrelated).

Another well-known type is the Dirichlet∗
density,

y(x1, x2) = cxa−1
1 xb−1

2 (1− x1 − x2)c−1

(a, b, c > 0)

with domain x1, x2 > 0, x1 + x2 � 1.
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Series development based on the Charlier
model take the form

{1+ a10∂1 + a01∂2 + (a20/2!)∂2
1 + a11∂1∂2

+ (a02/2!)∂2
2 + · · ·}φ(x1, x2),

where ∂i ≡ ∂/∂xi.
Similarly, there are multivariate transla-

tion systems, following the Johnson SU and
SB models.

The Pearson system, for which marginal
distributions are of Pearson form, can be fit-
ted by moments, a new feature being the
necessity to use product moments∗, the sim-
plest being related to the correlation between
the variates. A similar situation holds for
Charlier multivariate developments, and
again, as with the single-variate case, neg-
ative frequencies can be a problem.

Literature

A sustained study of empirical bivariate data,
at least of historical interest, is given in K.
Pearson’s 1925 paper [60].

A brief discussion of frequency surfaces∗

will be found in Elderton and Johnson [26].
A more comprehensive treatment, including
modern developments, is that of N. L. John-
son and S. Kotz [37]. Mardia’s work [45] is a
handy reference.

DISCRETE DISTRIBUTIONS

There is now a richness of variety of discrete
distributions, and the time is long passed
when there were possibly only three or so
choices, the binomial∗, the Poisson∗, and the
hypergeometric∗; the geometric appearing
infrequently in applications.

Just as a differential equation is used
to define the Pearson system of curves, so
analogs in finite differences∗ may be used
to generate discrete density functions [41,49,
58]. Again, if Gi(t), i = 1, 2, . . ., are the prob-
ability generating functions∗ of discrete vari-
ates, then new distributions arise from G1
(G2(t)) and similar structures; for example,
Neyman’s contagious distributions∗ are re-
lated to choosing G1 and G2 as Poisson gen-
erating functions.

There are many applications where distri-
bution approximation models are required

for random count data∗ [51,52]. We also
mention occupancy problems∗ [38], meteo-
rological phenomena relating to drought fre-
quency, storm frequency, degree-days, etc.
However, the need for approximating dis-
crete distributions is not common, especially
with the advent of computer facilities. A clas-
sical exception is the normal approximation
to the binomial distribution when the index
n is large; in this case, if the random variate
is x, then with probability parameter p, we
consider the approximation (x− np)/

√
npq to

be nearly normal (for refinements, see, e.g.,
Molenaar [46]).

Again the Poisson or binomial density
functions may be used as the basis for Char-
lier-type approximation expansions. Thus for
the Poisson functionψ(x) = e−mmx/x!, we con-
sider

f (x) = {1+ α2∇2
x /2!+ α3∇3

x /3!t

+ · · ·}ψ(x),

where ∇g(x) ≡ g(x)− g(x− 1) is a backward
difference∗. This type of approximation may
be considered for random variates taking the
values x = 0, 1, . . ., when moments exist and
the density to be approximated is compli-
cated.

Literature

Historical information has been given by
Särndal [63], and comprehensive accounts
are those of Johnson and Kotz [37] and Patil
and Joshi [53]. A short account, with new
material, is given by J. K. Ord [50].
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APPROXIMATIONS TO FUNCTIONS.
See FUNCTIONS, APPROXIMATIONS TO

A PRIORI DISTRIBUTION

The term a priori distribution is used to
describe a distribution ascribed to a param-
eter in a model. It occurs most commonly
in the application of Bayesian methods. The
a priori distribution is usually supposed to
be known exactly—and not to depend on
unknown parameters of its own.

See also BAYESIAN INFERENCE.

ARBITRARY ORIGIN. See CODED DATA

ARBITRARY SCALE. See CODED DATA

ARBUTHNOT, JOHN

Born: April 29, 1667, in Arbuthnott, Kin-
cardineshire, Scotland.

Died: February 27, 1735, in London, Eng-
land.

Contributed to: early applications of pro-
bability, foundations of statistical infer-
ence, eighteenth-century political
satire, maintaining the health of Queen
Anne.

John Arbuthnot was the eldest son of Alexan-
der, parson of the village of Arbuthnott, near
the east coast of Scotland. They were part of
the Aberdeenshire branch of the Arbuthnot
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family, whose precise relationship to the Vis-
counts Arbuthnott of Kincardineshire, and
to the ancient lairds of the family, is not
known. In later years, John invariably signed
his name ‘‘Arbuthnott,’’ yet ‘‘Arbuthnot’’ con-
sistently appears on his printed works. The
latter is evidently the more ancient form,
to which the Kincardineshire branch added
a second ‘‘t’’ some time in the seventeenth
century.

John entered Marischal College, Aber-
deen, at the age of fourteen, and graduated
with an M.A. in medicine in 1685. Following
the Glorious Revolution of 1688–1689, John’s
father was deprived of his living in 1689,
because he would not accept Presbyterian-
ism. He died two years later, and soon after
that John left Scotland to settle in London,
where initially he made his living teaching
mathematics. It was during this period that
he produced one of the two pieces of work
that have merited him a place in the history
of probability and statistics. He translated,
from Latin into English, Huygens’ De Rati-
ociniis in Ludo Aleae, the first probability
text [7]. Arbuthnot’s English edition of 1692,
Of the Laws of Chance [3], was not simply
a translation. He began with an introduc-
tion written in his usual witty and robust
style, gave solutions to problems Huygens∗

had posed, and added further sections of his
own about gaming with dice and cards.

In 1694, he was enrolled at University Col-
lege, Oxford as a ‘‘fellow commoner,’’ acting
as companion to Edward Jeffreys, the eldest
son of the Member of Parliament for Bre-
con. Arbuthnot developed lasting friendships
with Arthur Charlett, the Master of Univer-
sity College, and with David Gregory, the
Savilian Professor of Astronomy at Oxford.
It seems, though, that Edward Jeffreys did
not use his time at Oxford well, and in
1696, Arbuthnot became ‘‘resolv’d on some
other course of life.’’ He moved briefly to St.
Andrews and there presented theses which
earned him a doctor’s degree in medicine in
September 1696.

Having returned to London, he quickly
earned himself a reputation as a skilled phy-
sician and a man of learning. Two of his
early scientific publications were An Exami-
nation of Dr. Woodward’s Account of the Del-
uge (1697; John Woodward was Professor of

Physic at Gresham College) [3] and An Essay
on the Usefulness of Mathematical Learning
(1701) [1]. He became a Fellow of both the
Royal Society (1704) and the Royal College
of Physicians (1710), and served on two pres-
tigious committees of the former. The first,
which included Sir Isaac Newton∗ (then Pres-
ident of the Royal Society), Sir Christopher
Wren, and David Gregory, was set up in 1705
to oversee the publication of the astronomical
observations of the Astronomer Royal, John
Flamsteed. Arbuthnot was directly involved
in trying to secure Flamsteed’s cooperation in
carrying the venture through to completion,
in the face of hostility between Flamsteed and
Newton, and accusations on each side that
the other was obstructing the project. After
long delays, the observations were finally
published in 1712. Arbuthnot was less active
in the second of the committees, appointed in
1712 to deliberate on the rival claims of New-
ton and Leibniz to invention of the ‘‘method
of fluxions’’ (differential calculus).

In 1705, Arbuthnot became Physician Ex-
traordinary to Queen Anne, and in 1709
Physician in Ordinary. Until Queen Anne’s
death in 1714, he enjoyed a favored posi-
tion at the Court. In 1711, he held office in
the Customs, and in 1713 he was appointed
Physician at Chelsea College.

Outside the statistical community, he is
most widely remembered for his comic satiri-
cal writings. He was the creator of the figure
John Bull, who has become a symbol of the
English character. John Bull featured in a
series of pamphlets written by Arbuthnot in
1713; they contain a witty allegorical account
of the negotiations taking place towards the
settlement of the War of the Spanish Succes-
sion and were, in due course, put together as
The History of John Bull [1]. Arbuthnot was a
close colleague of Jonathan Swift, Alexander
Pope, and John Gay, and a founder mem-
ber of the Scriblerus Club, an association of
scholars formed around 1714 with the aim of
ridiculing pedantry and poor scholarship. It
is thought that much of the Memoirs of the
Extraordinary Life, Works, and Discoveries of
Martinus Scriblerus [1] came from Arbuth-
not’s pen. His writings ranged widely over
aspects of science, mathematics, medicine,
politics and philosophy. Often he was modest
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or careless in claiming authorship, particu-
larly of his political satire.

The paper he presented to the Royal Soci-
ety of London on April 19, 1711 [2] has
attracted most attention from historians of
statistics and probability (it appeared in
a volume of the Philosophical Transactions
dated 1710, but published late). Arbuthnot’s
paper was ‘‘An Argument for Divine Prov-
idence, taken from the constant Regularity
observ’d in the Births of both Sexes.’’ In it, he
maintained that the guiding hand of a divine
being was to be discerned in the nearly con-
stant ratio of male to female christenings
recorded annually in London over the years
1629 to 1710. Part of his reasoning is rec-
ognizable as what we would now call a sign
test, so Arbuthnot has gone down in statis-
tical history as a progenitor of significance
testing∗.

The data he presented showed that in
each of the 82 years 1629–1710, the annual
number of male christenings had been con-
sistently higher than the number of female
christenings, but never very much higher.
Arbuthnot argued that this remarkable reg-
ularity could not be attributed to chance∗,
and must therefore be an indication of divine
providence. It was an example of the ‘‘argu-
ment from design,’’ a thesis of considerable
theological and scientific influence during the
closing decades of the seventeenth century
and much of the next. Its supporters held that
natural phenomena of many kinds showed
evidence of careful and beneficent design, and
were therefore indicative of the existence of
a supreme being.

Arbuthnot’s representation of ‘‘chance’’
determination of sex at birth was the toss
of a fair two-sided die, with one face marked
M and the other marked F. From there, he
argued on two fronts: ‘‘chance’’ could not
explain the very close limits within which
the annual ratios of male to female christen-
ings had been observed to fall, neither could it
explain the numerical dominance, year after
year, of male over female christenings.

He pursued the first argument by indi-
cating how the middle term of the binomial
expansion, for even values of the size param-
eter n, becomes very small as n gets large.
Though he acknowledged that in practice the
balance between male and female births in

any one year was not exact, he regarded
his mathematical demonstration as evidence
that, ‘‘if mere Chance govern’d,’’ there would
be years when the balance was not well main-
tained.

The second strand of his argument, con-
cerning the persistent yearly excess of male
over female christenings, was the one which
ultimately caught the attention of historians
of statistics. He calculated that the probabil-
ity of 82 consecutive years in which male
exceeded female christenings in number,
under the supposition that ‘‘chance’’ deter-
mined sex, was very small indeed. This he
took as weighty evidence against the hypoth-
esis of chance, and in favor of his alternative
of divine providence. He argued that if births
were generated according to his representa-
tion of chance, as a fair two-sided die, the
probability of observing an excess of male
over female births in any one year would
be no higher than one-half. Therefore the
probability of observing 82 successive ‘‘male
years’’ was no higher than ( 1

2 )82 (a num-
ber of the order of 10−25 or 10−26). The
probability of observing the data given the
‘‘model,’’ as we might now say, was very
small indeed, casting severe doubt on the
notion that chance determined sex at birth.
Arbuthnot proceeded to a number of conclu-
sions of a religious or philosophical nature,
including the observation that his arguments
vindicated the undesirability of polygamy in
a civilized society.

We can see in Arbuthnot’s probabilistic
reasoning some of the features of the modern
hypothesis test. He defined a null hypothesis
(‘‘chance’’ determination of sex at birth) and
an alternative (divine providence). He cal-
culated, under the assumption that the null
hypothesis was true, a probability defined by
reference to the observed data. Finally, he
argued that the extremely low probability he
obtained cast doubt on the null hypothesis
and offered support for his alternative.

Arbuthnot’s reasoning has been thor-
oughly examined by modern statisticians and
logicians, most notably by Hacking [5, 6].
We have, of course, the benefit of more than
250 years of hindsight and statistical devel-
opment. The probability of ( 1

2 )82, on which
hinged Arbuthnot’s dismissal of the ‘‘chance’’
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hypothesis, was one of a well-defined ref-
erence set, the binomial distribution with
parameters 82 and one-half. It was the lowest
and most extreme probability in this refer-
ence set, and hence also in effect a tail-area
probability. And it was an extremely low prob-
ability. Arbuthnot made only the last of these
points explicit.

Arbuthnot’s advancement of an argument
from design did not single him out from his
contemporaries. Nor were his observations on
the relative constancy of the male to female
birth ratio radical. What was novel was his
attempt to provide a statistical ‘‘proof’’ of his
assertions, based on a quantitative concept
of chance, explicitly expressed and concluded
in numerical terms.

An unpublished manuscript in the Gre-
gory collection at the University of Edinburgh
indicates that Arbuthnot had been flirting
with ideas of probabilistic proof well before
1711, possibly as early as 1694 [4]. In his 10-
page ‘‘treatise on chance’’ is an anticipation
of his 1711 argument concerning the middle
term of the binomial as n gets large, as well as
two other statistical ‘‘proto-tests’’ concerning
the lengths of reign of the Roman and Scot-
tish kings. The chronology of the first seven
kings of Rome was suspect, he suggested,
because they appeared to have survived far
longer on average than might reasonably be
expected from Edmund Halley’s life table,
based on the mortality bills of Breslau. In the
case of the Scottish kings, on the other hand,
the evidence seemed to indicate that mortal-
ity amongst them was higher than might be
expected from Halley’s table. However, nei-
ther of the calculations Arbuthnot outlined
had the clarity of statistical modeling evident
in his 1711 paper, nor did they culminate in
a specific probability level quantifying the
evidence.

Arbuthnot’s 1711 paper sparked off a de-
bate which involved, at various times, Wil-
liam ’sGravesande∗ (a Dutch scientist who
later became Professor of Mathematics, Astr-
onomy and Philosophy at the University of
Leiden), Bernard Nieuwentijt (a Dutch physi-
cian and mathematician), Nicholas Bern-
oulli∗, and Abraham de Moivre∗. ’sGrave-
sande developed Arbuthnot’s test further,
attempting to take into account the close
limits within which the male-to-female birth

ratio fell year after year. Bernoulli, on the
other hand, questioned Arbuthnot’s interpre-
tation of ‘‘chance.’’ He proposed that the fair
two-sided die could be replaced by a multi-
faceted die, with 18 sides marked M and 17
marked F. If tossed a large number of times,
Bernoulli maintained, such a die would yield
ratios of M’s to F’s with similar variabil-
ity to the London christenings data. Certain
aspects of the exchanges between the partic-
ipants in the debate can be seen as attempts
to emulate and develop Arbuthnot’s mode of
statistical reasoning, but have not proved as
amenable to reinterpretation within modern
frameworks of statistical logic.

Though Arbuthnot’s 1711 argument tends
now to be regarded as the first recogniz-
able statistical significance test, it is doubtful
whether his contribution, and the debate it
provoked, provided any immediate stimulus
to ideas of statistical significance testing. The
obvious impact was to fuel interest in the
‘‘argument from design,’’ in the stability of
statistical ratios, and in the interplay of one
with the other.

An oil painting of Arbuthnot hangs in
the Scottish National Portrait Gallery, Edin-
burgh. By all accounts, he was a charitable
and benevolent man. In a letter to Pope, Swift
said of him: ‘‘Our doctor hath every quality
in the world that can make a man amiable
and useful; but alas! he hath a sort of slouch
in his walk.’’
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E. SHOESMITH

ARCH AND GARCH MODELS

Many time series∗ display time-varying dis-
persion, or uncertainty, in the sense that
large (small) absolute innovations∗ tend to
be followed by other large (small) absolute
innovations. A natural way to model this phe-
nomenon is to allow the variance to change
through time in response to current devel-
opments of the system. Specifically, let {yt}
denote the observable univariate discrete-
time stochastic process of interest. Denote
the corresponding innovation process by {εt},
where εt ≡ yt − Et−1(yt), andEt−1(·) refers to
the expectation conditional on time-(t− 1)
information. A general specification for the
innovation process that takes account of the
time-varying uncertainty would then be given
by

εt = ztσt, (1)

where {zt} is an i.i.d. mean-zero, unit-
variance stochastic process∗, and σt rep-
resents the time-t latent volatility; i.e.,
E(ε2

t |σt) = σ 2
t . Model specifications in which

σt in (1) depends non-trivially on the past

innovations and/or some other latent vari-
ables are referred to as stochastic volatility
(SV) models. The historically first, and often
most convenient, SV representations are the
autoregressive conditionally heteroscedastic
(ARCH) models pioneered by Engle [21]. For-
mally the ARCH class of models are defined
by (1), with the additional restriction that
σt must be measurable with respect to the
time-(t− 1) observable information set. Thus,
in the ARCH class of models vart−1(yt) ≡
Et−1(ε2

t ) = σ 2
t is predetermined as of time

t− 1.

VOLATILITY CLUSTERING

The ARCH model was originally introduced
for modeling inflationary uncertainty, but
has subsequently found especially wide use
in the analysis of financial time series. To
illustrate, consider the plots in Figs. 1 and 2
for the daily Deutsche-mark—U.S. dollar
(DM/$) exchange rate and the Standard
and Poor’s 500 composite stock-market index
(S&P 500) from October 1, 1979, through
September 30, 1993. It is evident from panel
(a) of the figures that both series display the
long-run swings or trending behavior that are
characteristic of unit-root∗, or I(1), nonsta-
tionary processes. On the other hand, the two
return series, rt = 100 ln(Pt/Pt−1), in panel
(b) appear to be covariance-stationary. How-
ever, the tendency for large (and for small)
absolute returns to cluster in time is clear.

Many other economic and financial time
series exhibit analogous volatility cluster-
ing features. This observation, together with
the fact that modern theories of price deter-
mination typically rely on some form of a
risk—reward tradeoff relationship, under-
lies the very widespread applications of the
ARCH class of time series models in eco-
nomics and finance∗ over the past decade.
Simply treating the temporal dependencies
in σt as a nuisance would be inconsistent with
the trust of the pertinent theories. Similarly,
when evaluating economic and financial time
series forecasts it is equally important that
the temporal variation in the forecast error
uncertainty be taken into account.

The next section details some of the most
important developments along these lines.



Figure 1. Daily deutsche-mark—U.S. dollar
exchange rate. Panel (a) displays daily observa-
tions on the DM/U.S. $ exchange rate, st, over the
sample period October 1, 1979 through September
30, 1993. Panel (b) graphs the associated daily
percentage appreciation of the U.S. dollar, cal-
culated as rt ≡ 100 ln(st/st−1). Panel (c) depicts
the conditional standard-deviation estimates of
the daily percentage appreciation rate for the
U.S. dollar implied by each of the three volatility
model estimates reported in Table 1.

Figure 2. Daily S&P 500 stock-market index.
Panel (a) displays daily observations on the value
of the S&P 500 stock-market index, Pt, over the
sample period October 1, 1979 through Septem-
ber 30, 1993. Panel (b) graphs the associated
daily percentage appreciation of the S&P 500
stock index excluding dividends, calculated as
rt ≡ 100 ln(Pt/Pt−1). Panel (c) depicts the condi-
tional standard-deviation estimates of the daily
percentage appreciation rate for the S&P 500
stock-market index implied by each of the three
volatility-model estimates reported in Table 2.
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For notational convenience, we shall assume
that the {εt} process is directly observable.
However, all of the main ideas extend directly
to the empirically more relevant situation
in which εt denotes the time-t innovation
of another stochastic process, yt, as defined
above. We shall restrict discussion to the
univariate case; most multivariate general-
izations follow by straightforward analogy.

GARCH

The definition of the ARCH class of models
in (1) is extremely general, and does not lend
itself to empirical investigation without addi-
tional assumptions on the functional form, or
smoothness, of σt. Arguably, the two most
successful parameterizations have been the
generalized ARCH, or GARCH (pq), model of
Bollerslev [7] and the exponential GARCH, or
EGARCH (p, q), model of Nelson [46]. In the
GARCH (p, q) model, the conditional vari-
ance is parametrized as a distributed lag
of past squared innovations and past condi-
tional variances,

σ 2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j

≡ ω + α(B)ε2
t + β(B)σ 2

t , (2)

where B denotes the backshift (lag) operator;
i.e., Biyt ≡ yt−i. For αi > 0, this parametriza-
tion directly captures the tendency for large
(small) ε2

t−i’s to be followed by other large
(small) squared innovations. Of course, for
the conditional variance in (2) to be positive
almost surely, and the process well defined,
the coefficients in the corresponding infinite
ARCH representation for σ 2

t , expressed in
terms of {ε2

t−i}∞i=1, must all be nonnegative,
i.e., [1− β(B)]−1α(B), where all of the roots
of 1− β(x) = 0 are assumed to be outside the
unit circle.

On rearranging the terms in (2), we obtain

[1− α(B)− β(B)]ε2
t = ω + [1− β(B)]νt, (3)

where νt ≡ ε2
t − σ 2

t . Since Et−1(νt) = 0, the
GARCH(p, q) formulation in (3) is readily
interpreted as an ARMA(max{p, q}, p) model
for the squared innovation process {ε2

t }; see

Milhøj [43] and Bollerslev [9]. Thus, if the
roots of 1− α(x)− β(x) = 0 lie outside the unit
circle, then the GARCH(p, q) process for {εt} is
covariance-stationary, and the unconditional
variance equals σ 2 = ω[1− α(1)− β(1)]−1.
Furthermore, standard ARMA∗-based iden-
tification and inference procedures may be
directly applied to the process in (3), although
the heteroscedasticity in the innovations, {νt},
renders such an approach inefficient.

In analogy to the improved forecast accu-
racy obtained in traditional time-series anal-
ysis by utilizing the conditional as opposed to
the unconditional mean of the process, ARCH
models allow for similar improvements when
modeling second moments. To illustrate, con-
sider the s-step-ahead (s � 2) minimum mean
square error∗ forecast for the conditional
variance∗ in the simple GARCH(1, 1) model,

Et(ε2
t+s) = Et(σ 2

t+s)

= ω
s−2∑
i=0

(α1 + β1)i + (α1 + β1)s−1σ 2
t+1.

(4)

If the process is covariance-stationary, i.e.
α1 + β1 < 1, it follows that Et(σ 2

t+s) = σ 2 +
(α1 + β1)s−1(σ 2

t+1 − σ 2). Thus, if the current
conditional variance is large (small) relative
to the unconditional variance, the multistep
forecast is also predicted to be above (below)
σ 2, but converges to σ 2 at an exponential rate
as the forecast horizon lengthens. Higher-
order covariance-stationary models display
more complicated decay patterns [3].

IGARCH

The assumption of covariance stationarity
has been questioned by numerous studies
which find that the largest root in the
estimated lag polynomial 1− α̂(x)− β̂(x) = 0
is statistically indistinguishable from unity.
Motivated by this stylized fact, Engle and
Bollerslev [22] proposed the so-called inte-
grated GARCH, or IGARCH(p, q), process,
in which the autoregressive polynomial in
(3) has one unit root; i.e., 1− α(B)− β(B) ≡
(1− B)φ(B), where φ(x) �= 0 for |x| � 1. How-
ever, the notion of a unit root∗ is intrinsically
a linear concept, and considerable care should
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Table 1. Daily Deutsche-Mark—U.S. Dollar Exchange-Rate
Appreciation

AR(1):(a)
rt = −0.002 −0.033 · rt−1 + εt

(0.013) (0.017)
[0.013] [0.019]

σ 2
t = 0.585

(0.014)
[0.022]

Log1 = −4043.3, b3 = −0.25, b4 = 5.88, Q20 = 19.69, Q2
20 = 231.17

AR(1)—GARCH(1, 1): (b)

rt = −0.001 −0.035 · rt−1 +εt
(0.012) (0.018)
[0.012] [0.019]

σ 2
t = 0.019 +0.103 · ε2

t−1 +0.870 · σ 2
t−1

(0.004) (0.011) (0.012)
[0.004] [0.015] [0.015]

Log1 = −3878.8, b3 = −0.10, b4 = 4.67, Q20 = 32.48, Q2
20 = 22.45

AR(1)—EGARCH(1, 0): (c)

rt = 0.005 −0.034 · rt−1 + εt
(0.012) (0.018)
[0.012] [0.017]

ln σ 2
t = −0.447 +[0.030 · zt−1 +0.208 · (|zt−1| −

√
2/π )] +0.960 · ln(σ 2

t−1)
(0.081) (0.009) (0.019) (0.004)
[0.108] [0.013] [0.022] [0.008]

Log1 = −3870.8, b3 = −0.16, b4 = 4.54, Q20 = 33.61, Q2
20 = 24.22

Notes: All the model estimates are obtained under the assumption of conditional
normality; i.e., zt ≡ εtσ−1

t i.i.d. N(0, 1). Conventional asymptotic standard errors based
on the inverse of Fisher’s information matrix are given in parentheses, while the
numbers in square brackets represent the corresponding robust standard errors as
described in the text. The maximized value of the pseudo-log-likelihood function is
denoted Log1. The skewness and kurtosis of the standardized residuals, ẑt = ε̂t σ̂−1

t , are
given by b3 and b4, respectively. Q20 and Q2

20 refer to the Ljung—Box portmanteau
test for up to 20th-order serial correlation in ẑtand ẑ2

t , respectively.

be exercised in interpreting persistence in
nonlinear models. For example, from (4),
the IGARCH(1, 1) model with α1 + β1 = 1
behaves like a random walk∗, or an I(1)
process, for forecasting purposes. Nonethe-
less, by repeated substitution, the GARCH(1,
1) model may be written as

σ 2
t = σ 2

0

t∏
i=1

(α1z2
t−i + β1)

+ ω
1+

t−1∑
j=1

j∏
i=1

(α1z2
t−i + β1)

 .
Thus, as Nelson [44] shows, strict station-
arity and ergodicity of the GARCH(1, 1)
model requires only geometric convergence of
{α1z2

t + β1}, orE[ln(α1z2
t + β1)] < 0, a weaker

condition than arithmetic convergence, or
E(α1z2

t + β1) = α1 + β1 < 1, which is required
for covariance stationarity. This also helps to
explain why standard maximum likelihood∗

based inference procedures, discussed below,
still apply in the IGARCH context
[39,42,51].

EGARCH

While the GARCH(p, q) model conveniently
captures the volatility clustering pheno-
menon, it does not allow for asymmetric
effects in the evolution of the volatility pro-
cess. In the EGARCH(p, q) model of Nel-
son [46], the logarithm of the conditional
variance is given as an ARMA(p, q) model
in both the absolute size and the sign of the
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Table 2. Daily S&P 500 Stock-Market Index Returns

AR(1):(a)
rt = 0.039 +0.055 · rt−1 +εt

(0.017) (0.017)
[0.018] [0.056]

σ 2
t = 1.044

(0.025)
[0.151]

Log1 = −5126.7, b3 = −3.20, b4 = 75.37, Q20 = 37.12, Q2
20 = 257.72

AR(1)—GARCH(2, 2): (b)

rt = 0.049 +0.058 · rt−1 +εt
(0.014) (0.018)
[0.015] [0.019]

σ 2
t = 0.014 +0.143 · ε2

t−1 − 0.103 · ε2
t−2 +0.885 · σ 2

t−1 +0.060 · σ 2
t−2

(0.004) (0.018) (0.021) (0.101) (0.092)
[0.008] [0.078] [0.077] [0.098] [0.084]

Log1 = −4658.0, b3 = −0.58, b4 = 8.82, Q20 = 11.79, Q2
20 = 8.45

AR(1)—EGARCH(2, 1): (c)

rt = 0.023 +0.059 · rt−1 + εt
(0.014) (0.018)
[0.015] [0.017]

ln σ 2
t = 0.281+ (1 −0.927 · B)[ −0.093 · zt−1+ 0.173 · (|zt−1| −

√
2/π )]

(0.175) (0.031) (0.014) (0.018)
[0.333] [0.046] [0.046] [0.058]

+1.813 ln σ 2
t−1 −0.815 ln σ 2

t−2
(0.062) (0.061)
[0.113] [0.112]

Log1 = −4643.4, b3 = −0.60, b4 = 9.06, Q20 = 8.93, Q2
20 = 9.37

Notes: See Table 1.

lagged innovations,

ln σ 2
t = ω +

p∑
i=1

ϕi ln σ 2
t−i +

q∑
j=0

ψjg(zt−1−j)

≡ ω + ϕ(B) ln σ 2
t + ψ(B)g(zt), (5)

g(zt) = θzt + γ [|zt| − E(|zt|)], (6)

along with the normalization ψ0 ≡ 1. By def-
inition, the news impact function g(·) satis-
fies Et−1[g(zt)] = 0. When actually estimating
EGARCH models the numerical stability of
the optimization procedure is often enhanced
by approximating g(zt) by a smooth func-
tion that is differentiable at zero. Bollerslev
et al. [12] also propose a richer parametriza-
tion for this function that downweighs the
influence of large absolute innovations. Note
that the EGARCH model still predicts that
large (absolute) innovations follow other large
innovations, but if θ < 0 the effect is accen-
tuated for negative εt’s. Following Black [6],

this stylized feature of equity returns is often
referred to as the ‘‘leverage effect.’’

ALTERNATIVE PARAMETRIZATIONS

In addition to GARCH, IGARCH, and
EGARCH, numerous alternative univariate
parametrizations have been suggested. An
incomplete listing includes: ARCH-in-mean,
or ARCH-M [25], which allows the conditional
variance to enter directly into the equation
for the conditional mean of the process; non-
linear augmented ARCH, or NAARCH [37],
structural ARCH, or STARCH [35]; quali-
tative threshold ARCH, or QTARCH [31];
asymmetric power ARCH, or AP-ARCH [19];
switching ARCH, or SWARCH [16,34]; peri-
odic GARCH, or PGARCH [14]; and frac-
tionally integrated GARCH, or FIGARCH [4].
Additionally, several authors have proposed
the inclusion of various asymmetric terms in
the conditional-variance equation to better
capture the aforementioned leverage∗ effect;
see e.g., refs. 17, 26, 30.
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TIME-VARYING PARAMETER AND BILINEAR
MODELS

There is a close relation between ARCH mod-
els and the widely-used time-varying param-
eter class of models. To illustrate, consider
the simple ARCH(q) model in (2), i.e., σ 2

t =
ω + α1ε

2
t−1 + · · · + αqε

2
t−q. This model is obser-

vationally equivalent to the process defined
by

εt = wt +
q∑

i=1

aiεt−i,

where wt, a1, . . . , aq are i.i.d. random vari-
ables with mean zero and variances
ω,α1, . . . ,αq, respectively; see Tsay [54] and
Bera et al. [5] for further discussion. Sim-
ilarly, the class of bilinear time series
models discussed by Granger and Ander-
son [32] provides an alternative approach
for modeling nonlinearities; see Weiss [56]
and Granger and Teräsvirta [33] for a more
formal comparison of ARCH and bilinear
models. However, while time-varying para-
meter and bilinear models may conveniently
allow for heteroskedasticity∗ and/or nonlin-
ear dependencies through a set of nuisance
parameters, in applications in economics and
finance the temporal dependencies in σt are
often of primary interest. ARCH models have
a distinct advantage in such situations by
directly parametrizing this conditional vari-
ance.

ESTIMATION AND INFERENCE

ARCH models are most commonly estimated
via maximum likelihood. Let the density for
the i.i.d. process zt be denoted by f (zt; v),
where v represents a vector of nuisance para-
meters. Since σt is measurable with respect to
the time-(t− 1) observable information set, it
follows by a standard prediction-error decom-
position argument that, apart from initial
conditions, the log-likelihood∗ function for
εT ≡ {ε1, ε2, . . . , εT} equals

log L(εT; ξ , v) =
T∑

t=1

[
ln f (εtσ−1

t ; v)− 1
2 ln σ 2

t

]
,

(7)

where ξ denotes the vector of unknown para-
meters in the parametrization for σt. Under
conditional normality,

f (zt; v) = (2π )−1/2 exp
(− 1

2 z2
t
)
. (8)

By Jensen’s inequality∗, E(ε4
t ) = E(z4

t )
× E(σ 4

t ) � E(z4
t )E(σ 2

t )2 = E(z4
t )E(ε2

t )2. Thus,
even with conditionally normal∗ innovations,
the unconditional distribution for εt is
leptokurtic. Nonetheless, the conditional
normal distribution often does not account
for all the leptokurtosis in the data, so
that alternative distributional assump-
tions have been employed; parametric
examples include the t− distribution∗ in
Bollerslev [8] and the generalized error
distribution (GED) in Nelson [46], while
Engle and Gonz’alez-Rivera [23] suggest a
nonparametric∗ approach. However, if the
conditional variance is correctly specified,
the normal quasiscore vector based on (7) and
(8) is a martingale∗ difference sequence when
evaluated at the true parameters, ξ0; i.e.,
Et−1[ 1

2 (∇ξσ 2
t )σ−2

t (ε2
t σ
−2
t − 1)] = 0. Thus, the

corresponding quasi-maximum-likelihood∗

estimate (QMLE), ξ̂ , generally remains
consistent, and asymptotically valid infer-
ence may be conducted using an estimate
of a robustified version of the asymptotic
covariance matrix, A(ξ0)−1B(ξ0)A(ξ0)−1,
where A(ξ0) and B(ξ0) denote the Hessian∗

and the outer product of the gradients
respectively [55]. A convenient form of A(ξ̂ )
with first derivatives only is provided in
Bollerslev and Wooldridge [15].

Many of the standard mainframe and PC
computer-based packages now contain ARCH
estimation procedures. These include E-
VIEW, RATS, SAS, TSP, and a special set of
time series libraries for the GAUSS computer
language.

TESTING

Conditional moment (CM) based misspecifi-
cation tests are easily implemented in the
ARCH context via simple auxiliary regres-
sions [50, 53, 57, 58]. Specifically, following
Wooldridge [58], the moment condition

Et−1[(λtσ
−2
t )(ε2

t − σ 2
t )σ−2

t ] = 0 (9)



ARCH AND GARCH MODELS 213

(evaluated at the true parameter ξ0) pro-
vides a robust test in the direction indicated
by the vector λt of misspecification indica-
tors. By selecting these indicators as appro-
priate functions of the time-(t− 1) informa-
tion set, the test may be designed to have
asymptotically optimal power∗ against a spe-
cific alternative; e.g., the conditional variance
specification may be tested for goodness of fit
over subsamples by letting λt be the rele-
vant indicator function, or for asymmetric
effects by letting λt ≡ εt−1I{εt−1 < 0}, where
I{·} denotes the indicator function for εt−1 <

0. Lagrange-multiplier-type∗ tests that expli-
citly recognize the one-sided nature of the
alternative when testing for the presence
of ARCH have been developed by Lee and
King [40].

EMPIRICAL EXAMPLE

As previously discussed, the two time-series
plots for the DM/$ exchange rate and the
S&P 500 stock market index in Figs. 1 and 2
both show a clear tendency for large (and
for small) absolute returns to cluster in time.
This is also borne out by the highly significant
Ljung—Box [41] portmanteau tests∗ for up to
20th-order serial correlation∗ in the squared
residuals from the estimated AR(1) models,
denoted by Q2

20 in panel (a) of Tables 1 and 2.
To accommodate this effect for the DM/$
returns, Panel (b) of Table 1 reports the esti-
mates from an AR(1)—GARCH(1, 1) model.
The estimated ARCH coefficients are over-
whelmingly significant, and, judged by the
Ljung—Box test, this simple model captures
the serial dependence in the squared returns
remarkably well. Note also that α̂1 + β̂1 is
close to unity, indicative of IGARCH-type
behavior. Although the estimates for the cor-
responding AR(1)—EGARCH(1, 0) model in
panel (c) show that the asymmetry coefficient
θ is significant at the 5% level, the fit of
the EGARCH model is comparable to that
of the GARCH specification. This is also evi-
dent from the plot of the estimated volatility
processes in panel (c) of Fig. 1.

The results of the symmetric AR(1)—
GARCH(2, 2) specification for the S&P 500
series reported in Table 2 again suggest a
very high degree of volatility persistence.

The largest inverse root of the autoregressive
polynomial in (3) equals 1

2 {α̂1 + β̂1 + [(α̂1 +
β̂1)2 + 4(α̂2 + β̂2)]1/2} = 0.984, which corres-
ponds to a half-life of 43.0, or approximately
two months. The large differences between
the conventional standard errors∗ reported
in parentheses and their robust counterparts
in square brackets highlight the importance
of the robust inference procedures with con-
ditionally nonnormal innovations. The two
individual robust standard errors for α2andβ2
suggest that a GARCH(1, 1) specification
may be sufficient, although previous stud-
ies covering longer time spans have argued
for higher-order models [27,52]. This is con-
sistent with the results for the EGARCH(2,
1) model reported in panel (c), where both
lags of g(zt) and ln σ 2

1 are highly significant.
On factorizing the autoregressive polynomial
for ln σ 2

t , the two inverse roots equal 0.989
and 0.824. Also, the EGARCH model points
to potentially important asymmetric effects
in the volatility process. In summary, the
GARCH and EGARCH volatility estimates
depicted in panel (c) of Fig. 2 both do a good
job of tracking and identifying periods of high
and low volatility in the U.S. equity market.

FUTURE DEVELOPMENTS

We have provided a very partial introduction
to the vast ARCH literature. In many appli-
cations a multivariate extension is called
for; see refs. 13, 18, 10, 11, 24, 48 for var-
ious parsimonious multivariate parametriza-
tions. Important issues related to the tem-
poral aggregation of ARCH models are
addressed by Drost and Nijman [20]. Rather
than directly parametrizing the functional
form for σt in (1), Gallant and Tauchen [29],
and Gallant et al. [28] have developed flex-
ible nonparametric techniques for analysis
of data with ARCH features. Much recent
research has focused on the estimation of
stochastic volatility models in which the pro-
cess for σt is treated as a latent variable∗

[1,36,38]. For a more detailed discussion of
all of these ideas, see the many surveys listed
in the Bibliography below.

A conceptually important issue concerns
the rationale behind the widespread empir-
ical findings of IGARCH-type behavior, as
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exemplified by the two time series analyzed
above. One possible explanation is provided
by the continuous record asymptotics devel-
oped in a series of papers by Nelson [45,47]
and Nelson and Foster [49]. Specifically, sup-
pose that the discretely sampled observed
process is generated by a continuous-time
diffusion, so that the sample path for the
latent instantaneous volatility process {σ 2

t }
is continuous almost surely. Then one can
show that any consistent ARCH filter must
approach an IGARCH model in the limit as
the sampling frequency increases. The empir-
ical implications of these theoretical results
should not be carried too far, however. For
instance, while daily GARCH(1, 1) estimates
typically suggest α̂1 + β̂1 ≈ 1, on estimating
GARCH models for financial returns at intra-
day frequencies, Andersen and Bollerslev [2]
document large and systematic deviations
from the theoretical predictions of approxi-
mate IGARCH behavior.

This breakdown of the most popular
ARCH parametrizations at the very high
intraday frequencies has a parallel at the
lowest frequencies. Recent evidence sug-
gests that the exponential decay of volatil-
ity shocks in covariance-stationary GARCH
and EGARCH parametrizations results in
too high a dissipation rate at long hori-
zons, whereas the infinite persistence implied
by IGARCH-type formulations is too restric-
tive. The fractionally integrated GRACH, or
FIGARCH, class of models [4] explicitly rec-
ognizes this by allowing for a low hyperbolic
rate of decay in the conditional variance func-
tion. However, a reconciliation of the empir-
ical findings at the very high and low sam-
pling frequencies within a single consistent
modeling framework remains an important
challenge for future work in the ARCH area.
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ARCHAEOLOGY, STATISTICS IN—I

The application of statistical thought to arch-
aeology has been a slow process. This reluc-
tance arises because (1) archaeological data
rarely can be gathered in a well-designed
statistical experiment; (2) describing empiri-
cal findings requires an expertise that is not
easily modeled.

In recent years, however, the central prob-
lem of archaeology, generally labeled ‘‘typol-
ogy,’’ and the important related problem of
‘‘seriation’’ have received considerable math-
ematical and statistical attention, which we
discuss herewith. The advent of the high-
speed computer has made feasible analyses
of large sets of archaeological data which
were previously impracticable. The applica-
tion of routine statistical methodology has
been infrequent and nonsystematic (see ref.
5, Chap. 13). A recent article by Mueller [23]

is noteworthy, illustrating the use of sam-
pling schemes in archaeological survey. The
important question of how to locate artifact
sites in a region that cannot be totally sur-
veyed is examined. Simple random sampling
and stratified sampling are compared in con-
junction with an empirical study.

The artifact provides the class of entities
with which archaeology is concerned. Typol-
ogy is concerned with the definition of arti-
fact types. Since mode of usage is unobserv-
able, definition arises from an assortment of
qualitative and quantitative variables (e.g.,
shape, color, weight, length) yielding a list
of attributes for each artifact. Artifact types
are then defined in terms of ‘‘tight clusters
of attributes’’ [19]. The definition of types
is usually called taxonomy∗ and the meth-
ods of numerical taxonomy have come to
be employed in archaeological typology. (One
does find in the literature references to tax-
onomy for archaeological sites, an isomorphic
problem to that of typology for artifacts.)

‘‘Typological debate’’ [11] has run several
decades, resulting in a voluminous litera-
ture (see ref. 5). The issues of contention
include such matters as whether types are
‘‘real’’ or ‘‘invented’’ to suit the researcher’s
purposes, whether there is a ‘‘best’’ classifi-
cation of a body of materials, whether types
can be standardized, whether types represent
‘‘basic’’ data, and whether there is a need for
more or fewer types. Statistical issues arise
in the construction of a typology.

Krieger’s effort is a benchmark in uni-
fying the typological concept. An earlier
article in this spirit by Gozodrov [10] is
deservedly characterized by Krieger as ‘‘ten-
tative and fumbling’’ [19, p. 271]. Krieger
reveals the variance in published thought
on the classification∗ issue through examina-
tion of the work on pottery description and
on projectile style. He articulates the ‘‘typo-
logical method’’ and cites Rouse [28] as a
good illustration. The earliest quantitative
work is by Spaulding [30]. A previous paper
by Kroeber [20] concerned itself solely with
relating pairs of attributes. The usual χ2

statistic∗ (see CHI-SQUARE TEST—I) as well as
other measures of association∗ were studied
for 2× 2 presence–absence attribute tables.
From this lead Spaulding suggests, given
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attribute lists for each artifact in the col-
lection, the preparation of cross-tabulations
of all attributes (attribute categories are no
longer restricted to presence-absence). Two-
way tables are χ2-tested, leading to the clus-
tering of nonrandomly associated attributes.
Artifact types are then defined by identify-
ing classes of artifacts that exhibit sets of
associated attributes.

Attempting to formalize Spaulding’s tech-
nique led archaeologists into the realm of
cluster analysis∗. A basic decision in cluster
analysis is whether the items or the com-
ponents of the item data vectors are to be
clustered. Specifically, are we clustering arti-
facts (Q-mode∗ of analysis, as it has been
called) or attributes (R-mode∗ of analysis)?
In defining a typology a Q-mode of analysis
is appropriate, but the unfortunate use of the
phrase ‘‘cluster of attributes’’ by both Krieger
and Spaulding has resulted in a persistent
confusion in the literature. Factor∗ and prin-
cipal components∗ analyses have occasionally
been employed as R-mode analyses to group
attributes by significant dimensions inter-
pretable as underlying features of the data.

Typology, then, involves discerning clus-
ters of artifacts on the basis of similarity of
their attributes. Similarity between artifacts
is measured by similarity functions that arise
in other (e.g., psychological and sociological)
settings as well. Nonmathematically, a sim-
ilarity function between two vectors reflects
the closeness between components of the vec-
tors as an inverse ‘‘distance.’’ For a set of
vectors the similarities between all pairs are
arranged in a ‘‘similarity’’ matrix∗. Beginning
with such a matrix, clustering procedures are
usually effected with the assistance of a com-
puter.

The earliest computer typologies were
done by single-link (nearest-neighbor) clus-
tering [29, p. 180]. Links are assigned
from largest similarities and clusters are
derived from linked units. Unwelcome
‘‘chaining’’ often occurs, whence average link-
age (weighted and unweighted) and complete
linkage procedures have been suggested [29,
p. 181]. Their sensitivity to spurious large
similarities led Jardine and Sibson [15] to for-
mulate double-link cluster analysis, but now
‘‘chaining’’ returns. Thus Hodson [13] pro-
poses a K-means cluster analysis approach.

The total collection is partitioned into a pre-
determined number of clusters. Rules are
defined for transferring artifacts from one
cluster to another until a ‘‘best’’ clustering is
obtained. The procedure is repeated for dif-
fering initial numbers, with expertise deter-
mining the final number of types defined.
The approach can accommodate very large
collections.

Similarities implicitly treat attributes in a
hierarchical manner in defining types. Whal-
lon [34] suggests that often a hierarchy of
importance among attributes exists and that
this is how archaeologists feel their way to
defining types. Attribute trees are defined
where presence or absence of an attribute cre-
ates a branch. Employing χ2 values computed
over appropriate 2× 2 tables, the sequence
of attributes forming the tree is achieved
and also the definition of types from such
sequences. Cell frequency problems plague
many of the χ2 values. Read [25] formalizes
hierarchical classification in terms of parti-
tions of a set of items and allows both discrete
and continuous attributes. Clark [3] extends
these ideas, assuming discrete attributes and
setting them in appropriate higher-order con-
tingency tables∗ to which log-linear models∗
are fitted.

In summary, then, a typology is usually
obtained by clustering∗ (through an appro-
priate procedure) artifacts having similar
attributes and defining types through these
attributes. Recent hierarchical classification
approaches show promise for data sets exhibi-
ting weak clustering.

The next natural step in archaeologi-
cal enterprise is the comparison of artifact
collections, the process called seriation. In
broadest terms, seriation consists of arrang-
ing a set of collections in a series with
respect to similarity of the component arti-
facts to infer ordering in some nonobserv-
able (usually time) dimension. The collec-
tions will typically be grave lots or assem-
blages. The chronological inference is drawn
by the assumption that the degree of similar-
ity between two collections varies inversely
with separation in time. Such an assump-
tion implicitly requires a ‘‘good’’ typology for
the collections. Of course, other dimensions
(e.g., geographic, cultural) may also affect the
degree of similarity between collections and
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confound a ‘‘time’’ ordering. Techniques such
as stratigraphy∗, dated inscriptions, cross-
ties with established sequences, or radiocar-
bon dating, if available, would thus preempt
seriation. If, in addition to order, one wishes
relative distance (in units of time) between
the collections, we have a scaling problem as
well. The seriation literature is quite exten-
sive. Sterud [33] and Cowgill [6] provide good
bibliographies.

The general principles of sequence dating
originate with Flinders Petrie [24]. Brainerd
[2] and Robinson [27] in companion papers set
forth the first formalized mathematical seri-
ation procedure. Robinson offers the method-
ology with examples and is credited as first
to have linked similarities with sequencing.
Brainerd provides the archaeological support
for the method as well as the interpretation
of its results. Some earlier formal attempts
in the literature include Spier [31], Driver
and Kroeber [8], and Rouse [28]. An assort-
ment of earlier ad hoc seriations are noted by
Brainerd [2, p. 304], who comments that they
were often qualified as provisional pending
stratigraphic support. Kendall [17], making
more rigorous the ideas of Petrie, sets the
problem as one of estimation. The observed
collections Yi are assumed independent with
independent components Yij indicating the
number of occurrences of the jth artifact
type in collection i. Each Yij is assumed
Poisson∗ distributed with meanµij, a function
of parameters reflecting abundance, central-
ity, and dispersion. P, the permutation of the
Yi’s yielding the true temporal order, is also a
parameter. A maximum likelihood∗ approach
enables maximization over the µij’s indepen-
dently of P and yields a scoring function S(P)
to be maximized over all permutations. But
for as few as 15 collections, exhaustive search
for the maximum is not feasible.

Similarities help again the similar-
ity matrix now being between collections,
described by vectors, with components not-
ing incidence or abundance of artifact types.
Using similarities, an order is specified up
to reversibility, with expertise then directing
it. Labeling the similarity matrix by F, the
objective of a seriation is to find a permu-
tation of the rows and columns to achieve a
matrix A with elements aij such that a aij
increases in j for j < i; aij decreases in j for

j > i. A similarity matrix having this form
has been called a Robinson matrix; the pro-
cess of manipulating F to this form has been
called petrifying. A permutation achieving
this form must be taken as ideal under our
assumptions but one need not exist. Practi-
cally, the goal is to get ‘‘close’’ (in some sense)
to a Robinson form.

Taking Robinson’s lead, archaeologists
such as Hole and Shaw [14], Kuzara et al.
[21], Ascher and Ascher [1], and Craytor and
Johnson [7], studying large numbers of collec-
tions, develop orderings with elaborate com-
puter search procedures (e.g., rules to restrict
the search, sampling from all permutations,
trial-and-error manipulations). Kendall [18],
making these approaches more sophisticated,
develops the ‘‘horseshoe method,’’ based upon
a multidimensional scaling∗ program in two
dimensions. Both theory and examples sug-
gest that with repeated iterations of such
a program, a two-dimensional figure in the
shape of a horseshoe may be expected if
the data are amenable to a seriation. The
horseshoe is then unfolded to give a one-
dimensional order. Kadane [16] also suggests
a computer-based approach by relating the
problem of finding a ‘‘best’’ permutation to the
traveling salesman problem∗. In both cases
one seeks a minimum-path-length permuta-
tion for a set of points, a problem for which
effective computer solutions exist.

Sternin [32] takes a more mathematical
tact. He sets the model F = PAPT + E where
P is an unknown permutation matrix and E
an error matrix accounting for the possible
inability to restore F to exactly a Robin-
son form. Sternin argues that for certain
types of Robinson matrices (e.g., exponential,
Green’s, and Toeplitz matrices∗), the compo-
nents of eigenvectors corresponding to the
two largest eigenvalues will exhibit recog-
nizable patterns. With E = 0, F and A have
the same eigenvalues∗, so Sternin suggests
rearranging the components of the corre-
sponding eigenvectors∗ of F to these patterns.

Gelfand [9] presents two ‘‘quick and dirty’’
techniques. Both methods guarantee the
obtaining of the ideal P, if one exists. The
better method takes each collection in turn
as a reference unit, sequencing all other col-
lections about it. After orienting each of these
sequences in the same direction, a final order
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is obtained by ‘‘averaging’’ these sequences.
The averaging should reduce the effect of E
and yield a sequence invariant to the original
order. An index of fit for a permutation simi-
lar to the stress measure used in multidimen-
sional scaling is given, enabling comparison
of orders. If an ideal permutation exists, it
will minimize this index. Renfrew and Sterud
[26] describe a ‘‘double-link’’ method analo-
gous to double-link clustering.

In summary, if an ideal seriation exists,
it can be found. If not, but if the data are
sufficiently ‘‘one-dimensional,’’ the foregoing
techniques yield orders from which, with
minor modifications suggested by expertise
or index of fit, a ‘‘best’’ sequence can be pro-
duced.

We now turn to brief discussion of
an example. The La Tène Cemetery at
Munsingen-Rain near Berne, Switzerland,
has proved a rich source of archaeological evi-
dence and has been discussed in numerous
articles over the past 15 years. (Hodson [12]
provides the definitive work.) The excavation
consists of 59 ‘‘closed-find’’ graves. Within
these graves were found considerable num-
bers of fibulae, anklets, bracelets, etc. These
ornamental items are typical of the more
complex kinds of archaeological material in
providing a wide range of detail that allows
almost infinite variation within the basic
range. A typology for these items was devel-
oped employing single-link cluster analysis,
average-link cluster analysis, and a principal
components analysis∗. As a result, some 70
varieties or ‘‘types’’ were defined. A 59× 70
incidence matrix of types within graves was
created and converted to a 59× 59 similar-
ity matrix between graves. This matrix has
been seriated using both the Kendall horse-
shoe method and Gelfand’s technique. The
unusual, almost linear form of the cemetery
implies a geographical sequencing, which
enabled Hodson to establish a very satisfac-
tory seriation. The serial orders obtained by
Kendall and by Gelfand in the absence of this
information are both in good agreement with
Hodson’s.

In conclusion, the two books by Clarke
[4,5] provide the best current picture of quan-
titative work in archaeology. Specifically, the
articles by Hill and Evans [11] and by Cowgill

[6] in the earlier book present excellent syn-
opses on typology and seriation, respectively.
The article by Hodson [13] is delightful in
bringing some very sophisticated statistical
thought to these problems. Finally, the vol-
ume from the conference in Mamaia [22] doc-
uments a very significant dialogue between
archaeologists and statisticians and mathe-
maticians. It bodes well for future analytic
work in archaeology.
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ARCHAEOLOGY, STATISTICS IN—II

Applications of statistics to archaeological
data interpretation are widespread and can

be divided broadly into two groups: those
which are descriptive in nature (used primar-
ily to reduce large and/or complex data sets to
a more manageable size) and those which are
model-based (used to make inferences about
the underlying processes that gave rise to the
data we observe). Approaches of the first type
are most commonly adopted and, in general,
are appropriately used and well understood
by members of the archaeological profession.
Model-based approaches are less widely used
and usually rely upon collaboration with a
professional statistician.

In the preceding entry Gelfand has pro-
vided an excellent survey of the application
of statistics to archaeology up to and includ-
ing the late 1970s. This entry supplements
the earlier one, and the emphasis is on work
undertaken since that time. Even so, this
entry is not exhaustive, and readers are
also encouraged to consult the review article
of Fieller [15]. Statistics forms an increas-
ingly important part of both undergraduate
and graduate courses in archaeology, and
several modern textbooks exist. At an intro-
ductory level, Shennan [28] assumes very
little background knowledge and introduces
the reader to both descriptive and model-
based approaches. Baxter [1] concentrates
on the interpretation of multivariate data
in archaeology. The focus is on exploratory
rather than model-based approaches, since
this has been the primary approach to mul-
tivariate data adopted by the archaeological
community. Buck et al. [4] take up where
the other authors leave off. Their work uses
a range of case studies that require model-
based approaches and advocates a Bayesian
approach so that all prior information is
included in the data interpretation process.

We turn first to the uses archaeologists
make of simple descriptive statistics. Most
modern archaeological field work (and much
undertaken in the laboratory) results in the
collection of enormous quantities of numeric
data. These might take the form of length and
breadth measurements used to characterize
particular types of artifacts (for example,
human and animal bones, pottery vessels,
or metal artifacts such as swords or knives)
or counts of finds in particular locations
(for example, pottery fragments observed
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on the surface of a site prior to excava-
tion, grave goods deposited with the body
at time of burial, or different types of pollen
grains obtained by coring different parts of
an archaeological landscape). Although such
data can represent an enormous range of dif-
ferent archaeological phenomena, the same
kinds of statistical approaches are likely to
be used to compress the information to a
manageable size for presentation and inter-
pretation. Most common are means and stan-
dard deviations, percentages, scatter plots,
bar charts (2-D and 3-D), and line graphs.

Most archaeological site reports contain a
selection of these types of data presentation.
In a recent example Cunliffe [14] reports on
25 years of excavation of the Iron Age hill-fort
at Danebury in Hampshire, UK. This report
provides examples of all the descriptive sta-
tistical techniques outlined above and some
model-based ones too.

Model-based approaches to archaeological
data interpretation have been rather slow
to take off, since very few ‘‘off the peg’’
approaches are suitable. Nonetheless, some
professional statisticians have shown an
interest in helping to interpret archaeological
data, and a range of subject-specific model-
based approaches have been developed; the
most famous is probably the approach used in
an attempt to order chronologically (or seri-
ate) archaeological deposits on the basis of
the artifact types found within them. A good
example might be the desire to establish the
order in which bodies were placed in a ceme-
tery on the basis of the grave goods found with
them. The basic model is that objects come
into use (or ‘‘fashion’’) and then after a period
of time go out of use again, but never come
back. This model is used not because archae-
ologists believe that it completely represents
the past, but because it adequately reflects
the nature of human activity and is not so
sophisticated that it cannot be easily adopted
in practice. (Gelfand made it the center of the
preceding entry.) Development and formal-
ization of the basic model can be attributed
to Robinson [27], but see also refs. 6, 19, 21.
The early works assumed that archaeologi-
cal data would conform to the model exactly;
Laxton and Restorick [21] noted that there
was great potential for stochastic compo-
nents in archaeological data and modeled this

into their approach; and Buck and Litton [6]
adopted the same model, but suggested a
Bayesian approach so that prior information
could also be explicitly modeled into the inter-
pretation process.

Other areas of archaeology that have ben-
efited from adoption of model-based approa-
ches include:

interpretation of soil particle size data in
an attempt to understand the nature
of the climate and landscape that gave
rise to currently observed deposits [16],

consideration of the minimum numbers of
individuals represented within assem-
blages of archaeological artifacts such
as disarticulated skeletons [17,18,32],

interpretation of radiocarbon dates in the
light of any available relative chrono-
logical information from excavation or
literary sources [22,5,9], interpretation
of data from site surveys; for example
soil phosphate analysis or soil resis-
tance measurements [10,3],

identifying the optimum duration and dig-
ging strategies for archaeological exca-
vations [23], formalizing descriptions of
the shapes and structural mechanics of
prehistoric vaulted structures in
Europe [11,12,13,20], and interpreta-
tion of multivariate chemical composi-
tional data from archaeological artifacts
(such as ceramics or glass) collected in
an attempt to identify the geological
source or site of manufacture [1,8].

Many of these applications are very new
and have arisen from recent developments
in statistics rather than from any specific
changes in archaeological practice. Let us
consider the interpretation of radiocarbon
dates (for detailed information on radiocar-
bon dating in archaeology see Bowman [2])
and in so doing return to the report of
the Danebury excavations [14]. The first dis-
cussion of radiocarbon dating at Daneb-
ury (Orton [25]) suggested a mechanism
whereby radiocarbon data and archaeologi-
cal information could be combined within an
explicit mathematical framework. The work
was completed, however, before the radio-
carbon community had adopted a suitable
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calibration∗ curve from the many that had
been published and before suitable statisti-
cal procedures had been developed to allow
anything more than point estimates (rather
than full distributional information) to be
computed. But between 1983 and 1990 dra-
matic changes took place which we briefly
document here.

First, we develop some notation. Suppose
that we wish to obtain an estimate for the
date of death (θ ) of an organic sample found
during excavation of the hill-fort at Daneb-
ury. This sample is sent for analysis at a
radiocarbon dating laboratory, which returns
an estimate of the radiocarbon age and an
associated estimate of the laboratory error,
represented by y± σ . Now the amount of
radioactive carbon in the atmosphere has
not been constant over time—indeed, it has
varied considerably—and as a result a cal-
ibration curve is required to map radiocar-
bon age onto the calendar time scale. The
first internationally agreed version of such
a curve was published in 1986 [26,29]. It
takes the form of bidecadal data that pro-
vide a nonmonotonic piecewise-linear cali-
bration curve, which we represent by µ(θ ).
By convention y is then modeled as normally
distributed with mean µ(θ ) and standard
deviation σ . This means that for any single
radiocarbon determination y± σ the (poste-
rior) probability distribution of the calendar
date θ can fairly readily be computed. Sev-
eral specialist computer programs exist to do
this (for example, CALIB [30,31]). However,
because the calibration curve is nonmono-
tonic and because, in practice, the laboratory
errors are often quite large, one radiocarbon
determination often does not provide us with
much information about the calendar date
of interest. Indeed, posterior distributions∗

commonly have a range of several hundred
years.

In an attempt to improve on this, archae-
ologists soon realized that groups of related
determinations would be much more likely
to provide precise information than would
single ones. This was the approach adopted
at Danebury. Cunliffe [14, Table 40, p. 132]
reports a total of 60 determinations, all col-
lected with the aim of refining the chronology
at Danebury. At the outset Cunliffe realized
that sophisticated statistical investigation

would be required to make the most of the
data available, and his collaboration with
Orton began. Between them Orton and Cun-
liffe developed a model that reflected Cun-
liffe’s beliefs about the relative chronological
information at the site.

Naylor and Smith [24] took the story one
step further by determining not only that
there was a model to be built and that
the calibration curve must be allowed for in
the interpretation process, but also that the
relative chronological information (provided
by archaeological stratigraphy) represented
prior information, and that the whole prob-
lem could be represented using extremely
elegant mathematical models.

On the basis of pottery evidence, Cunliffe
divided the chronology of the site into four
distinct phases. Initially (but see below) he
saw these phases as following one another in
a strict sequence. A major reason for taking
so many radiocarbon samples at Danebury
was to learn about the calendar dates of the
phase boundaries of the four abutting phases.
Consequently, the archaeologists carefully
ascribed each of the organic samples to one
(and only one) of the four ceramic phases.

In order to explain the statistical
approach, we label the calendar dates associ-
ated with the 60 samples θ = {θ1, θ2, . . . , θ60}.
We then label the calendar dates of the phase
boundaries so that the calendar date of the
start of ceramic phase 1 is event 1 and the
calendar date of the end of the same phase
as event 2. In the same manner the calendar
date of the start of phase 2 is event 3 and
the calendar date of the end of the phase is
event 4. Thus, in order to bound four ceramic
phases, we need to define eight events.
We then represent these events using the
notation � = { 1, 2, . . . , 8}. Since the four
phases are modeled as abutting, however,
we have  2 =  3, 4 =  5, and  6 =  7, and
[since calibrated radiocarbon determinations
are conventionally reported ‘‘before present’’
(BP), where ‘‘present’’ is 1950]

 1 >  3 >  5 >  7 >  8. (1)

Since the beginning of each phase is always
before its end, it can also be stated that

 2j−1 >  2j (j = 1, 2, 3, 4). (2)
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It was  1, 3, 5, 7, and  8 for which
Naylor and Smith [24] provided estimates,
using computer software based on quadra-
ture methods. Their methodology was coher-
ent, concise, and elegant, but unfortunately
they did not work directly with archaeol-
ogists. As a result they made one or two
fundamental archaeological errors.

With the benefit of hindsight, it may
be better that things happened this way,
since dramatic changes were taking place
in applied statistics that altered the whole
approach to calculating Bayesian posterior
estimates and revolutionized the way archae-
ologists think about radiocarbon calibration.
The advances in the modeling of archaeo-
logical phenomena had taken place against
the development of Markov chain Monte
Carlo∗ methods for computing Bayesian pos-
teriors. Realistic models could be used for
both likelihoods and priors, since posteri-
ors would simply be simulated from their
conditionals. All that is required is large
amounts of computer power. Since applied
statisticians usually have access to power-
ful computer workstations, fruitful collabo-
rations were undertaken; Buck et al. [9] is
one example.

To understand the approach, note first
that, if D is taken to represent the set of all
dates for the phase boundaries that satisfy
the two sets of inequalities in (1) and (2), the
joint prior density for � is

Pr(�) =
{

c, � ∈ D,
0, otherwise,

where c is a constant. We also need to model
the distribution of the θ ’s within each phase.
In the absence of firm archaeological infor-
mation on deposition rates of the relevant
organic samples, it was assumed that if the
ith radiocarbon sample is associated with
phase j, then its calendar date θij (where
j = 1, 2, 3, 4) is uniformly distributed over the
interval  2j−1, 2j, i.e., a uniform deposition
rate is assumed:

Pr(θij| 2j−1, 2j)

=
{

( 2j−1 − 2j)−1,  2j−1 > θij >  2j,
0, otherwise.

Then assuming that, conditional on the  k’s
(k = 1, 2, . . . , 8), the θij’s are independent, we
have

Pr(θ |�) =
4∏

j=1

nj∏
i=1

Pr(θij| 2j−1, 2j),

where nj is the number of samples in phase
j. If xij represents the radiocarbon deter-
mination with standard deviation σij which
corresponds to the sample with calendar date
θij, then xij is a realization of a random vari-
able Xij with mean µ(θij) and variance σ 2

ij .
Since the calibration curve is piecewise lin-
ear,

µ(θ )=


a1+b1θ (θ� t0),
al+blθ (tl−1<θ� tl, l=1, 2, . . . , L),
aL+bLθ (θ > tL),

where the tl are the knots of the calibration
curve, L+ 1 is the number of knots, and al
and bl are known constants.

Using Stuiver and Pearson’s [29,26] cali-
bration curves and the relative chronological
information described above, Buck et al. [9]
calibrated the 60 radiocarbon determinations
to obtain posterior probability distributions
for  1, 3, 5, 7 and  8 via Markov chain
Monte Carlo simulation. They took the joint
posterior density to be

Pr(θ , �|x, σ 2) ∼ Pr(x|θ , �, σ 2) Pr(θ |�) Pr(�),

where

Pr(x|�, θ , σ 2) =
4∏

j=1

nj∏
i=1

Pr(xij|θij, σ 2
ij ),

and the likelihood is given by

Pr(xij|θij, σ 2
ij )

= (2πσ 2
ij )
−1/2 exp

(
− [xij − µ(θij)]2

2σ 2
ij

)
;

the priors, Pr(θ |�) and Pr(�), are given above.
Originally developed to solve a particular
problem, this methodology is fairly general
and was published in an archaeological jour-
nal. As a result, after about ten years of devel-
opmental work and collaboration between
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more than half a dozen individuals, a model-
based, fully coherent approach was avail-
able in a forum accessible to archaeological
researchers.

This was not the end of the story.
Between 1992 and 1995 Cunliffe undertook
a reassessment of the data from Danebury
and decided that his initial interpretation of
the ceramic phases was not entirely appro-
priate; a more appropriate assessment was
that phases 1, 2 and 3 abut one another,
but that phase 4 may overlap phase 3. In
addition, phase 4 definitely began after the
end of phase 2. This required a restatement
of relationships between boundary parame-
ters. The new information is that  1 >  2 =
 3 >  4 =  5 >  6 and  5 �  7 >  8. Hav-
ing developed a general approach to the work
reported in Buck et al. [9], it was possible to
alter the model restrictions and recompute
the posterior probability distributions for the
six parameters now of interest [7].

A large number of researchers (archaeolo-
gists and statisticians) have been involved
in aiding the interpretation of the radio-
carbon determinations from Danebury. As
a result there is now a well-developed and
widely tested model-based framework in
which radiocarbon calibration and interpre-
tation can take place. In general, in order to
obtain access to powerful computers, archae-
ologists currently need to collaborate with
statisticians; some see this as a great draw-
back. In the foreseeable future this is likely
to change, but for the moment there are some
benefits: applied model-based statistics is not
treated as a black box technology, and the
applied statistician working on the project
ensures that each application is approached
afresh, the models are tailor-made for the
problem under study, and no presumptions
are made that might color judgment about
the available prior information.

In summary, statistics is an essential tool
for the investigation and interpretation of
a wide range of archaeological data types.
Descriptive statistics are widely used to allow
archaeologists to summarize and display
large amounts of otherwise uninterpretable
data. Model-based statistics are increasingly
widely used, but continue to be most com-
monly adopted by teams of archaeologists
and statisticians working in collaboration.

Most model-based statistical interpretations
are still seen to be at the cutting edge of
archaeological research.
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CAITLIN E. BUCK

ARC-SINE DISTRIBUTION

The arc-sine distribution is a name attributed
to a discrete and several continuous proba-
bility distributions. The discrete and one of
the continuous distributions are principally
noted for their applications to fluctuations
in random walks∗. In particular, the dis-
crete distribution describes the percentage of
time spent ‘‘ahead of the game’’ in a fair coin
tossing contest, while one of the continuous
distributions has applications in the study of
waiting times∗. The distribution most appro-
priately termed ‘‘arc-sine’’ describes the loca-
tion, velocity, and related attributes at ran-
dom time of a particle in simple harmonic
motion. Here ‘‘random time’’ means that the
time of observation is independent of the ini-
tial phase angle, 0 � θ0 < 2π .
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The arc-sine distribution with parameter
b > 0 has support [−b, b] and PDF π−1(b2 −
x2)−1/2 for −b < x < b. The position at ran-
dom time of a particle engaged in simple
harmonic motion with amplitude b > 0 has
the arc-sine (b) distribution.

If X is an arc-sine (1) random variable
(RV) and b �= 0, then the RV Y = bX has arc-
sine (|b|) distribution. Salient features of this
distribution are:

moments:

EX2k = 2−2k

(
2k
k

)
EX2k+1 = 0

(k = 0, 1, 2, . . .)

CDF: (sin−1 x+ π/2)/π (−1 < x < 1)
characteristic function: EeitX = J0(t),

where J0(t) is the Bessel function∗ of the first
kind, of order 0,

∑∞
k=0(−1)k(t/2)2k/(k!)2.

Let ∼ denote ‘‘is distributed as.’’ In ref.
6, Norton showed that if X1 and X2 are inde-
pendent arc-sine(b) RVs, then b(X1 + X2)/2 ∼
X1X2, and in ref. 7 made the following con-
jecture. Let X1 and X2 be independent iden-
tically distributed RV’s having all moments,
and let F denote the common CDF. Then the
only nondiscrete F for which b(X1 + X2)/2 ∼
X1X2 is the arc-sine(b) distribution. This con-
jecture was proved by Shantaram [8].

Arnold and Groeneveld [1] proved sev-
eral results. Let X be a symmetric RV. Then
X2 ∼ (1+ X)/2 if and only if X ∼ arc-sine(1).
If X is symmetric and X2 ∼ 1− X2, then
X ∼ 2X

√
1− X2 if and only if X ∼ arc-sine(1).

If X1 and X2 are symmetric independent
identically distributed RVs with X2

i ∼ 1−
X2

i , then X2
1 − X2

2 ∼ X1X2 if and only if Xi ∼
arc-sine(1).

Feller [3] discusses distributions that have

acquired the arc-sine name. Set u2k =
(

2k
k

)
2−2k, k = 0, 1, 2, . . . (u0 = 1). Let Xk equal ±1
according to the kth outcome in a fair coin
tossing game, and let Sn =

∑n
k=1 Xk denote

the net winnings of a player through epoch
n(S0 = 0). From epochs 0 through 2n, let
Z2n denote that epoch at which the last
visit to the origin occurs. Then Z2n necessar-
ily assumes only even values and Pr[Z2n =
2k] = u2ku2n−2k =

(
2k
k

)(
2n− 2k
n− k

)
2−2n, k =

0, 1, . . . , n. The probability distribution of the
RV Z2n is called the discrete arc-sine distribu-
tion of order n. Set Pr[Z2n = 2k] = p2k,2n. The
probability that in the time interval from
0 to 2n the Sj’s are positive (the player is
ahead) during exactly 2k epochs is p2k,2n.
This result is readily rephrased in terms of
x = k/n, the proportion of the time the player
is ahead. If 0 < x < 1, the probability that at
most x(100)% of the Sj’s are positive tends to
2π−1 sin−1√x as n→∞. The corresponding
PDF is π−1[x(1− x)]−1/2, 0 < x < 1, which has
acquired the name ‘‘arc-sine density.’’ Consid-
eration of p2k,2n or the PDF shows that in a
fair coin tossing game, being ahead one-half
the time is the least likely possibility, and
being ahead 0% or 100% of the time are the
most likely possibilities. The probability that
the first visit to the terminal value S2n occurs
at epoch 2k (or 2n− 2k) is p2k,2n. In a game
of 2n tosses the probability that a player’s
maximum net gain occurs for the first time at
epoch k, where k = 2r or k = 2r+ 1, is 1

2 p2r,2n

for 0 < k < 2n, u2n for k = 0, and 1
2 u2n for

k = 2n.
Feller also notes related results in other

settings. Let X1, X2, . . . be independent sym-
metric RVs with common continuous CDF F.
Let Kn denote the epoch (index) at which the
maximum of S0, S1, . . . , Sn is first attained.
Then Pr[Kn = k] = p2k,2n and, for fixed 0 <
α < 1, as n→∞Pr[Kn < nα]→ 2π−1 sin−1
√
α. The number of strictly positive terms

among S1, . . . , Sn has the same distribution
as Kn.

Standard beta∗ densities with support [0,
1] and having form fα(x) = [B(1− α,α)]−1x−α

(1− x)α−1, 0 < α < 1, are called generalized
arc-sine densities. When α = 1

2 , fα is the
‘‘arc-sine density’’ π−1[x(1− x)]−1/2, 0 < x <
1, mentioned earlier. Such PDFs play a role in
the study of waiting times∗. For example, let
X1, X2, . . . be positive independent RVs with
common CDF F and Sn =

∑n
k=1 Xk. Let Nt

denote the random index for which SNt � t <
SNt+1. Define Yt = t− SNt . A result of Dynkin
[2] is that if 0 < α < 1 and 1− F(x) = x−αL(x),
where L(tx)/L(t)→ 1 as t→∞, then the vari-
able Yt/t has limiting distribution with PDF
fα . Horowitz [4] extended Dynkin’s result to
semilinear Markov processes∗. Imhof [5] con-
siders the case in which t denotes time and
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{X(t) : 0 � t � T} is a stochastic process∗ sat-
isfying certain conditions. If V denotes the
elapsed time until the process reaches a max-
imum, then

Pr[V < αT] = 2π−1 sin−1√
α.
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(Gives a characterization.)

7. Norton, R. M. (1978). Sankhyā, A, 40, 192–198.
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ARC-SINE TRANSFORMATION. See
VARIANCE STABILIZATION

AREA SAMPLING

An area sample is a sample with primary
sampling units∗ that are well-defined frac-
tions of the earth’s surface. The sampling
frame∗ can be visualized as a map that has
been subdivided into N nonoverlapping sub-
areas that exhaust the total area of interest.
The N distinct subareas are the primary
sampling units. See SURVEY SAMPLING for a
discussion of the meanings of primary sam-
pling unit and sampling frame. The sampling

units in area sampling are often called seg-
ments or area segments. The list of all area
segments is the area frame.

Area samples are used to study charac-
teristics of the land, such as the number of
acres in specific crops, the number of acres
under urban development, the number of
acres covered with forest, or the fraction of
cultivated acres subject to severe water ero-
sion. Area sampling is an integral part of the
U.S. Department of Agriculture’s method of
estimating acreages and yields of farm crops.
See AGRICULTURE, STATISTICS IN.

An example of a recent large-scale area
sample is the study of the potential for
increasing the cropland of the United States
conducted by the U.S. Soil Conservation Ser-
vice. See Dideriksen et al. [1] and Goebel [2].
Area sampling is used heavily in forestry∗.
See Husch et al. [6] and Labau [13].

Area samples are also used when the
observation units are persons or institutions
for which a list is not available. For example,
area frames are used in studies of the general
population in the United States and in other
countries where current lists of residents
are not maintained. The Current Population
Survey of the U.S. Bureau of the Census∗,
from which statistics on unemployment are
obtained, is an area sample of the population
of the United States.

Area sampling developed apace with prob-
ability sampling∗. Mahalanobis∗ [14] in a
discussion of area sampling described the
contribution of Hubbock [5], who was respon-
sible for a 1923 study that specified methods
of locating a random sample∗ of areas used
in estimating the yield of rice. King [12] cites
a number of European studies of the 1920s
and 1930s that used a type of area sampling.

In 1943, a large project was undertaken
by the Statistical Laboratory of Iowa State
College in cooperation with the Bureau of
Agricultural Economics, U.S. Department of
Agriculture, to design a national area sam-
ple of farms in the United States. The name
Master Sample was applied to the project.
The Bureau of the Census∗ also cooperated
in the project and developed an area sam-
ple of cities, which, together with the Master
Sample of rural areas, was used as a sam-
ple of the entire population. The materials
developed in the Iowa State project, updated
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for changes in culture, are still used in the
creation of area samples of the rural part of
the United States. Stephan [18] provides an
excellent review of sampling history.

The basic idea of area sampling is rela-
tively simple, but the efficient implementa-
tion of the method requires some sophistica-
tion. It must be possible for the field worker
(enumerator) to identify the boundaries of
each area segment. Thus roads, streets,
streams, fences, and other ‘‘natural bound-
aries’’ are used to define the segments, when-
ever possible. Aerial photographs, county
highway maps, and street maps are materials
commonly used in area sampling. Aerial pho-
tographs are particularly useful for studies
outside heavily urbanized areas. see CENSUS.

A precise set of rules associating the ele-
ments of the population with the area seg-
ments must be developed when the popu-
lation of interest is not a characteristic of
the land itself. For a study of households,
the households whose residence is on a given
area segment are associated with that seg-
ment. Even for this relatively simple rule,
problems arise. One problem is the definition
of a household. There is also the problem of
defining the primary residence in the case
of multiple residences. For samples of farms
or other businesses, it is common practice
to associate the business with the segment
on which the ‘‘headquarters’’ is located. See,
for example, Jabine [7] for a set of rules of
association.

In studies of the characteristics of the
land itself, the definition of boundaries of
the area segments is very important. A phe-
nomenon called ‘‘edge bias’’ has been iden-
tified in empirical studies of crop yields. It
has been observed that field workers tend to
include plants near the boundary of a plot.
Therefore, yields based on small areas are
often biased upward. See Sukhatme [19] and
Masuyama [16].

Any subdivision of the study area into
segments will, theoretically, provide an unbi-
ased estimator∗ of the population total. But
the variances of the estimator obtained for
two different partitions of the study area
may be very different. Therefore, the design
of efficient area samples requires that the
area segments be as nearly equal in ‘‘size’’

as is possible. In this context, size is a mea-
sure assigned to the area segments that is
correlated with the characteristic of interest.
An example of a measure of size is the num-
ber of households reported in the most recent
census. The measure of size used in the Mas-
ter Sample of Agriculture was the number of
dwelling units indicated on county highway
maps. This number was correlated with the
number of farm headquarters.

In area samples used to study populations
over time the size of the area segment will
change. Gray and Platek [3] discuss methods
of modifying the design in such situations.

Part of the cost of designing area sam-
ples is the cost of obtaining information on
the estimated size of the area units from
recent photos, maps, censuses, city directo-
ries, field visits, etc. In designing an area
sample, the practitioner must balance the
cost of obtaining additional information, the
smaller variance of estimates obtained from
units of nearly equal estimated size, and the
practical requirement for boundaries that can
be identified by the field worker.
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WAYNE A. FULLER

ARES PLOTS

A procedure suggested by Cook and Weis-
berg [1] and originally called ‘‘an animated
plot for adding regression variables smoothly’’
was designed to show the impact of adding a
set of predictors to a linear model by provid-
ing an ‘‘animated’’ plot. The term ARES is an
acronym for ‘‘adding regressors smoothly’’ [1].
The basic idea is to display a smooth transi-
tion between the fit of a smaller model and
that of a larger one. In the case of the general
linear model∗ we could start with the fit of
the subset model

Y = X1β1 + ε (1)

and then smoothly add X2 according to some
control parameter λ ∈ [0, 1] with λ = 0 corre-
sponding to (1) and λ = 1 corresponding to

the full model:

Y = X1β1 + X2β2 + ε. (2)

The procedure consists in plotting

{Ŷ(λ), e(λ)},

where Ŷ(λ) are the fitted values and e(λ) are
the corresponding residuals obtained when
the control parameter is equal to λ. A sim-
ilar device of plotting {e(λ),λ} and {Ŷ(λ),λ)}
was suggested by Pregibon [4], who call it a
traceplot or λ-trace.

Cook and Weisberg [2] extend ARES for
generalized linear models∗ (see, e.g., McCul-
lagh and Nelder [3]) and provide details on
the available software in the LISP-STAT
code.
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ARFWEDSON DISTRIBUTION

This is the distribution of the number (M0,
say) of zero values among k random variables
N1, N2, . . . , Nk having a joint equiprobable
multinomial distribution∗. If the sum of the
N’s is n, then

Pr[M0 = m] =
(

k
m

) m∑
i=0

(−1)i
(

m
i

)(
m− i

k

)n

= k−n
(

k
m

)
�m0n

(m = 0, 1, . . . , k− 1).
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It is a special occupancy distribution∗, being
the number of cells remaining empty after n
balls have been distributed randomly among
k equiprobable cells.
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121–132.
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See also DIFFERENCE OF ZERO; MULTINOMIAL

DISTRIBUTIONS; and OCCUPANCY PROBLEMS.

ARIMA MODELS. See AUTOREGRESSIVE–
MOVING AVERAGE (ARMA) MODELS;
BOX–JENKINS MODEL

ARITHMETIC MEAN

The arithmetic mean of n quantities X1, X2,
. . . , Xn is the sum of the quantities divided
by their number n. It is commonly denoted
by X, or when it is desirable to make the
dependence upon the sample size explicit, by
Xn. Symbolically,

X = (1/n)
n∑

i=1

Xi.

An alternative form of the definition, use-
ful for iterative calculations, is

Xn+1 = Xn + (Xn+1 − Xn)/(n+ 1);
X0 = 0.

Historically, the arithmetic mean is one of
the oldest algorithmic methods for combining
discordant measurements in order to pro-
duce a single value, although even so, few
well-documented uses date back to before the
seventeenth century [3,6,8]. Today it is the
most widely used and best understood data
summary in all of statistics. It is included as

a standard function on all but the simplest
hand-held calculators, and it enjoys the dual
distinction of being the optimal method of
combining measurements from several points
of view, and being the least robust∗ such
method according to others. Our discussion
begins with the consideration of its distribu-
tional properties.

DISTRIBUTION

Suppose that the Xi are independent, identi-
cally distributed (i.i.d.) with CDF FX (x), mean
µ, and variance σ 2. The distribution of X may
be quite complicated, depending upon FX , but
it will always be true that

E[X] = µ, (1)

var(X) = σ 2/n, (2)

whenever these moments exist. For some dis-
tributions FX , X possesses a distribution of
simple form. If FX is N(µ, σ 2), then X has
a normal N(µ,σ 2/n) distribution∗. If FX is
a Bernoulli (p) distribution∗, then nX has a
binomial bin(n, p) distribution∗. If FX is a
Poisson (λ) distribution∗, nX has a Poisson
(nλ) distribution. If FX is a Cauchy distribu-
tion∗, then X has the same Cauchy distri-
bution. If FX is a gamma distribution∗ or
a chi-squared distribution∗, then X has a
gamma distribution∗. The exact density of
X when FX is a uniform distribution∗ was
derived as long ago as 1757 by T. Simpson
[6,8]; it is a complicated case of a B-spline∗.
For further information about the distribu-
tion of X for different parametric families FX ,
see the entries under those distributions.

Since X is a sum of independent random
variables, many aspects of its distribution
are amenable to study by using generating
functions∗. In particular, the characteristic
function∗ of X can be given in terms of the
characteristic function φ(t) of FX as φX (t) =
[φ(n−1t)]n.

Much is known about the asymptotic
behavior of Xn for large n. See LAWS OF

LARGE NUMBERS; LIMIT THEOREM, CENTRAL.
For example, the Kolmogorov strong law
of large numbers∗ states that Xn

a.s.→ µ as
n→∞ if and only if E|Xi| <∞ and EXi = µ.
The classical central limit theorem states
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that if σ 2 <∞, n1/2(Xn − µ) is asymptoti-
cally distributed as N(0,σ 2). The degree of
approximation that can be expected from
this asymptotic result has received consid-
erable study, although even the strongest
available results are usually too pessimistic
to be practically useful. See e.g., ASYMPTOTIC

NORMALITY.
Various refinements to the nor-

mal approximation are also available.
See CORNISH–FISHER AND EDGEWORTH

EXPANSIONS.
If the measurements Xi are not indepen-

dent, then of course the distribution of X
may be more complicated. If the Xi form
a stationary∗ sequence with E[Xi] = µ and
var(Xi) = σ 2, then E[X] = µ, but var(X) may
be either larger or smaller than in the inde-
pendent case. For example, if the Xi follow a
first-order moving average process [with Xi =
µ+ ai + θai−1, where the ai are i.i.d. with
E[ai] = 0, var(ai) = σ 2

a , and σ 2 = (1+ θ2)σ 2
a ],

then ρ = corr(Xi, Xi+1) = θ/(1+ θ2) varies
from −0.5 to 0.5, and

var(X) = (σ 2/n)[1+ 2(1− (1/n))ρ], (3)

which varies from σ 2/n2 to 2σ 2/n− σ 2/n2.
See TIME SERIES. If the measurements Xi are
determined by sampling at random∗ from a
finite population∗ of size N without replace-
ment, then

var(X) = σ
2

n

(
N − n
N − 1

)
, (4)

where σ 2 is the population variance. See
FINITE POPULATIONS, SAMPLING FROM.

STATISTICAL PROPERTIES

The arithmetic mean X is usually considered
as an estimator of a population mean µ: if
the Xi are i.i.d. with CDF FX (x) and finite
mean µ, then X is an unbiased estimator∗
of µ regardless of FX (in this sense it is
a nonparametric estimator of µ). The same
is true if the Xi are sampled at random
without replacement from a finite population
with mean µ. Chebyshev’s inequality∗ tells
us Pr[|X − µ| >∈] � var(X)/ ∈2, so X will in
addition be a consistent estimator∗ of µ as
long as var(X)→ 0 as n→∞, which will

hold, for example, if σ 2 <∞ in (2), (3), and
(4). Laws of large numbers∗ provide several
stronger consistency results. For the case of
i.i.d. Xi with finite variances, (2) can be inter-
preted as stating that the precision of X as
an estimator of µ increases as the square
root of the sample size. In the i.i.d. case, the
nonparametric unbiased estimator of var(X)
is s2/n, where s2 is the sample variance∗
(n− 1)−1 ∑(Xi − X)2.

The arithmetic mean enjoys several opti-
mality properties beyond unbiasedness and
consistency. It is a special case of a least-
squares estimator∗;

∑
(Xi − c)2 is minimized

by c = X. As such, X has all the proper-
ties of least-squares estimators: The Gauss–
Markov theorem∗ ensures that δ = X mini-
mizes E(δ − µ)2 within the class of all lin-
ear unbiased estimators; when FX is nor-
mal N(µ,σ 2), X is the maximum-likelihood
estimator of µ; and from a Bayesian∗ per-
spective, X is at the maximum of the pos-
terior distribution∗ of µ for a uniform prior
distribution∗. (In fact, C. F. Gauss∗ proved
in 1809 that this later property of X char-
acterized the normal within the class of all
location parameter families.)

The optimality of X as an estimator of
a parameter of course depends upon the
parametric family in question, but in the
i.i.d. case there are several examples of FX
[including N(µ, σ 2

0 ), σ 2
0 known; Poisson (µ);

Bernoulli (µ); the one-parameter exponential
(µ)∗], where X is the maximum-likelihood
estimator and a minimal sufficient∗ statistic.
For a simple example of how the optimality
of X depends upon the distribution and the
criterion, however, see ref. 10.

Much attention to the arithmetic mean
in recent years has focused upon its lack of
robustness∗, in particular, its sensitivity to
aberrant measurements such as are likely
to occur when sampling from heavy-tailed
distributions. The most commonly noted
example of this was noted as early as 1824 by
Poisson: if FX is a Cauchy distribution∗, then
X has the same Cauchy distribution (and
thus no mean or variance no matter how large
n is). Estimators such as the sample median∗
perform much more efficiently in this case.
Indeed, even a small amount of heavy-tailed
contamination∗ can in principle drastically
effect the efficiency of X as an estimator of µ.
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Opinion is divided on the question of whether
such contamination occurs in practice with a
severity or frequency to dictate drastic rem-
edy; see refs. 1, 5, and 8 for an airing of these
and related issues. Meanwhile, a vast array
of estimators have been devised that are less
sensitive than X to extreme measurements;
the simplest of these (the Winsorized mean∗
and the trimmed mean∗) are, in fact, equiva-
lent to the calculation of the arithmetic mean
of a modified sample.

The arithmetic mean is frequently used as
a test statistic for testing hypotheses about
the mean µ, often in the form of Student’s t
statistic∗, t = √n(X − µ0)/s, and as the basis
of confidence intervals∗ for µ.

RELATIONSHIP TO OTHER MEANS

Two classical means, the geometric∗ and
the harmonic∗, are related simply to the
arithmetic mean. If Yi = ln Xi and Zi = X−1

i ,
the geometric mean of the Xi is given by
(
∏

Xi)1/n = exp(Y) and the harmonic mean is
(Z)−1. Hardy et al. [5] discuss inequality rela-
tionships between these and more general
mean functions, the simplest being that if all
Xi are positive, then (Z)−1 � exp(Y) � X. See
GEOMETRIC MEAN; HARMONIC MEAN. Many
other means have been related to the arith-
metic mean in less mathematically precise
ways. The best known such relationship is
that between the arithmetic mean X, the
median m, and the mode∗ M for empir-
ical distributions that are unimodal and
skewed to the right; it is frequently true
that M � m � X. Furthermore, a rough rule
of thumb that goes back at least to 1917
(see refs. 2, 4, 7 and 12) observes that these
means often satisfy, approximately, the rela-
tionship (X −M) = 3(X −m). The arithmetic
mean may also be viewed as the expected
valued or mean of the empirical distribution∗
which places mass 1/n at each Xi, a fact that
points to several other characterizations of
X: it is the center of gravity of the Xi; it
is value such that the sum of the residuals
about that value is zero [

∑
(Xi − X) = 0]; it

is a functional of the empirical∗ cumulative
distribution function Fn,

X =
∫

xdFn(x).

For other definitions for which the arith-
metic mean is a special case, see INDEX

NUMBERS; ORDER STATISTICS; and ROBUST

ESTIMATION.
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ARITHMETIC PROGRESSION

This is a sequence of numbers with con-
stant difference between successive numbers.
The mth member of the sequence am can be
expressed as

am = a1 + (m− 1)d,

where d is the constant difference.

See also GEOMETRIC DISTRIBUTION.

ARITHMETIC TRIANGLE. See
COMBINATORICS

ARMA MODELS. See
AUTOREGRESSIVE–MOVING AVERAGE (ARMA)
MODELS

ARRAY

This term is applied to the distribution of
sample values of a variable Y, for a fixed value
of another variable X. It refers especially
to the frequency distribution (see GRAPHICAL

REPRESENTATION OF DATA) formed by such
values when set out in the form of a contin-
gency table∗. Such an array is formed only
when the data are discrete or grouped.

See also ORTHOGONAL ARRAYS AND APPLICATIONS.

ARRAY MEAN

An array mean is the arithmetic mean∗ of
the values of a variable Y in a group defined
by limits on the values of variables X1, . . . , Xk
(an array∗). It is an estimate of the regression
function∗ of Y on X1, . . . , Xk.

See also ARRAY; LOG-LINEAR MODELS IN CONTINGENCY

TABLES; and REGRESSION, POLYCHOTOMOUS.

ARS CONJECTANDI. See BERNOULLIS,
THE

ARTIFICIAL INTELLIGENCE. See
STATISTICS AND ARTIFICIAL INTELLIGENCE

ASCERTAINMENT SAMPLING

Ascertainment sampling is used frequently
by scientists interested in establishing the
genetic basis of some disease. Because most
genetically based diseases are rare, simple
random sampling∗ will usually not provide
sample sizes of affected individuals suf-
ficiently large for a productive statistical
analysis. Under ascertainment sampling, the
entire family (or some other well-defined set
of relatives) of a proband (i.e., an individ-
ual reporting with the disease) is sampled:
we say that the family has been ascertained
through a proband. If the disease does have
a genetic basis, other family members have
a much higher probability of being affected
than individuals taken at random, so that by
using data from such families we may obtain
samples of a size sufficient to draw useful
inferences. Additional benefits of sampling
from families are that it yields linkage∗ infor-
mation not available from unrelated individ-
uals and that an allocation of genetic and
environmental effects can be attempted.

The fact that only families with at least
one affected individual can enter the sample
implies that a conditional probability must be
used in the data analysis, a fact recognized
as early as 1912 by Weinberg [5]. However,
the conditioning event is not that there is at
least one affected individual in the family, but
that the family is ascertained. These two are
usually quite different, essentially because of
the nature of the ascertainment process.

If the data in any family are denoted by
D and the event that the family is ascer-
tained by A, the ascertainment sampling
likelihood∗ contribution from this family is
the conditional likelihood P(DA)/P(A), where
both numerator and denominator probabili-
ties depend on the number of children in the
family. The major problem in practice with
ascertainment sampling is that the precise
nature of the sampling procedure must be
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known in order to calculate both numerator
and denominator probabilities. In practice
this procedure is often not well known, and
this leads to potential biases in the estima-
tion of genetic parameters, since while the
numerator in the above probability can be
written as the product P(D)P(A|D) of genetic
and ascertainment parameters, the denomi-
nator cannot, thus confounding estimation of
the genetic parameters with the properties of
the ascertainment process.

This is illustrated by considering two com-
monly discussed ascertainment sampling pro-
cedures. The first is that of complete ascer-
tainment, arising for example from the use of
a registry of families, and sampling only from
those families in the registry with at least one
affected child. Here the probability of ascer-
tainment is independent of the number of
affected children. The second procedure is
that of single ascertainment; here the proba-
bility that a family is sampled is proportional
to the number of affected children. There
are many practical situations where this sec-
ond form of sampling arises—for example, if
we ascertain families by sampling all eighth-
grade students in a certain city, a family with
three affected children is essentially three
times as likely to be ascertained as a family
with only one affected child.

These two procedures require different
ascertainment corrections. For example, if
the children in a family are independently
affected with a certain disease, each child
having probability p of being affected, the
probability of ascertainment of a family with
s children under complete ascertainment is
1− (1− p)s and is proportional to p under
single ascertainment. The difference between
the two likelihoods caused by these different
denominators can lead to significant bias in
estimation of p if one form of ascertainment
is assumed when the other is appropriate.

In practice the description of the ascer-
tainment process is usually far more difficult
than this, since the actual form of sampling
used is seldom clear-cut (and may well be
neither complete nor single ascertainment).
For example, age effects are often important
(an older child is more likely to exhibit a
disease than a younger child, and thus more
likely to lead to ascertainment of the fam-
ily), different population groups may have

different social customs with respect to dis-
ease reporting, the relative role of parents
and children in disease reporting is often not
clear-cut (and depends on the age of onset of
the disease), and the most frequent method
of obtaining data (from families using a clinic
in which a physician happens to be collecting
disease data) may not be described well by
any obvious sampling procedure.

Fisher [3] attempted to overcome these
problems by introducing a model in which
complete and single ascertainment are spe-
cial cases. In his model it is assumed that
any affected child is a proband with proba-
bility π and that children act independently
with respect to reporting behavior. Here π is
taken as an unknown parameter; the prob-
ability that a family with i affected children
is ascertained is 1− (1− π )i, and the two
respective limits π = 1 and π → 0 correspond
to complete and single ascertainment, respec-
tively. However, the assumptions made in
this model are often unrealistic: children in
the same family will seldom act indepen-
dently in reporting a disease, and the value
of π will vary from family to family and
will usually depend on the birth order of the
child. Further, under the model, estimation
of genetic parameters cannot be separated
from estimation of π , so that any error in the
ascertainment model will imply biases in the
estimation of genetic parameters.

Given these difficulties, estimation of gen-
etic parameters using data from an ascertain-
ment sampling procedure can become a sig-
nificant practical problem. An ascertainment-
assumption-free approach which largely min-
imizes these difficulties is the following. No
specific assumption is made about the prob-
ability α(i) of ascertaining a family having
i affected children. [For complete ascertain-
ment, α(i) is assumed to be independent of i
and, for single ascertainment, to be propor-
tional to i—but we now regard α(i) as an
unknown parameter.] The denominator in
the likelihood∗ contribution from any ascer-
tained family is thus

∑
i piα(i), where pi, the

probability that a family has i affected chil-
dren, is a function only of genetic parameters.
The numerator in the likelihood contribution
is P(D) = α(i). The likelihood is now max-
imized jointly with respect to the genetic
parameters and the α(i).
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When this is done, it is found that estima-
tion of the genetic parameters separates out
from estimation of the α(i), and that the for-
mer can be estimated directly by using as the
likelihood contribution P(D)/P(i) from a fam-
ily having i affected children. Estimation of
ascertainment parameters is not necessary,
and the procedure focuses entirely on genetic
parameters, being unaffected by the nature
of the ascertainment process.

More generally, the data D in any fam-
ily can be written in the form D = {D1, D2},
where it is assumed that only D1 affects the
probability of ascertainment. Then the like-
lihood contribution used for such a family
is P(D1, D2)/P(D1). This procedure [1] gives
asymptotically unbiased parameter estima-
tors no matter what the ascertainment pro-
cess—all that is required is that the data
D1 that is ‘‘relevant to ascertainment’’ can be
correctly defined.

These estimators have higher standard
error∗ than those arising if the true ascer-
tainment procedure were known and used in
the likelihood leading to the estimate, since
when the true ascertainment procedure is
known, this procedure conditions on more
data than necessary, leaving less data avail-
able for estimation. The increase in standard
error can be quantified using information
concepts. In practice, the geneticist must
choose between a procedure giving poten-
tially biased estimators by using an incorrect
ascertainment assumption and the increase
in standard error in using the ascertainment-
assumption-free method.

Conditioning not only on D1 but on fur-
ther parts of the data does not lead to bias
in the estimation procedure, but will lead to
increased standard errors of the estimate by
an amount which can be again quantified by
information concepts. Further conditioning
of this type sometimes arises with contin-
uous data. For such data the parallel with
the dichotomy ‘‘affected/not affected’’ might
be ‘‘blood pressure not exceeding T/blood
pressure exceeding T,’’ for some well-defined
threshold T, so that only individuals having
blood pressure exceeding T can be probands.
To simplify the discussion, suppose that only
the oldest child in any family can be a
proband. Should the likelihood be conditioned
by the probability element f (x) of the observed

blood pressure x of this child, or should it be
conditioned by the probability P(X � T) that
his blood pressure exceeds T? The correct
ascertainment correction is always the prob-
ability that the family is ascertained, so the
latter probability is correct. In using the for-
mer, one conditions not only on the event
that the family is ascertained, but on the
further event that the blood pressure is x.
Thus no bias arises in this case from using
the probability element f (x), but conditioning
on further information (the actual value x)
will increase the standard error of parameter
estimates.

The above example is unrealistically sim-
ple. In more realistic cases conditioning on
the observed value (or values) often intro-
duces a bias, since when any affected child
can be a proband, f (x)/P(X � T) is a den-
sity function only under single ascertain-
ment. Thus both to eliminate bias and to
decrease standard errors, the appropriate
conditioning event is that the family is ascer-
tained.

A further range of problems frequently
arises when large pedigrees, rather than
families, are ascertained. For example if, as
above, sampling is through all eighth-grade
students in a certain city, and if any such stu-
dent in the pedigree (affected or otherwise) is
not observed, usually by being in a part of the
pedigree remote from the proband(s), then
bias in parameter estimation will, in general,
occur. In theory this problem can be over-
come by an exhaustive sampling procedure,
but in practice this is usually impossible. This
matter is discussed in detail in ref. 4. A gen-
eral description of ascertainment sampling
procedures is given in ref. 2.
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W. J. E. WENS

ASIMOV’S GRAND TOUR

This is a representation of multivariate data
by showing a sequence of bivariate projec-
tions of the data.

It is a technique of exploratory projec-
tion pursuit∗, based on the Cramér–Wold*
theorem, which asserts that the distribu-
tion of a p-dimensional random vector X is
determined by the set of all one-dimensional
distributions of the linear combinations α′X;
here αεRp ranges through all ‘‘fixed’’ p-
dimensional vectors. The underlying setting
for construction of the Asimov grand tour
[1] is the Grassmannian manifold G2,p. This
is the space of all unoriented planes in p-
dimensional space. The sequence of projec-
tions should become rapidly and uniformly
dense in G2,p.

Three methods for choosing a path through
G2,p are advocated by Asimov. These are the
torus method, the at-random method, and
the mixture of these two methods called the
at-random walk*. The disadvantage of the
grand tour is that it necessitates reviewing a
large number of planes in order to find any
structure. See also ref. [2].
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ASSESSMENT BIAS

LACK OF BLINDING

One of the most important and most obvious
causes of assessment bias is lack of blinding.
In empirical studies, lack of blinding has been
shown to exaggerate the estimated effect by
14%, on average, measured as odds ratio [10].
These studies have dealt with a variety of
outcomes, some of which are objective and
would not be expected to be influenced by
lack of blinding, for example, total mortality.

When patient reported outcomes are
assessed, lack of blinding can lead to far
greater bias than the empirical average. An
example of a highly subjective outcome is the
duration of an episode of the common cold. A
cold doesn’t stop suddenly and awareness of
the treatment received could therefore bias
the evaluation. In a placebo-controlled trial of
vitamin C, the duration seemed to be shorter
when active drug was given, but many partic-
ipants had guessed they received the vitamin
because of its taste [12]. When the analysis
was restricted to those who could not guess
what they had received, the duration was not
shorter in the active group.

Assessments by physicians are also vul-
nerable to bias. In a trial in multiple sclerosis,
neurologists found an effect of the treatment
when they assessed the effect openly but not
when they assessed the effect blindly in the
same patients [14].

Some outcomes can only be meaning-
fully evaluated by the patients, for example,
pain and well being. Unfortunately, blind-
ing patients effectively can be very difficult,
which is why active placebos are sometimes
used. The idea behind an active placebo is
that patients should experience side effects
of a similar nature as when they receive the
active drug, while it contains so little of a
drug that it can hardly cause any therapeu-
tic effect.

Since lack of blinding can lead to sub-
stantial bias, it is important in blinded trials
to test whether the blinding has been com-
promised. Unfortunately, this is rarely done
(Asbjørn Hróbjartsson, unpublished observa-
tions), and in many cases, double-blinding is
little more than window dressing.

Some outcome assessments are not made
until the analysis stage of the trial (see
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below). Blinding should, therefore, be used
also during data analysis, and it should ide-
ally be preserved until two versions of the
manuscript—written under different assum-
ptions, which of the treatments is experimen-
tal and which is control—have been approved
by all the authors [8].

HARMLESS OR FALSE POSITIVE CASES OF
DISEASE

Assessment bias can occur if increased diag-
nostic activity leads to increased diagnosis
of true but harmless cases of disease. Many
stomach ulcers are silent, that is, they come
and go and give no symptoms. Such cases
could be detected more frequently in patients
who receive a drug that causes unspecific
discomfort in the stomach.

Similarly, if a drug causes diarrhoea, this
could lead to more digital, rectal examina-
tions, and, therefore, also to the detection of
more cases of prostatic cancer, most of which
would be harmless, since many people die
with prostatic cancer but rather few die from
prostatic cancer.

Assessment bias can also be caused by dif-
ferential detection of false positive cases of
disease. There is often considerable observer
variation with common diagnostic tests. For
gastroscopy, for example, a kappa value of
0.54 has been reported for the interobserver
variation in the diagnosis of duodenal ulcers
[5]. This usually means that there are rather
high rates of both false positive and false
negative findings. If treatment with a drug
leads to more gastroscopies because ulcers
are suspected, one would therefore expect to
find more (false) ulcers in patients receiv-
ing that drug. A drug that causes unspecific,
nonulcer discomfort in the stomach could,
therefore, falsely be described as an ulcer-
inducing drug.

The risk of bias can be reduced by limit-
ing the analysis to serious cases that would
almost always become known, for example,
cases of severely bleeding ulcers requiring
hospital admission or leading to death.

DISEASE SPECIFIC MORTALITY

Disease specific mortality is very often used
as the main outcome in trials without any

discussion how reliable it is, even in trials of
severely ill patients where it can be difficult
to ascribe particular causes for the deaths
with acceptable error.

Disease specific mortality can be highly
misleading if a treatment has adverse effects
that increases mortality from other causes.
It is only to be expected that aggressive
treatments can have such effects. Compli-
cations to cancer treatment, for example,
cause mortality that is often ascribed to other
causes although these deaths should have
been added to the cancer deaths. A study
found that deaths from other causes than
cancer were 37% higher than expected and
that most this excess occurred shortly after
diagnosis, suggesting that many of the deaths
were attritutable to treatment [1].

The use of blinded endpoint commit-
tees can reduce the magnitude of misclas-
sification bias, but cannot be expected to
remove it. Radiotherapy for breast cancer,
for example, continues to cause cardiovas-
cular deaths even 20 years after treatment
[2], and it is not possible to distinguish these
deaths from cardiovascular deaths from other
causes. Furthermore, to work in an unbiased
way, death certificates and other important
documents must have been completed and
patients and documents selected for review
without awareness of status, and it should
not be possible to break the masking dur-
ing any of these processes, including review
of causes of death. This seems difficult to
obtain, in particular, since those who prepare
excerpts of the data should be kept blind to
the research hypothesis [3].

Fungal infections in cancer patients with
neutropenia after chemotherapy or bone-
marrow transplantation is another example
of bias in severely ill patients. Not only is
it difficult to establish with certainty that a
patient has a fungal infection and what was
the cause of death; there is also evidence that
some of the drugs (azole antifungal agents)
may increase the incidence of bacteriaemias
[9]. In the largest placebo-controlled trial of
fluconazole, more deaths were reported on
drug than on placebo (55 vs 46 deaths),
but the authors also reported that fewer
deaths were ascribed to acute systemic fun-
gal infections (1 vs 10 patients, P = 0.01)
[6]. However, if this subgroup result is to



ASSESSMENT BIAS 239

be believed, it would mean that fluconazole
increased mortality from other causes (54 vs
36 patients, P = 0.04).

Bias related to classification of deaths can
also occur within the same disease. After
publication of positive results from a trial
in patients with myocardial infarction [16],
researchers at the US Food and Drug Admin-
istration found that the cause-of-death clas-
sification was ‘‘hopelessly unreliable’’ [15].
Cardiac deaths were classified into three
groups: sudden deaths, myocardial infarc-
tion, or other cardiac event. The errors in
assigning cause of death, nearly all, favoured
the conclusion that sulfinpyrazone decreased
sudden death, the major finding of the trial.

COMPOSITE OUTCOMES

Composite outcomes are vulnerable to bias
when they contain a mix of objective and sub-
jective components. A survey of trials with
composite outcomes found that when they
included clinician-driven outcomes, such as
hospitalization and initiation of new antibi-
otics, in addition to objective outcomes such
as death, it was twice as likely that the trial
reported a statistically significant effect [4].

COMPETING RISKS

Composite outcomes can also lead to bias
because of competing risks [13], for example,
if an outcome includes death as well as hos-
pital admission. A patient who dies cannot
later be admitted to hospital. This bias can
also occur in trials with simple outcomes. If
one of the outcomes is length of hospital stay,
a treatment that increases mortality among
the weakest patients who would have had
long hospital stays may spuriously appear to
be beneficial.

TIMING OF OUTCOMES

Timing of outcomes can have profound effects
on the estimated result, and the selection of
time points for reporting of the results is
often not made until the analysis stage of the
trials, when possible treatment codes have
been broken. A trial report of the antiarthritic
drug, celecoxib, gave the impression that it
was better tolerated than its comparators,

but the published data referred to 6 months
of follow-up, and not to 12 and 15 months,
as planned, when there was little difference;
in addition, the definition of the outcome had
changed, compared to what was stated in the
trial protocol [11].

Trials conducted in intensive care units
are vulnerable to this type of bias. For
example, the main outcome in such trials
can be total mortality during the stay in the
unit, but if the surviving patients die later,
during their subsequent stay at the referring
department, little may be gained by a proven
mortality reduction while the patients were
sedated. A more relevant outcome would be
the fraction of patients who leave the hospi-
tal alive.

ASSESSMENT OF HARMS

Bias in assessment of harms is common.
Even when elaborate, pretested forms have
been used for registration of harms during a
trial, and guidelines for their reporting have
been given in the protocol, the conversion
of these data into publishable bits of infor-
mation can be difficult and often involves
subjective judgments.

Particularly vulnerable to assessment bias
is exclusion of reported effects because they
are not felt to be important, or not felt to
be related to the treatment. Trials that have
been published more than once illustrate how
subjective and biased assessment of harms
can be. Both number of adverse effects and
number of patients affected can vary from
report to report, although no additional inclu-
sion of patients or follow-up have occurred,
and these reinterpretations or reclassifica-
tions sometimes change a nonsignificant dif-
ference into a significant difference in favor
of the new treatment [7].
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PETER C. GØTZSCHE

ASSESSMENT OF PROBABILITIES

NORMATIVE AND DESCRIPTIVE VIEWS

Central to this entry is a person, conveniently
referred to as ‘you’, who is contemplating a
set of propositions A, B, C, . . . . You are uncer-
tain about some of them; that is, you do not
know, in your current state of knowledge K ,
whether they are true or false. (An alterna-
tive form of language is often employed, in
which A, B, C, . . . are events and their occur-
rence is in doubt for you. The linkage between
the two forms is provided by propositions
of the form ‘A has occurred’.) You are con-
vinced that the only logical way to treat your
uncertainty, when your knowledge is K , is
to assign to each proposition, or combination
of propositions, a probability Pr[A|K ] that A
is true, given K . This probability measures
the strength of your belief in the truth of
A. The task for you is that of assessing your
probabilities; that is, of providing numerical
values. That task is the subject of this arti-
cle but, before discussing it, some side issues
need to be clarified.

When it is said that you think that uncer-
tainty is properly described by probability,
you do not merely contemplate assigning
numbers lying between 0 and 1, the convex-
ity rule. Rather, you wish to assign numbers
that obey all three rules of the probability
calculus; convexity, addition, and multiplica-
tion (see PROBABILITY, FOUNDATIONS OF—I).
This is often expressed as saying that your
beliefs must cohere (see COHERENCE—I). It is
therefore clear that, in order to perform the
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assessment, you must understand the rules of
probability and their implications. You must
be familiar with the calculus. In a sense,
you have set yourself a standard, of coher-
ence, and wish to adhere to that standard, or
norm. This is often called the normative view
of probability. A surveyor uses the normative
theory of Euclidean geometry.

In contrast to the normative is the descrip-
tive view, which aims to provide a description
of how people in general attempt to deal with
their uncertainties. In other words, it studies
how people assess the truth of propositions
when they do not have the deep acquaintance
with the probability calculus demanded of
the normative approach, nor feel the neces-
sity of using that calculus as the correct,
logical tool. There are several types of people
involved. At one extreme are children mak-
ing the acquaintance of uncertainty for the
first time. At the other extreme are sophisti-
cated people who employ different rules from
those of the probability calculus; for example,
the rules of fuzzy logic. This entry is not
concerned with the descriptive concept. The
seminal work on that subject is Kahneman
et al. [3]. A recent collection of essays is that
of Wright and Ayton [8].

Knowledge gained in descriptive studies
may be of value in the normative view. For
example, the former have exposed a phe-
nomenon called anchoring, where a subject,
having assessed a probability in one state
of knowledge, may remain unduly anchored
to that value when additional knowledge is
acquired, and not change sufficiently. The
coherent subject will update probabilities by
Bayes’ rule of the probability calculus (see
BAYES’ THEOREM). Nevertheless, an appreci-
ation of the dangers of anchoring may help
in the avoidance of pitfalls in the assessment
of the numerical values to use in the rule. In
view of the central role played by Bayes’ rule,
the coherent approach is sometimes called
Bayesian, at least in some contexts.

Texts on the probability calculus do not
include material on the assignment of numer-
ical values, just as texts on geometry do not
discuss mensuration or surveying. Assess-
ment is an adjunct to the calculus, as survey-
ing is to Euclidean geometry. Yet the calculus
loses a lot of its value without the numbers.

SUBJECTIVE PROBABILITY∗

In the context adopted here of your contem-
plating uncertain propositions or events and
adhering to the probability calculus, the form
of probability employed is usually termed
subjective or personal. Your appreciation of
uncertainty may be different from mine. Sub-
jective ideas have been around as long as
probability, but it is only in the second half of
the twentieth century that they have attained
the force of logic. This is largely due to the
work of Ramsey [6] (whose work lay for long
unappreciated), Savage [7], and De Finetti
[2], amongst others. In various ways, these
writers showed that, starting from axioms
held to be self-evident truths, the existence
of numbers describing your uncertainty in a
given state of knowledge could be established,
and that these numbers obeyed the rules of
the probability calculus. The coherent, nor-
mative view thus follows from the axioms.
It is important that although the axioms
adopted by these writers differ—some treat-
ing uncertainty directly, others incorporating
action in the face of uncertainty—they all
lead to the same conclusion of ‘‘the inevitabil-
ity of probability.’’ Logic deals with truth and
falsity. Probability is an extension of logic to
include uncertainty, truth and falsity being
the extremes, 1 and 0.

With these preliminaries out of the way,
let us turn to the central problem: how can
you, adhering to the normative view, and
wishing to be coherent, assign numerical val-
ues to your uncertainties?

FREQUENCY DATA

There is one situation, of common occurrence,
where the assessment of a probability is
rather simple. This arises when, in addition
to the event A about which you are uncer-
tain, there is a sequence A1, A2, . . . , An of
similar events where the outcome is known
to you. If just r of these events are true,
then it seems reasonable to suppose your
probability of A is about r/n. The classic
example is that of n tosses of a coin, yield-
ing r heads and n− r tails, where you are
uncertain about the outcome of the next toss.
In these cases the frequency r/n is equated
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with belief∗. The situation is of such common
occurrence that probability has often been
identified with frequency, leading to a fre-
quentist view of probability. According to the
logical, subjective view this is erroneous. It is
the data which are frequentist, not the proba-
bility. For the near-identification of frequency
and belief within the normative approach,
some conditions have to be imposed on your
belief structure. These have been given by
De Finetti in the concept of exchangeability∗

amongst all the events considered. The com-
plete identification of frequency and belief
is unreasonable, as can be seen by taking
the case n = 1, when the identification would
only leave 0 and 1 as possible values of the
probability for the second toss.

CLASSICAL VIEW

A second common situation where probabili-
ties are easily assessed is where the possible
outcomes of an uncertain situation, N in all,
are believed by you to be equally proba-
ble. Thus your belief that a stranger was
born on a specific date is about 1/365; here
N = 365. This is the classical view of proba-
bility. Applied to the coin-tossing example of
the last paragraph, the probability of heads
is 1

2 . Again, the connection between the nor-
mative and classical views requires a belief
judgment on your part, namely of equal belief
in all N possibilities. Notice that in the birth-
day example, you, understanding the calcu-
lus, can evaluate your belief that, amongst
23 independent strangers, at least two share
the same birthday; the probability is about
1
2 . Experience shows that this is typically not
true in the description of people’s behavior.

There remain many situations in which
neither are frequency data available, nor is
the classical approach applicable, and yet you
have to express your belief in an uncertain
proposition. An important example occurs in
courts of law where the jury, acting as ‘you’,
has to express its belief in the defendant’s
guilt. A lot of information is available, in the
form of the evidence produced in court, but it
is rarely of the type that leads to a frequentist
or classical analysis. So we now turn to other
methods of assessment.

SCORING RULES

One assessment tool is the scoring rule∗.
This is derived from a method used as an
axiom system by De Finetti. If you express
your belief in the occurrence of an event E
by a number x, then when the status of E
becomes known, the rule assigns a penalty
score dependent on x and the status. A popu-
lar rule is the quadratic one (E− x)2, where
E is also the indicator function of the event:
E = 1(0) if E is true (false). With some patho-
logical exceptions, if you attempt to minimize
your total expected penalty score, you will
make assertions x which are such that they,
or some function of them, obey the laws of
probability. With the quadratic rule, x obeys
the laws. Another rule yields log odds, rather
than probabilities. The classic exposition is
by Savage [7]. It is possible to train people
to make probability statements using scor-
ing rules, and the method has been applied
by meteorologists issuing probability weather
forecasts.

COHERENCE

One thing is clear about probability assess-
ment: it is best to study beliefs about several
related events, rather than to study an event
in isolation. The reason for this is that it
gives an opportunity for the rules of proba-
bility to be invoked. For a single event, only
the convexity rule, that probability lies in the
unit interval, is relevant. The simplest case
of two events, E and F, illustrates ‘‘the point.’’
You might assess Pr[E], Pr[F|E], Pr[F|Ec] as
three numbers, unrestricted except that they
each lie in the unit interval. (Ec denotes the
complement of E, and a fixed knowledge base
is assumed.) The rules then imply values for
Pr[F], Pr[E|F], etc. You would then consider
whether these implications are in reason-
able agreement with your beliefs. If they
are not, then some adjustment will need to
be made to the three original values. With
more events, more checks are available and
therefore better assessments possible. The
object is to reach a set of probabilities that
are coherent. Guidance is also available on
which probabilities are best to assess. For
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example, under some conditions, it is bet-
ter to assess Pr[E|F] directly, rather than
Pr[EF] and Pr[F], using their ratio as an indi-
rect assessment [4]. Computer programs can
be written wherein some probability assess-
ments may be fed in and others either calcu-
lated or limits given to where they must lie.
By De Finetti’s fundamental theorem∗ [2],
they must lie in an interval. If the interval is
empty, the values fed in are incoherent and
some reassessment is necessary. Since the
normative view is founded on the concept of
coherence, its use in numerical assessment
seems essential. It is the preferred method
for a jury, who should aim to be coherent
with all the evidence presented to them.

ROBUSTNESS

There has been a great deal of study of the
robustness of statistical procedures (see, e.g.,
ROBUST ESTIMATION). Suppose that you know
that the procedure you are using is robust
to one of the probabilities. That is, the final
conclusions are not sensitive to the actual
numerical value assigned to that probability.
Then this helps in the assessment, because
the evaluation need not be done with great
care. On the other hand, if it is known that
the procedure is sensitive to a value, great
care should be devoted to its determination,
for example, by checking its coherence with
other numerical probabilities. Knowledge of
robustness shows where the work on assess-
ment should be concentrated.

BETTING

Another way to perform the assessment is for
you to consider bets (see GAMBLING, STATIS-

TICS IN). At what odds will you accept a bet
on the event E? When this is repeated for
several events, either coherence results, or a
Dutch book∗, in which you will lose money for
sure, can be made against you. Implicit in this
method is the assumption that you are invok-
ing only monetary considerations and that
your utility∗ for money is locally linear. The
latter restriction might be achieved by mak-
ing the amounts of money involved small. The

former is more difficult to attain. People com-
monly overreact by perceiving even a modest
loss as a disaster or an embarrassment, and
likewise are elated by a small win. A gain of
$100 in a gamble is viewed differently from
a gain of the same amount resulting from
honest toil. Decision analysis, based on per-
sonalistic ideas, demonstrates that, to make
a decision, only products of a probability and
a utility matter. No decision changes if one
is multiplied by c and the other divided by c.
Probability and utility seem inseparable. Yet
belief, as a basic concept, seems genuinely to
exist in your mind, irrespective of any action
you might take as a result of that belief. This
conundrum awaits resolution before betting,
or similar devices based on action, can be used
with complete confidence for assessment.

CALIBRATION∗

Suppose that you provide probabilities for a
long sequence of events and, for a selected
number p, we select all the events to which
you assigned probability p. For realism, sup-
pose your probabilities are only to one place
of decimals. It seems reasonable to expect
that a proportion p of the selected events
should subsequently turn out to be true and
the remainder false. If this happens for all p,
you are said to be well calibrated. Generally,
a curve of the proportion true against the
stated value p is called a calibration curve.
An example is again provided by meteorolo-
gists forecasting tomorrow’s weather. Some
studies show they are well calibrated [5].

EXPERT OPINION

Calibration may be a consideration when
you need to use an expert’s probability for
your own purposes. For example, you have to
decide whether to go on a picnic tomorrow,
and you consult an expert weather forecaster,
who says that there is a 90% probability
that tomorrow will be fine. If the expert is
thought by you to be well calibrated, then
you may reasonably assess your probability
of fine weather also to be 90%. But you could
equally well proceed if you knew the meteo-
rologist’s calibration curve. For instance, if
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the meteorologist is found to be an opti-
mist and only 75% of their predicted days
at 90% turn out to be fine, you might assess
your probability for tomorrow being fine as
3
4 .

Expert opinion has been studied in a dif-
ferent way by other researchers. Suppose an
expert provides probability p for an event E
of interest to you. How should this provision
affect your probability for E? Bayes’ theorem∗
in odds form says

Od[E|p] = Pr[p|E]
Pr[p|Ec]

Od[E],

where Od means odds on and Pr[p|E] is your
probability that, if E is true, the expert will
announce p, and similarly for E false, Ec true.
In the usual way, your odds are updated by
multiplying by your likelihood ratio for the
data p. The latter necessitates your assess-
ment of your probabilities that the expert will
announce p when the event is true, and also
when it is false. Notice that this is not the
calibration curve, which fixes p and examines
a frequency.

Unexpected results follow from this analy-
sis of expert opinion. Suppose several experts
announce that an event has, for them, proba-
bility 0.7. Suppose further (a severe assump-
tion) you feel the experts are independent;
this is a probability judgment by you. Then
calculation, following the probability calcu-
lus, suggests that your probability for the
event should exceed 0.7. This is supported
by the intuitive consideration that if the
event were false, it would be astonishing
that every expert consulted should think it
more likely to be true than not. Contrast this
with the agreement amongst several experts
that two cities are 70 miles apart. You would
unhesitatingly accept 70 as also your opinion.
Probability behaves differently. A convenient
reference is Cooke [1].

FUTURE WORK

It is remarkable how little attention has been
paid to the measurement of probabilities. The
sophisticated calculus applies to numbers
that, outside the limited frequency and clas-
sical domains, have not been assessed satis-
factorily. And those that have, have rarely

been tested. For example, many research
studies throughout science quote a signifi-
cance level, stating that the null hypothesis
was ‘‘significant at 5%.’’ How many of such
hypotheses have subsequently turned out to
be false? Calibration might require 95%, but
the few such efforts to assess accuracy in this
way have been recent, and mainly appear
in the medical literature. The personal view
of probability would condemn them as not
being sound statements of belief in the null
hypotheses.

Euclidean geometry predates good men-
suration by several centuries. It is to be
hoped that it will not be necessary to wait
that long before good assessment of beliefs
fits with the other branch of mathematics,
probability.
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D. V. LINDLEY

ASSIGNABLE CAUSE

In model building, effects of certain factors
(‘‘causes’’) are allowed for in construction of
the model. Ideally, all causes likely to have
noticeable effects should be so represented.
Such causes are often called ‘‘assignable
causes.’’ A better term might be ‘‘recognized
causes.’’

Usually, there are, in fact, effects aris-
ing from causes that are not allowed for
(‘‘assigned’’) in the model. It is hoped that
these will not be seriously large; they are sup-
posed to be represented by random variation∗

included in the model.
Note that not all assignable causes may

be actually used (‘‘assigned’’) in the model.
In the interests of simplicity, causes with
recognized potential for effect may be omitted
if the magnitudes of the effects are judged
likely to be small.

See also STATISTICAL MODELING.

ASSOCIATION, MEASURES OF

Measures of association are numerical assess-
ments of the strength of the statistical depen-
dence of two or more qualitative variables.
The common measures can be divided into
measures for nominal polytomous variables∗

and measures for ordinal polytomous vari-
ables∗.

MEASURES FOR NOMINAL VARIABLES

The most common measures of association for
nominal variables are measures of prediction
analogous in concept to the multiple correla-
tion coefficient∗ of regression analysis∗.

Consider two polytomous random vari-
ables X and Y with respective finite ranges
I and J. A measure of prediction φY·X of
Y given X depends on a measure � of the
dispersion of a polytomous random variable.

Such a measure is always nonnegative, with
�Y = 0 if and only if Y is essentially con-
stant; i.e., �Y = 0 if and only if for some
j ∈ J, p·j = Pr[Y = j] = 1. The measure does
not depend on the labeling∗ of elements. For-
mally, one may require that �Y = �σ (Y) if σ
is a one-to-one transformation from J into
a finite set J′. The added requirement is
imposed that the conditional dispersion∗�Y·X
of Y given X not to exceed the unconditional
dispersion�Y of Y. Here�Y·X is the expected
value of �Y·X (X), and �Y·X (i) is the disper-
sion of Y given that X = i ∈ I. [The definition
of �Y·X (i) when pi· = Pr[X = i] = 0 does not
matter.] The measure of prediction

φY·X = 1−�Y·X/�Y

compares the conditional dispersion of Y
given X to the unconditional dispersion of Y,
just as the multiple correlation coefficient∗

compares the expected conditional variance
of the dependent variable to its unconditional
variance. The measure φY·X is well defined if
Y is not essentially constant. When φY·X is
defined, 0 � φY·X � 1, with φY·X = 0 if X and
Y are independently distributed and φY·X = 1
if X is an essentially perfect predictor∗ of
Y, i.e., if for some function k from I to J,
Pr[Y = k(X)] = 1.

Two common examples of such measures
of prediction are the λ coefficient of Guttman∗

[6] and of Goodman and Kruskal [1] and the
τ -coefficient of Goodman and Kruskal∗ [1].
Let pij = Pr[X = i, Y = j], i ∈ I, j ∈ J. Then

λY·X =
(
∑

i∈I maxj∈J pij −maxj∈J p·j)
(1−maxj∈J p·j)

,

τY·X =
(
∑

i∈I
∑

j∈J p2
ij/pi· −

∑
j∈J p2

·j)

(1−∑
j∈J p2

·j)
.

In the last formula, 0/0 is defined as 0 to
ensure that p2

ij/pi· is always defined.
In the case of λY·X , the measure �Y =

1−maxj∈J p·j is the minimum probability of
error from a prediction that Y is a con-
stant k, while �Y·X = 1−∑

i∈I maxj∈J pij is
the minimum probability of error from a pre-
diction that Y is a function k(X) of X. In the
case of τY·X , �Y = 1−∑

j∈J p2
·j is the proba-

bility that the random variable Y ′ does not
equal Y, where Y ′ and Y are independent
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and identically distributed (i.i.d.). Similarly,
�Y·X = 1−∑

i∈I
∑

j∈J p2
ij/pi· is the probability

that Y ′ �= Y, where given X, Y and Y ′ are
conditionally i.i.d.

Other measures of this type are also avail-
able. For example, Theil [18] has considered
the measure

ηY·X

= −
∑
i∈I

∑
j∈J

pij log
(

pij

pi·p·j

)/∑
j∈J

p·j log p·j,

based on the entropy∗ measure �Y = −
∑

j∈J
p·j log p·j and the conditional entropy measure

�Y·X = −
∑
i∈I

∑
j∈J

pij log(pij/pi·).

In these measures, 0/0 = 0 and 0 log 0 = 0.
The coefficient λY·X has an attractively

simple interpretation in terms of prediction∗;
however, λY·X has the possible disadvantage
that λY·X may be 0 even if X and Y are
dependent. In contrast, ηY·X and τY·X are only
0 if X and Y are independent.

Partial and Multiple Association

As in Goodman and Kruskal [1,3], generaliza-
tions to cases involving three or more polyto-
mous variables are straightforward. Consider
a new polytomous variable W with finite
range H. If �Y·WX denotes the conditional
dispersion of Y given the polytomous vector
(W, X), then the multiple association coeffi-
cient φY·WX may be defined as 1−�Y·WX/�Y .
The partial association of Y and W given X
may then be defined as

φY·W|X = 1−�Y·WX/�Y·X .

Thus φY·W|X measures the additional predic-
tive power of W given that X has already
been used as a predictor of Y. If W and Y
are conditionally independent given X, then
φY·W|X = 0. If X is not an essentially perfect
predictor of Y but (W, X) is an essentially
perfect predictor of Y, then φY·W|X = 1. In
general, if X is not an essentially perfect
predictor of Y, one has 0 � φY·W|X � 1 and

1− φY·WX = (1− φY·X )(1− φY·Z|X ).

Symmetric Measures

A measure of prediction φY·X of Y given X
is not generally equal to the corresponding
measure φX·Y for prediction of X by Y. This
behavior can be contrasted with the square
ρ2 of the correlation coefficient∗ of two con-
tinuous random variables U and V. In the
continuous case, ρ2 measures the power of U
as a predictor of V and the power of V as a
predictor of U. In cases in which a symmetric
measure is desired, Goodman and Kruskal
[1] propose measures of the form

φXY = 1− (�Y·X +�X·Y )/(�Y +�X ).

For example,

λXY =
(∑

i∈I
maxj∈J pij +

∑
j∈J

maxi∈I pij

−maxj∈J p·j −maxi∈I pi·
)

· (2−maxj∈J p·j −maxi∈I pi·
)−1

.

The measure φXY is defined if either X or Y is
not essentially constant. The coefficient φXY
ranges between 0 and 1, with φXY = 0 if X and
Y are independent and φXY = 1 if and only if
for some functions k from I to J and m from
J to I, Pr[Y = k(X)] = Pr[X = m(Y)] = 1.

Standardization

In some cases, it is desirable to standardize
the marginal distributions∗ of X and Y before
computation of a measure of association. For
example, one may wish to find φY′ ·X′ , where
X ′ has some standard reference distribution
such as the uniform distribution∗ of I and
the conditional distribution of Y ′ given that
X ′ is identical to the conditional distribution
of Y given X. If p′i· = Pr[X ′ = i], i ∈ I, and
p′·j =

∑
i∈I(p

′
i·/pi·)pij, j ∈ J, where pi· = 0 only

when p′i· = 0, then

λY′·X′ =
(∑

i∈I(maxj∈J pij)p′i·/pi·−maxj∈J p′·j
)

(1−maxj∈J p′·j)
.

Similarly, one may consider a measure
φY∗·X∗ , where Y∗ has the same standard
marginal distributions and the conditional
distribution of X∗ given Y∗ is the same as the
conditional distribution of X given Y. More
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thorough standardization is also possible, as
in Mosteller [13]. One may consider φU·V ,
where U and V have standard marginal dis-
tributions and Pr[U = i, V = j] = sitjpij, i ∈ I,
j ∈ J, for some si, i ∈ I, and tj, j ∈ J.

Optimal Prediction

Measures such as φY·X always have inter-
pretations in terms of optimal prediction in
the following sense. Some nonnegative and
possibly infinite function Aj(j, q) is defined
for j ∈ J and q in the simplex∗ SJ of vectors
q = 〈qj : j ∈ J〉 with nonnegative coordinates
with sum

∑
j∈J qj = 1. This function repre-

sents a loss incurred if a probabilistic predic-
tion q is made for Y and Y = j. The function
is such that

dJ(q) =
∑
j∈J

qjAJ(j, q) �
∑
j∈J

qjAJ(j, q′)

(q, q′ ∈ S). (1)

The dispersion �Y of Y is dJ(pY ), where
PY = 〈p·j : j ∈ J〉. Thus �Y is the minimum
expected loss achievable by prediction of Y
without knowledge of X. Similarly, �Y·X (i)
is dJ(pY·X (i)), where pY·X (i) = 〈pij/pi· : j ∈ J〉.
Thus �Y·X (i) is the minimum expected loss
achievable in prediction of Y, given that it is
known that X = i, and �Y·X is the minimum
expected loss achievable in prediction of Y
given that X is known.

In the case of λY·X , one may define

AJ(j, q) =
{

1, j �∈ B(q),
1− 1/m(q), j ∈ B(q),

where j ∈ B(q) if qj = maxk∈J qk and m(q)
is the number of elements in B(q). In the
typical case in which qj has a unique max-
imum at a coordinate j = ρ(q), the penalty
AJ(j, q) is 1 for j �= ρ(q) and 0 otherwise. In
the case of τY·X , AJ(j, q) is the squared dis-
tance

∑
k∈K (δkj − qk)2, where δkj is 1 for k = j

and δkj is 0 for k �= j, while for ηY·X , one has

AJ(j, q) = − log qj.

The loss function AJ(j, q) is almost unique-
ly determined by the dispersion measure dJ .
If dJ(αq) is defined to be αdJ(q) for α � 0

and q ∈ SJ, then dJ is a concave function
on the set OJ of vectors q = 〈qj : j ∈ J〉 with
all coordinates nonnegative. As in Savage
[16], it follows that (1) is satisfied by AJ(j, q),
j ∈ J, q ∈ SJ , if and only if for all q ∈ SJ and
q′ ∈ OJ ,

dJ(q′) � dJ(q)+
∑
j∈J

AJ(j, q)(q′j − qj).

As in Rockafellar [15], the vector AJ(q) =
〈AJ(j, q) : j ∈ J〉 is called a supergradient of
dJ at q. Some AJ(q) exists at each q ∈ SJ.
If q is an element in the simplex SJ with
all coordinates positive and if dJ is differen-
tiable at q, then AJ(j, q) must be the partial
derivative at q of dJ with respect to qj. Thus
the AJ(j, q), j ∈ J, are uniquely determined
and continuous at almost every point q on
the simplex SJ. For example, in the case of
ηY·X ,

dj(q) = −
∑
j∈J

qj log qj

+
∑

j∈J

qj

 log

∑
j∈J

qj


for q ∈ OJ . If all qj are positive and

∑
j∈J qj =

1, then A(j, q) = − log qj is the partial deriva-
tive at q of dJ with respect to qj.

Estimation of Measures of Prediction

Typically bivariate measures of prediction
in which standardization is not involved are
estimated on the basis of a contingency table∗

n = 〈nij : i ∈ I, j ∈ J〉 with a multinomial dis-
tribution of sample size N and probabilities
p = 〈pij : i ∈ I, j ∈ J〉. The estimate p̂ = N−1n
of p is substituted for p in the formulas
for φY·X and φXY . If n·j =

∑
i∈I nij, j ∈ J, ni· =∑

j∈J nij, i ∈ I, p̂X = 〈N−1ni· : i ∈ I〉, p̂Y =
〈N−1n·j : j ∈ J〉, p̂Y·X (i) = 〈nij/ni· : j ∈ J〉, i ∈ I,
and p̂X·Y (j) = 〈nij/n·j : i ∈ I〉, j ∈ J, then

φ̂Y·X = 1−N−1
∑
i∈I

ni·dJ(p̂Y·X (i))/dJ(p̂Y ),
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φ̂XY = 1−N−1

×
[∑

i∈I ni·dJ(p̂Y·X (i))+∑j∈J n·jdI(p̂X·Y (j))
]

dJ(p̂Y )+dI(p̂X )
.

For example,

λ̂Y·X =(∑
i∈I

max
j∈J

nij −max
j∈J

n·j

)/(
N −max

j∈J
n·j

)
.

Extensions to multivariate measures are
straightforward.

Normal Approximation

Normal approximations∗ for distributions of
measures such as φ̂Y·X and φ̂XY are readily
obtained as in Goodman and Kruskal [3,4].
Assume that dJ is differentiable at pY and
at pY·X (i) for i ∈ I′ = {i ∈ I : pi· > 0}. [Alter-
natively, it suffices if A(j, ·) is continuous
at pY whenever p·j > 0 and A(j, ·) is con-
tinuous at pY·X (i), i ∈ I, whenever pij > 0.]
Assume that Y is not essentially constant.
Then N1/2(φ̂Y·X − φY·X ) has the large-sample
distribution N(0,σ 2(φY·X )), where σ 2(φY·X ) is
the variance of the random variable

H(Y|X) = [(1− φY·X )dJ(Y, pY )

− dJ(Y, pY·X (X))]/dJ(pY ).

Since

E[H(Y|X)] = 0, σ 2(φY·X ) =
∑
i∈I

∑
j∈J

pij[H(j|i)]2.

For examples of formulas, see Goodman and
Kruskal [3,4]. Assume, in addition, that dI is
differentiable at pX and at pX·Y (j) for j such
that p·j > 0. Thus N1/2(φ̂XY − φXY ) has large-
sample distribution N(0, σ 2(φXY )), where
σ 2(φXY ) is the variance of

H(X, Y) = {(1− φXY )[dI(X, pX )+ dJ(Y, pY )]

− dI(X, pX·Y (J))− dJ(Y, pY·X (I))}
· [dI(pX )+ dJ(pY )]−1.

Again E[H(X, Y)] = 0 and σ 2(φXY ) =∑
i∈I

∑
j∈J pij[H(i, j)]2. Since differentia-

bility implies continuous differentiability

in concave functions, σ 2(φY·X ) and σ 2(φXY )
possess consistent∗ estimates σ̂ 2

Y·X and σ̂ 2
XY

obtained by replacing pij by p̂ij = N−1nij
in the relevant formulas. If σ 2(φY·X ) > 0,
0 < α < 1, and zα is the upper (α/2)-point of
the N(0, 1) distribution, then an approximate
confidence interval∗ for φY·X of level α is

[φ̂Y·X − zασ̂ (φY·X )/N1/2, φ̂Y·X

+ zασ̂ (φY·X )/N1/2].

A similar argument applies to φXY .
Since 0 � φ̂Y·X � 1, σ (φY·X ) must be 0 if a

normal approximation applies and φY·X is 0
or 1. If all pij are positive and σ (φY·X ) is 0,
then φY·X = 0, for σY·X = 0 implies that H(j|i)
is always 0, so that

�Y =
∑
j∈J

p·jA(j, pY )

�
∑
j∈J

p·jA(j, pY·X (i))

= (1− φY·X )
∑
j∈J

p·jA(j, p·j)

= (1− φY·X )�Y .

In the special case of λ̂Y·X , Goodman and
Kruskal [3,4] note that σ 2(λY·X ) is defined
whenever m(pY ) and m(pY·X (i)), i ∈ I, are all
1, and σ 2(λY·X ) = 0 only if λY·X is 0 or 1.
The normal approximation always applies to
the estimate τ̂Y·X and η̂Y·X ; however, a simple
necessary and sufficient condition for σ 2(τY·X )
or σ 2(ηY·X ) to be 0 appears difficult to find.

Sampling by Rows

An alternative sampling problem has also
been considered in Goodman and Kruskal
[3,4], which is particularly appropriate for
a standardized measure φY′ ·X′ in which the
conditional distribution of Y ′ given X ′ = i ∈ I
is the same as the conditional distribution of
Y given X and X ′ has a known marginal
distribution with p′i = Pr[X ′ = i]. Let each
row 〈nij : j ∈ J〉, i ∈ I, have an independent
multinomial∗ distribution with sample size
Ni > 0 and probabilities 〈pij/pi· : j ∈ J〉. For
simplicity, assume that each pi· is positive.
Let N =∑

Ni, let Ni/N approach pi·, and let
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N approach infinity. Consider the standard-
ized estimate

φ̂Y′ ·X′ = 1−
∑
i∈I

p′i·dJ(p̂Y·X (i))
/

dJ(p̂′Y ),

where p̂′Y = 〈p′·j : j ∈ J〉, p̂′·j =
∑

i∈I ·p′i·nij/Ni,
j ∈ J, and p̂Y·X (i) = 〈nij/Ni : j ∈ J〉 for i ∈ I.
Assume that dJ is differentiable at p′Y = 〈p′·j :
j ∈ J〉 and at pY·X (i), i ∈ I. Then N1/2(φ̂Y′ ·X′ −
φY′ ·X′ ) has an approximate N(0, σ 2(φY′ ·X′ ))
distribution, where σ 2(φY′·X′ ) is the expected
conditional variance

∑
i∈I

∑
j∈J

pij[H′(j|i)]2 −
∑
i∈I

∑
j∈J

H′(j|i)pij

2 /
pi·

of H′(Y|X) given X. Here for i ∈ I, j ∈ J,

H′(j|i) = (p′i·/pi·)[(1− φY′ ·X′ )AJ(Y, p′Y )

− AJ(Y, pY·X (i))].

In the special case p′i· = pi·, one has φY′·X′
equal to the unstandardized coefficient φY·X ,
H′(j|i) = H(j, i), and σ 2(φY′ ·X′ ) � σ 2(φY·X ).

Clearly, σ 2(φY′ ·X′ ) = 0 if φY′·X′ is 0 or 1.
In the case of λY′·X′ , σ 2(λY′·X′ ) = 0 if and
only if φY′·X′ is 0 or 1, as noted in Goodman
and Kruskal [4]. More generally, σ 2(φY′ ·X′ ) =
0 implies that φY′ ·X′ = 0 if all probabilities
pij are positive. The proof is only slightly
changed from the corresponding proof for
σY·X .

Older Measures

Numerous older measures of association bet-
ween nominal variables are reviewed by
Goodman and Kruskal [1,2] and by Kendall
and Stuart [10, pp. 556–561]. The most com-
mon are based on the chi-square∗ statistic.
They include the mean square contingency

φ2 =
∑
i∈I

∑
j∈J

(pij − pi·p·j)2/(pi·p·j)

and the coefficient of contingency C = [φ2/

(1+ φ2)]1/2 of Pearson [14] and Tschuprow’s
[19] coefficient T = [φ2/ν1/2]1/2. In the last
expression ν = (r− 1)(s− 1), I has r ele-
ments, and J has s elements. These measures
lack the functional interpretations available
in the case of φY·X or φXY .

MEASURES OF ASSOCIATION FOR ORDINAL
POLYTOMOUS VARIABLES

The most commonly used measure of associ-
ation for ordinal polytomous variables is the
γ coefficient of Goodman and Kruskal [1–5].
Assume that the ranges I of X and J of Y
are well ordered, so that if i and i′ are in I,
then i < i′, i = i′, or i > i′ and if j and j′ are in
J, then j < j′, j = j′, or j > j′. Let (X1, Y1) and
(X2, Y2) be independently distributed pairs
with the same distribution as (X, Y). Let
C = 2 Pr[X1 > X2 and Y1 > Y2] be the prob-
ability that either X1 > X2 and Y1 > Y2 or
X1 < X2 and Y1 < Y2, so that (X1, Y1) and
(X2, Y2) are concordant. Let 2D = 2 Pr[X1 >

X2 and Y2 > Y1] be the probability that either
X1 > X2 and Y1 < Y2 or X1 < X2 and Y1 > Y2,
so that (X1, Y1) and (X2, Y2) are discordant.
Then

γXY = C−D
C+D

.

The coefficient is defined if pij > 0 and pi′j′ > 0
for some i, i′ ∈ I and j, j′ ∈ J with i �= i′ and
j �= j′. One has −1 � γXY � 1, with γXY = 0
under independence of X and Y. For γXY to
be 1, the nonzero pij must have an ascending
staircase pattern, so that if i < i′, pij > 0, and
pi′j′ > 0, then j � j′, while if j < j′, pij > 0, and
pi′j′ > 0, then i � i′. Similarly, γXY can only
be −1 if the nonzero pij have a descending
staircase pattern. In the special case in which
I and J have the two elements 1 and 2,
γXY is the coefficient of association (p11p22 −
p12p21)/(p11p22 + p12p21) of Yule [20]. In this
special case, γXY = 0 if and only if X and Y are
independent, γXY = 1 only if Pr[X = Y] = 1,
and γXY = −1 only if Pr[X = Y] = 0.

The measure γXY only considers pairs (X1,
Y1) and (X2, Y2) in which X1 �= X2 and Y1 �=
Y2. An alternative approach by Somers [17]
considers all pairs with just X1 �= X2. One
obtains the asymmetric coefficient

γY·X = (C−D)/Pr[X1 �= X2].

Again −1 � γY·X � 1, with γY·X = 0 if X
and Y are independent. The coefficient γY·X
can only be −1 (or 1) if γXY is −1 (or 1) and
if for each j ∈ J, pij is positive for no more
than one i ∈ I. For further variants on γXY ,
see Kendall and Stuart [10, pp. 561–565].
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Estimation of γXY and γY·X is straightfor-
ward given a table n = 〈nij : i ∈ I, j ∈ J〉 with
a multinomial distribution with sample size
N and probabilities p = 〈pij : i ∈ I, j ∈ J〉. Let
Ĉ be the sum of all products 2nijni′j′/N2 such
that i < i′ and j < j′, and let D̂ be the sum of
all products 2nijni′j′/N2 such that i < i′ and
j < j′. Then γ̂XY = (Ĉ− D̂)/(Ĉ+ D̂) and γ̂Y·X =
(Ĉ− D̂)/[1−∑

i∈I(ni·/N)2]. As noted in Good-
man and Kruskal [3,4] N1/2(γ̂XY − γXY ) has
an approximate N(0, σ 2(φXY )) distribution,
with

σ 2(φXY ) = 16
(C+D)4

∑
i∈I

∑
j∈J

pij(CSij −DRij)2

� 2(1− γ 2
XY )/(C+D),

Sij = Pr[X > i and Y < j]

+ Pr[X < i and Y > j],

Rij = Pr[X > i and Y > j]

+ Pr[X < i and Y < j].

Similarly, N1/2(γ̂Y·X − γY·X ) has an approx-
imate N(0, σ 2(γY·X )) distribution with E =
Pr[X1 �= X2, Y1 �= Y2] and

σ 2(γY·X ) = 4
(C+D+ E)4

∑
i∈I

∑
j∈J

pij

· [(C−D)(1− pi·)

− (C+D+ E)(Sij −Rij)]2.

One has σ 2(γXY ) = 0 if |γXY | = 1 and σ 2(γY·X )
= 0 if |γY·X | = 1. If all pij are positive, then
σ 2(γXY ) > 0. In the special case of γXY = 0,
one has γY·X = 0,

σ 2(γXY ) = 4
(C+D)2

∑
i∈I

∑
j∈J

pij(Sij − Rij)2,

σ 2(γY·X ) = 4
(C+D+ E)2

∑
i∈I

∑
j∈J

pij

× (Sij − Rij)2.

Kendall’s τ ∗, Spearman’s ρS
∗, and Goodman

and Kruskal’s γ ∗

In contrast to the nominal measures of asso-
ciation, Goodman and Kruskal’s γ coefficient
remains well-defined if the respective ranges

I and J of X and Y are infinite and
Pr[X = i] = Pr[Y = j] = 0 for any i ∈ I and
j ∈ J. The coefficient γXY is then Kendall’s
[8] τ measure τk = C−D. It remains true
that −1 � τk � 1, with τk = 0 when X and Y
are independent. Estimation of τk is, how-
ever, best described in terms of independent
pairs (Xt, Yt), 1 � t � N, with common distri-
bution (X, Y). Then Kendall’s τ statistic τ̂k
is 2(Nc −Nd)/[N(N − 1)], where there are
Nc s and t with 1 � s < t � N such that
(Xs, Ys) and (Xt, Yt) are concordant (Xs < Xt
and Ys < Yt or Xt < Xs and Yt < Ys) and there
are Nd s and t with 1 � s < t � N such that
(Xs, Ys) and (Xt, Yt) are discordant (Xs < Xt
and Ys > Yt or Xt < Xs and Yt > Ys). As N
becomes large N1/2(τ̂k − τk) has an approxi-
mate N(0, σ 2(τk)) distribution. See KENDALL’S
TAU. Here σ 2(τk) = 16(F − C2) and

F = Pr[X1 > X2, X1 > X3, Y1 > Y2, Y1 > Y3]

+ Pr[X1 < X2, X1 < X3, Y1 < Y2, Y1 < Y3]

is the probability that both (X2, Y2) and (X3,
Y3) are concordant with (X1, Y1). If X and
Y are independent, then σ 2(τk) = 4/9. See
Hoeffding [7] and Kruskal [12] for details.

Closely related to Kendall’s τ is the Spear-
man rank correlation coefficient∗ rs. Assume
that all Xt are distinct and all Yt are dis-
tinct. Let Rt be the number of s with Xs � Xt,
and let St be the number of t with Ys � Yt.
Then rs is the sample correlation of the pairs
(Rt, St), 1 � t � N. The statistic rs provides a
measure

ρs = 6{Pr[X1 > X2, Y1 > Y3]− 1}

of the probability that (X1, Y1) and (X2, Y3)
are concordant. An alternative unbiased esti-
mate of ρs is ρ̂s = [(n+ 1)/(n− 2)]rs − [3/(n−
2)]τ̂k, which has been termed the unbiased
grade coefficient by Konijn [11]. One has−1 �
ρs � 1, with ρs = 0 under independence of X
and Y. Both N1/2(ρ̂s − ρs) and N1/2(rs − ρs)
have limiting distribution N(0, σ 2(ρs)) as N
becomes large. The formula for σ 2(ρs) has
been given by Hoeffding [7]. Since it is some-
what complicated, it will be omitted here in
the general case. Under independence of X
and Y, σ 2(ρs) = 1.

For further details concerning these and
related measures, see Kendall [9] and
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Kruskal [12]. (See also KENDALL’S TAU—I,
SPEARMAN RANK CORRELATION COEFFICIENT,
and GOODMAN–KRUSKAL TAU AND GAMMA)

NUMERICAL EXAMPLE

To illustrate results, consider Table 1, which
can be found in Goodman and Kruskal [1],
among many other references. Let X refer to
eye color and let Y refer to hair color.

Some resulting estimated measures of
association are listed in Table 2. In the case
of the measures for ordered variables, eye
color is ordered from blue to brown and hair
color is ordered from fair to black.

Asymptotic standard deviations are based
on the assumption that the counts in Table 1
have a multinomial distribution. The asym-
metry in X and Y and the large variations in
the sizes of measures are to be expected. As
noted as early as Goodman and Kruskal [1],
instincts developed from regression analysis∗

are not necessarily appropriate for assess-
ment of the size of measures of association
for ordinal or nominal polytomous variables.
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S. J. HABERMAN

ASTRONOMY, STATISTICS IN

Perhaps more than other physical sciences,
astronomy is frequently statistical in nature.
The objects under study are inaccessible to
direct manipulation in the laboratory. The
astronomer is restricted to observing a few
external characteristics of objects populat-
ing the Universe, and inferring from these
data their properties and underlying physics.
From the seventeenth through nineteenth
centuries, European astronomers were
engaged in the application of Newtonian the-
ory to the motions of bodies in the solar
system. This led to discussions of the statis-
tical treatment of scientific data, and played
a critical role in the development of statisti-
cal theory. The twentieth century has seen

remarkable success in the applications of
electromagnetism and quantum mechanics∗

to heavenly bodies, leading to a deep under-
standing of the nature and evolution of stars,
and some progress in understanding galax-
ies and various interstellar and intergalactic
gaseous media. Statistical theory has played
a less important role in these advances of
modern astrophysics. However, the last few
years have seen some reemergence of interest
in statistical methodology to deal with some
challenging data analysis problems. Some
examples of these contemporary issues are
presented.

EARLY HISTORY

Celestial mechanics in the eighteenth cen-
tury, in which Newton’s law of gravity was
found to explain even the subtlest motions
of heavenly bodies, required the derivation
of a few interesting quantities from numer-
ous inaccurate observations. As described in
detail by Stigler [40], this required advances
in the understanding of statistical inference∗

and error distributions. Mayer, in his 1750
study of lunar librations, suggested a proce-
dure of reconciling a system of 27 inconsistent
linear equations in three unknowns by solv-
ing the equations in groups. Laplace∗, in a
1787 analysis of the influence of Jupiter’s
gravity on Saturn’s motion, suggested a more
unified approach that led to Legendre’s inven-
tion of the least-squares method in an 1805
study of cometary orbits. Shortly thereafter,
in an 1809 monograph on the mathematics of
planetary orbits, Gauss∗ first presented the
normal (or Gaussian) distribution of errors in
overdetermined systems of equations using a
form of Bayes’ theorem∗, though the actual
derivation was flawed.

Many other individuals also contributed
substantially to both astronomy and statis-
tics [40,14]. Galileo∗ gave an early discus-
sion of observational errors concerning the
distance to the supernova of 1572. Halley,
famous for his early contributions to celes-
tial mechanics, laid important foundations
to mathematical demography and actuar-
ial science. Bessel, codiscoverer of stellar
parallaxes and the binary companion of Sir-
ius, introduce the notion of probable error∗.
Adolphe Quetelet∗, founder of the Belgian
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Royal Observatory, led the application of
probability theory to the social sciences. Airy,
a Royal astronomer, is known both for his text
on statistical errors and his study of telescope
optics. See also LAWS OF ERROR—I, II, III.

STATISTICAL ASTRONOMY

As comprehensive all-sky catalogs of star
positions were compiled and astronomical
photography permitted faint stars to be loca-
ted, a field known as ‘‘statistical astronomy’’
rose to importance in the first half of this cen-
tury. It is concerned with various collective
properties of stars including their luminos-
ity and mass distribution functions, their
spatial distribution in the Milky Way, their
distances from us and the related problem of
light absorption in the interstellar medium,
and their motions with respect to the Sun
and to the center of the galaxy. The principal
results of these studies are discussed in the
monumental 1953 monograph of Trumpler
and Weaver [41]. Prephotographic statistical
discussions are reviewed in ref. 37 and more
recent findings can be found in refs. 38 and
12.

From these studies we have learned that
the Sun resides about 25 thousand light-
years off-center in a disk of a differentially
rotating spiral galaxy, with stars of increas-
ing ages occupying the galaxy’s spiral arms,
smooth disk, and halo. By comparing the
galactic mass inferred from star counts with
that inferred from their rotational velocities
around the galactic center, the existence of a
‘‘dark matter’’ component in the outer regions
of the galaxy is inferred. Dynamical studies
of other galaxies confirm that the mass in
visible stars and gas is dwarfed by the dark
matter in galaxy halos; yet astronomers do
not know whether the matter is in the form
of planets, elementary particles, black holes,
or some more exotic form.

We give two modern examples of studies
in galactic astronomy. Murray [25] derives
the joint densities of the observed parallaxes,
proper motions, and brightnesses for 6,125
stars, and computes the luminosity function,
scale height in the galactic disk, streaming
motions, and outliers with high velocities. A
maximum-likelihood technique is used; the
principal limitation is that parametric (e.g.,

Gaussian luminosity functions and observa-
tional errors, exponential scale heights for
stars in the disk) forms are assumed through-
out. Caldwell and Ostriker [8] seek fits of a
three-component model of the mass distri-
bution of the galaxy to 14 observationally
derived quantities constraining the size, den-
sity, and motions in the galaxy. A nonlinear
least-squares minimization algorithm is used
to find the minimum chi-squared∗ solution.

Perhaps the central problem in statistical
astronomy is the derivation of the intrinsic
luminosity distribution function of a class
of stars from a survey of the stars with
the greatest apparent brightnesses (usually
called a magnitude- or flux-limited survey).
The observed population contains an excess
of high luminosity stars, which can be seen
out to large distances, and a deficit of low
luminosity stars, which are bright enough
to appear in the sample only if they lie
close to us. Intrinsic or experimental errors
scatter faint stars preferentially into flux-
limited samples. These and related problems
are called the ‘‘Malmquist effects,’’ after the
Swedish astronomer who derived a correction
in 1920 for the bias for Gaussian luminosity
distributions.

Interest in luminosity functions
reemerged during the last decade with
attempts to understand the phenomenon
of quasar evolution [42]. The density of
quasars, which are galaxies possessing
extremely violent activity in their nuclei
probably due to an accreting massive black
hole, per unit volume was thousands of
times higher when the Universe was young
than it is today, indicating evolution of the
shape and/or amplitude of the luminosity
function. In 1971, Lynden-Bell [21] derived a
remarkably simple nonparametric maximum
likelihood∗ procedure for extrapolating from
a flux-limited data set (assumed to be
randomly truncated) of quasar counts to
obtain a complete luminosity function. The
method was largely unused by astronomers,
and unknown to statisticians until its
reexamination in 1985 by Woodroofe [43]. A
similar method was independently developed
by Nicoll and Segal [30] in support of Segal’s
proposed chronometric cosmology. A more
common approach to the quasar evolution
problem is to fit the data to parametric
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evolution formulas using least-squares∗

or maximum-likelihood criteria; see, for
example, Marshall [23].

STATISTICAL ANALYSIS OF MODERN
ASTRONOMICAL DATA

The modern observational astronomer is
typically schooled only in elementary tech-
niques such as the chi-squared test∗ and
least-squares regression, using computer
software such as that given by Beving-
ton [6]. Some nonparametric methods such as
Kolmogorov–Smirnov∗ and rank correlation∗

tests have come into frequent use, and com-
puter codes distributed by Press et al. [32]
are likely to bring other methods into the
astronomer’s repertoire. Unfortunately, very
few astronomers are familiar with the major
statistical software∗ packages such as SAS
or BMDP.

Interest in more sophisticated and special-
ized statistical techniques of data analysis
has emerged during the last decade. Murtagh
and Heck [26] have written a monograph
on multivariate techniques for astronomers,
with a thorough bibliography of astronomi-
cal applications. The proceedings of a 1983
conference devoted specifically to the subject
of statistical methods in astronomy is avail-
able [39]. An informal international Working
Group for Modern Astronomical Methodology
has formed, with a newsletter and announce-
ments of workshops published in ref. 7. Arti-
cles in the statistical literature include those
of Kendall [19], Scott [36], and Narlikar [28].
Following are brief descriptions of a few top-
ics of current interest.

Censored data∗. A common experiment in
astronomy entails the observations of a pre-
selected sample of objects at a new spectral
band, but some of the objects are not detected.
For example, only about 10% of optically
selected quasars are detected with the most
sensitive radio telescopes and about 50% with
the most sensitive satellite-borne X-ray tele-
scopes, unless unacceptably long exposure
times are devoted to the experiment. The data
thus suffer type I left-censoring in apparent
brightness, and a quasi-random censoring in
intrinsic luminosities because the quasars
lie at different distances. The studies seek

to measure the mean radio or X-ray lumi-
nosities of the sample, differences in the
luminosity functions between subsamples,
correlations and linear regressions between
luminosities in the various spectral bands,
and so forth.

Until recently astronomers were unaware
that survival analysis∗ statistical meth-
ods used by biostatisticians and oth-
ers were available that provide many
solutions to these questions. Avni, an
astrophysicist, independently derived the
‘‘redistribute-to-the-right’’ formulation of the
Kaplan–Meier product-limit estimator∗ [3],
and a maximum-likelihood linear regression∗

assuming normally distributed residuals [2].
Schmitt [35] has developed a linear regres-
sion procedure, based on the two-dimensional
Kaplan–Meier estimator and bootstrap error
analysis, which can be applied to data cen-
sored in both the dependent and independent
variables. Schmitt, Isobe, and Feigelson have
brought previously known survival analysis
methods into use for astronomical applica-
tions [35,10,18,17]. The principal difficulties
in adapting standard survival analysis to
astronomical situations are that the censor-
ing levels are usually not known precisely,
and the censoring patterns in flux-limited
data are usually not completely random.
These problems have yet to be addressed in
detail.

Spatial analysis of galaxy clustering. Our
Milky Way is but one of 1011 detectable galax-
ies, each containing up to ∼1011 luminous
stars and a greater but uncertain amount of
nonluminous matter. The galaxies appear to
be rushing away from each other in a uni-
versal expansion that started 10–20 billion
years ago. Correct modeling of the spatial and
velocity distribution of the visible galaxies is
critical for understanding the history of the
Universe, and for determining whether or
not the Universe will cease expanding and
recollapse. (Poisson point process∗). Other
statistical analyses followed including the
nearest-neighbor∗ distance distribution, the
multiplicity function, and, most extensively,
the two- and three-point correlation func-
tions [31]. The power law two-point corre-
lation function found for galaxies could be
explained as the result of simple gravita-
tional interactions of matter in an initially
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homogeneous Universe with an appropriate
spectrum of density fluctuations.

Galaxies are not distributed randomly but
are strongly clustered on many spatial scales.
Neyman and Scott [29,36] were among the
first to study this during the 1950s, using a
hierarchy of clusters distributed as a uniform
Poisson point process∗.

By the middle 1980s, however, surveys
of thousands of galaxy recessional veloci-
ties had been completed, revealing an unex-
pectedly anisotropic clustering pattern, as
illustrated in Fig. 1 [9]. The galaxies seem
to be concentrated along the edges of giant
shells. The effect is sometimes referred to as
‘‘filaments’’ or ‘‘sheets’’ surrounding ‘‘voids,’’
with a ‘‘spongelike’’ topology. The largest
structures may exceed one-tenth the size of
the observable Universe. In addition, large
regions of the Universe may be moving
in bulk with respect to other regions [22].
None of these phenomena can be easily

explained by simple gravitational effects in
an initially homogeneous Universe. Statisti-
cal modeling of these data has just begun.
Suggested methods include minimal span-
ning trees∗ [5], random walks∗ [20], ridge-
finding algorithms [24], measures of topolog-
ical curvature [13], and a quadrupole elonga-
tion statistic [11]. The study of Lynden-Bell
et al. [22] is also of methodological inter-
est, illustrating how sophisticated maximum-
likelihood models of galaxy location and
motions have become.

Analysis of periodic time series. Stellar
systems often exhibit periodic behavior, from
vibrations or rotations of single stars to orbits
of two or more bodies in mutual gravita-
tional orbits. Time scales run from millisec-
onds to hundreds of years, and the data can
involve any portion of the electromagnetic
spectrum. For example, time series of X-ray
emission from binary star systems where one
companion of an accreting neutron star or

Figure 1. A ‘‘slice of the Universe’’ showing the spatial distribution of bright galaxies in a portion
of the sky [9]. It shows the strongly anisotropic clustering pattern of ‘‘filaments’’ surrounding
‘‘voids.’’ Courtesy of M. Geller, Center for Astrophysics.
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black hole are quite interesting. Some sys-
tems show one or more strict periodicities,
others random shot noise or white noise,
others occasional sudden bursts of x-rays,
and yet others combinations of 1/f noise and
quasi-periodic oscillations. Certain of these
behaviors are understood as rotational or
orbital effects, whereas others are still mys-
terious.

A time-series∗ problem that has attracted
recent methodological interest is the diffi-
culty of establishing the existence of binary
star orbits from optical photometric or veloc-
ity time series, which often consist of sparse,
unevenly spaced, and noisy data. The issue is
important because as many as half of the
‘‘stars’’ one sees at night may in fact be
wide binaries. Classical Fourier analysis∗,
which assumes evenly spaced data points,
is not an adequate method, and a variety
of alternatives have been proposed. One is
the periodogram∗, which can be equivalent
to least-squares fitting of sine curves to the
data [34,16]. Several nonparametric methods
have also been evaluated [15]. The principal
difficulty with all methods is usually not find-
ing the highest peak in the spectrum, but
in evaluating its statistical significance and
eliminating false alarms. Both analytical and
bootstrap methods for measuring confidence
limits have been suggested, but no consen-
sus has emerged on the best treatment of the
problem.

Image restoration techniques. Many
classes of objects in the sky have complicated
morphologies, and much effort is devoted
to imaging them accurately. This entails
compensation for the distortions caused by
imperfect optics of the telescope or tur-
bulence in the Earth’s atmosphere, and
nonlinearities in detectors such as photo-
graphic plates. Perhaps the greatest need
for sophisticated image restoration∗ is in
‘‘aperture synthesis’’ interferometry, a tech-
nique developed in radio astronomy that
combines the signals from separated indi-
vidual radio antennas to produce a single
high-resolution image [33,27]. The data con-
sist of the two-dimensional Fourier transform
of the brightness distribution in the sky,
but the coverage in the Fourier plane is
incomplete. Simple Fourier transformation
thus gives an image contaminated by strong

side lobes. Two restoration methods are com-
monly used: The ‘‘CLEAN’’ algorithm, which
gives a least-squares fit to a superposition
of many point sources; and the maximum
entropy method∗, which gives the most prob-
able nonnegative smooth image consistent
with the data. Both require prior knowledge
of the coverage in the Fourier plane. The
resulting CLEANed map can then be used as
an improved model of the sky distribution to
‘‘self-calibrate’’ unpredicted instrumental or
atmospheric disturbances. After many itera-
tions, which can take hundreds of CPU-hours
on large computers, images with extraordi-
narily high fidelity have been achieved with
dynamic range (brightest spot in the image
divided by the root mean square noise level)
of order 105 : 1. Maximum entropy image
enhancement techniques are sometimes also
used in optical and X-ray astronomy as well
as radio interferometry.

Statistics of very few events. Important
branches of astronomy have emerged in the
last few decades from experimental physics
that involve the detection of small num-
bers of discrete events. These include cos-
mic ray, X-ray, gamma-ray, and neutrino
astronomy. With the proliferation of photon-
counting detectors like charged-coupled devi-
ces, such data are becoming increasingly
common in optical astronomy as well. The
statistical procedures for interpreting these
data are traditionally based on the Poisson
distribution, though use of nonparametric
and maximum likelihood techniques is also
appearing.

A premier example of this problem was
the detection of neutrinos from the super-
nova SN1987A, initiated by the gravitational
collapse of a star in a satellite galaxy of our
Milky Way. The detection represented the
first astronomical object other than the Sun
ever detected in neutrinos, and provides a
unique opportunity to test a host of mod-
els of high-energy and nuclear astrophysics.
The data consist of 11 events in 13 seconds
in the Kamiokande-II underground detector,
and 8 events in 6 seconds in the IMB detec-
tor. The timing of the events constrain the
mass of the neutrino, which could be the
most massive component of the Universe
[4,1]. However, different treatments of the
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same data give considerably different neu-
trino mass limits.

SUMMARY

Many aspects of modern astronomy are sta-
tistical in character, and demand sophis-
ticated statistical methodology. In light of
this situation, and the rich history of the
interaction between astronomy and statis-
tics through the nineteenth century, it is
surprising that the two communities have
been so isolated from each other in recent
decades. Astronomers dealing with censored
data, for example, were unaware of the rel-
evant progress in biostatistics∗ and indus-
trial reliability applications until recently.
Most are not familiar with multivariate tech-
niques extensively used in the social sciences.
Conversely, statisticians were unaware of
Lynden-Bell’s maximum-likelihood density
estimation technique for a truncated dis-
tribution. There is little communication
between astronomers analyzing the spatial
distribution of galaxies (Fig. 1) and statisti-
cians involved with point spatial processes∗

arising in other fields. Improved interactions
between the two fields is clearly needed. It
would give astronomers more effective tech-
niques for understanding the Universe, and
statisticians challenging and important prob-
lems to address.
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29. Neyman, J. and Scott, E. L. (1952). Astrophys
J., 116, 144.

30. Nicoll, J. F. and Segal, I. E. (1983). Astron.
Astrophys., 118, 180.

31. Peebles, P. J. E. (1980). The Large-Scale
Structure of the Universe. Princeton Univer-
sity Press, Princeton, NJ.



258 ASYMMETRIC POPULATION

32. Press, W. H., Flannery, B. P., Teukolsky,
S. A., and Vetterling, W. T. (1986). Numeri-
cal Recipes: The Art of Scientific Computing.
Cambridge University Press, London.

33. Roberts, J. A., ed (1984). Indirect Imaging.
Cambridge University Press, London.

34. Scargle, J. D. (1982). Astrophys. J., 263,
835.

35. Schmitt, J. H. (1985). Astrophys. J., 293,
178.

36. Scott, E. L. (1976). In On the History of Statis-
tics and Probability, D. B. Owen, ed. Marcel
Dekker, New York.

37. Sheynin, O. B. (1984). Archive for History of
Exact Sciences, 29, 151–199.

38. Stars and Stellar Systems (1962–75). Univer-
sity of Chicago Press, Chicago. 9 volumes.

39. Statistical Methods in Astronomy (1983). SP-
201, European Space Agency, ESA Scien-
tific and Technical Publications, c/o ESTEC,
Noordwijk, Netherlands.

40. Stigler, S. M. (1986). The History of Statistics:
The Measurement of Uncertainty Before 1900.
Harvard University Press, Cambridge, MA.

41. Trumpler, R. J. and Weaver, H. F. (1953).
Statistical Astronomy. University of Califor-
nia Press, Berkeley, CA.

42. Weedman, D. (1986). Quasar Astronomy. Rei-
del, Dordrecht, Netherlands.

43. Woodroofe, M. (1985). Ann. Statist., 13,
163.

BIBLIOGRAPHY
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EDITORIAL NOTE

S. R. Searle [Commun. Statist. A, 17, 935–
968 (1988)] notes that the earliest appear-
ances of variance components∗ are in two
books on astronomy, namely:

Airy, G. B. (1861). On the Algebraical and
Numerical Theory of Errors of Observations and

the Combination of Observations. Macmillan,
London.

and

Chauvenet, W. (1863). A Manual of Spherical
and Practical Astronomy. Lippincott, Philadel-
phia.

Searle also draws attention to the fact that
the development of the least-squares∗ esti-
mation of parameters in linear models was
presented in books on astronomy, namely:

Gauss, K. F. (1809). Theoria Motus Corporum
Coelestium in Sectionibus Conics Solem Ambi-
entium. Perthes and Besser, Hamburg.

and

Legendre, A. M. (1806). Nouvelles Methodes
pour Determination des Orbites des Comètes.
Courcier, Paris.

See also DIRECTIONAL DATA ANALYSIS; DISCRIMINANT

ANALYSIS; GAUSS, CARL FRIEDRICH; HIERARCHICAL

CLUSTER ANALYSIS; LEAST SQUARES; LINEAR REGRESSION;
MULTIVARIATE ANALYSIS; NEWCOMB, SIMON; OUTLIER

REJECTION, CHAUVENET’S CRITERION; and STATISTICS:
AN OVERVIEW.

ERIC D. FEIGELSON

ASYMMETRIC POPULATION

A population or a distribution that is not
symmetric is asymmetric. The property of
asymmetry is also related to skewness. It
should be noted, however, that measures of
skewness* usually correspond to some partic-
ular feature of symmetry. The third central
moment µ3, for example, is indeed zero for
symmetric populations, but it can also be zero
for populations that are asymmetric.

It is better to limit the use of the adjective
‘‘asymmetric’’ to distributions, and not apply
it to populations.

See also MEAN, MEDIAN, AND MODE; SKEWNESS:
CONCEPTS AND MEASURES; and SKEWNESS, MEASURES

OF.
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ASYMPTOTIC EXPANSIONS—I

Many test statistics and estimators have
probability distributions that may be approx-
imated quite well by a normal distribution∗

in the case of a sufficiently large sample size.
This is of practical use, for example, in such
problems as determining critical regions∗ for
tests of specified sizes and determining confi-
dence regions∗ with specified confidence coef-
ficients.

Let Tn denote a test statistic based on a
sample X1, . . . , Xn from a distribution F, let
an and bn be suitable normalizing constants,
and let Gn denote the distribution of the
normed statistic (Tn − an)/bn. The ‘‘normal
approximation’’ is expressed by

lim
n→∞Gn(t) = �(t) (−∞ < t <∞), (1)

where

�(t) = (2π )−1/2
∫ t

−∞
exp(−x2/2)dx,

the standard normal distribution∗ function.
Often (1) can be established under moderate
regularity assumptions on the distribution
function F and the functional form of the
statistic Tn. See ASYMPTOTIC NORMALITY.

Of fundamental importance is the ques-
tion of the error of approximation in (1) for
a particular value of n. One useful type of
answer is supplied by a ‘‘Berry-Esséen’’ rate,
namely an assertion of the form

sup
−∞<t<∞

|Gn(t)−�(t)| = O(n−1/2), (2)

available under additional restrictions on
F and the form of Tn (see CENTRAL LIMIT

THEOREMS, CONVERGENCE RATES FOR). A
more refined answer is given by an expansion
of the error Gn(t)−�(t) in powers of n−1/2.
This requires additional restrictions on F and
Tn. However, not only does it provide detailed
information in (2), but it also supplies a way
to replace �(t) by an improved approxima-
tion. Below we shall survey such expansions
for the key special case that Tn is a sum, and
then we shall comment briefly on other cases.
For more details see the entries devoted to
specific expansions.

Let X1, X2, . . . be independent and identi-
cally distributed random variables with dis-
tribution F, mean µ, variance σ 2, and char-
acteristic function∗ ψ . Let Gn denote the
distribution of the normed sum (

∑n
1 Xi − nµ)/

(n1/2σ ). If Cramér’s condition

(C) lim
|z|→∞

sup |ψ(z)| < 1

is satisfied and the kth moment of F is finite,
then

∣∣∣∣∣∣Gn(t)−�(t)−
k−3∑
j=1

P3j−1(t)e−t2/2n−j/2

∣∣∣∣∣∣
< Mn−(k−2)/2, (3)

where M is a constant depending on k and
F but not on n or t, and Pm(t) is a poly-
nomial (essentially the Chebyshev–Hermite
polynomial∗) of degree m in t. Indeed, we
have the expressions

P2(t)e−t2/2 = −(λ3/3!)�(3)(t),

P3(t)e−t2/2 = (λ4/4!)�(4)(t)

+ (10λ2
3/6!)�(6)(t), . . . ,

where λj denotes the jth cumulant∗ of F [the
coefficient of (iz)j/j! in the MacLaurin series
expansion of logψ(z)]. We may express λj
(essentially) as a polynomial in the moments
of F, obtaining in particular

λ3 = E[(X − µ)3]
σ 3 = γ1

and

λ4 = E[(X − µ)4]
σ 4 − 3 = γ2,

known as the coefficients of skewness∗ and
of kurtosis∗, respectively. Therefore, up to
terms of order n−1, which usually suffices
in practical applications, the approximation
given by (3) may be written conveniently in
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the form

Gn(t) .= �(t)− γ1

6
(t2 − 1)φ(t)n−1/2

−
[
γ2

24
(t3 − 3t)+ γ

2
1

72

× (t5 − 10t3 + 15t)

]
φ(t)n−1, (4)

with error O(n−3/2) uniformly in t.
The expansion (3) is called the Edgeworth

expansion for Gn. Corresponding expansions
for the density gn follow by replacing all func-
tions of t by their derivatives. The assump-
tion (C) is always satisfied if the distribu-
tion F has an absolutely continuous compo-
nent. Analogs of (3) hold under alternative
conditions on F, e.g., the case of a lattice
distribution∗. Versions also have been devel-
oped allowing the Xi’s to have differing distri-
butions or to be stationary dependent. Fur-
thermore, other metrics besides supt |Gn(t)−
�(t)| have been treated. For extensive treat-
ments of (3) and these various ramifications,
see [2,3,7,9,10,12].

An inverse problem related to (3) concerns
the equation

Gn(tp) = 1− p,

where 0 < p < 1. The solution tp may be
expressed asymptotically as

tp ∼ µ+ σw, (5)

where w is given by the Cornish–Fisher
expansion∗, which like (3) involves the quan-
tities {λi} and the Chebyshev–Hermite poly-
nomials.

For detailed numerical illustration of
the effectiveness of the expansions (3) and
(5), see Abramowitz and Stegun [1], pp.
935–936, 955, 958–959. As noted in con-
nection with (4), the improvement of the
Edgeworth approximation over simply the
normal approximation can be attributed to
use of the coefficients of skewness and kurto-
sis; this provides a convenient intuitive basis
for assessing the potential degree of improve-
ment. Numerical illustration related to (4) is
provided by Bickel and Doksum [5].

Finally, let us consider statistics other
than sums. For such cases the question
of asymptotic normality∗, (1), has received
extensive treatment. Secondarily, the associ-
ated Berry–Esséen rates, (2), have received
attention. Consequently, results of types
(1) and (2) are now available for sev-
eral important wide classes of statistics:
U-statistics∗; von Mises differentiable sta-
tistical functions∗; linear functions of order
statistics; M-estimates∗; and rank statistics∗.
Detailed exposition may be found in Serfling
[11]. see also ASYMPTOTIC NORMALITY. How-
ever, except for isolated results, the question
of asymptotic expansions analogous to (3) has
only very recently gained intensive interest
and development. For comments on Edge-
worth expansions for rank statistics, such
as the two-sample Wilcoxon statistic, see
Hájek and S̆idák [8], Sec. IV.4.2. Multivariate
Edgeworth-type expansions are discussed by
Chambers [6]. For a review of recent activity,
see Bickel [4].
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8. Hájek, J. and Šidák, Z. (1967). Theory of Rank
Tests. Academic Press, New York.

9. Ibragimov, I. A. and Linnik, Y. V. (1971).
Independent and Stationary Sequences
of Random Variables. Wolters-Noordhoff,
Groningen.

10. Petrov, V. V. (1975). Sums of Independent
Random Variables. Springer-Verlag, New
York.



ASYMPTOTIC EXPANSIONS—II 261

11. Serfling, R. J. (1980). Approximation Theo-
rems of Mathematical Statistics. Wiley, New
York.

12. Wallace, D. (1958). Ann. Math. Statist., 29,
635–654.

See also APPROXIMATIONS TO DISTRIBUTIONS; ASYMPTOTIC

NORMALITY; CENTRAL LIMIT THEOREMS, CONVERGENCE

RATES FOR; CORNISH–FISHER AND EDGEWORTH

EXPANSIONS; and LIMIT THEOREM, CENTRAL.

R. J. SERFLING

ASYMPTOTIC EXPANSIONS—II

Asymptotic expansions of functions are use-
ful in statistics in three main ways. Firstly,
conventional asymptotic expansions of spe-
cial functions are useful for approximate com-
putation of integrals arising in statistical
calculations. An example given below is the
use of Stirling’s approximation to the gamma
function. Second, asymptotic expansions of
density or distribution functions of estima-
tors or test statistics can be used to give
approximate confidence limits for a param-
eter of interest or p-values for a hypothesis
test. Use of the leading term of the expansion
as an approximation leads to confidence lim-
its and p-values based on the limiting form
of the distribution of the statistic, whereas
use of further terms often results in more
accurate inference. Third, asymptotic expan-
sions for distributions of estimators or test
statistics may be used to investigate proper-
ties such as the efficiency of an estimator
or the power of a test. The first two of
these are discussed in this entry, which is
a continuation of Serfling [35]. The third is
discussed in the entry ASYMPTOTICS, HIGHER

ORDER∗.
An asymptotic expansion of a function is

a reexpression of the function as a sum of
terms adjusting a base function, expressed
as follows:

fn(x) = f0n(x)[1+ b1ng1(x)+ b2ng2(x)

+ · · · + bkngk(x)+O(bk+1,n)]

(n→∞). (1)

The sequence {bkn} = {1, b1n, b2n, . . .} deter-
mines the asymptotic behavior of the

expansion: in particular how the reexpres-
sion approximates the original function.
Usual choices of {bkn} are {1, n−1/2, n−1, . . .}
or {1, n−1, n−2, . . .}; in any case it is required
that bkn = o(bk−1,n) as n→∞. For sequences
of constants {an}, {bn}, we write an = o(bn)
if an/bn → 0 as n→∞, and an = O(bn) if
an/bn remains bounded as n→∞. The nota-
tion op(·), Op(·) is useful for sequences of
random variables {Yn} : Yn is op(an) if Yn/an
converges in probability to 0 as n→∞, and is
Op(an) if |Yn/an| is bounded in probability as
n→∞.

Asymptotic expansions are used in many
areas of mathematical analysis. Three help-
ful textbooks are Bleistein and Handelsman
[9], Jeffreys [25], and DeBruijn [18]. An
important feature of asymptotic expansions
is that they are not in general convergent
series, and taking successively more terms
from the right-hand side of (1) is not guar-
anteed to improve the approximation to the
left-hand side. In the study of asymptotic
expansions in analysis, emphasis is typically
on fn(x) as a function of n, with x treated as
an additional parameter, and n considered as
the argument of the function. In these treat-
ments it is usual to let n be real or complex,
and the notation f (z; x) or f (z) is more stan-
dard. The functions gj(·) that we have used
in (1) are then just constants (in z), and the
sequence {bkn} is typically {z−k} if z→∞ or
{zk} if z→ 0.

An asymptotic expansion is used to pro-
vide an approximation to the function fn(x) by
taking the first few terms of the right-hand
side of (1): for example, we might write

fn(x) = f0n(x)[1+ b1ng1(x)].

Although the approximation is guaranteed
to be accurate only as n→∞, it is often
quite accurate for rather small values of n. It
will usually be of interest to investigate the
accuracy of the approximation for various
values of x as well, an important concern
being the range of values for x over which the
error in the approximation is uniform.

In statistics the function fn(x) is typi-
cally a density function, a distribution func-
tion, a moment or cumulant generating func-
tion, for a random variable computed from
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a sequence of random variables of length
n. For example, fn(x) could be the density
of the standardized mean Xn, say, of n inde-
pendent, identically distributed random vari-
ables Xi : Xn =

∑
Xi/n. In this case the func-

tion f0n(x) is the limiting density for the stan-
dardized version of Xn, usually the normal
density function φ(x) = (2π )−1/2 exp(−x2/2);
see ASYMPTOTIC NORMALITY.

ASYMPTOTIC EXPANSIONS OF SPECIAL
FUNCTIONS

A familiar asymptotic expansion is that of
the gamma function �(z) = ∫∞

0 tz−1e−t dt by
Stirling’s formula∗ given, for example, in
Abramowitz and Stegun [1, Sec. 6.1.37]:

�(z) = e−zzz−1/2(2π )1/2

×
(

1+ 1
12z
+ 1

288z2 +O(z−3)
)

(z→∞ in | arg z| < π ). (2)

The leading term of the right-hand side is
Stirling’s approximation to the gamma func-
tion. There are similar expansions given in
Abramowitz and Stegun [1, Chap. 6] for log
�(z) and its first two derivatives, the di-
gamma and trigamma functions. The approx-
imations given by the first several terms in
these expansions are used, for example, in
computing the maximum-likelihood estima-
tor and its asymptotic variance for a sample
from a gamma density with unknown shape
parameter.

Another example is the asymptotic expan-
sion for the tail of the standard normal cumu-
lative distribution function:

1−�(z) =
∫ ∞

z
(2π )−1/2 exp

(
−x2

2

)
dx

= φ(z)z−1
(

1− 1
z2 +

3
z4 +O(z−6)

)
.

(3)

The quantity [1−�(z)]/φ(z) is often called
Mills’ ratio∗.

The asymptotic expansions given above
are examples of expansions obtained using
Laplace’s method∗. Laplace’s method is also
very useful for deriving approximations to
integrals arising in Bayesian inference.

EDGEWORTH AND SADDLEPOINT
EXPANSIONS

For statistics that are asymptotically nor-
mally distributed, the Edgeworth expansion
for density or distribution functions gives a
useful and readily computed approximation.
Such statistics are typically either sample
means or smooth functions of sample means,
and the Edgeworth expansion for the dis-
tribution function of a standardized sample
mean is given in Serfling [35]. We assume
for simplicity that X1, . . . , Xn are indepen-
dent and identically distributed. Define Sn =
n1/2(Xn − µ)/σ , where µ and σ 2 are the mean
and variance of Xi. The Edgeworth expansion
for the density of Sn is

fn(s) = φ(s)
[
1+ 1

n1/2

λ3

6
h3(s)

+1
n

(
λ4

24
h4(s)+ λ

2
3

72
h6(s)

)

+O(n−3/2)
]

, (4)

where λ3 and λ4 are the third and fourth
cumulants of (Xi − µ)/σ , and, hj(s) = (−1)j

φ(j)(s)/φ(s) is the jth Hermite polynomial.
Note that (4) suggests the use of the first

three terms as an approximation to the exact
density, with the remaining terms absorbed
into the expression O(n−3/2). The full expan-
sion for the distribution function is given in
Serfling [35]. The Edgeworth expansion is
derived in many textbooks; cf. the references
in Serfling [35], Feller [22, Chap. 16], McCul-
lagh [30, Chap. 6], and Barndorff-Nielsen and
Cox [5, Chap. 4]. See also CORNISH–FISHER

AND EDGEWORTH EXPANSIONS.
The Edgeworth approximation is quite

accurate near the center of the density. In
particular, at x = µ the relative error in using
the normal approximation is O(n−1), and that
in using the approximation suggested by (4) is
O(n−2), because the odd-order Hermite poly-
nomials are 0 at s = 0. For large values of |s|,
though, the approximation is often inaccu-
rate for fixed values of n, as the polynomials
oscillate substantially as |s| → ∞. A partic-
ular difficulty is that the approximation to
fn(s) may in some cases take negative values.
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A different type of asymptotic expansion
for the density of a sample mean is given by
the saddlepoint expansion. Let the cumulant
generating function of Xi be denoted by K(t).
The saddlepoint expansion for the density of
X is defined by

fn(x) = 1√
2π

(
n

|K ′′(ẑ)|
)1/2

exp{n[K(ẑ)− ẑx]}

×
(

1+ 3λ4(ẑ)− 5λ2
3(ẑ)

24n
+O(n−2)

)
,(5)

where ẑ is called the saddlepoint and is
defined by K ′(ẑ) = x, and the rth cumulant
function λr(z) = K (r)(z)/[K ′′(z)]r/2. Note that
this is an asymptotic expansion in powers
of n−1. The next term in the expansion is
a complicated expression involving cumulant
functions up to order 6. The leading term of
(5) is the saddlepoint approximation∗ to the
density of Xn. This expression is always posi-
tive, but will not usually integrate to exactly
one, so in practice it is renormalized. The
renormalization improves the order of the
approximation:

fn(x) = c
(

n
|K ′′(ẑ)|

)1/2

exp{n[K(ẑ)− ẑx]}

×[1+O(n−3/2)]. (6)

Evaluating the saddlepoint approximation
requires knowledge of the cumulant gener-
ating function K(z). Approximations based
on estimating K(z) by estimating the first
four cumulants are discussed in Easton and
Ronchetti [21], Wang [41], and Cheah et al.
[10].

The saddlepoint approximation to the dis-
tribution function of X can be obtained by
integrating (6) or by applying the saddlepoint
technique; the result, due to Lugannani and
Rice [29], is

Fn(x) = �(r)+ φ(r)
(

1
r
− 1

q

)
, (7)

where

r = sign(q)[2n[K(ẑ)− ẑx]]1/2,

q = ẑ[K ′′(ẑ)]1/2.

The approximation (7) is often surprisingly
accurate throughout the range of x, except
near x = µ or r = 0, where it should be re-
placed by its limit as r→ 0:

Fn(µ) = 1
2 − 1

6λ3(0)/
√

2πn.

The approximation (7) has relative error
O(n−1) for all x and O(n−3/2) for the so-
called moderate deviation region x− µ =
O(n−1/2). It can be expressed in an asymp-
totically equivalent form by defining r∗ =
r+ r−1 log(q/r): the approximation

Fn(x) .= �(r∗), (8)

originally due to Barndorff-Nielsen [4], is
asymptotically equivalent to (7).

The approximations (5) and (7) were deri-
ved in Daniels [13] and Lugannani and Rice
[29], respectively, using the saddlepoint tech-
nique of asymptotic analysis. Daniels [15]
exemplifies the derivation of (7). Both Kolassa
[27] and Field and Ronchetti [23] provide
rigorous derivations of (5) using the sad-
dlepoint method. General discussions of the
saddlepoint method can be found in Bleistein
and Handelsman [9] or Courant and Hilbert
[11]. The approximations can also be derived
from the Edgeworth expansion; cf. Barndorff-
Nielsen and Cox [5, Chap. 4], where (5) is
called the tilted Edgeworth expansion.

The Edgeworth and saddlepoint approxi-
mations for distribution functions discussed
here apply to continuous random variables,
and adjustments to the approximations are
needed in the case that the variables Xi takes
values on a lattice. The details are provided
in Kolassa [27, Chaps. 3, 5].

For vector Xi of length m, say, multi-
variate versions of the Edgeworth and sad-
dlepoint density approximations are read-
ily available. The multivariate Edgeworth
approximation requires for its expression a
definition of generalized Hermite polynomi-
als, which are conceptually straightforward
but notationally complex. A brief account is
given in Reid [33], adapted from McCullagh
[30, Chap. 5]. The multivariate version of
the saddlepoint approximation is the same
as (6), with K(z) = log E exp(zTx), ẑTx inter-
preted as a scalar product of the two vectors
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ẑ and x, and |K ′′(ẑ)| interpreted as the deter-
minant of the p× p matrix of second deriva-
tives of the cumulant generating function.
The distribution-function approximation (7)
is only available for the univariate case, but
an approximation to the conditional distri-
bution function Pr(X(1) � x(1)|x(2)) is derived
in Skovgaard [36] and extended in Wang
[39] and Kolassa [27, Chap. 7]. The form
of this approximation has proved very useful
for inference about scalar parameters in the
presence of nuisance parameters∗.

The Edgeworth and saddlepoint approx-
imations are both based on a limiting nor-
mal distribution for the statistic in question.
Some statistics may have a limiting dis-
tribution that is not normal; in particular,
sample maxima or minima usually have lim-
iting distributions of the extreme-value form.
For such statistics a series expansion of the
density in which the basic function corre-
sponds to the limiting density may be of
more practical interest. In principle this is
straightforward, and for example McCullagh
[30, Chap. 5] derives Edgeworth-type expan-
sions using arbitrary basis functions and the
associated orthogonal polynomials. Examples
of saddlepoint approximations based on non-
normal limits are discussed in Jensen [26]
and Wood et al. [42].

STOCHASTIC ASYMPTOTIC EXPANSIONS

It is often very convenient in deriving asymp-
totic results in statistics to use stochastic
asymptotic expansions, which are analogues
of (1) for random variables. For a sequence
of random variables {Yn} a stochastic asymp-
totic expansion is expressed as

Yn = X0 + X1b1n + · · · + Xkbkn

+Op(bk+1,n), (9)

where {X0, X1, . . .} have a distribution not
depending on n. Stochastic asymptotic expan-
sions are discussed in Cox and Reid [12] and
in Barndorff-Nielsen and Cox [5, Chap. 5]. As
an example, Cox and Reid [12] show that if
Yn follows a chi-squared distribution with n
degrees of freedom, then

Yn − n√
2n

= X0 + 1
n1/2

√
2

3
(X2

0 − 1)

+Op(n−1),

where X0 is a standard normal random
variable. The relationship between stochas-
tic asymptotic expansions and expansions
for the corresponding distribution functions
is discussed in Cox and Reid [12]. Expan-
sions similar to (9) where the distributions
of X0, X1, . . . are only asymptotically free of
n are very useful in computing asymptotic
properties of likelihood-based statistics.

An expansion closely related to (9) but
usually derived in the context of the Edge-
worth expansion for the distribution function
of the sample means is the Cornish—Fisher
expansion∗ for the quantile of the distribu-
tion function. As described in Serfling [35], an
expansion for the value sα satisfying Fn(sα) =
1− α can be obtained by a reversion of the
Edgeworth expansion. The result is

sα = zα + 1
6
√

n
(z2
α − 1)λ3

+ 1
24n

(z3
α − 3zα)λ4

− 1
36n

(2z3
α − 5zα)λ2

3 +O(n−3/2),

where zα satisfies �(zα) = 1− α. Other
asymptotic expansions for Fn(s) lead to alter-
native expansions for sα , and in particular the
r∗-approximation given at (8) can be derived
from the saddlepoint expansion for the dis-
tribution function of Xn.

APPLICATIONS TO PARAMETRIC INFERENCE

There has been considerable development of
statistical theory based on the use of higher-
order approximations derived from asymp-
totic expansions. Likelihood-based inference,
or inference from parametric models, has
developed particularly rapidly, although the
approximations are very useful in other con-
texts as well. Some examples of this will now
be sketched.

Suppose that X = (X1, . . . , Xn) is a sample
from a parametric model that is an exponen-
tial family∗, i.e., is of the form

f (x; θ ) = exp[θTx− b(θ )− d(x)], (10)

where X and θ take values in Rm, say. The
minimal sufficient statistic is S = s(X) =∑

Xi, and the maximum-likelihood estimator
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of θ is a one-to-one function of S : c′(θ̂) = S/n.
Thus the saddlepoint approximation of S
given in (7) can be used to give an approxi-
mation to the density for θ̂ , which takes the
form

fn(θ̂; θ ) = c|b′′(θ̂)|1/2

× exp[(θ − θ̂ )′s− nb(θ )+ nb(θ̂ )].

If we denote the log-likelihood function for θ
based on x by !(θ; x), and the observed Fisher
information∗ function −∂2!(θ )/∂θθT by j(θ ),
we can reexpress this approximation as

fn(θ̂; θ ) = c|j(θ̂ )|1/2 exp[!(θ; x)− !(θ̂; x)] (11)

This approximation to the density for the
maximum-likelihood estimator is usually
known as Barndorff-Nielsen’s approxima-
tion, or, following Barndorff-Nielsen, the p∗

approximation. Although it has been used
here to illustrate the saddlepoint approxima-
tion in an exponential family, the approx-
imation (11) is valid quite generally. This
was exemplified and illustrated in Barndorff-
Nielsen [2, 3] and several subsequent papers.
A review of the saddlepoint approximation
and the literature on the p∗-formula∗ through
1987 is given in Reid [33]. A general proof and
discussion of the interpretation of the p∗ for-
mula is given in Skovgaard [38]. Chapters 6
and 7 of Barndorff-Nielsen and Cox [6] pro-
vide an extensive discussion of the p∗ formula
and its applications in parametric inference.
The validity of (11) in more general mod-
els requires the existence of a one-to-one
transformation from the minimal sufficient
statistic to (θ̂ , a), where a is a complementary
statistic with a distribution either exactly or
approximately (in a specific sense) free of θ ;
such statistics are called exact or approx-
imate ancillary∗ statistics. The right-hand
side of (11) then approximates the conditional
distribution of θ̂ , given a.

An illustration of the cumulative-distribu-
tion-function approximation (7) in the expo-
nential family is also instructive. Suppose in
(10) that m = 1. Then (7) provides an approx-
imation to the distribution function for the

maximum-likelihood estimate which is sim-
ply

Fn(θ̂; θ ) = �(r)
(

1
r
− 1

q

)
= �

(
r− r−1 log

r
q

)
= �(r∗), (12)

where

r = sign(θ̂ − θ ){2[!(θ̂)− !(θ )]},
q = (θ̂ − θ )|j(θ̂)|1/2

are the signed square root of the log-likelihood
ratio statistic and the standardized maxi-
mum-likelihood estimator, respectively, and
r∗ = r+ r−1 log(q/r).

As with the p∗ approximation, the approx-
imation (12) holds much more generally, with
q replaced by a sometimes complicated statis-
tic that depends on the underlying model and
in particular on the exact or approximate
ancillary statistic required for the validity of
(11) in general models. Furthermore, (12) can
be applied to marginal and conditional dis-
tributions for the maximum-likelihood esti-
mate of a parameter of interest, after nui-
sance parameters have been eliminated via a
marginal or conditional likelihood. A recent
accessible reference is Pierce and Peters [32].
The approximation due to Skovgaard [36]
is an important ingredient in this devel-
opment. The r∗ approximation, which for
general families is due to Barndorff-Nielsen
[4], is discussed in Barndorff-Nielsen and Cox
[6, Chap. 6].

As an illustration of stochastic asymp-
totic expansions in likelihood-based infer-
ence, consider Taylor series expansion of
the score equation !′(θ̂ ) = 0 (assuming for
simplicity that this uniquely defines the
maximum-likelihood estimator):

0 = !′(θ )+ (θ̂ − θ )!′′(θ )

+ 1
2 (θ̂ − θ )2!′′′(θ )+ · · · . (13)

Reversion of this expansion gives an expan-
sion for the maximum-likelihood estimator
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that can be expressed as

√
n(θ̂ − θ ) = Z1(θ )

i(θ )
+ 1√

n

⌈
Z2(θ )Z1(θ )

[i(θ )]2

+Z3
1(θ )ρ3(θ )
2[i(θ )]3

⌉
+Op(n−1), (14)

where Z1 = n−1/2!′(θ ) and Z2 = n−1/2 ×
[!′′(θ )− ni(θ )], i(θ ) = n−1E[!′(θ )]2, ρ3(θ ) =
n−1E[!′′′(θ )]. The random variables Z1 and
Z2 are Op(1) and have mean zero. In expan-
sions of this type it is much easier to keep
track of the orders of various terms using
these standardized variables Z; this notation
is originally due to D. R. Cox, and is exten-
sively use as well in McCullagh [30, Chap. 7].

The expansion (14) is a type of stochas-
tic asymptotic expansion, although strictly
speaking the distributions for Z1, Z2 are only
asymptotically free of n. The leading term
of (14) gives the usual asymptotic normal
approximation for the maximum-likelihood
estimator, and the next-order term is useful
for deriving refinements of this. For example,
it is readily verified that the expected value
of θ̂ has the expansion

E(θ̂ ) = θ + n−1 i′(θ )+ ρ3(θ )/2
[i(θ )]2 +O(n−2),

and that var(θ̂) = [ni(θ )]−1 +O(n−2).
The multivariate version of (14) is given

in McCullagh [30, Chap. 7], as are exten-
sions to the nuisance-parameter case and
several illustrations of the use of these expan-
sions. One particularly relevant application
is the substitution of (14) into a Taylor series
expansion of the log-likelihood ratio statistic
w(θ ) = 2[!(θ̂ )− !(θ )] to obtain an expansion
of both the density and the expected value of
w(θ ). These expansions lead to the results

Ew(θ ) = m
(

1+ b(θ )
n
+O(n−2)

)
and

w(θ )
1+ b(θ )/n

= X2
m[1+O(n−3/2)], (15)

where m is the dimension of θ and X2
m is a

random variable following a χ2 distribution
on m degrees of freedom. The improvement of

the approximation to the distribution of the
log-likelihood ratio statistic given by (15) is
called the Bartlett correction, after Bartlett
[7], where the correction was derived for
testing the equality of several normal vari-
ances (see BARTLETT ADJUSTMENT—I). It is
a multivariate analogue of the improvement
of the normal approximation to the signed
square root given in (7). The expansion (15)
is originally due to Lawley [28]: for details
of the derivation see McCullagh [30, Chap.
7], Barndorff-Nielsen and Cox [6, Chap. 6],
Bickel and Ghosh [8], and DiCiccio and Mar-
tin [19].

Approximations using the Edgeworth and
saddlepoint expansions are also useful for
statistics that are not derived from a
likelihood-based approach to inference. Edge-
worth expansions for more general statistics
are discussed in Serfling [35] and in consider-
able generality in Pfanzagl [31]. Skovgaard
[38] considers formulations for the density
of minimum-contrast estimators that lead to
the p∗ approximation. Saddlepoint approx-
imation to the density of M-estimators∗ is
discussed in Daniels [14] and Field and
Ronchetti [23]. Application of the saddlepoint
approximation to the bootstrap is introduced
in Davison and Hinkley [17], and explored
further in Daniels and Young [16], DiCic-
cio et al. [20], Wang [40], and Ronchetti and
Welsh [34].

A somewhat different application of
asymptotic expansions in parametric infer-
ence is the use of the techniques outlined here
to obtain asymptotic expansions for the effi-
ciency of estimators and the power function
of test statistics. One purpose of this is to pro-
vide a means for choosing among various esti-
mators or test statistics that have the same
efficiency or power to first order of asymp-
totic theory. Helpful surveys of these types
of results are given in Skovgaard [37] and
Ghosh [24]: see also the entry ASYMPTOTIC

NORMALITY.
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NANCY REID

ASYMPTOTIC NORMALITY

The exact distribution of a statistic is usu-
ally highly complicated and difficult to work
with. Hence the need to approximate the
exact distribution by a distribution of a sim-
pler form whose properties are more trans-
parent. The limit theorems∗ of probability
theory provide an important tool for such
approximations. In particular, the classical
central limit theorems∗ state that the sum of
a large number of independent random vari-
ables is approximately normally distributed
under general conditions (see the section
‘‘Central Limit Theorems for Sums of Inde-
pendent Random Variables’’). In fact, the
normal distribution∗ plays a dominating role
among the possible limit distributions. To
quote from Gnedenko and Kolmogorov [18,
Chap. 5]: ‘‘Whereas for the convergence of
distribution functions of sums of independent
variables to the normal law only restric-
tions of a very general kind, apart from
that of being infinitesimal (or asymptoti-
cally constant), have to be imposed on the
summands, for the convergence to another
limit law some very special properties are
required of the summands.’’ Moreover, many
statistics behave asymptotically like sums
of independent random variables (see the
fifth, sixth, and seventh sections). All of this
helps to explain the importance of the normal
distribution∗ as an asymptotic distribution.

Suppose that the statistics Tn, n = 1, 2, . . .,
when suitably normed, have the standard
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normal limit distribution; i.e., for some con-
stants bn > 0 and an and for every real x we
have

Pr[(Tn − an)/bn � x]→ �(x) as n→∞
(1)

where

�(x) = (2π )−1/2
∫ x

−∞
e−y2/2dy.

Then we say that Tn is asymptotically
normal with mean an and variance b2

n, or
asymptotically normal (an, b2

n). [Note that an
and b2

n need not be the mean and the variance
of Tn; indeed, (1) may hold even when Tn has
no finite moments.]

It can be shown that if (1) holds for every
x, the convergence is uniform in x, so that

sup
−∞<x<∞

|Pr[(Tn − an)/bn � x]−�(x)| → 0

as n→∞. (2)

[This is due to the continuity of �(x).]
The knowledge that (1) or (2) holds is not

enough for most statistical applications. For
one thing, the statistician wants to know
how large n has to be in order that the
limit distribution may serve as a satisfactory
approximation. Also, if the distribution of Tn
depends on unknown parameters, the statis-
tician wants to know how the values of the
parameters affect the speed of convergence to
the limit. Both goals are met, to some extent,
by the Berry–Esseen theorem∗ (see below)
and related results discussed in ‘‘Remainder
Term in the Central Limit Theorem.’’

When the approximation provided by the
limit distribution∗ is unsatisfactory, asymp-
totic expansions∗, treated in the third section,
may prove more helpful.

Conditions for the convergence of the
moments of a statistic to the correspond-
ing moments of its limit distribution are
briefly discussed in the fourth section. The
fifth section deals with the distributions of
functions of asymptotically normal random
variables. The asymptotic normality of func-
tions of independent random variables and of
sums of dependent random variables is con-
sidered in the sixth and seventh sections,

respectively. The final section deals with
functional central limit theorems, which are
concerned with asymptotic distributions of
random functions.

CENTRAL LIMIT THEOREMS∗ FOR SUMS OF
INDEPENDENT RANDOM VARIABLES

The following classical central limit theorem
for the partial sums of an infinite sequence
of independent, identically distributed (i.i.d.)
random variables is due to Lindeberg.

Theorem 1. Let X1, X2, . . . be an infinite
sequence of i.i.d. random variables with finite
mean a and positive and finite variance σ 2.
Then, as n→∞, X1 + · · · + Xn is asymptoti-
cally normal (an, σ 2n).

In the following theorem only finite sequences
of independent (not necessarily identically
distributed) random variables are involved,
which makes it better adapted to most appli-
cations.

Theorem 2. For each N = 1, 2, . . . let XN1,
XN2, . . . , XNn be n = n(N) independent ran-
dom variables with finite p-th moments, for
some p > 2. Let BN =

∑
j var(XNj) (the index

j runs from 1 to n). If

B−p/2
N

∑
j

E|XNj − EXNj|p → 0 as N→∞,

(3)

then
∑

j XNj is asymptotically normal
(
∑

j EXNj, BN).

This theorem is due to Liapunov. Condition
(3) may be replaced by a weaker condition,
due to Lindeberg, which does not assume
finite moments of order >2 (see ref. 32).

For a general central limit theorem for
sums of independent random variables which
assumes no finite moments and for other cen-
tral limit theorems, see ref. 32, Chap. IV,
Sec. 4.

Multidimensional central limit theorems
give conditions for the convergence of the
distribution of a sum of independent random
vectors to a multivariate normal distribu-
tion∗; see Cramér [10] and Uspensky [40].

If the sums of independent random vari-
ables have probability densities, the latter
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will converge, under certain conditions, to a
normal probability density. For results of this
type, known as local∗ central limit theorems,
see ref. 32.

REMAINDER TERM IN THE CENTRAL LIMIT
THEOREM

The following result, due to Esseen [17], gives
an explicit upper bound for the difference
between the distribution function of a sum of
independent random variables and the nor-
mal distribution function.

Theorem 3. Let X1, . . . , Xn be independent
random variables,

EXj = 0, E|Xj|3 <∞, (j = 1, . . . , n),

and let

Bn =
n∑

j=1

EX2
j > 0, Ln =

n∑
j=1

E|Xj|3/B3/2
n .

Then∣∣∣∣∣∣Pr

B−1/2
n

n∑
j=1

Xj � x

−�(x)

∣∣∣∣∣∣ � CLn

for all x, (4)

where C is a numerical constant.

The assumption EXj = 0 is made merely to
simplify the notation. If EXj = aj, replace Xj
by Xj − aj in the statement of the theorem.

The least value of C for which (4) holds is
not known. It is known [2] that (4) is true with
C = 0.7975 and is not true with C < 0.4097.

Note that Theorem 3 involves only one
finite sequence of independent random vari-
ables and is not a limit theorem. It easily
implies Theorem 2 with p = 3.

Under the further assumption that X1, . . . ,
Xn are identically distributed, with EX1 = 0,
EX2

1 = σ 2, inequality (4) simplifies to∣∣∣∣∣Pr

[
n−1/2σ−1

n∑
j=1

Xj � x

]
−�(x)

∣∣∣∣∣
� Cn−1/2σ−3E|X1|3.

(5)

This inequality was also derived by Berry [4]
and is known as the Berry–Esseen inequal-
ity.

The upper bounds in (4) and (5) do not
depend on x. S. V. Nagaev has shown that
inequality (5) is still true (except perhaps for
the value of the constant C) if the right side
is multiplied with (1+ |x|)−3. For this and
related results, see ref. 32.

For extensions of these results to sums of
independent random vectors, see ref. 5.

ASYMPTOTIC EXPANSIONS∗

Let X1, X2, . . . be i.i.d. random variables, EX1
= 0, 0 < σ 2 = EX2

1 <∞,

Fn(x) = Pr

 n∑
j=1

Xj � xσn1/2

 .
By Theorem 1, Fn(x)→ �(x) as n→∞.

However, the approximation of Fn(x) by �(x)
is often too crude to be useful. There are
expansions of the difference Fn(x)−�(x) in
powers of n−1/2 that may provide more accu-
rate approximations.

The form of the expansion depends on
whether the random variable X1 is lattice∗

or nonlattice. [A random variable X is called
a lattice random variable if, for some num-
bers h > 0 and a, the values of (X − a)/h are
integers; the largest h with this property is
called the maximum span. Otherwise, X is
nonlattice.]

Theorem 4. If the random variables X1,
X2, . . . are i.i.d., nonlattice, and have a finite
third moment, then

Fn(x) = �(x)+�′(x)Q1(x)n−1/2

+ o(n−1/2) (6)

uniformly in x. Here �′(x) = (2π )1/2 exp ·
(−x2/2) is the standard normal density func-
tion and

Q1(x) = 1
6

EX3
1

σ 3 (1− x2).

For a proof and for extensions of (6) involv-
ing higher powers of n−1/2, see refs. 5 and 32.
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Expansions of this type have been studied
by Chebyshev∗, Edgeworth, Cramér, Esseen,
and others.

Theorem 5. If X1, X2, . . . are i.i.d. lattice
random variables taking the values a+ kh
(k = 0,±1,±2, . . .), where h is the maximum
span, and have a finite third moment, then

Fn(x) = �(x)+�′(x)(Q1(x)+ S1(x))n−1/2

+ o(n−1/2) (7)

uniformly in x. Here

S1(x) = h
σ

S
(

xσn1/2 − an
h

)
,

S(x) = [x]− x+ 1
2 ,

and [x] is the largest integer � x.

This theorem is due to Esseen [17]; see also
ref. 18. For an extension of (7) that involves
higher powers of n−1/2, see refs. 5 and 32.

Asymptotic expansions of the distribution
function and the probability density function
of a sum of independent random variables
that need not be identically distributed are
also treated in ref. 32.

CONVERGENCE OF MOMENTS

If a statistic Tn has a normal limit distribu-
tion, its moments need not converge to the
corresponding moments of the latter; in fact,
Tn need not have any finite moments.

If the conditions of Theorem 2 with a fixed
p > 2 are satisfied then for all positive inte-
gers q � p, the qth absolute moment of

∑
j

(XNj − EXNj)/B
1/2
N converges to the corre-

sponding moment of the standard normal
distribution; see S. N. Bernstein∗ [3] and Hall
[23]. A similar result is due to Zaremba [41].
Bounds for the remainder terms in such limit
theorems for moments have been obtained by
von Bahr [1] and Hall [23], among others. An
interesting discussion of the convergence of
moments of certain statistics can be found in
Cramér [9, Chap. 27].

FUNCTIONS OF ASYMPTOTICALLY NORMAL
RANDOM VARIABLES

We often encounter statistics that are func-
tions of sample moments or of generalized
sample moments of the form Mn = n−1 ∑n

j=1
g(Xj). If the Xj are i.i.d., Eg(X1) = a,
var g(X1) = σ 2 (0 < σ 2 <∞), then Mn is
asymptotically normal (a, σ 2/n).

Theorem 6. Let the random variables Mn,
n � 1, be asymptotically normal (a, σ 2/n). If
H(x) is a function of the real variable x whose
derivative H′(x) exists and is �= 0 and contin-
uous at x = a, then H(Mn) is asymptotically
normal (H(a), H′(a)2σ 2/n).

This result can be extended to functions of k
moment-like statistics which are asymptoti-
cally k-variate normal. We state the exten-
sion for k = 2.

Theorem 7. Let the random vectors (M1n,
M2n), n � 1, be asymptotically bivariate
normal∗ with mean (a1, a2) and covariances
σij/n, i, j = 1, 2. If H(x, y) is a function of the
real variables x and y whose partial deriva-
tives at (a1, a2),

H1 = ∂H(x, y)/∂x|(a1,a2),

H2 = ∂H(x, y)/∂y|(a1,a2),

exist and are not both zero, and which has a
total differential at (a1, a2), so that

H(x, y) = H(a1, a2)+H1x+H2y

+ xε1(x, y)+ yε2(x, y)

where εi(x, y)→ 0 as (x, y)→ (a1, a2)(i = 1,
2), then H(M1n, M2n) is asymptotically nor-
mal with mean H(a1, a2) and variance
(H2

1σ11 + 2H1H2σ12 +H2
2σ22)/n.

Proofs of these or closely related results can
be found in refs. 9 and 26.

Note that the conditions of Theorems 6
and 7 are such that H(Mn) and H(M1n, M2n)
can be approximated by the linear terms of
their Taylor expansions∗. If the linear terms
vanish and they can be approximated by the
quadratic terms, the asymptotic distribution
will be that of a quadratic form∗ in normal
random variables.
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ASYMPTOTIC NORMALITY OF FUNCTIONS
OF INDEPENDENT RANDOM VARIABLES

Let Tn = Tn(X1, . . . , Xn) be a function of the
independent random variables X1, . . . , Xn.
Suppose that ET2

n <∞.
Hájek’s projection lemma∗ approximates

Tn by the statistic

T̂n =
n∑

j=1

E[Tn|Xj]− (n− 1)ETn,

which is a sum of independent random vari-
ables. By the corollary of that entry we have:

Theorem 8. Let the stated assumptions be
satisfied for all n. Suppose that T̂n is asymp-
totically normal (ET̂n, var T̂n) and that

(var T̂n)/ var(Tn)→ 1 as n→∞.

Then Tn is asymptotically normal (ETn, var
Tn).

Hájek [21] and Dupac̆ and Hájek [14] used
the projection lemma to prove the asymptotic
normality of a simple linear rank statistic∗,

n∑
j=1

an(j)bn(Rnj),

where an(j), bn(j) are constants, Rn1, . . . , Rnn
are the respective ranks∗ of Xn1, . . . , Xnn, and,
for each n, Xn1, . . . , Xnn are mutually indepen-
dent, continuously distributed random vari-
ables. (For details, see the papers cited.)
On the asymptotic normality of linear ranks
statistics∗, see also refs. 20 and 22. Compare
also the end of the following section. Related
results on multivariate linear rank statistics
have been obtained in Ruymgaart and van
Zuijlen [37] and the papers there cited.

Another class of statistics whose asymp-
totic normality can be proved with the help
of Hájek’s lemma are the U-statistics∗,

Un = 1(
n
m

) ∑
1�j1<···<jm�n

f (Xj1, . . . , Xjm),

where m is a fixed integer, n � m, the Xj are
mutually independent random variables, and

f is a real-valued function, symmetric in its m
arguments; see ref. 24. A Berry–Esseen type
bound for U-statistics∗ is derived in ref. 7.

Linear combinations of functions of order
statistics∗ are asymptotically normal under
general conditions; see Ruymgaart and van
Zuijlen [36] and other work there cited.

There are statistics Tn which satisfy the
conditions of Hájek’s lemma and are asymp-
totically normally distributed, but whose
asymptotic normality cannot be established
by means of Theorem 8. A simple example is

Tn = X1X2 + X2X3 + · · · + Xn−1Xn,

where the Xj are i.i.d. with a finite second
moment. This is a special case of a sum of
1-dependent random variables; see the fol-
lowing section.

On the asymptotic normality of the sum
of a random number of independent random
variables (which is of interest in sequential
analysis∗), see ref. 8.

ASYMPTOTIC NORMALITY OF SUMS OF
DEPENDENT RANDOM VARIABLES

Sums of independent random variables are
asymptotically normal under general condi-
tions. We may expect that the asymptotic
normality will be preserved if the summands
are allowed to be weakly dependent∗ in a
suitable sense.

One way of expressing weak dependence
is in terms of conditional expectations. For
example, let X1, X2, . . . be a sequence of (possi-
bly dependent) random variables and let Sn =
X1 + · · · + Xn. Suppose that the Liapunov con-
dition (3) with N = n, XNj = Xj is satisfied and
that EXj = 0. In ref. 29, Sec. 31, it is shown
that if, in addition, the conditional moments
E[Xj|Sj−1] and E[X2

j |Sj−1] differ sufficiently
little (in a specified sense) from the corre-
sponding unconditional moments, then Sn
is asymptotically normal. For other, related
results, see ref. 29.

Dvoretzky [15] has shown that sums of
dependent random variables are asymptoti-
cally normal under conditions such as those
in the central limit theorems for sums of inde-
pendent random variables (e.g., Theorem 2),
except that quantities such as means, and
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the like, are replaced by conditional means,
and the like, the conditioning being relative
to the preceding sum.

Another notion of weak dependence that
has proved fruitful is the following. For sim-
plicity we restrict ourselves to stationary
sequences (Xn), so that, for all n, the joint dis-
tribution of Xh+1, . . . , Xh+n does not depend on
h. A stationary sequence (Xn) is said to sat-
isfy the strong mixing condition if there are
numbers d(r) converging to 0 as r→∞ such
that

|Pr[A ∩ B]− Pr[A] Pr[B]| � d(n−m)

for any events A and B determined by con-
ditions on the random variables Xk, k � m
and Xk, k � n, respectively, and for all m, n
(m < n).

Rosenblatt [34] has shown that the partial
sums X1 + · · · + Xn of a stationary sequence
satisfying the strong mixing condition are
asymptotically normal under conditions on
some of their moments. For other sufficient
conditions, see ref. 27.

A simple example of a sequence satisfy-
ing the strong mixing condition is an m-
dependent sequence. The sequence (Xn, n �
1) is said to be m-dependent if for all integers
1 � r � s < t � u the random vectors (Xr, . . . ,
Xs) and (Xt, . . . , Xu) are independent when-
ever t− s > m. A central limit theorem for
sums of m-dependent random variables was
proved in ref. 26. An improved version is due
to Orey [30]. On Berry–Esseen type bounds
for sums of m-dependent random variables,
see Shergin [38].

Sums of m-dependent random variables
and U-statistics have the feature in com-
mon that some subsets of the summands
are mutually independent. A central limit
theorem for more general sums of this type is
due to Godwin and Zaremba [19].

For a central limit theorem for Markov
chains∗ under conditions related to strong
mixing, see Rosenblatt [35]. Sums of martin-
gale differences are asymptotically normal
under appropriate conditions; see, e.g., ref. 8.

Finally, we mention some of the so-
called combinatorial central limit theorems,
which have uses in sampling from a finite
population∗ and in rank statistics. Let the
random vector (Rn1, . . . , Rnn) be uniformly

distributed on the n! permutations of the inte-
gers 1, . . . , n, and let an(j), bn(j), j = 1, . . . , n,
be real numbers. Then the sums

n∑
j=1

an(j)bn(Rnj)

are asymptotically normal under certain con-
ditions on the an(j), bn(j); see ref. 20. A similar
result [25] holds for sums of the form

n∑
j=1

an(j, Rnj).

FUNCTIONAL CENTRAL LIMIT THEOREMS

Functional central limit theorems form a far-
reaching extension of the classical central
limit theorems. We confine ourselves to a
brief description of some typical results in
this area.

Let X1, X2, . . . be i.i.d. random variables
with mean 0 and variance 1. Let S0 = 0, Sn =
X1 + · · · + Xn, n � 1, and define for 0 � t � 1

Yn(t) = n−1/2S[nt]

+ n−1/2(nt− [nt])X[nt]+1,

where [nt] is the largest integer � nt. Thus
for given values of n, X1, . . . , Xn, Yn(t) is a
continuous, piecewise linear function of t such
that Yn(j/n) = n−1/2Sj for j = 0, 1, . . . , n.

Now let W(t), 0 � t � 1, be the standard
Brownian motion∗ process (Wiener process∗)
on [0,1]. Thus for each fixed t ∈ (0, 1] the
random variable W(t) is normally distributed
with mean 0 and variance t (W(0) = 0), and
for any finitely many points t1 < t2 < · · · < tk
in [0,1] the increments W(t2)−W(t1), W(t3)−
W(t2), . . . , W(tk)−W(tk−1) are mutually inde-
pendent. Each increment W(tj)−W(tj−1) is
normally distributed with mean 0 and vari-
ance tj − tj−1. These facts determine the joint
(normal) distribution of W(t1), . . . , W(tk). It
is known that the random function W(t),
0 � t � 1, is continuous with probability 1.

By a theorem of Donsker [11] the random
functions Yn converge in distribution∗, as
n→∞, to the random function W. The exact
meaning of this statement is explained, e.g.,
in Billingsley [6a]. See also CONVERGENCE OF
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SEQUENCES OF RANDOM VARIABLES. It has the
important implication that for a large class of
functionals h(f ) of a continuous function f (t),
0 � t � 1, the distributions of the random
variables h(Yn) converge to that of h(W). A
trivial example is h(f ) = f (1). The implication
that the distributions of Yn(1) = n−1/2Sn
converge to that of W(1) is essentially
equivalent to the central limit theorem,
Theorem 1. A more interesting func-
tional to which Donsker’s theorem applies
is h(f ) = max0�t�1 f (t). Since max0�t�1
Yn(t) = n−1/2 max(0, S1, . . . , Sn), Donsker’s
theorem implies that

lim
n→∞Pr[n−1/2 max(0, S1, . . . , Sn) � x]

= Pr[max
0�t�1

W(t) � x]. (8)

A proof of Donsker’s theorem can be found
in Billingsley [6a], where also other applica-
tions of the theorem are discussed and other
similar theorems are proved.

Donsker’s theorem and theorems of a sim-
ilar type are called functional central limit
theorems.

For the limit in (8) we have

Pr[max
0�t�1

W(t) � x] = max(2�(x)− 1, 0). (9)

This can be proved from the properties of
the Wiener process, or by applying the so-
called invariance principle (not to be confused
with the invariance principle∗ in statistical
inference∗). Donsker’s theorem, just as the
central limit theorem with a = 0 and σ 2 = 1,
assumes only that the Xn are i.i.d. with mean
0 and variance 1. Thus in either theorem the
limit is invariant in this class of distributions
of Xn. Once it is known that the limit (8)
exists, it can be evaluated directly by choos-
ing the distribution of Xn in a convenient way;
for details, see Billingsley [6a]. The idea of
the invariance principle was first conceived
by Erdös and Kac [16].

We conclude with another functional cen-
tral limit theorem. Let X1, X2, . . . be i.i.d.
random variables with common distribution
function F(t). Let Fn(t) be the empirical distri-
bution function∗ corresponding to the sample
X1, . . . , Xn. Define the random function Zn(t),

t real, by

Zn(t) = n1/2(Fn(t)− F(t)).

First suppose that the Xn are uniformly
distributed∗ with F(t) = t, 0 � t � 1. In this
case Fn(t)− F(t) = 0 outside of [0, 1], and we
may restrict t to the interval [0, 1].

Let W0(t), 0 � t � 1, be the Brownian∗
bridge process. This is the Gaussian process∗
on [0,1] whose distribution is specified by the
requirements

EW0(t) = 0,

EW0(s)W0(t) = min(s, t)− st.

In the present case (F uniform) the random
functions Zn converge in distribution to the
random function W0, in a similar sense as
the convergence of Yn to W; see Donsker [12]
or Billingsley [6a]. (An important difference
is that the functions Zn are not continuous as
the Yn are.) One implication is that

lim
n→∞Pr[sup

t
n1/2|Fn(t)− F(t)| � x]

= Pr[sup
t
|W0(t)| � x]. (10)

Earlier, Kolmogorov [28] proved, by a differ-
ent method, that the limit in (10) equals

1− 2
∞∑

k=1

(−1)k+1e−2k2x2
(11)

for x > 0. Thus the probability on the right of
(10) is equal to (11). The present approach to
deriving results such as (10) was heuristically
described by Doob [13] and made rigorous by
Donsker [12].

The case where F(t) is an arbitrary contin-
uous distribution function can be reduced to
the uniform case (by noting that X ′n = F(Xn)
is uniformly distributed on [0, 1]), and (10)
remains valid. For the case where F(t) is any
distribution function on [0, 1], see Billingsley
[6a].

The general foundations underlying the
functional central limit theorems were laid
by Prohorov [33] and Skorohod [39] and are
expounded in the books of Billingsley [6a,6b].
See also Parthasarathy [31] and Loève [29,
Chap. 13].
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14. Dupac̆, V. and Hájek, J. (1969). Ann. Math.
Statist., 40, 1992–2017.

15. Dvoretzky, A. (1972). Proc. 6th Berkeley Symp.
Math. Statist. Prob., Vol. 2. University of Cal-
ifornia Press, Berkeley, Calif., pp. 513–535.

16. Erdös, P. and Kac, M. (1946). Bull. Amer.
Math. Soc., 52, 292–302.

17. Esseen, C. -G. (1945). Acta Math., 77, 1–125.
(A fundamental paper on asymptotic normal-
ity.)

18. Gnedenko, B. V. and Kolmogorov, A. N.
(1968). Limit Distributions for Sums of
Independent Random Variables, rev. ed.
(Translated from the Russian by K. L.
Chung.) Addison-Wesley, Reading, Mass. (A
classic monograph on the subject of the title.)

19. Godwin, H. J. and Zaremba, S. K. (1961).
Ann. Math. Statist., 32, 677–686.
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W. HOEFFDING

ASYMPTOTIC NORMALITY OF
EXPERIMENTS

Asymptotic normality∗ is a feature of many
probabilistic or statistical studies. It is often
connected with the central limit theorem∗ for
sums of independent variables, for martin-
gales∗ [13], or for empirical processes∗ [9,29].
In contrast to these essentially probabilistic
results, we consider a more statistical aspect
of the situation.

Our framework is that of Wald’s theory of
statistical decision functions∗ [37]. As in that
book and in Blackwell [3], we abstract the
idea of a statistical experiment by a math-
ematical structure consisting of a set �, a
σ -field A carried by a space χ , and a fam-
ily E = {Pθ : θ ∈ �} of probability measures
on A (see MEASURE THEORY IN PROBABILITY

AND STATISTICS). (This is for one-stage exper-
iments or for sequential ones where the stop-
ping rule∗ is prescribed in advance; other-
wise, additional structure is needed.) We
don’t care how the family E was created,
whether by observing independent random
variables or stochastic processes∗, but only

study how the likelihood ratios∗ depend on
the parameter θ ∈ �.

The set � is usually called the set of states
of nature or the parameter set. It need not
have any special structure, though in many
cases it is a Euclidean space.

To further specify a statistical problem,
Wald defines a set D of possible decisions
and a loss function W on �×D (see DECISION

THEORY). A decision procedure ρ is a rule
that attaches to each observable point x ∈
χ a probability measure ρx on D. Having
observed x, one selects a d ∈ D according to
ρx. Then the statistician suffers a loss W(θ , d)
if θ is the true state of nature. The risk R(θ , ρ)
of the procedure ρ is the expected value under
Pθ of the sustained loss.

We can now define Gaussian shift experi-
ments, first in the familiar case where � is a
Euclidean space, and then, to cope with signal
detection with noise∗ or nonparametric∗ sit-
uations, in a more general setup that covers
infinite-dimensional parameter sets.

Also, we will introduce a concept of dis-
tance between two experiments E and F

having the same parameter set �. The dis-
tance � is defined through comparison of the
risk functions available on E and F respec-
tively. Combining this with the Gaussian
shift experiments and introducing a variable
n that tends to infinity, one obtains defini-
tions of asymptotically Gaussian (or normal)
sequences of experiments.

We then look at the classical local asymp-
totic normality (LAN) conditions for this
framework, and discuss a concept of weak
convergence∗ of experiments by using the
distance � taken on finite subsets of �. Two
of the most valuable results of that theory,
the Hájek—Le Cam asymptotic minimax and
convolution theorems, employ weak conver-
gence as a basic assumption.

Finally, we revisit the distance� on exper-
iments, showing that for a number of cases it
allows automatic transfer, in asymptotic situ-
ations, of results known in the Gaussian case.
This is illustrated by recent results of Nuss-
baum [27] on density estimation∗. He shows
that most nonparametric density estimation
problems are asymptotically equivalent to
estimation of a signal in a Gaussian-white-
noise problem. The use of the distance �
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provides the statistician with a firm grip on
possible rates of convergence of estimates.

GAUSSIAN SHIFT EXPERIMENTS

Every statistician is familiar with some form
of what we call Gaussian (or, for empha-
sis, Gaussian shift) experiments. A common
example is one where the observable variable
is a random vector X taking values in some
Euclidean space with norm ‖ · ‖. One has a
function m(θ ) from the parameter space � to
the same Euclidean space, and the density of
X (with respect to the Lebesgue measure) is
proportional to exp[− 1

2 ‖ x−m(θ ) ‖2].
The square norm ‖ x ‖2 is often written

‖ x ‖2= x′Mx, where M is a positive definite
matrix. These norms are characterized by the
median∗ equality

‖ (x+ y)/2− ‖2 + ‖ (x− y)/2 ‖2

= 1
2 [‖ x ‖2 + ‖ y ‖2].

When a vector space is complete with respect
to such a norm, it is a Hilbert space. Hilbert
spaces are like Euclidean spaces except that
they may be infinite-dimensional. They pro-
vide the basic framework for nonparametric
estimation problems.

On Euclidean spaces there are more
general experiments called heteroskedastic∗

Gaussian experiments. Their densities are
proportional to

[detM(θ )]2

× exp{− 1
2 [X −m(θ )]′M(θ )[X −m(θ )]},

where M depends on θ . We shall not consider
them, but concentrate instead on shift (or
homoskedastic) experiments.

The name ‘‘Gaussian’’ refers to a theorem
of C. F. Gauss [10]. He proved, in the one-
dimensional case, that Gaussian experiments
are the only shift families (see LOCATION-
SCALE PARAMETER) where the average of the
observations is the maximum-likelihood
estimate∗ (see GAUSS, CARL FRIEDRICH).

There are Gaussian experiments where
the observable entity is not a finite-
dimensional vector X but an infinite-
dimensional one or a stochastic process.

For instance, the theory of signal detec-
tion (in noise) introduces situations where
the observable entity is a stochastic pro-
cess {X(t) : t ∈ T} consisting of a ‘‘signal’’ θ (t)
and a ‘‘noise’’ W(t) so that X(t) = θ (t)+W(t).
Here θ is an unknown nonrandom function,
and W is a Gaussian process∗ in the sense
that for every finite set {t1, t2, . . . , tk} the
vector {X(t1), X(t2), . . . , X(tk)} has a normal
distribution∗ (cf. Ibragimov and Has’minskii
[14, p. 321]). The study of nonparametric
or semiparametric∗ inference quickly intro-
duces infinite-dimensional Gaussian experi-
ments (cf. Bickel et al. [1]).

Let us take a closer look at the exper-
iment G = {Gθ : θ ∈ �} whose densities are
proportional to exp[− 1

2 ‖ X −m(θ ) ‖2] on a
Euclidean space. Consider the log likelihood
�(u; s) = ln dGu/dGs. If u runs through �

and X has the distribution Gs, this gives a
stochastic process. Assume, for convenience,
that m(s) = 0. Then

�(u; s) = 〈m(u), X〉 − 1
2 ‖ m(u) ‖2,

where 〈x, y〉 is the inner product associated
with ‖ · ‖; i.e.,

〈x, y〉 =‖ (x+ y)/2 ‖2 − ‖ (x− y)/2 ‖2 .

Observe the following properties:

1. The process u→ �(u; s) is a Gaussian
process.

2. It stays Gaussian if, instead of Gs induc-
ing the distribution of X, one uses Gθ ,
θ ∈ �. The covariance∗ kernel Cov[�(u;
s),�(v; s)] is independent of the partic-
ular Gθ used.

3. Changing s to θ to induce the distribu-
tions of �(u; s) adds Cov[�(u; s),�(θ;
s)] to the expectation of �(u; s).

The first property suggests the following def-
inition:

Definition 1. Let G = {Gθ : θ ∈ �} be an
experiment with parameter set �. It is called
Gaussian if:

(i) the Gθ are mutually absolutely con-
tinuous∗ and
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(ii) there is an s ∈ � such that �(·; s) is a
Gaussian process under Gs.

It is easy to show that when (i) holds, if
(ii) holds for some s0 ∈ �, then (ii) holds for
all s ∈ �. Furthermore, properties 2 and 3
above are automatic. The covariance kernel
of the process is independent of s. Shift-
ing the distributions to those induced by Gθ

adds Cov[�(u; s),�(θ; s)] to the expectation of
�(θ; s) [23, p. 23].

Our Euclidean example had expectations
m(θ ) in the same Euclidean space as X. For
the general case one needs Hilbert spaces.
What takes the place of X will be a linear
process.

Consider the space M0 of finite signed
measures µ with finite support∗ on � and
such that µ(�) = 0. The integrals

∫
�(u; s)µ

(du) are finite linear combinations, with Gau-
ssian distributions. We shall write them as
〈µ, Z〉, where 〈·, ·〉 is an inner product attached
to the (Hilbert) square norm ‖ µ ‖2, which is
the variance of

∫
�(u; s)µ(du). To embed M0

into a true Hilbert space H , equate to zero
all µ such that ‖ µ ‖2= 0 and complete the
resulting linear space.

Our likelihood ratio process becomes

�(u; s) = 〈(δu − δs), Z〉 − 1
2 ‖ δu − δ0 ‖2,

where δu is the probability measure that gives
mass one to u. This can be extended to all of
H , giving new Gaussian measures G(µ) with
log likelihood

ln
dG(µ)
dG(0)

= 〈µ, Z〉 − 1
2 ‖ µ ‖2 .

If θ ′ �= θ ′′ implies Gθ ′ �= Gθ ′′ , then the map
θ∼%δθ − δs is an embedding of� onto a certain
subset �∗ of H .

The map µ∼%〈µ, Z〉 is often called the
canonical Gaussian process of H . It is char-
acterized (up to equivalence) by the property
that it is linear, that the variable 〈µ, Z〉 is an
ordinary random variable with a normal dis-
tribution, and that under Gs, 〈µ, Z〉 has expec-
tation zero and variance ‖ µ ‖2. (As before,
variances and covariances do not depend on
which G(υ),υ ∈H , is used to induce the dis-
tributions.)

Assuming that θ ′ �= θ ′′ implies Gθ ′ �= Gθ ′′ ,
the statistical properties of the original
experiment H depend only on the geomet-
ric properties of the image �∗ of � in H .
More specifically, let G1 = {Gu : u ∈ �1} and
G2 = {Gυ : υ ∈ �2} be two Gaussian exper-
iments with parameter spaces �1 and �2
respectively. Introduce the square Hellinger
distance∗

H2(u,υ) = 1
2

∫
(
√

dGu −
√

dGυ )2.

A simple computation shows that the vari-
ance of �(u; s)−�(υ; s) is given by −8 ln[1−
H2(u,υ)]. Thus an isometry (distance-
preserving transformation) of the �∗i corre-
sponds to an isometry of the initial spaces �i
for H.

More concretely, take a point s1 ∈ �1, and
let s2 be the point of �2 that corresponds to
s1 in the isometry for H. Carry out the proce-
dure described above for the log likelihoods
�i(u; si). This will give spaces Hi and pro-
cesses Zi. The isometry between the �∗i then
extends to a linear isometry of the spaces
Hi (cf. Le Cam [22, p. 239]). The process Z1
is carried by the isometry to a process Z′1
that has the same distributions as Z2. Thus
the experiments G1 and G2 differ only by a
relabeling of their parameter sets. Such rela-
belings are used very frequently. For instance
G1 may be parametrized by a set of square-
integrable functions f on the line, but one
can then reparametrize it by the Fourier
transforms f̃ of f . Whether one represents
a square-integrable f by its Fourier coeffi-
cients or by its coefficients in some other
orthonormal basis does not change anything
essential.

For a simple example, consider the signal-
plus-noise problem X(t) = θ (t)+ W̃(t), where
t ∈ [0, 1] and W̃ is the standard Wiener pro-
cess (see BROWNIAN MOTION). Assume that
θ (t) = ∫ t

0 f (c)dc for a square-integrable func-
tion f . Then the associated Hilbert space
H is the space L2 of equivalence classes of
square-integrable functions with the squared
norm ‖ f ‖2= ∫ 1

0 f 2(c)dc. Let Z denote stan-
dard white noise (equal to the ‘‘derivative’’ of
W̃), and then the inner product < f , Z > is∫

f (t)Z(dt).
Actually the experiment obtained in that

manner is the archetype of all separable
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Gaussian experiments. [Here ‘‘separable’’
means that the set {Gθ : θ ∈ �} contains
a countable dense set for the Hellinger
distance∗, or equivalently, for the L1-
norm ‖ Gu −Gv ‖= sup|ϕ|�1

∫
ϕ(dGu − dGv).]

Any separable Gaussian experiment can be
represented by taking for�∗ a suitable subset
of the space L2, with the prescription that the
observable process is dX(t) = fθ (t)dt+ Z(dt).

A DISTANCE BETWEEN EXPERIMENTS

Let E = {Pθ : θ ∈ �}, F = {Qθ : θ ∈ �} be two
experiments with the same parameter set
�. They can have observables in different
spaces, say (χ , A) for E and (Y , B ) for F .
The two experiments can be considered close
to each other in a statistical sense if for any
arbitrary pairs (D,W) of decision spaces D
with loss function W, a risk function avail-
able on one of the two experiments can be
closely matched by a risk function of the
other experiment.

The idea of such possible matchings goes
back to Wald [36]. He considered i.i.d. obser-
vations and matched any measurable set in
the space of n observations to one in the
space of maximum-likelihood estimates. His
matching is such that the probabilities of the
two sets differ little, as n→∞, uniformly in
θ . Wald’s demands on this set-to-set relation
are too strict; they can be satisfied only under
special circumstances.

Consider arbitrary decision spaces D and
arbitrary loss functions W on �×D, but
restrict attention to functions W such that
0 � W(�, d) � 1. Let R(E , W) be the set of
functions from � to [0,∞] that are possible
risk functions for E and W, or at least as
large as such possible risk functions (the use
of functions larger than actually possible risk
functions is a technical convenience). Instead
of working with R(E , W) we shall work with
its closure R(E , W) for pointwise convergence
on �.

In most cases R itself is already closed and
thus equal to R. This happens for instance
if the family {Pθ : θ ∈ θ} is dominated and if
the W are lower semicontinuous in d on a
decision space D that is locally compact. We
shall call R(E , W) the augmented space of
risk functions for E and W.

Definition 2. For ε ∈ [0, 1], the deficiency
δ(E , F ) of E with respect to F does not
exceed ε if for every D, every W such that 0 �
W � 1, and every g ∈R(F , W) there is an f ∈
R(E , W) such that f (θ ) � g(θ )+ ε for all θ ∈
�. The deficiency δ(E , F ) is the minimum of
the numbers ε with that property.

Definition 3. The distance �(E , F ) bet-
ween E and F is the number

�(E , F ) = max{δ, (E , F ), δ(F , E )}.
Actually, � is not a distance but a pseu-
dometric. It satisfies the triangle inequal-
ity (for given �), but there are always
pairs (E , F ) such that E and F are dif-
ferent but �(E , F ) = 0. This happens for
instance if E is an experiment with obser-
vations X1, X2, . . . , Xn and F uses only a
sufficient statistic∗T(X1, X2, . . . , Xn) instead
of the whole set {X1, X2, . . . , Xn}.

To reiterate, if �(E , F ) � ε, this means
that for all D and all loss functions W sub-
ject to 0 � W � 1, every possible function in
the (augmented) set of risk functions for one
experiment can be matched within ε by a
function in the (augmented) set of risk func-
tions for the other experiment.

The introduction of ‘‘deficiencies’’ and dis-
tances occurs in Le Cam [19]. Blackwell [3]
and Stein [31] had previously considered the
case where δ(E , F ) = 0, in which case one
says that E is ‘‘better’’ or ‘‘stronger’’ than
F . The deficiency can be computed in terms
of Bayes’ risks. It is also obtainable by a
randomization criterion. Let T be a linear
transformation that transforms positive mea-
sures into positive measures of the same
mass. Then

δ(E , F ) = inf
T

sup
θ

1
2 ‖ Qθ − TPθ ‖,

where ‖ m ‖ is the L1-norm ‖ m ‖= supϕ
{∫ ϕdm : |ϕ| � 1}. Those linear transforma-
tions are limits of transformations obtainable
through randomizations by Markov kernels.

A Markov kernel from (χ , A) to (Y , B ) is
a function x∼%χ and a probability measure
Kx on B such that the functions x∼%Kx(B)
are A-measurable or at least equivalent
to A-measurable functions. The correspond-
ing transformation T is given by (TP)(B) =∫

Kx(B)P(dx).
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The distance � applies to experiments E

and F with the same parameter set �, but
one can use it to define other distances: If S
is a subset of ϕ, let Es = {Pθ : θ ∈ S} be the
experiment E with parameter set restricted
to S. One can compute a distance �(Es, Fs).

For asymptotic purposes one treats two
sequences {En} and {Fn}, with parameter
set �n. These sequences are asymptotically
equivalent if �(En, Fn)→ 0 as n→∞. For
instance one can say that the {En} are
asymptotically Gaussian if there are Gaus-
sian experiments Gn = {Gθ ,n : θ ∈ �n} such
that �(En, Gn)→ 0 as n→∞. Le Cam and
Yang [23] say that the En are weakly asymp-
totically Gaussian if there are Gaussian
Gn such that �(En,Sn , Gn,Sn)→ 0 as long as
the cardinality of Sn ⊂ �n remains bounded
above independently of n.

There is also a topology of weak conver-
gence of experiments.

Definition 4. Let {En} be a sequence of
experiments with common parameter set �.
Let F = {Qθ : θ ∈ �} be another experiment
with the same parameter set. One says that
En → F weakly if for every finite subset
S ⊂ � the distance �(En,S, FS) tends to zero.

Weak convergence of experiments is equiv-
alent to convergence in the ordinary sense
of distributions of likelihood ratios [24, pp.
10–15]. One takes a finite set {θ0, θ1, . . . , θm},
and looks at the vector {dPθi,n/dPθ0,h : i =
0, 1, 2, . . . , m} with the distributions induced
by Pθ0,n . These should converge in the ordi-
nary sense to the distributions of {dQθi/dQθ0 :
i = 0, 1, . . . , m} under Qθ0 . (Note that θ0 is an
arbitrary point in an arbitrary finite set. So
the distributions under Pθi,n also converge.
At times it is enough to consider only one
particular θ0, for instance if the {Pθi,n} and
{Pθ0,n} are contiguous sequences.)

Besides �, several other distances have
been used. Torgersen [33,34] has made a deep
study of a distance �k defined exactly like �,
but restricting the decision space D to have at
most k elements (k decision problems) or even
two elements (test problems). As k increases,
so do the �k; and � itself is supk�k.

Convergence for the distance � is also
linked to convergence in distribution of
stochastic processes as defined by Pro-
horov [30]. Suppose E = {Pθ : θ ∈ �} and

F = {Qθ : θ ∈ �} can be ‘‘coupled’’ to be on the
same space and that they are dominated by a
suitable probability measure µ. Let X be the
process X(τ ) = dPτ /dµ and let Y(τ ) = dQτ /dµ
for τ ∈ �. Suppose that the two experiments
are not only coupled on the same space but
that they are coupled so that

1
2 supτ Eµ|X(τ )− Y(τ )| � ε.

Then �(E , F ) � ε. (An example of coupling
occurred in our discussion of isometries for
the parameter set of Gaussian experiments.)

By comparison, using the Skoro-
hod embedding theorem (see SKOROHOD

EMBEDDINGS) or Strassen’s theorems [32],
convergence of stochastic processes (for the
uniform norm) would correspond to conver-
gence to zero of Eµ supτ {|X(τ )− Y(τ )| ∧ 1}, a
much more delicate affair, since Eµ supτ is
larger than supτ Eµ.

LOCAL ASYMPTOTIC NORMALITY: THE LAN
CONDITIONS

There are many situations in which one
fixes a parameter value θ0 and studies the
behavior of experiments En = {Pθ ,n : θ ∈ �} in
small shrinking neighborhoods of θ0. For i.i.d.
data, a famous example is Cramér’s work on
the roots of maximum-likelihood equations
[4, p. 500]. Another example, for Markov
processes∗, is given by Billingsley [2].

Cramér imposed differentiability condi-
tions on f (x, θ ). An alternative approach,
taken by Hájek and Le Cam, assumes that
the densities f (x, θ ) are defined with respect
to some measure µ and requires the exis-
tence of a derivative in µ-quadratic mean of√

f (x, θ ). That is, one requires the existence
of random vectors Y(θ0) such that∫ (

1
|t|

∣∣∣√f (x, θ0 + t)

−
√

f (x, θ0)− 1
2 t′Y(θ0)

∣∣∣∣)2

dµ

tends to zero as |t| → 0. The function Y(θ0)
is then square-integrable, and

∫ |t′Y(θ0)|dµ
is equal to t′J(θ0)t, where J(θ0) is the Fisher
information∗ matrix

∫
Y(θ0)Y ′(θ0)dµ.
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One relies upon local expansions of the
log likelihood to study the behavior of these
experiments. More precisely, assume that �
is a subset of a vector space V with norm | · |.
One selects a sequence {δn} of linear maps
from V to V and looks at the experiments

Fθ0,n = {Pθ0+δnt, n : t ∈ V, θ0 + δnt ∈ �}.

It is usually assumed that δnt→ 0 as n→∞
for fixed t ∈ V. In the following, we always
require that θ0 + δntn ∈ �.

For the Cramér conditions, or Hájek and
Le Cam’s condition of differentiability in
quadratic mean, the space V is Euclidean
and the maps δn are simply multiplications
by 1/

√
n, so that δnt = t/

√
n. In contrast, the

LAN∗ conditions of Le Cam [18] do not refer
to i.i.d. or Markov processes. They ignore
how the Pθ ,n were arrived at and focus on the
logarithm of likelihood ratios

∧n(t) = ln
dPθ0 + δnt, n

dPθ0,n
.

To state the conditions we shall use a par-
ticular Hilbertian or Euclidean norm ‖ · ‖
with its associated inner product < ·, · >. We
shall also need a contiguity∗ condition: Two
sequences {Pn} and {Qn} of probability mea-
sures on σ -fields An are called contiguous if
sequences {Xn} that tend to zero in probabil-
ity for one of the sequences of measures also
tend to zero for the other sequence.

The LAN conditions are as follows, with V
an arbitrary vector space with norm | · |:

LAN (1). There are random variables Xn
and Hilbertian norms ‖ · ‖ such that when-
ever the nonrandom sequence {tn} tends to
a limit t in the sense that |tn − t| → 0, the
difference

∧
n

(tn)− 〈tn, Xn〉 + 1
2 ‖ tn ‖2

tends to zero in Pθ0,n probability.
LAN (2). If |tn − t| → 0, then the sequences

{Pθ0 + δntn, n} and {Pθ0 , n} are contiguous.
One doesn’t want the sets {t : t ∈ V, θ0 +

δnt ∈ �} to be excessively small. To prevent
this, assume:

LAN (3). If V is finite-dimensional, the
limit points t = limn tn with θ0 + δntn ∈ � are
dense in an open subset of V. If V is infinite-
dimensional, the same holds for every finite-
dimensional subspace of V.

In these conditions the random Xn, the
maps δn, and the norms | · | and ‖ · ‖ can
depend on the particular θ0 selected for atten-
tion. For instance, in the Hájek-Le Cam
approach one can take ‖ t ‖2= t′J(θ0)t or one
can take ‖ t ‖2= t′t but make δn = δn(θ0) so
that [δn(θ )0δ

′
n(θ0)]−1 = nJ(θ0).

Le Cam [18] contains a fourth, nonlocal
requirement for estimates that converge at
a suitable speed. If for each θ ∈ � one has
selected a sequence δn(θ ) of linear maps, the
condition is as follows:

LAN (4). There exist estimates θ̃n such
that for each θ ∈ � the norms |δ−1

n (θ )(θ̃n − θ )|
stay bounded in Pθ ,n probability.

This permits the construction of asymp-
totically sufficient estimates (see Le Cam and
Yang [24, §5.3]).

Together, these four conditions force �

to be finite-dimensional. But although they
were originally designed for Euclidean sub-
sets �, the first three LAN conditions can
be used for the infinite-dimensional spaces
V needed in the study of signal-plus-noise
processes or nonparametric investigations.

Let K be a compact subset of (V, | · |).
Let Fθ0,n(K) = {Pθ0+δnt,n : t ∈ K, θ0 + δnt ∈ �}.
Then the conditions LAN (1), (2), (3) imply
the following:

(A) There are Gaussian experiments

Gθ0,n(K) = {Gt,n : t ∈ K, θ0 + δnt ∈ �}

such that �[Fθ0,n(K), Gθ0,n(K)]→ 0 as
n→∞ for the distance � of Defini-
tion 3.

(B) For the norm ‖ · ‖ of LAN (1) and suit-
able random variables Wn one has

ln
dGt,n

dG0,n
= 〈t, Wn〉 − 1

2 ‖ t ‖2

with 〈t, Wn〉 distributed as N(0, ‖ t ‖2).
Thus the Gθ0,n(K) reflect the linear
structure of V.
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Conversely, if (A) and (B) hold, so do LAN
(1) and LAN (2). But LAN (3) and LAN (4)
cannot be consequences of (A) and (B).

For an example in the nonparametric i.i.d.
case we work with densities f defined with
respect to Lebesgue measure. For any integer
n � 1 the

√
f can be written in the form

√
f = 1− c

(‖ υn ‖
2
√

n

)
+ υn

2
√

n
,

where υn is in the space L2,0 of functions υ
such that

∫
υdλ = 0 and ‖ υ ‖2= ∫

υ2dλ <∞.
Here c is a function from [0, 1] to [0, 1]
defined by [1− c(z)]2 = 1− z2; it is used to
ensure

∫
fdλ = 1. We restrict attention to the

subset L2,0(n) of L2,0 where

1− c(‖ υn ‖ /2
√

n)+ υn/2
√

n � 0

and ‖ υn ‖2� 4n.
Consider subsets �n of L2,0(n), and take n

independent observations from the density[
1− c

(‖ υ ‖
2
√

n

)
+ υ

2
√

n

]2

.

It can be shown that such experiments satisfy
LAN (1), (2) and (A), (B) for the squared norm
‖ υ ‖2= ∫

υ2dλ. The notation has already re-
scaled the densities, so that | · | and δn do
not appear, or one can take | · | =‖ · ‖ and δn
to be the identity. This is all that is needed
in most of the arguments and examples of
Bickel et al. [1].

THE ASYMPTOTIC MINIMAX AND
CONVOLUTION THEOREMS

Hájek [11,12] weakened LAN (1) and LAN
(2) by letting tn = t, independent of n. This
necessitated the following strengthening of
LAN (3).

1. There is a dense subset D of the metric
space (V, | · |) such that for t ∈ D one has
θ0 + δnt ∈ � for all n larger than some
n(t).

These weakened LAN (1), (2) conditions,
together with (H), will be called the Hájek
conditions. They do not imply statement (A)
of the previous section, but they do imply the
following:

Proposition. Under Hájek’s conditions the
experiments

Fθ0,n(D) = {Pθ0+δn+t,n : t ∈ D, θ0 + δnt ∈ �}

converge weakly to a Gaussian experiment
G = {Gt : t ∈ D} with log likelihood

L(t) = 〈t, Z〉 − 1
2 ‖ t ‖2 .

The weak convergence is that in Definition 4.

Such a weak convergence already has some
interesting statistical consequences. One of
them is as follows:

Asymptotic Minimax Theorem. Let Fn =
{Qt,n : t ∈ D} be experiments that converge
weakly to a limit G = {Gt : t ∈ D}, not nec-
essarily Gaussian. Fix a loss function W
that is bounded below for each fixed t. Let
R(Fn, W) be the (augmented) set of risk func-
tions introduced in Definition 2, and let r be
a function that does not belong to R(G , W).
Then there is a finite set F ⊂ D, an α > 0,
and N <∞ such that if n � N, the function
r+ α does not belong to R(Fn,F, W), where
Fn,F = {Qt,n : t ∈ F}.

This result leads directly to Hájek’s ver-
sion of the asymptotic minimax theorem [12].
A stronger form of it is proved in Le Cam
[20; 22, pp. 109–110]; for the i.i.d case,
under Cramér-type conditions, see [17]. The
theorem in [20] relies entirely on weak con-
vergence of experiments and does not use the
fact that the limit is Gaussian.

By contrast, Hájek’s version of the con-
volution theorem relies on the fact that the
limit a Gaussian shift experiment:

Convolution Theorem. Let V be a Eucli-
dean space, and let Hájek’s conditions be sat-
isfied. Let Fn = {Qt,n : t ∈ g} converge weakly
to a Gaussian experiment with log-likelihood
ratios

ln
dGt

dG0
= 〈t, Z〉 − 1

2 ‖ t ‖2 .

Consider statistics Tn defined on Fn and such
that L [Tn − t|Qt,n] has a limit M independent
of t for all t ∈ S. Then there is a probability
measure π such that M is the convolution
π ∗G, where G = L (Z).
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This was proved by Hájek [11]; see also
HÁJEK–INAGAKI CONVOLUTION THEOREM. It
also applies to linear functions ATn and AZ;
the limiting distribution of L (ATn) is a con-
volution of L (AZ). The theorem has been
extended to infinite-dimensional (nonpara-
metric) cases where V is a Hilbert space,
with the norm ‖ · ‖ that occurs in LAN (1)
(see Moussatat [26], Millar [25], and van der
Vaart [35]).

The convolution theorem has been taken
by many as a definition of optimality of esti-
mates. If the Tn are such that M = π ∗G with
π concentrated at a point, they are called opti-
mal, as other possible limiting distributions
are more dispersed.

The Hájek-Le Cam asymptotic minimax
and convolution theorems are widely used
in asymptotic statistics. But they don’t tell
the whole story, as is shown in the following
section. One of the reasons they cannot tell
the whole story is that these theorems can
yield only lower bounds for the risk of esti-
mates. They cannot yield upper bounds. This
is because they are really ‘‘local’’ theorems,
and cannot imply such things as the global
condition LAN (4). But they do imply, for
example, that in the nonparametric i.i.d. case
there are no estimates f̃n that can identify the
square root of densities in such a way that

(n/2)
∫

(
√

f̃n −
√

f )2dλ stays bounded in prob-
ability for all densities f . We shall elaborate
on this in the next section.

SOME GLOBAL ASYMPTOTIC NORMALITY
SITUATIONS

The Hájek-Le Cam theorems yield lower
bounds for the risk of estimates. Conver-
gence in the strong sense of the distance
� can yield both lower and upper bounds.
In principle, this is possible only for bounded
loss functions W; however, for unbounded
loss functions (such as ordinary quadratic
loss), if �(En, Fn)→ 0 then one can truncate
W to Wn such that 0 � Wn � bn with bn�(En,
Fn) tending to zero. This is usually sufficient
for practical purposes.

As an example of the need for strong
convergence, consider the i.i.d. case where
Pθ ,n is the joint distribution of n variables
X1, X2, . . . , Xn. Suppose each Xj is Cauchy∗

with center θ . Let En = {Pθ ,n : θ ∈ R} and Gn =
{Gθ ,n : θ ∈ R}, where Gθ ,n is the distribution
of Y, a N(θ , 2/n) random variable.

The En converge weakly to a limit where
for θ �= θ ′ the corresponding measures are
disjoint. This gives little information. For
a fixed θ0, say θ0 = 0, the rescaled exper-
iments Fn = {Pδnt,n : t ∈ R} with δnt = t/

√
n

satisfy the conditions of LAN (1), (2), and
(3). By itself, this does not imply LAN (4), but
it is sufficient to yield lower bounds on the
asymptotic risk of estimates.

In this case one can prove that �(En,
Gn)→ 0 as n→∞. In fact one can prove that
�(En, Gn) � C/

√
n for a suitable constant C.

This says that the risk of estimates for En
will behave like estimates for the Gaussian
Gn, except for a term of the type

C ‖ Wn ‖ /
√

n,

where ‖ Wn ‖= supθ ,d |Wn(θ , d)|. A similar
assertion can be made for the general i.i.d.
location family case, provided the density
f (x− θ ) has finite Fisher information.

As a more interesting problem, Nussbaum
[27] considers a nonparametric situation
where the variables are i.i.d. with densities f
on [0,1]. Let � be the space of densities such
that (1) for a fixed constant K and some fixed
α > 1

2 ,

|f (x)− f (y)| � K|x− y|α,

and (2) there exists ε0 > 0 such that f (x) � ε0
for all x ∈ [0, 1). Let En = {Pf ,n : f ∈ θ} be the
experiment where Pf ,n is the joint distribu-
tion of n independent observations from f ∈
�. Consider the Gaussian experiment Gn =
{Gf ,n : f ∈ �} where the observable element
is a process Y(τ ) for τ ∈ [0, 1] such that

dY(τ ) =
√

f (τ )dτ + 1
2
√

n
Z(dτ ),

where Z is the standard Gaussian white
noise∗ on [0, 1]. Nussbaum’s result is as fol-
lows:

Theorem. As n→∞ the distance�(En, Gn)
tends to zero.

Note that the shift parameter of Gn is the
square root of the density. As in the nonpara-
metric example of the previous section, this
ensures homoskedasticity of Gn.



284 ASYMPTOTIC NORMALITY OF EXPERIMENTS

People know a lot about estimation in the
Gaussian case (see Donoho et al. [8], Donoho
and Liu [7], Donoho and Johnstone [6], and
the references therein). Using Nussbaum’s
theorem, one can readily transfer all of these
Gaussian results to the case of density esti-
mation in �, at least for bounded loss func-
tions (and for unbounded ones, by trunca-
tion). It follows for instance that the speed of
convergence of estimates will be the same in
En as in Gn.

Nussbaum gives many applications; we
only cite one. Let Wm

2 (K) be the Sobolev ball
of functions g where for the standard Fourier
orthonormal basis on [0, 1] the Fourier coeffi-
cients gj satisfy

∑
(2nj)2mg2

j � K. Consider a
truncated Hellinger loss

L(f̂ , f , n, c) = min{c, n1−r
∫

(f̂ 1/2 − f 1/2)2dλ},

where r = (2m+ 1)−1.
Let F (m, k, ε) be the set of densities f such

that f � ε > 0 and f 1/2 ∈Wm
2 (K). Then for

each ε > 0 and for m � 4 there is a sequence
cn tending to infinity such that the mini-
max risk on F (m, k, ε) for L(f̂ , f , n, cn) tends
to 22(r−1)Krγ (m), where γ (m) is the Pinsker
constant [28] relative to the Gaussian case.
This result had been guessed but not proved
before Nussbaum’s theorem.

RELATED RESULTS

There are situations where approximability
by Gaussian shift experiments is not possi-
ble, but where the Gaussian results are still
useful. For inference on stochastic processes
or time series, the LAN conditions may apply,
but the locally asymptotically mixed normal
(LAMN) conditions apply more generally (cf.
[5,15,16]). Here the log-likelihood ratios have
an expansion of the type

∧n(t) = 〈t, Sn〉 − 1
2 t′�nt+ εn,

where εn tends to zero in probability but
where the matrices, or linear maps, �n stay
random. They are not approximable by non-
random maps. Nonetheless, a large number
of Gaussian results can be applied condition-
ally given the �n.

Several bounds on risks can be obtained
through the study of Bayes’ procedures when

the posterior distributions are approximately
Gaussian (see Le Cam and Yang [24, §5.4]).
These results stay valid in the LAMN case.
For a discussion of such Gaussian approxi-
mations to posterior distributions, see Jega-
nathan [15,16] and Le Cam [22, Chap. 12].
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GAUSSIAN PROCESSES; HÁJEK–INAGAKI CONVOLUTION

THEOREM; MEASURE THEORY IN PROBABILITY AND

STATISTICS; and MINIMAX DECISION RULES.

L. LE CAM

ASYMPTOTICS, HIGHER ORDER

Statisticians often seek to approximate quan-
tities, such as the density of a test statistic
evaluated at a fixed ordinate, that depend
on a known parameter, such as the sample
size, in a very complicated way. The resulting
approximation should be tractable analyti-
cally or numerically. Asymptotic expansions∗

are approximations that can be expressed as
a sum of a small number of terms, each of
which is the product of a factor that is a
simple function of the parameter, and a coef-
ficient that does not depend on the parame-
ter. Asymptotic expansions are distinguished
from other potential approximations in that
their accuracy is assessed by examining the
limiting behavior of errors as the parameter
approaches some limiting value. This lim-
iting value is usually infinity in the very
common case in which the known parameter
is a measure of sample size.
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Specifically, we will consider asymptotic
approximations to a quantity fn, depending
on n, of the form

fn =
r∑

j=1

gjbjn +Rr,n, (1)

with attention paid to the size of the remain-
der term Rr,n as n→∞. Usually the coeffi-
cients bjn are quantities that decrease as n
moves toward its limiting value, and decrease
more quickly for larger j. Typical choices for
bjn are inverse powers of n or its square root.

Frequently the quantity to be approx-
imated is a function of another variable.
For instance, when fn is a function of x, (1)
becomes

fn(x) =
r∑

j=1

gj(x)bjn + Rr,n(x); (2)

the coefficients gj and the error term are
allowed to depend on x, and the factors bjn
and the error term are allowed to depend
on n.

Methods with r = 1, using g1b1n to approx-
imate fn, are generally described by the term
first-order asymptotic, and when additional
terms are included one calls r defined in
(1) the order of asymptotic approximation
applied. Higher-order asymptotic methods,
then, are defined here to be applications of (1)
or (2) with r > 1; this includes second-order
asymptotic methods.

We will consider innovative approaches to
using terms in the series beyond the initial
term g1b1n for assessing powers of tests and
efficiencies of estimators, both asymptotically
as n becomes large, and for finite n. Details
may be omitted in discussing the applications
of higher-order asymptotics, in order to avoid
duplication with other ESS entries.

EFFICIENCY IN GENERAL

Much of the material in this section also
appears in the entry EFFICIENCY, SECOND-
ORDER. Common definitions of the relative
efficiency of two statistical procedures involve
comparisons of sample sizes necessary to pro-
vide equivalent precision. Specifically, sup-
pose that kn observations are required to

give the second procedure the same preci-
sion as is realized with n observations from
the first procedure; then the relative effi-
ciency of these two procedures is kn/n, and
the asymptotic relative efficiency is ARE =
limn→∞ kn/n. Placing this in the context of
(1),

kn

n
= ARE+ R1,n,

where lim
n→∞R1,n = 0. (3)

Here equality of precision may refer to equal-
ity of mean square errors∗ of two estimates,
or powers of two tests for a similar alterna-
tive; various precise definitions of equality of
precision are discussed in the next section.
The first procedure is preferable if ARE > 1,
and the second procedure is preferable if
ARE < 1.

Fisher [7] considered discrimination bet-
ween estimation procedures when the asymp-
totic relative efficiency is unity, and explored
situations in which a second-order version of
(3) exists. Suppose that ARE = 1 and

kn

n
= 1+ d

n
+ R2,n,

where lim
n→∞

R2,n

n
= 0. (4)

The first procedure is preferable if d > 0, and
the second procedure is preferable if d < 0.
The relation (4) implies that

d = lim
n→∞(kn − n).

Hodges and Lehmann [9] define the defi-
ciency of the two procedures to be kn − n; the
asymptotic deficiency of the second procedure
relative to the first is then d, when this limit
exists. A simple example is presented in the
next section.

Hodges and Lehmann [9] give an example
involving estimation in which the limit d is
infinite, and so an expansion as above need
not always exist. Pfanzagl [14] and Ghosh [8]
present regularity conditions under which
such an expansion will exist when compar-
ing the higher-order efficiencies of first-order
efficient tests; see the review article by Skov-
gaard [19].
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COMPARISONS OF ESTIMATORS

Consider assessing an asymptotically nor-
mal and asymptotically unbiased estimator
of a parameter. One might take as a defi-
nition of the efficiency of this estimator the
ratio of the Cramér—Rao∗ lower bound for
its variance to the actual achieved variance.
One might also define the estimator’s asymp-
totic efficiency as the limit of this ratio as
some parameter, usually reflecting the sam-
ple size, increases [2, pp. 137 f.; 4, pp. 304 ff.].
Estimates with efficiency closer to one are
preferable to those with lower efficiency. Esti-
mators whose asymptotic efficiency is unity
are first-order efficient.

When one considers collections of estima-
tors one often is interested in their behavior
relative to one another. The relative effi-
ciency for two estimators is the inverse of
the ratio of their variances, and the asymp-
totic relative efficiency is the limit of this
inverse ratio. When the two estimators have
variances approximately proportional to n in
large samples, this definition of asymptotic
relative efficiency coincides with the defini-
tion in terms of relative sample sizes needed
to give equivalent precision. This section will
place the differentiation between estimators
in the context of (1).

As a simple example, consider estimating
a mean of a population with finite variance,
using a sample of n independent observa-
tions. If one procedure estimates the mean as
the sample mean, and the second procedure
estimates the mean as the sample mean with
the first observation ignored, then kn = n+ 1,
the relative efficiency is (n+ 1)/n, and the
asymptotic relative efficiency is 1. The defi-
ciency is then 1 for all values of n, and so the
asymptotic deficiency is also 1.

Fisher [7] argues heuristically that
maximum-likelihood estimation∗ produces
estimators that are first-order efficient, with
variances, to first order, given by the Fisher
information∗ in the whole sample, and that
the loss in efficiency incurred by other esti-
mators might be measured by the correlation
of these other estimators with the maximum-
likelihood estimator, or alternately by the
differences between the whole sample infor-
mation and the information in the sampling
distribution of the estimator. Other authors

have made these claims rigorous, and some
of these results will be reviewed below.
Wong [23] presents a more thorough rigorous
review. The correlation between estimators
may be used to build a definition for second-
order efficiency which is equivalent to the
Fisher information difference, under certain
regularity conditions [17,18].

Higher-order asymptotic expansions for
the mean square error for the maximum-
likelihood estimator can be generated. Since
expansions for the mean square error are
related to expansions for the information con-
tent of the maximum-likelihood estimator,
and the information expansion is simpler,
the information expansion will be considered
first. Efron [6] uses methods from differential
geometry to define the statistical curvature∗
γθ of an inference problem, and relates it
to the loss of efficiency when inference pro-
cedures designed for local alternatives are
applied globally.

Consider a family of distributions on a
sample space χ parametrized by θ taking
values in � ⊂ R, and suppose that X ∈ χn is
a vector of n independent and identically dis-
tributed variables Xj. Let l = l(θ;X) be the
log likelihood for X. Let l̈(θ , X) be the second
derivative of the log likelihood with respect
to θ . Let in(θ ) = −E[l̈(θ , X); θ ] be the Fisher
information in the sample X, let iθ̂n(θ ) be the
Fisher information for the sampling distribu-
tion of θ̂ , the maximum-likelihood estimator
for θ , and let i1(θ ) be the Fisher informa-
tion for X1. If γ 1

θ is the curvature defined
for the distribution of a random variable X1,
and γ n

θ is the curvature calculated for the
distribution of X, then γ 1

θ = γ n
θ /
√

n. One may
show that limn→∞[in(θ )− iθ̂n(θ )] = i1(θ )(γ 1

θ )2,
and hence iθ̂n(θ )/n = i1(θ )− i1(θ )γ 1

θ /n+ R2,n,
where limn→∞ nR2,n = 0, giving an asymp-
totic expansion∗ for the average information
contained in a maximum-likelihood estima-
tor. Efron [6] also produced an asymptotic
expansion for the variance of the maximum-
likelihood estimator at a parameter value θ0,
which contains the statistical curvature and
additional terms involving the curvature of
the bias of the result of one scoring itera-
tion, and the bias of the maximum-likelihood
estimator at θ0. These terms are all of size
O(n−2), which means that after dividing by
n−2 they remain bounded, and the error is of
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size o(n−2), which means that after dividing
by n−2 the error converges to zero as n→∞.
For more details see EFFICIENCY, SECOND-
ORDER.

COMPARISONS OF TESTS

Asymptotic comparisons of powers∗ of fami-
lies of tests having exactly or approximately
the same significance level have been exam-
ined by many authors. Generally their inves-
tigations have considered the problem of test-
ing a null hypothesis that a statistical param-
eter θ takes a null value, of the form H0 : θ =
θ0, using two competing tests T1,n and T2,n,
indexed by a parameter n, generally indicat-
ing the sample size. Their critical values t1,n
and t2,n satisfy

P[Ti,n � ti,n;H0] = α for i = 1, 2. (5)

Measures of global asymptotic efficiency
of two competing tests such as Bahadur
efficiency∗ are generally functions of the
parameter determining the distribution
under an alternative, and since these func-
tions generally do not coincide for competing
tests, higher-order terms in sample size are
generally not needed for choosing among
tests of identical first-order efficiency.

Single-number measures of efficiency
often times compare powers of tests whose
sizes, exactly or approximately, are fixed and
identical. For consistent tests and a fixed
alternative hypothesis, distribution functions
for the test statistics (or asymptotic approxi-
mations to these distribution functions) indi-
cate an identical first-order asymptotic power
of unity. Distinguishing between such tests,
then, requires a local measure of relative effi-
ciency such as Pitman efficiency∗, which is
the ratio of sample sizes necessary to give the
same power against a local alternative. That
is, alternatives of the form HA : θ = θ0 + ε/cn,
where cn →∞, are considered, and the limit
limn(kn/n) is desired, where

P[T1,n � t1,n;HA] = P[T2,kn � t2,n;HA]. (6)

Often competing tests can be found whose
measures of asymptotic relative efficiency
against local alternatives is unity. One fre-
quently wishes to discriminate between two

such tests. Hodges and Lehmann [9] apply
their concept of deficiency to the problem of
comparing tests in cases in which sizes can
be calculated exactly.

Often exact expressions for the proba-
bilities in (5) and (6) are unavailable. In
such cases the critical value, as well as
the power usually must be approximated.
Pfanzagl [14] notes that asymptotic compar-
isons of power are only interesting when
significance levels of the tests agree to
the same asymptotic order, and achieves
this equality of size through a process
of Studentization∗ in the presence of nui-
sance parameters∗. Such equality of size
might be obtained using a Cornish—Fisher∗

expansion to calculate the critical value for
the test (see ASYMPTOTIC EXPANSIONS—II).
Albers et al. [1] apply Edgeworth series to
calculate the powers of nonparametric tests.
The primary difficulty in such cases arises
from the discrete nature of the distribu-
tions to be approximated. Pfaff and Pfan-
zagl [15] present applications of Edgeworth
and saddlepoint∗ expansions to the prob-
lem of approximating power functions for
test statistics with continuous distributions;
they find that the Edgeworth series is more
useful for analytic comparisons of power,
while saddlepoint methods give more accu-
rate numerical results. Applications to tests
for sphericity∗, and for the significance of
a common cumulative logit in a model for
ordered categorical data∗, are presented by
Chan and Srivastava [3] and Kolassa [10],
respectively.

Asymptotic expansions of cumulative dis-
tribution functions can also be used to cal-
culate asymptotic relative efficiencies and
deficiencies. Those applications discussed
here are under local alternatives. First-
order approximations are generally sufficient
to calculate asymptotic relative efficiencies;
deficiency calculations generally require that
second-order terms be included as well.
Peers [13] uses approximations of the form
(1) to approximate the cumulative distribu-
tion function of the likelihood-ratio statis-
tics, Wald statistics∗, and score statistics∗
as a mixture of noncentral χ2 distribu-
tions. Taniguchi [21] calculates these terms
to examine cases when the deficiency is
zero and a third-order counterpart of (4) is
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required; comparisons may then be based on
the final coefficient.

Many authors use higher-order asymp-
totic methods to aid in the construction
of hypothesis tests; the most classical uses
involve deriving the Bartlett correction to
likelihood-ratio tests; see also BARTLETT

ADJUSTMENT—I.

AN EXAMPLE

As an example, consider calculations of power
in tests of equality of distribution for two
populations classified into ordered categories.
The Mann—Whitney—Wilcoxon statistic∗ is
the score statistic for testing this null hypoth-
esis against the alternative that the data are
generated by the constant-cumulative-odds
model of McCullagh [12]. Whitehead [22] pro-
poses a method for approximating the power
of the resulting test. Critical values are
derived using a normal approximation with
an approximate variance. Powers are cal-
culated by approximating the alternative
distribution as normal with the mean approx-
imated by the parameter value times an
approximation to the expected information.
These first-order asymptotic methods will
be compared with higher-order Edgeworth
series methods.

One-sided tests of size α = 0.025 for
2 × 4 contingency tables∗ with row totals
both equal to 30 were examined. The col-
umn probabilities are those investigated by
Whitehead [22], (0.289, 0.486, 0.153, 0.072).

For a variety of model parameters the first-
order, higher-order Edgeworth, and Monte
Carlo∗ approximations to these powers are
presented. The Edgeworth series used was
the distribution function corresponding to
the density (4) from the entry on asymptotic
approximations∗:

Fn(s) = �(s)− φ(s)
[
λ3

6
h2(s)

+ λ4

24
h3(s)+ λ

2
3

72
h5(s)

]
,

where the cumulants λk contain inverse
powers of the row totals and are calcu-
lated by Kolassa [10], and the test statistic
has been standardized to have zero mean
and unit variance. All Monte Carlo approx-
imations involve 1,000,000 samples, and so
have standard errors no larger than 0.0005.
Figure 1 contains the results. The Edge-
worth approximations to the power are visu-
ally indistinguishable from the Monte Carlo
approximations; the first-order approxima-
tions are not so close. Kolassa [10] shows
that actual and nominal test sizes corre-
spond more closely than the corresponding
power values. Because of discreteness in the
distribution of the test statistics, the first-
and higher-order size calculations coincide in
many cases; where they disagree, the nom-
inal levels generating the Cornish—Fisher
expansion appear to be substantially more
accurate than the first-order approximations.

-
-

-

Figure 1. Comparisons
of first- and second-order
power approximations
for ordered categorical
data. (The second-
order and Monte Carlo
approximations are
indistinguishable.)
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OPEN QUESTIONS

Three topics among the open questions and
ongoing difficulties in applying higher-order
asymptotic methods will be reviewed here.

These are extending asymptotic meth-
ods to the more difficult situations involv-
ing statistics generated from nonindependent
observations, simplifying regularity condi-
tions, and simplifying the form of the result-
ing approximation.

Some results in the first area, particularly
with references to ARMA processes, are pre-
sented by Swe and Taniguchi [20] and in the
references they cite. The second area is per-
haps not so important. Asymptotic methods,
and saddlepoint methods in particular, are
often remarkably accurate for a wide range of
applications, and intuition often serves bet-
ter than a careful evaluation of regularity
conditions to indicate those contexts in which
asymptotic methods are likely to be useful.
Nevertheless, for certain applications careful
examination of these conditions is sometimes
required, and these conditions can often be
quite complicated and not particularly intu-
itive [21].

Simplifying the form of asymptotic expan-
sions is important for increasing their use-
fulness. Higher-order terms often are quite
complicated [11,21]. Simplification might
arise from choosing among various different
asymptotic approximations accurate to the
same order; see Daniels [5] and Pierce and
Peters [16].

REFERENCES

1. Albers, W., Bickel, P. J., and van Zwet, W. R.
(1976). Asymptotic expansions for the power of
distribution free tests in the one-sample prob-
lem. Ann. Statist., 4, 108–156. (This paper
presents Edgeworth series results for sums of
discrete random variables, useful for imple-
menting nonparametric tests.)

2. Bickel, P. J. and Doksum, K. A. (1977). Math-
ematical Statistics: Basic Ideas and Selected
Topics. Holden-Day, Oakland, Calif. (A stan-
dard introductory text in theoretical statis-
tics.)

3. Chan, Y. M. and Srivastava, M. S. (1988).
Comparison of powers for the sphericity tests
using both the asymptotic distribution and

the bootstrap method, Comm. Statist. Theory
Methods, 17, 671–690.

4. Cox, D. R. and Hinkley, D. V. (1982). Theoret-
ical Statistics. Chapman and Hall, London. (A
standard text in theoretical statistics.)

5. Daniels, H. E. (1987). Tail probability approx-
imations. Internat. Statist. Rev., 55, 37–
46.

6. Efron, B. (1975). Defining the curvature of
a statistical problem (with applications to
second-order efficiency). Ann. Statist., 3,
1189–1242. (This paper presents a geometric
approach to asymptotics for models that can
be embedded in curved exponential families.)

7. Fisher, R. A. (1925). Theory of statistical
estimation, Proc. Cambridge Phil. Soc., 22,
700–725.

8. Ghosh, J. K. (1991). Higher order asymptotics
for the likelihood ratio, Rao’s and Wald’s tests.
Statist. Probab. Lett., 12, 505–509.

9. Hodges, J. L., Jr., and Lehmann, E. L. (1970).
Deficiency. Ann. Math. Statist., 41, 783–801.
(This paper is an important work on higher-
order asymptotic efficiency.)

10. Kolassa, J. E. (1995). A comparison of size and
power calculations for the Wilcoxon statistic
for ordered categorical data. Statist. Med., 14,
1577–1581.

11. Kolassa, J. E. (1996). Higher-order approxi-
mations to conditional distribution functions.
Ann. Statist., 24, 353–364.

12. McCullagh, P. (1980). Regression models for
ordinal data. J. Roy. Statist. Soc. Ser. B, 42,
109–142.

13. Peers, H. W. (1971). Likelihood ratio and asso-
ciated test criteria. Biometrika, 58, 577–587.
(This paper calculates approximations to sta-
tistical power at local alternatives in order to
approximate efficiencies.)

14. Pfanzagl, J. (1980). Asymptotic expansions in
parametric statistical theory. In Developments
in Statistics, vol. 3, P. R. Krishnaiah, ed. Aca-
demic Press, New York, pp. 1–98. (This paper
is an extended review article on the uses of
asymptotics in statistical inference.)

15. Pfaff, T. and Pfanzagl, J. (1985). On the accu-
racy of asymptotic expansions for power func-
tions. J. Statist. Comput. Simul., 22, 1–25.

16. Pierce, D. A. and Peters, D. (1992). Practical
use of higher-order asymptotics for multipa-
rameter exponential families. J. Roy. Statist.
Soc. Ser. B, 54, 701–737. (This paper reviews
alternative forms of saddlepoint distribution
function expansions.)



ATMOSPHERIC STATISTICS 291

17. Rao, C. R. (1962). Efficient estimates and opti-
mum inference procedures. J. Roy, Statist.
Soc. Ser. B, 24, 47–72.

18. Rao, C. R. (1963). Criteria of estimation in
large samples. Sankhyā, 25, 189–206.
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ATMOSPHERIC STATISTICS

The term atmospheric statistics covers a large
body of work. In broad terms, this work
can be divided into two categories: statis-
tical atmospheric statistics and atmospheric
atmospheric statistics.

Although the distinction is not always
clearcut, in statistical atmospheric statis-
tics, the application of statistics to prob-
lems in atmospheric science is, to a large
extent, incidental. The hallmark of statisti-
cal atmospheric statistics is that, with lit-
tle modification, the same analysis could be
applied to data from an entirely different
field. For example, the possibility of weather

modification∗ attracted a lot of interest in the
atmospheric science community during the
1970s, and a number of cloud-seeding exper-
iments were planned and performed. As in
other fields, statistical issues arose over the
design of these experiments and over the
analysis and interpretation of their results.
This work is reviewed in [5] and [12]; see also
WEATHER MODIFICATION—I and WEATHER

MODIFICATION—II.
A second example of statistical atmo-

spheric statistics is the development of
stochastic rainfall models [28,29]; see also
RAINFALL, LANDFORMS, AND STREAMFLOW.
Here, the problem is to construct a model
of variations in rainfall intensity over time
and space that can be used in the design
of reservoirs and storm-sewer or flood con-
trol systems (see DAM THEORY). Other
examples of statistical atmospheric statis-
tics are described in [21] and METEOROLOGY,
STATISTICS IN.

In recent years, atmospheric issues
with global environmental implications have
received considerable attention. Some sta-
tistical work on two of these issues—
stratospheric ozone depletion and global
warming—is reviewed below.

STATISTICS IN WEATHER PREDICTION

In contrast to statistical atmospheric statis-
tics, atmospheric statistics is characterized
by a close connection to atmospheric science.
Compared to other scientific fields, atmo-
spheric science is organized to an unusual
degree around a single practical problem: the
prediction of the future state of the atmo-
sphere. Bjerknes [1] referred to this as the
ultimate problem in meteorology. Since the
time of Bjerknes, atmospheric prediction has
been viewed as an initial-value problem. That
is, to predict the future state of the atmo-
sphere it is necessary, first, to describe the
current state of the atmosphere, and second,
to predict the future state by applying the
laws of atmospheric dynamics to the cur-
rent state. The historical development and
modern view of this two-step process are
described in ref. 8.

The first step in this two-step process is
the estimation of the current state of the
atmosphere, as represented by one or more
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atmospheric variables, at a dense grid of
locations (called analysis points) from rel-
atively sparse observations made at irreg-
ularly spaced locations (called observation
points). This is called objective analysis; the
most prominent role for statistics in atmo-
spheric prediction lies in it. Early methods
for objective analysis were based on fitting
polynomial or other parametric functions to
observations distributed in space by weighted
least squares∗ [14,23]. The weights in this
fitting are used to allow for unequal vari-
ances in the observations, which may be from
quite different types of instruments (surface
stations, weather balloons, satellites, etc.).
Both local fitting and global fitting have
been used.

As noted, the state of the atmosphere is
described by more than one variable (tem-
perature, pressure, humidity, etc.). These
variables are coupled through governing
equations. Methods have been developed to
incorporate the constraints imposed by these
governing equations in function fitting. A pop-
ular approach was devised by Flattery [11]
for the objective analysis of the geopoten-
tial and the two horizontal components of
wind. Under this approach, the three vari-
ables are expressed through an expansion in
Hough functions. Hough functions are the
eigenfunctions of a linearized version of the
Laplace tidal equations, a relatively sim-
ple model of atmospheric dynamics on the
sphere [6]. Because the model is linearized,
the constraint—in this case, the geostrophic
relation under which the Coriolis forces are
balanced by the atmospheric pressure gradi-
ent—is only approximately met.

During the early 1970s, the use of func-
tion fitting for objective analysis declined, due
in part to numerical problems, and interest
shifted to a method called statistical inter-
polation, which was introduced into atmo-
spheric science by Gandin [13]. It is essen-
tially equivalent to linear interpolation meth-
ods developed by Kolmogorov [18] and Wiener
[40] and popularized by Matheron [20] under
the name kriging.∗

To begin with, consider the univariate
case. Let Y(x) be the value of the variable
of interest at location x, let x0 be an analy-
sis point, and let xi, i = 1, 2, . . . , n, be nearby

observation points. Under statistical interpo-
lation, the estimate of Y(x0) is given by

Y∗(x0) = µ(x0)+
n∑

i=1

wi[Y(xi)− µ(xi)],

where µ(x) is the mean of Y(x). This can be
rewritten in obvious matrix notation as

Y∗(x0) = µ(x0)+w′(Y − µ).

The vector w of interpolation weights is cho-
sen to minimize the variance of the interpola-
tion error Y(x0)− Y∗(x0). This vector is given
by w = C−1c, where

C = [cov(Y(xi)− µ(xi), Y(xj)− µ(xj))],

i, j = 1, 2, . . . , n,

c = [cov(Y(x0)− µ(x0), Y(xi)− µ(xi))],

i = 1, 2, . . . , n.

The presence of measurement error∗ can also
be incorporated into this approach.

To implement this approach, it is neces-
sary to specify the mean field µ(x) and the
spatial covariance function of the deviation
field. In atmospheric science,µ(x) is called the
background. In early work, the background
was taken to be the average of historical mea-
surements, and was called the climatological
background or simply climatology. Currently,
an iterative approach is used under which
predictions from a numerical model based on
the previous objective analysis are used as
background for the current objective analy-
sis [8]. The shift from climatology to forecast
for background is a reflection of improved
forecast accuracy. Numerical models gener-
ate predictions only at the analysis points and
not at the observation points. Background at
the observation points is interpolated from
background at the analysis points. This is
called forward interpolation.

In the simplest case, the spatial covari-
ance of the deviation field is assumed to be
separable into horizontal and vertical compo-
nents; both of these components are assumed
to be stationary, and the horizontal com-
ponent is assumed to be isotropic. Under
these assumptions, the covariance depends
only on the distance between points. The
deviations at the observation locations can
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be used to estimate spatial covariance at a
number of distances and a parametric covari-
ance function is fitted to these estimates.
In some cases, the form of these paramet-
ric models is based on physical models [24].
Extensions of these methods have been made
to accommodate anisotropic and nonstation-
ary covariances. Statistical interpolation can
be extended in a straightforward way to
the multivariate case. Physical constraints
(like geostrophic balance) can be imposed
on the interpolated field, either exactly or
approximately, by imposing constraints on
the covariance structure of the multivariate
field [19].

Research on objective analysis remains
active. One area of current interest concerns
the incorporation of asynoptic satellite data
into objective analysis. This is called continu-
ous data assimilation—the original idea was
due to Charney et al. [7]. It involves what
might be called sequential objective analysis,
in which data are incorporated into an essen-
tially continuous forward model integration.
Another focus of current research involves
the estimation of forecast errors in data-poor
regions, such as over the oceans. Methods
based on the Kalman filter∗ have shown
promise here [9,38]. An area of research that
may be of interest to statisticians concerns
the use of splines∗ in objective analysis [19].

STATISTICS IN STRATOSPHERIC OZONE
DEPLETION

Turning now to statistical atmospheric statis-
tics, two problems of current interest in atmo-
spheric science are the depletion of strato-
spheric ozone by chlorine-containing com-
pounds such as chlorofluorocarbons (CFCs)
and atmospheric warming due to increased
atmospheric concentrations of carbon dioxide
and other radiatively active gases. Statistical
work on these issues, both of which have sub-
stantial environmental and economic impli-
cations, is reviewed in [32].

The potential depletion of stratospheric
ozone, which shields the Earth’s surface from
ultraviolet radiation, is a serious concern.
Some scientific aspects of ozone depletion are
reviewed in [37]. While there is little doubt
that significant depletion has occurred over

Antarctica, this is related to special atmo-
spheric conditions (low temperatures and
small atmospheric mixing), and questions
remain about the rate of depletion at low
latitudes. Total column ozone has been mea-
sured at 36 ground stations around the world
since the 1960s. These stations are com-
monly grouped into seven regions. Because
the measurements were made by a Dobson
spectrophotometer, they are referred to as
the Dobson data.

Statistical analyses of the Dobson data
include refs. 4, 25, 26, and 36. The goal
of these analyses was to estimate a global
trend in stratospheric ozone concentration.
One complicating factor in these analyses is
that ozone concentration may be affected by
such factors as solar variability, atmospheric
nuclear testing, and volcanic eruptions, so
that selection of variables becomes an issue.
A second complicating factor concerns the
form of the ozone depletion curve. Reinsel
and Tiao [26] used a two-phase linear model,
with slope 0 prior to 1970 and unknown slope
ω thereafter. In contrast, Bloomfield et al. [4]
used a depletion curve of the form ωmt, where
mt was the depletion curve predicted by a
photochemical model. For both models, ω = 0
corresponds to the case of no depletion. For
the specification adopted in [4], ω = 1 corre-
sponds to the case in which the predictions of
the photochemical model are correct.

Reinsel and Tiao estimated depletion
curves in each of the seven regions sepa-
rately and combined these estimates through
a random-effects model to estimate a global
depletion rate. Bloomfield et al. used a more
explicitly spatial model to estimate a global
depletion rate. In neither case was significant
global depletion found. However, using indi-
rect measurements, Reinsel and Tiao identi-
fied significant ozone depletion of up to 4%
per decade in the upper atmosphere where
photochemical theory suggests that depletion
should be greatest.

Since the late 1970s, the Total Ozone
Mapping Spectrometer (TOMS) aboard the
Nimbus 7 satellite has provided daily total
column ozone data on a global 1◦ latitude
by 1.25◦ longitude grid [17]. These data have
recently been analyzed by Niu and Tiao [22].
The spatial coverage of these observations is
much denser than of the ground stations, so
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more careful modeling of spatial correlation
is needed. For a fixed latitude, let Yj(t) be the
average ozone observation in month t at lon-
gitude j. Niu and Tiao adopted the additive
model

Yj(t) = sj(t)+ rj(t)+ ξj(t),

where sj(t) is a seasonal component and rj(t) is
a linear trend component. The noise term ξj(t)
is assumed to follow a space—time
autoregressive (STAR) model of the form

ξj(t) =
∑

αkξj−k(t)+ θkξj+k(t)

+
∑

φlξj(t− l)+ εj(t),

where the εj(t) are independent, normal
errors with mean 0 and variance that depends
on t only through the month. Under this
model, the error in period t at longitude j is
related both to previous errors at the same
longitude and to errors in the same period at
different longitudes. The first summation in
this expression runs from k = 1 to k = q, and
the second from l = 1 to l = p. The parame-
ters q and p define the spatial and temporal
order of the STAR model, respectively. An
interesting feature of this model is that lon-
gitude is a circular variable.

Niu and Tiao fitted this model to seven
latitude bands in each hemisphere for the
period November 1978 to May 1990. For the
most part, a symmetric STAR (2, 1) error
model was selected. This model includes two
spatial lags and one temporal lag. The model
is symmetric in the sense that αk = θk. The
results indicate significant reductions of up to
several percent per decade at high latitudes.
One possible extension of this analysis is to
allow for latitudinal dependence in the error
term ξj(t).

STATISTICS IN GLOBAL WARMING

Concern over global warming stems from the
observation that the atmospheric concentra-
tion of carbon dioxide and other radiatively
active gases has increased significantly since
the Industrial Revolution, due primarily to
the consumption of fossil fuels and other
human activities. These gases are respon-
sible for the greenhouse effect that keeps

the atmosphere warm enough to support life.
An increase in their concentration effectively
increases radiative forcing of the atmosphere.
The direct effect of this increase in radiative
forcing is atmospheric warming. However,
the rate and magnitude of this warming
is determined by certain feedbacks in the
climate system, and there is considerable
uncertainty about the ultimate atmospheric
response. Scientific issues relating to global
warming are reviewed in the reports of the
Intergovernmental Panel on Climate Change
[15,16].

Estimates of mean global surface temper-
ature based on direct, instrumental measure-
ments are available for the past 120 years.
These estimates show an irregular warming
trend amounting to around 0.5◦C over the
length of the record. Some statistical work
in the area of global warming has involved
efforts to assess the significance of this appar-
ent trend. Let Tt be the observed increase in
mean global surface temperature in year t
over some baseline year. The basic model is

Tt = β0 + β1t+ εt,

where εt represents variations in tempera-
ture around the linear trend. Interest centers
on estimating β1 and on testing the null
hypothesis that β1 = 0. A central problem
in this work concerns the specification of
the properties of the variability around the
trend. In particular, failure to allow for posi-
tive serial dependence∗ in this variability will
exaggerate the significance of the estimate of
β1. This issue was considered in generality
in ref. 3. Woodward and Gray [42] focused
on the case where εt follows an autoregres-
sive moving-average (ARMA)∗ process, while
Smith [30] considered a model with long-
range dependence∗. The results indicate that
the estimate of β1 (which is on the order
of 0.004◦C per year) is at least marginally
significant. The one exception considered by
Woodward and Gray is the case in which the
process generating εt is a correlated random
walk∗ (i.e., the ARMA model has a unit root∗).
However, this model is implausible on scien-
tific grounds. In related work, Richards [27]
used econometric methods to test a number
of hypotheses about changes in global tem-
perature.
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This work on global warming uses only
the data and exploits little if any scientific
understanding of the climate system. Other
statistical work in this area has focused on
estimation and inference about parameters
that are physically more meaningful than
the slope of a linear trend. The sensitivity of
the global surface temperature to changes in
radiative forcing is summarized in a parame-
ter called temperature sensitivity, commonly
denoted by �T; it is defined as the equilib-
rium response of mean global surface tem-
perature to an increase in radiative forcing
of 4.4 W m−2 (corresponding to a doubling
of the atmospheric concentration of carbon
dioxide). A central problem in climatology is
the estimation of �T.

It is possible to estimate the secular trend
in the atmospheric concentrations of the prin-
cipal greenhouse gases since 1860. These
estimated trends can be converted into an
estimated trend in overall radiative forcing
over the same period. Radiative forcing has
increased by around 2.2 W m−2 since 1860.
The expected response of mean global surface
temperature to this pattern of increase can
be estimated using a simple climate model
that includes �T as a parameter. As noted,
annual estimates of the mean global surface
temperature over this period show an overall
warming of around 0.5◦C.

The temperature sensitivity can be esti-
mated by matching the model response to
the observed warming. The basic model is

Tt = mt(�T)+ εt,

where mt(�T) is the model response in
year t to observed changes in radiative forc-
ing for temperature sensitivity �T, and, as
before, εt represents other temperature vari-
ations. It is again important in fitting this
model—and crucial in constructing a con-
fidence interval for �T—to recognize that
the process εt is serially dependent. This
process includes temperature responses to
fluctuations in radiative forcing that are not
included in the estimated secular trend. The
effect of these fluctuations (which are due to
events like volcanic eruptions and to other
variations in solar activity, cloudiness, etc.)
on temperature can persist for several years.
This general approach was first applied in

ref. 41. In its most careful application, Bloom-
field [2] adopted a fractionally integrated
white-noise∗ model for εt. The correspond-
ing point estimate of �T was around 1.4◦C
with an approximate 0.95 confidence interval
of 0.7◦C to 2.2◦C.

The general approach to estimating �T
outlined above depends on the accuracy of
the estimated secular trend∗ in radiative
forcing. For example, the radiative-forcing
effects of sulfate aerosols were not included
in Bloomfield’s analysis. Sulfate aerosols,
which are produced by volcanic eruptions
and by burning coal, tend to have a cool-
ing effect on the surface. This effect is due
to the reflectivity of the aerosols and also to
their role in providing condensation nuclei for
clouds. Unfortunately, it is difficult to incor-
porate these effects in the kind of analysis
undertaken by Bloomfield. Historical data
on sulfate aerosols are incomplete. Unlike
greenhouse gases, the cooling effect of sul-
fate aerosols tends to be localized, so that
historical data on their regional distribution
are needed. Finally, the radiative effects of
sulfate aerosols are complicated, depending,
for example, on whether the aerosol is sooty
or not.

Motivated in part by the difficulties of
incorporating sulfate aerosols into Bloom-
field’s approach, Solow and Patwardhan [35]
developed an alternative approach to esti-
mating �T that does not require knowledge
of the secular trend in radiative forcing.
This approach is based on the result that
the statistical characteristics of the temper-
ature response to short-term fluctuations in
radiative forcing also depend on �T. Specif-
ically, if �T is high, this response is large
and persistent, while if �T is low, it is rel-
atively small and transient. Briefly, Solow
and Patwardhan estimated �T (via likeli-
hood in the frequency domain) by fitting the
spectrum of observed temperature variations
around a smooth trend to a spectrum gener-
ated by model simulations with a fixed value
of �T. In generating these model simula-
tions, it was necessary to adopt a statistical
model of short-term variations in radiative
forcing. Following the literature, Solow and
Patwardhan assumed that these variations
followed a white-noise process with variance
1.0 W m−2. This model is consistent with a
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short record of satellite measurements of the
global radiation budget. The point estimate
of �T found in this way was 1.4◦C with an
approximate 0.95 confidence interval of 0.9◦C
to 2.3◦C. These results are virtually identical
to those found by Bloomfield, suggesting that
the cooling effect of sulfate aerosols has been
minimal.

FUTURE DIRECTIONS

Unlike weather prediction, atmospheric envi-
ronmental science has no real central prob-
lem. For this reason, directions in statistical
work in this area are difficult to predict.
Taking a somewhat personal view, one gen-
eral area of future research concerns the
use of observations to validate physical mod-
els that produce values of a suite of vari-
ables in two or three dimensions through
time [31]. There is a conceptual difficulty
here, because no physical model is truly
correct and it is therefore only a matter of
acquiring enough data to discover this. Apart
from that, the problem is complicated by the
need to describe the pattern of covariance
of multivariate spatial—time series. On the
subject-matter side, there is growing interest
in understanding and predicting climate vari-
ability on the annual to decadal time scale.
The most important component of climate
variability on this time scale is the El Niño
Southern Oscillation [10]. The best known
manifestation of ENSO are so-called El Niño
events, associated with regional changes in
precipitation and other climate variables. An
historical record of the timing and magni-
tude of these events was analyzed in refs. 33
and 34. However, this analysis just scratches
the surface, and the area seems ripe for fur-
ther statistical work.
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ANDREW SOLOW

ATTRIBUTE

In statistical usage this term often has the
connotation ‘‘nonquantitative.’’ It is applied
to characteristics that are not easily expres-
sed in numerical terms: e.g., temperament,
taste, and species. The term qualitative char-
acter is used synonymously.

The theory of attributes (see Chapters 4
to 6 of Yule and Kendall [2]) is mainly con-
cerned with analysis of contingency tables
and categorical data*.

Attribute sampling, i.e., sampling ‘‘from
a population whose members exhibit either
an attribute, A, or its complement, not− A”,
includes repeated trials from a Bernoulli
distribution [1, (Sec. 9.28)], leading to con-
sideration of probabilities in binomial dis-
tributions (see BINOMIAL AND MULTINOMIAL

PARAMETERS, INFERENCE ON and [1 (Secs.
9.28–9.33)]). However, attribute sampling
may lead to consideration of probabilities
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in hypergeometric distributions* (when finite
populations are involved), in negative bino-
mial distributions* (for certain sequential
sampling models) [1, (Sec. 9.37)] and in multi-
nomial distributions*.
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AUDITING, STATISTICS IN

Auditing is a specialized area of account-
ing involving examination by independent
auditors of the operation of an organization’s
system of internal control and of the finan-
cial statements in order to express an opinion
on the financial statements prepared by the
management of the organization. Internal
auditors, who are members of the organiza-
tion, also review the operation of the system
of internal control to see if it is operating
effectively.

Uses of statistical methods in auditing are
a relatively recent phenomenon and are still
evolving. Three major current uses are sam-
pling of transactions to study the operation
of the internal control system, sampling of
accounts to study the correctness of recorded
account balances, and regression analysis for
analytical review.

STUDY OF INTERNAL CONTROL SYSTEM

Transactions, such as payments of bills recei-
ved, are sampled to make inferences about
the effectiveness of the internal control sys-
tem. Usually with this type of sampling, audi-
tors are concerned with a qualitative charac-
teristic, namely, whether the internal control
was operating improperly for the transac-
tion. Inferences are made about the process
proportion of transactions that are handled

improperly by the internal control system.
Typically, auditors desire assurance that the
process proportion is reasonably small. Ran-
dom samples of transactions are utilized and
evaluated by standard statistical procedures
based on the binomial∗ distribution or the
Poisson∗ approximation. No special statisti-
cal problems are encountered in this appli-
cation. Consequently, little research is cur-
rently being done in this area. A good sum-
mary is contained in Roberts [8].

STUDY OF ACCOUNT BALANCES

Accounts, such as accounts receivable and
inventory, often consist of thousands of indi-
vidual line items that may have a total value
of millions of dollars. For such large accounts,
it is not economical for the auditor to audit
every line item. Consequently, auditors fre-
quently select a sample of line items and
audit these, on the basis of which inferences
are made about the total error amount in
the population. Thus, the characteristic of
interest here is quantitative. Denoting the
total amount recorded by the company for
the account by Y and the total amount that
the auditor would establish as correct if each
line item in the account were audited by
X, the total error amount in the account is
E = Y − X.

Since the auditor usually knows the
amounts recorded by the company for each
line item in the population (called the book
amounts), this information can be utilized
in estimating the total error amount E. One
estimator that incorporates this supplemen-
tary information is the difference estimator,
which for simple random sampling of line
items is

Ê = N
n

n∑
i=1

di = Nd,

where
di = yi − xi

is the difference between the book and audit
amounts for the ith sample line item, d is the
mean difference per sample line item, and N
is the number of line items in the population.
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Other estimators that incorporate the
information on book amounts are the ratio
and regression estimators. Each of these can
be used with simple or stratified random
sampling of line items. Still another means
of incorporating the information about book
amounts is through sampling with probabil-
ity proportional to book amount and then
utilizing an unbiased estimator.

Each of these procedures has some serious
limitations in auditing applications. When
the sample contains no errors, the estimated
standard error of the estimator equals zero,
as can be seen from the estimated variance of
the difference estimator with simple random
sampling of line items:

s2(Ê) = N2 N − n
Nn(n− 1)

n∑
i=1

(di − d)2.

An estimated standard error of zero suggests
perfect precision, which would be an unwar-
ranted conclusion.

A second limitation of these supplemen-
tary information procedures is that a number
of simulation∗ studies have found that large-
sample confidence limits based on the normal
distribution are frequently not applicable for
sample sizes used in auditing. Neter and
Loebbecke [5] studied four actual account-
ing populations and from these constructed
a number of study populations with varying
error rates. They utilized sample sizes of 100
and 200 with unstratified, stratified, and PPS
sampling∗. They found for the supplementary
information procedures that the coverages for
the large-sample upper confidence bounds for
the total error amount (i.e., the proportion of
times the bound is correct in repeated sam-
pling) were frequently substantially below
the nominal confidence level.

The search for alternative inference pro-
cedures that do not depend on large-sample
theory has frequently involved monetary unit
sampling, which involves the selection of indi-
vidual monetary units from the population.
Since the auditor cannot audit a single mon-
etary unit but only the line item to which
the unit pertains, any error found is then
prorated to the monetary units belonging
to the line item. The prorated errors are
called taints in auditing, and are denoted

by tk = dk/yk, where dk �= 0. An important
case in auditing is when the errors in the
population are all overstatement errors and
the taints are restricted to positive values
not exceeding 1.0. For this case, a conser-
vative confidence bound for the total error
amount can be constructed by assuming that
all overstatement taints are at the maximum
value of 1.0. The problem then becomes one
of obtaining an upper confidence bound for
the population proportion of monetary units
that contain an error. Multiplying this bound
by Y, the total number of monetary book
units in the population, yields a conservative
upper confidence bound for the total error
amount E.

A difficulty with this conservative bound is
that it is usually not tight enough. Stringer
[9] developed a heuristic for reducing this
bound when all observed taints are not at the
maximum value of 1.0:

Ypu(1− α;n, m)− Y
m∑

k=1

[pu(1− α;n, k)

−pu(1− α;n, k− 1)](1− tk),

where m is the observed number of errors
in the sample of n monetary units, t1 �
t2 � · · · � tm are the observed taints, and
pu(1− α;n, m) is the 1− α upper bound for
a binomial proportion when m errors are
observed in a sample of n.

Simulation studies (e.g., Reneau [7]) have
shown that this Stringer bound has cover-
ages always exceeding the nominal level and
often close to 100%; also that the Stringer
bound is not very tight and may involve sub-
stantial risks of making incorrect decisions
when the bound is used for testing purposes.
Leslie et al. [3] developed another heuristic
bound, called a cell bound, that tends to be
tighter than the Stringer bound and has good
coverage characteristics for many accounting
populations. The cell bound is based on cell
sampling, where the frame of monetary units
is divided into strata or cells of equal num-
bers of monetary units and one monetary unit
is selected at random from each cell, the cell
selections being made independently.

Fienberg et al. [2] developed a bound
based on the multinomial distribution∗ by
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viewing monetary unit sampling in dis-
cretized form. The multinomial classes rep-
resent the different possible taints rounded
to a specified degree. The procedure involves
obtaining a joint confidence region for the
multinomial parameters and then maximiz-
ing a linear function of the parameters, rep-
resenting the total error amount in the pop-
ulation, over the confidence region. Because
of the complexities of computation, Fienberg
et al. utilized only a partial ordering of the
sample outcomes for developing the joint con-
fidence region. However, simulation studies
(e.g., Plante et al. [6]) have shown that cov-
erages for the multinomial bound are near
to or above the nominal level for a variety of
populations, particularly if cell sampling is
employed.

Several approaches based on Bayesian∗

methodology have been proposed when mon-
etary unit sampling is employed. Cox and
Snell [1] proposed a Bayesian bound for which
they assume that the population error rate
for monetary units and the population mean
taint for monetary units in error are indepen-
dent parameters. These and other assump-
tions lead to a posterior distribution∗ of the
total error amount that is a simple multiple of
the F distribution∗. Hence Bayesian bounds
are very easy to obtain by this method. Neter
and Godfrey [4] studied the behavior of the
Cox and Snell bound in repeated sampling
from a given population for sample size 100,
and found that conservative prior parameter
values exist so that the Cox and Snell bound
has coverages near or above the Bayesian
probability level for a wide range of popula-
tions. However, research in progress suggests
that robustness may be a function of sample
size, and not include all possible populations.
Another recent proposal by Tsui et al. [11] is
to combine the multinomial sampling model
with a Dirichlet∗ prior distribution∗ to obtain
Bayesian bounds for the total error amount.

ANALYTICAL REVIEW

Analytical review procedures are utilized by
auditors to make internal and external con-
sistency comparisons, such as comparing the
current financial information with compara-
ble information for preceding periods, or com-
paring operating data for the firm with data

for the industry. Ratios have frequently been
used in making these comparisons, such as
comparing the ratio of cost of sales to sales for
the current period with corresponding ratios
for prior periods. Use of ratios for making
comparisons assumes that the relationship
between the two variables is linear through
the origin. Often, this relationship may not
be of this form. Also, use of ratio analysis
does not permit the study of the simultane-
ous relationship of one variable with several
others, such as when it is desired to examine
the relationship of the revenue of a public
utility to kilowatt hours, rate per kilowatt
hour, and seasonal effects.

Regression analysis is now being used by
some auditors for certain analytical review
procedures. The data often are time series∗,
as when current periods are to be compared to
prior periods. Sometimes, the data are cross-
sectional, as when data for several hundred
retail outlets of a firm are studied to identify
ones that are outliers∗. No special problems
in applying regression analysis for analytical
review have been encountered. The regres-
sion models employed have tended to be
relatively simple ones. In using regression
models, auditors are particularly concerned
about identifying outliers that are worthy of
further investigation. Much of the research
to data has been concerned with developing
rules that relate the identification of out-
liers with the amount of subsequent audit
work that should be performed. Stringer and
Stewart [10] have provided a comprehensive
summary of the use of regression methods in
auditing for analytical review.
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AUSTRALIAN AND NEW ZEALAND
JOURNAL OF STATISTICS

[This entry has been updated by the Editors.]
The Australian Journal of Statistics (AJS)

was founded by the (then) Statistical Soci-
ety of New South Wales in 1959. Until 1997
it appeared three times a year, the three
issues constituting a volume. The founding
editor of the AJS was H. O. Lancaster, who
served from 1959–1971. He was followed by
C. R. Heathcote (1971–1973), C. C. Heyde
(1973–1978), E. J. Williams (1978–1983),
J. S. Maritz (1983–1989), C. A. McGilchrist
(1989–1991), I. R. James (1991–1997) and S.
J. Sheather (1997).

In 1998 AJS merged with The New Zea-
land Statistician as Volume 40 of The Aus-
tralian and New Zealand Journal of Statis-
tics (see also NEW ZEALAND STATISTICAL

ASSOCIATION); the website is www.statsoc.
org.au/Publications/ANZJS.htm, and the
publisher is Blackwell.

AUSTRALIAN JOURNAL OF STATISTICS:
HISTORY

The editorial policy of AJS aimed to achieve a
balance between theoretical and applied arti-
cles in the following areas: (1) mathematical
statistics, econometrics, and probability the-
ory; (2) new applications of established sta-
tistical methods; (3) applications of newly
developed methods; (4) case histories of inter-
esting practical applications; (5) studies of
concepts (particularly in economic and social
fields) defined in terms suitable for statistical
measurement; (6) sources and applications of
Australian statistical data; and (7) matters
of general interest, such as surveys of the
applications of statistics in broad fields. No
ranking is implied in this list. AJS also pub-
lished critical book reviews and short book
notices. A news and notes section regularly
appeared until 1977, but this function was
taken over by the Statistical Society of Aus-
tralia Newsletter, which first appeared in
May 1977.

An international perspective and coverage
was intended for AJS and contributions from
outside Australia were always welcomed; see
STATISTICAL SOCIETY OF AUSTRALIA for fur-
ther discussion. All papers were refereed.

At the time of establishment of AJS, the
Statistical Society of New South Wales, based
in Sydney and founded in 1947, was the only
society of its kind in Australia. It assumed
the responsibility for starting the journal,
which, as its name implies, was intended to
serve the statistical profession in Australia.
The then president of the Statistical Society
of New South Wales, P. C. Wickens, wrote in
a foreword to the first issue of the journal:
‘‘It is hoped . . . that it will not be long before
statistical societies will be firmly established
in other States, and when this occurs it will
undoubtedly be necessary to reconsider the
management of the Journal.’’

The hopes expressed in this statement
were not long in coming to fruition. The Sta-
tistical Society of Canberra was formed in
1961. In October 1962 the Statistical Society
of Australia was formed by the amalgama-
tion of the New South Wales and Canberra
Societies, which then became branches of
the main society. At this stage the journal
became the responsibility of the new society,
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but its editor and editorial policy remained
unchanged. Further branches of the soci-
ety were later formed in Victoria (1964),
Western Australia (1964), and South Aus-
tralia (1967). In 1976, responsibility for AJS
was assumed by the Australian Statistical
Publishing Association Inc., whose member-
ship is coterminous with membership of the
Central Council of the Statistical Society of
Australia.

THE MERGER

Following the merger of AJS and The New
Zealand Statistician in 1998, the combined
Australian and New Zealand Journal of
Statistics (ANZJS) has been published in
four issues per year, under two Theory and
Methods Editors (one of whom also serves as
Managing Editor), an Applications Editors
from New Zealand, a Book Review Editor, a
Technical Editor, and an international Edi-
torial Board (10 or so for Applications and 35
or so for Theory and Methods).

ANZJS publishes articles in four cate-
gories:

Applications: Papers demonstrate the appli-
cation of statistical methods to problems faced
by users of statistics. A particular focus is
the application of newly developed statistical
methodology to real data and the demonstra-
tion of better use of established statistical
methodology in an area of application.
Theory & Methods: Papers make a substan-
tive and original contribution to the theory
and methodology of statistics, econometrics
or probability. A special focus is given to
papers motivated by, and illustrated with,
real data.
Reviews: Papers give an overview of a cur-
rent area of statistical research which consol-
idate and reconcile existing knowledge and
make judgments about the most promising
directions for future work.
Historical and General Interest: Papers
discuss the history of statistics in Australia
and New Zealand, the role of statistical orga-
nizations in private and government institu-
tions and the analysis of datasets of general
interest.

See also NEW ZEALAND STATISTICAL ASSOCIATION and
STATISTICAL SOCIETY OF AUSTRALIA.

C. C. HEYDE

The Editors

AUSTRALIAN JOURNAL OF STATIS-
TICS. See AUSTRALIAN AND NEW ZEALAND

JOURNAL OF STATISTICS

AUTOCORRELATION FUNCTION.
See AUTOREGRESSIVE–INTEGRATED MOVING

AVERAGE (ARIMA) MODELS

AUTOMATIC INTERACTION
DETECTION (AID) TECHNIQUES

Automatic interaction detection (AID) is a
technique for analyzing a large quantity of
data (whose number of cases is typically
hundreds or thousands) by subdividing it
into disjoint exhaustive subsets so as best
to ‘‘explain’’ a dependent variable on the
basis of a given set of categorized predictors.
Although first noted under a different name
in 1959 [1], the current computer versions
were introduced by a series of papers dating
from 1963, starting with one by J. N. Morgan
and J. A. Sonquist [8]. Since its inception AID
has grown in popularity and found applica-
tion (and misapplication) in many applied
fields. It can be used as an end analysis in
itself, or as a prior screening device to sift the
variables and draw attention to certain inter-
actions for specific inclusion in subsequent
analysis by other methods.

All AID techniques (normally imple-
mented as computer programs) operate in a
stepwise manner, first subdividing the total
data base according to one of the predictors∗
(chosen by the algorithm to maximize some
given criterion), then reexamining separately
and subdividing each of the groups formed by
the initial subdivision, and continuing in a
like manner on each new subgroup formed
until some stopping criterion is reached.
Some versions have a ‘‘look-ahead’’ feature
which allows possible subdivisions of subdivi-
sions to be examined before the primary sub-
division is effected—a procedure that may
be theoretically desirable but is currently
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not cost-effective or usually worthwhile for
the majority of databases met in practice.
This results in a tree-like structure called a
dendrogram∗ in AID literature.

The ‘‘automatic’’ of AID refers to the com-
puter program making all the decisions as
to which predictor to use when, and how.
This attribute can be countermanded by the
user in some versions of AID. The ‘‘inter-
action’’ in AID refers to its design property
that each subgroup formed in the analysis
is treated individually. Thus the technique
does not constrain itself to producing ‘‘addi-
tive’’ or ‘‘symmetric’’ models, although these
may result anyway.

DEPENDENT VARIABLE

The various types of AID are distinguished by
the nature of the dependent variable. Stan-
dard AID [10] operates on one that is an
ordinal scalar, while the multivariate exten-
sion to an ordinal vector is handled by MAID
[3]. A nominal scalar-dependent variable can
be analyzed by ‘‘chi-squared∗ AID’’ CHAID [6]
or ‘‘theta AID’’ THAID [7]. The theta statistic
of the latter technique is the total propor-
tion of observations that belong to a modal
category in an AID subdivision. Thus, theta
is bounded below by d−1 for a d-category
dependent variable, and bounded above by
unity.

The criterion for a ‘‘good’’ subdivision that
‘‘explains’’ the data depends on the nature
of the dependent variable. Table 1 lists the
possible types of dependent variable together
with the appropriate classical-type criterion
for each one. The criteria are all interrelated
in that the suitable special case of each type

Table 1. Classical-Type Criteria for Various
Dependent Variables

Type of Dependent
Variable Criterion

Ordinal scalar t-test∗, ANOVA∗

Ordinal scalar and
covariate

F-test∗, ANOCOVA∗

Nominal Chi-square∗

Ordinal vector Hotelling’s T2∗, MANOVA∗

Ordinal vector and
covariates

MANOCOVAR∗

(e.g., ordinal vector of dimension 1, a dichoto-
mous nominal variable) reduces to one of the
others in the list. Other criteria have been
proposed (e.g., THAID above), but as they
are dissimilar to the classical criteria (even
asymptotically), they are in need of theoreti-
cal backing.

Superficially, AID bears resemblance to
stepwise regression∗ both in intent and pro-
cedure. A comparison of AID with this and
other statistical techniques is given in ref. 10.

PREDICTORS

The categorized predictors are used to deter-
mine the possible subdivisions of the data
at any one stage, and hence result in the
subdivisions being meaningful in that a par-
ticular subgroup can be labeled according to
which categories of which predictors define
the subgroup. Anything from 2 to 100 pre-
dictors are typically used in a single analysis
(depending also on the size of the data base),
each predictor having from 2 up to about 10
categories (depending on type), although pre-
dictors with more categories have appeared
in the literature.

The categories of each predictor are
grouped by AID to define the subdivisions
(in many versions this reduction is always
to two subdivisions—i.e., a binary split), the
allowable grouping determined by the type
of predictor. These types, which carry names
peculiar to AID, include monotonic (ordered
categories in which only adjacent categories
may be grouped), floating (monotonic plus
an additional category that may be grouped
with any of the others—usually used for
missing information or ‘‘don’t-knows’’), free
(nominal categories with no restriction on
grouping), interleaved (a number of mono-
tonic categories used for combining differ-
ent ordered scales; special cases include the
aforementioned types), and cyclic (monotonic
with ‘‘wraparound,’’ useful for U∗- or inverted
U-distributions∗). Modern theory has concen-
trated on the behavior of AID on monotonic
and free predictors, where not unsurpris-
ingly the Bonferroni inequality∗ applied to
a dichotomous predictor produces reasonable
conservative significance tests of subdivision
differences for the multicategory case. The
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theory of piecewise-regression and cluster-
ing are applicable to monotonic and free
predictors, respectively, but unfortunately
their asymptotic theories, which dwell on
the increase in the number of categories (in
our terminology), are not relevant, as the
practical application of AID involves a small
number of categories.

CRITICISM

Many criticisms have been leveled at AID-
type techniques, the two major ones being
that (1) AID produces too many subdivisions
or idiosyncratic results (based on experi-
ments with random data in which no sub-
divisions should be produced), and (2) the
interpretation of AID results are often fal-
lacious. The first criticism is based on ear-
lier versions of AID that contained no valid
hypothesis test as to whether the subdivi-
sions produced were statistically significant.
Further, the older versions of AID made no
distinction between the types of the predic-
tors involved when choosing one on which
to base the subdivisions—thus introducing a
bias in favor of using multicategory free pre-
dictors. Appropriate significance testing for
standard AID has been developed in ref. 5.
The latest versions of AID introduce testing
as part and parcel of the technique, preferring
to subdivide on the most ‘‘significant’’ rather
than most ‘‘explanatory’’ predictor and thus
remove both the aforementioned bias and the
generation of nonsignificant splits. Ideally, a
stringent significance level should be used to
take into account the number of predictors
present in the analysis, using e.g., Boole’s
(Waring) inequality∗.

The second criticism is not so much an
indictment of AID but rather of the ignorance
displayed by some of its users. Added to this
is the inadequate manner in which many
current users present their AID results.
Examples are completely omitting mention
of sample sizes in the various subdivisions,
the statistical significance∗ of these subdivi-
sions, or appropriate auxiliary information
that would allow a reader to repair this lack,
at least in his or her own mind. The den-
drogram resulting from an AID analysis is
so appealing that a tendency has arisen for

users to ignore the possible existence of com-
peting predictors that would be revealed by
an examination of the AID statistics produced
for each predictor both before and after a
subdivision. Certain apparent ‘‘interactions’’
quoted in the literature (see, e.g., the criti-
cism [2] of the study [4] could well be spurious
for this reason, and in certain circumstances,
small changes in the data could cause dif-
ferent predictors to be selected by AID, with
consequent different conclusions reached by
a naive user. This fault is probably magnified
by the ‘‘automatic’’ nature of AID mentioned
above).

Finally, among other possible limitations,
the appropriateness of an AID analysis can
be no better than the appropriateness of the
splitting criterion as given in Table 1, and
all the assumptions inherent in the theory
behind these criteria and their properties
naturally carry through to AID.

EXAMPLE

Figure 1 depicts the dendrogram∗ resulting
from a CHAID analysis of 798 first-year com-
merce students enrolled at the University
of the Witwatersrand. The dependent vari-
able is the student’s midyear mark (June
1979) in the course Mathematics and Statis-
tics IB (M & S1B), classified into the three
groups: passed (>49%), borderline (40–49%),
and failed (<40%).

Table 2 gives details of the first stage
of the analysis and indicates the predictive
power and optimal grouping of the categories
of each predictor. Predictors 2 and 5 (whether
a local matriculant, and sex) are immediately
discarded since there is no significant differ-
ence between the groups, as indicated by a
significance level of p = 1. Predictors 3, 6, 7,
and 8, while possessing an optimal grouping
as shown on the right-hand side of the table,
are nevertheless not considered significant.
Note that predictor 6, which has nine cate-
gories optimally grouped into two groups, is
ostensibly ‘‘significant’’ since the 2× 3 contin-
gency table so formed has p = 0.0014; how-
ever, taking into account the optimization
that went into forming this table, a conser-
vative estimate of the ‘‘significance’’ using a
Bonferroni inequality∗ is p = 0.35—clearly
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not significant. Predictor 11 (midterm test
mark) is clearly the best with conservative
p � 3.0× 10−49, but was included in the anal-
ysis for information only, and precluded from
forming the basis of a subdivision of the data
since the purpose of the analysis is to pre-
dict on the basis of information available
before the commencement of the academic
year. Predictor 1 is the best usable predictor
(p � 6.6× 10−16) and divides the data into
four groups.

Figure 1 displays in detail the four-way
subdivision of the total group from which it
is clear that the pass rate declines from 80%
for the students with high (A and B) matric-
ulation mathematics marks, through 59 and
46% for those with intermediate marks (C
and D) down to 29% for the lower marks (E).
Those students for whom no mark is available
(14 such students coded ‘‘?’’, mainly foreign
or older students) are interestingly enough
grouped with the poorest students.

The analysis then continued with each
of the four subgroups. Information on each
of the predictors similar to that in Table 2
was produced, from which further details
are available. The students with mathemat-
ics symbol C are further divided in Fig. 1
according to their pre-test, where it is seen
that those who did not attend the test (it
was not compulsory, and implies that the
students were skipping classes even at this
early stage) perform worse than those who
did—no matter what their mark! The groups
with mathematics marks D and E were each
further subdivided according to their mark
in the same course last year (clearly only
available for repeat students).

Finally, in the lowest level in Fig. 1, there
are two further subdivisions. Although they
are technically significant (p � 0.016 and p �
0.0065) they should be considered marginal,
since these levels make no allowance for the
number of predictors (effectively 10) exam-
ined. (They do, however, take into account
the type and number of categories in the
predictor used to define the subdivision.)
Nevertheless, considering the pretest, it is
comforting to note the similar poor perfor-
mance of students who did not attend it, on
the two occasions where this predictor was
used.

This is merely a brief summary of some
of the information and conclusions available
from an AID-type analysis. The secondary
details concerning the predictive power and
optimum grouping of the categories within
each predictor for each of the subdivisions
provide valuable insight to the structure of
the data and interrelationships of the predic-
tors.

STATE OF THE ART AND FUTURE
DEVELOPMENTS

The underlying theory behind valid hypoth-
esis testing in AID is still embryonic. At
present only standard AID has provision for a
covariate; the other versions have yet to be so
extended. Computer installations with pow-
erful interactive terminals or personalized
computer systems do not need the ‘‘auto-
matic’’ decision making of AID. Instead, they
could offer the researcher the opportunity to
introduce additional background information
and take various decisions dynamically along
the lines of ref. 9. Such a feature is still to be
implemented in AID.
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Arbor, Mich. (Mainly a user manual, but
contains background material, examples, and
further references.)

See also CLASSIFICATION—I; COMPUTERS AND STATISTICS;
PREDICTIVE ANALYSIS; and STEPWISE REGRESSION.

G. V. KASS

AUTOREGRESSIVE ERROR,
HILDRETH–LU SCANNING METHOD

Consider the linear regression model

yt = β0 + β1Xt1 + · · · + βp−1Xt,p−1 + εt,
t = 1, . . . , N, (1)

where yt is the tth observation on the depen-
dent variable, Xtj is the tth observation on
the jth nonstochastic independent variable,
and εt is the tth observation on the error
term. This can be written in matrix form as
y = Xβ + ε, where y is (N × 1) in dimension,
X is (N × p), β is (p× 1), and ε is (N × 1). The
usual assumptions on the error vector ε are
that E(ε) = 0 and E(εε′) = σ 2I. In this case,
the ordinary least-squares∗ estimator of β,
denoted by β̂0, is given by β̂0 = (X′X)−1X′y
(see GENERAL LINEAR MODEL).

The assumption that the error terms are
uncorrelated often breaks down in time-
series∗ studies and sometimes in cross-
sectional studies, in which case we state that
the error terms are autocorrelated or serially
correlated. We denote this by writing E(εε′) =
�. Mixed autoregressive-moving average∗
processes are used to describe this serial
correlation (see AUTOREGRESSIVE–MOVING

AVERAGE (ARMA) MODELS). Specifically,

εt = φ1εt−1 + · · · + φpεt−p + at

−θ1at−1 − · · · − θqat−q, (2)

where E(at) = 0, V(at) = σ 2
a , and the at’s are

uncorrelated. To ensure stationarity, we
require that the roots of 1− φ1x− φ2x2 −
· · · − φpxp = 0 lie outside the unit circle. The
case that has been considered most fre-
quently in the econometrics∗ literature is
when the error terms are AR (1). That is,

εt = φ1εt−1 + at. (3)

In (3), it has become customary to replace φ1
by ρ, where we require |ρ| < 1 for a stationary
process∗. We will focus our attention on the
autocorrelation structure specified in (3).

For an AR (1) process, it is shown in Box
and Jenkins [2] that σ 2

ε = σ 2
a /(1− ρ2) and

E(εtεt−k) = ρk. Thus the covariance matrix
� associated with (ε1, ε2, . . . , εN) is

� = σ 2
ε A = σ 2

ε


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
...

ρN−1 ρN−2 ρN−3 · · · 1


= σ 2

a B. (4)

When ρ is known, the generalized least-
squares estimator of β, denoted by β̂G, is
found by minimizing (y− Xβ)′B−1(y− Xβ).
Since B is positive definite, there is a nonsin-
gular matrix H such that B = (H′H)−1 and
B−1 = H′H. Thus minimizing (y− Xβ)′B−1

(y− Xβ) with respect to β is equivalent to
minimizing (y∗ − X∗β)′(y∗ − X∗β) via ordi-
nary least-squares, where y∗ = Hy and X∗ =
HX. It follows that

β̂G = (X∗′X∗)−1X∗′y∗

= (X′B−1X)−1X′B−1y. (5)

For the AR(1) error structure, the trans-
formation H that permits ordinary least-
squares estimation is

H =



√
1− ρ2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0
..
.

..

.
..
.

..

.
..
.

0 0 0 · · · −ρ 1

 . (6)

In (5), one could have used A−1 or �−1 in
place of B−1 since the scalars cancel out.

When ρ is not known, Judge et al. [7] point
out that three procedures are available for
parameter estimation: estimated generalized
least-squares, nonlinear least-squares, and
maximum likelihood∗.

Let β̂E denote the estimated generalized
least-squares estimator of β. β̂E is obtained
by using the estimator in (5) after estimating
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ρ. Thus these procedures are called two-step
procedures. Several methods are available for
estimating ρ. These include:

1. The Cochrane–Orcutt procedure [3],
where ρ̂1 =

∑N
t=2 ε̂tε̂t−1/

∑N
t=1 ε̂

2
t and the

ε̂t’s are obtained by using ordinary least-
squares on y = Xβ + ε. More precisely,
this is termed the Prais–Winsten [10]
procedure, since all N elements of y and
all N rows of X were affected by the H
transformation in obtaining y∗ and X∗.
Theil [11] proposed a modification of ρ̂1:
namely, (N − p)/(N − 1)ρ̂1.

2. The estimate of ρ obtained from
the Durbin–Watson∗ statistic, D.
Specifically, ρ̂2 = 1−D/2. Theil and
Nagar [12] give the following modifica-
tion of ρ̂2 : (N2ρ̂2 + p2)/(N2 − p2).

3. The estimate of ρ obtained from the
Durbin procedure [4]. Let H0 denote the
(N − 1)×N matrix obtained by deleting
the first row of H in (6). Let ρ̂3 denote
the estimated coefficient of yt−1 in the
model: H0y = H0Xβ +H0ε. For the sim-
ple linear regression∗ model, we have

yt = β0(1− ρ)+ ρyt−1

+β1xt − β1ρxt−1 + at, t = 2, . . . , N.

By using this method, Maddala [8] points
out that one is ignoring the constraint that
(coefficient of xt−1) = −(coefficient of xt).
(coefficient of yt−1).

In the nonlinear least-squares procedure,
one needs to find those estimates of β and
ρ that simultaneously minimize (y∗ − X∗β)′

(y∗ − X∗β). Although nonlinear optimization
algorithms can be used, Hildreth and Lu [6]
suggested a search procedure. For values
of ρ from −1.0 to 1.0 in increments of 0.1,
calculate β̂G as stipulated in (5) and the cor-
responding sum of squares, (y∗ − X∗β̂G)′(y∗ −
X∗β̂G). Choose that value of ρ which mini-
mizes this sum of squares. Higher decimal
accuracy can be obtained by finding the sum
of squares for several additional values of ρ
near the minimizing value. Although the Hil-
dreth–Lu method is not computationally effi-
cient, the minimum sum of squares obtained
should be global rather than local if some care

is exercised in the search procedure. Obvi-
ously, the value of ρ so obtained need not
equal any of the values used in the estimated
generalized least-squares procedure.

Under the assumption that the at’s
are normally distributed, the maximum-
likelihood procedure can be used. Judge
et al. [7] show that maximizing the con-
centrated likelihood function is equivalent
to minimizing (1− ρ2)−1/N(y∗ − X∗β)′(y∗ −
X∗β); this differs from the nonlinear least-
squares procedure by the (1− ρ2)−1/N factor.
Algorithms for maximizing the concentrated
likelihood function are presented in Hildreth
and Dent [5] and in Beach and MacKin-
non [1], although a search procedure similar
to the Hildreth–Lu method could be utilized.

Empirical results for some of the proce-
dures discussed above are presented in Mad-
dala [8]. For annual data from 1935 to 1954,
and 10 different firms, Maddala regresses
gross investment on two independent vari-
ables: value of the firm, and stock of plant
and equipment. The results are presented in
Table 1. Inspection of the entries in Table 1
reveals that the maximum-likelihood and
Hildreth–Lu estimates are always in the
same neighborhood, with Durbin’s estimates
differing substantially from these two.

Pindyck and Rubinfeld [9] also present
two numerical examples using the Hildreth–
Lu scanning method.

Although the name Hildreth–Lu has been
reserved to refer to the search procedure
for first-order autoregressive error, a simi-
lar search procedure could be employed for
any ARMA error structure, as discussed in
Judge et al. [7].
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Table 1. Estimates of First-Order Autocorrelation Coefficient by Different Methods

Method

Firm Cochrane–Orcutt Durbin Hildreth–Lu Maximum Likelihood

GM 0.458 0.816 0.67 0.64
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Union Oil 0.098 0.125 0.12 0.11
Westinghouse 0.241 0.297 0.30 0.28
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Jan Tinbergen, W. Sellekaert, ed. Macmillan,
London, pp. 3–25.

6. Hildreth C. and Lu, J. Y. (1960). Demand
Relations with Autocorrelated Disturbances.
Mich. State Univ. Agric. Exp. Stn. Tech. Bull.
276, East Lansing, Mich.

7. Judge, G. G., Griffiths, W. E., Hill, R. C., and
Lee, T. -C. (1980). The Theory and Practice of
Econometrics. Wiley, New York.

8. Maddala, G. S. (1977). Econometrics.
McGraw-Hill, New York.

9. Pindyck, R. S. and Rubinfeld, D. L. (1976).
Econometric Models and Economic Forecasts.
McGraw-Hill, New York.

10. Prais, S. J. and Winsten, C. B. (1954). Trend
Estimators and Serial Correlation. Cowles
Comm. Discuss. Paper No. 383, Chicago.

11. Theil, H. (1971). Principles of Econometrics.
Wiley, New York.

12. Theil, H. and Nagar, A. L. (1961). J. Amer.
Statist. Ass., 56, 793–806.

See also AUTOREGRESSIVE–MOVING AVERAGE (ARMA)
MODELS; LEAST SQUARES; and SERIAL CORRELATION.

FRANK B. ALT

AUTOREGRESSIVE–INTEGRATED
MOVING AVERAGE (ARIMA)
MODELS

An important class of models for describing
a single time series∗zt is the class of autore-
gressive–moving average models∗ referred to
as ARMA(p, q)∗ models.

(zt − µ) = φ1(zt−1 − µ)+ · · · + φp(zt − µ)

+ at − θ1at−1 − · · · − θqat−q, (1)

where the notation in (1) implies that (a) zt
is the original time series, or some suitable
nonlinear transformation of it (such as a loga-
rithm or a square root); (b) zt is a stationary∗
time series with a fixed mean µ; (c) at is a
random residual series, which can also be
interpreted as the series of one-step-ahead
forecast errors; and (d) φ1, . . . ,φp, θ1, . . . , θq,µ
are parameters to be estimated from the data.
Alternatively, autoregressive–moving aver-
age (ARMA) models∗ may be written in terms
of the backward-shift operator∗ B, such that
Bjzt = zt−j, Bjat = at−j, as follows:

(zt − µ) = 1− θ1B− . . .− θqBq

1− φ1B− . . .− φpBp at (2)

= θ (B)
φ(B)

at (3)

Thus the ARMA(p, q) model represents the
time series, or a suitable nonlinear trans-
formation, as the output from a linear filter
whose input is a random series and whose
transfer function∗ is a rational function of the
backward-shift operator B.

The model (1) is not of immediate prac-
tical use because very few real-world time
series are stationary time series in statistical
equilibrium about a fixed mean µ. Instead,
they are characterized by random changes
in their level, slope, etc., and by the pres-
ence of seasonal patterns which also evolve
with time. Traditional methods of handling
such diverse behavior involve the decompo-
sition of the time series into a ‘‘trend’’∗, a
‘‘seasonal component’’∗, and a ‘‘residual com-
ponent.’’ After removal of the trend and sea-
sonal component, it is customary to describe
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the residual component by means of a sta-
tionary ARMA(p,q) model of the form (1).
Such an approach suffers from the follow-
ing disadvantages: (a) it is arbitrary as to
what is called a trend and a seasonal com-
ponent; (b) removal of the trend and sea-
sonal component introduces additional auto-
correlation into the residual component; and
(c) the assumptions normally made about the
behavior of the trend and seasonal component
are unrealistic.

To overcome these difficulties a new class
of models, called autoregressive–integrated
moving average models, referred to as
ARIMA models, has been developed to
describe, under the umbrella of one model,
trends, seasonality, and residual random
behavior [1]. Moreover, such models for
describing nonstationary∗ time series con-
tain flexible structures which allow the trend
and seasonal component to be nondetermin-
istic, i.e., their statistical properties evolve
in time. In addition, iterative methods have
been developed [1] for identifying (or speci-
fying), estimating∗ (or fitting∗) and checking
(or criticizing) such models given the data.

NONSEASONAL ARIMA MODELS

Consider the first-order autoregressive model

(zt − µ) = φ(zt−1 − µ)+ at (4)

or, in backward-shift-operator notation (Bj)zt
= zt−j,

(1− φB)(zt − µ) = at,

which is stationary if |φ| < 1. The solution of
the difference equation∗ (4) may be written
as the sum of the complementary function,
i.e., the solution of (1− φB)(zt − µ) = 0, and
a particular integral, i.e., any function that
satisfies (4). Relative to a time origin t = 0,
the solution of (4) thus becomes

(zt − µ) = φt(z0 − µ)+
t∑

j=1

φj−1aj. (5)

If |φ| > 1, the first term in (5) dominates and
the growth of the series is explosive. Although
such explosive nonstationarity occurs in some

situations (such as bacterial growth), for most
practical situations it is convenient to work
with a less severe form of nonstationarity.
This can be achieved by setting φ = 1 in (4)
and (5), which then become

(1− B)zt = zt − zt−1 = at, (6)

zt = z0 +
t∑

j=1

aj, (7)

i.e., zt is a random walk∗ model. More gener-
ally, we consider a nonstationary ARMA(p,q)
model

φ′(B)(zt − µ) = θ (B)at, (8)

where φ′(B) is a nonstationary autoregressive
operator. To prevent explosive nonstation-
arity, we impose the restriction that d of
the factors of φ′(B) are unity, i.e., φ′(B) =
φ(B)(1− B)d. Model (8) then becomes

φ(B)(1− B)dzt = θ (B)at (9)

where φ(B) is a stationary autoregressive∗
operator and θ (B) is an invertible mov-
ing average∗ operator, as in a stationary
autoregressive–moving average model. Since
(1− B)zt = zt − zt−1 = ∇zt, where ∇ is the
backward difference operator, the model (9)
can also be written

φ(B)∇dzt = θ (B)at (∇0 = 1). (9)

Model (9) implies that whereas zt is
a nonstationary series, its dth differ-
ence wt = ∇dzt is stationary and can
be described by an autoregressive-moving
average model. The model (9) is called
an autoregressive-integrated moving average
model or ARIMA(p,d,q) model, where p is the
number of parameters in the autoregressive
operator, d is the number of times that the
series has to be differenced to induce station-
arity, and q is the number of parameters in
the moving average operator. Provided that
the series does not contain seasonality, the
ARIMA model (9) with small values of p, d,
and q is capable of describing a wide range
of practically occurring time series. When
d > 0, the stationary series wt = ∇dzt will
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usually have a zero mean. However, a use-
ful generalization of (9) can be obtained by
allowing wt to have a nonzero mean, i.e.,

φ(B)(∇zt − µ) = θ (B)at. (10)

With d > 0, model (10) is capable of describ-
ing a deterministic polynomial trend of degree
d as well as a stochastic nonstationary compo-
nent. For example, when d = 1, the model is
capable of describing nonstationary stochas-
tic behavior over and above an underlying
linear growth rate.

SPECIAL CASES OF NONSEASONAL ARIMA
(P, D, Q) MODELS

With p = 0, d = 1, q = 1, µ = 0, model (10)
becomes

∇zt = (1− θB)at (11)

i.e., a nonstationary series whose first dif-
ference is stationary and can be represented
as a first-order moving average model. Model
(11) can be inverted to give

zt = (1− θ )(zt−1 + θzt−2 + θ2zt−3 + · · ·)+ at.

(12)

Thus the one-step-ahead forecast of zt from
origin (t− 1) is an exponentially weighted
moving average of past values of the series.
By solving the difference equation, model (11)
may also be written

zt = at + (1− θ )(at−1 + at−2 + · · ·)
= at + lt−1 (13)

Although the series has no fixed mean, at a
given time it has a local level lt−1 which is
updated from time (t− 1) to time t according
to

lt = lt−1 + (1− θ )at.

Thus when the random shock at occurs,
a proportion (1− θ )at of it is absorbed into
the ‘‘level’’ of the series and the remaining
proportion θat is ‘‘lost’’ from the system.

With p = 0, d = 1, q = 1, µ �= 0, model (10)
becomes

∇zt − µ = (1− θB)at. (14)

The solution of the difference equation (14)
may be written as a complementary function
(the solution of ∇zt − µ = 0) and the particu-
lar integral (13), i.e.,

zt = c+ µt+ at

+ (1− θ )(at−1 + at−2 + · · ·) (15)

and thus contains a ‘‘deterministic drift’’
term.

With p = 0, d = 2, q = 2, µ = 0, model (10)
becomes

∇2zt = (1− θ1B− θ2B2)at. (16)

Thus zt and ∇zt are nonstationary series, and
second-order differencing ∇2zt is necessary to
induce stationarity. It may be shown [1, p.
111] that model (16) implies that the series
has a local ‘‘level’’ lt and a local ‘‘slope’’ st
which are updated from time t− 1 to time t
by the new random shock at according to

lt = lt−1 + st−1 + (1+ θ2)at,

st = st−1 + (1− θ1 − θ2)at.

SEASONAL ARIMA MODELS

One of the deficiencies in handling seasonal
time series in the past has been the absence
of parametric models to describe seasonal
behavior. A new class of models [3] for
describing seasonality as well as nonstation-
ary trends can be obtained by modification of
the nonseasonal ARIMA model (10). Suppose
that data become available at monthly inter-
vals and that they are set out in the form of
a two-way table in which the columns denote
months and the rows denote years. The series
for a particular column, say March, may
contain a trend but is not seasonal in its
behavior. Hence it is reasonable to link the
observation for March in this year to obser-
vations in previous Marches by an ARIMA
(P, D, Q) model of the form (9):

�(BS)∇D
S zt = �(BS)αt, (17)
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where the autoregressive and moving aver-
age operators are now polynomials in Bs of
degrees P and Q, respectively, and s is the
seasonal period and equals 12 in this case.
Also, the nonseasonal difference operator ∇
in (9) is replaced by the seasonal differ-
ence operator ∇szt = zt − zt−s in (17) and ∇D

s
denotes the Dth seasonal difference. In gen-
eral, the error terms αt in models of the
form (17) fitted to each month separately
would not be random since the behavior of
the series in March of this year will usually
depend not only on what happened in previ-
ous Marches but also on the behavior of the
series in February, January, etc., of this year.
To describe this monthly dependence, we can
use the nonseasonal ARIMA model

φ(B)∇dαt = θ (B)at, (18)

where at is now a random series and φ(B)
and θ (B) are polynomials in B of degrees
p and q, respectively. Substituting (18) in
(17), and allowing for the possibility that the
differenced series may have a nonzero mean
µ, we obtain the ARIMA (p, d, q) ×(P, D, Q)
multiplicative model

φp(B)�P(Bs)(∇d∇D
s zt − µ)

= θq(B)�Q(Bs)at,
(19)

where the subscripts on the operators denote
the degrees of the polynomials involved.

In some cases, it may be better to work
with a nonmultiplicative model in which the
autoregressive operator, or the moving aver-
age operator, or both operators, cannot be
factorized into a product of nonseasonal and
seasonal operators, as in (19); for example,
the right-hand side of (19) might take the
form

(1− θ1B− θ12B12 − θ13B13)at.

Seasonal models of the form (19) may be
fitted to data with a range of seasonal periods:
e.g., daily data (s = 7), weekly data (s = 12),
and quarterly data (s = 4). Moreover, several
seasonal periods may occur simultaneously;
e.g., hourly traffic data may display a cycle
over a day (s = 24) and a further cycle over
a week (s = 168). In such examples it may
be necessary to add further seasonal autore-
gressive, moving average, and differencing
operators to the model.

BUILDING ARIMA MODELS

Figure 1a shows part of a series consisting of
the logarithms of the electricity consumption
in one country. The series contains an upward
trend and an annual cycle. ARIMA models of
the form (19) may be fitted to data, using an
iterative cycle of identification, estimation,
and checking, as described below.

Initial analysis [4] suggested that to
achieve a homoscedastic∗ distribution of the
residuals at, it is necessary to apply a log-
arithmic transformation ln zt to the data
before fitting a model of the form (19). Along-
side the plot of ln zt shown in Fig. 1a is
a plot of the autocorrelation function rk of
ln zt as a function of the lag k. The auto-
correlation function fails to damp out with
the lag k and is indicative of nonstationar-
ity [1]. Figure 1b shows the autocorrelation
function of the nonseasonal difference ∇ ln zt.
This autocorrelation function has peaks at
12, 24, 36, . . ., indicating nonstationarity with
respect to the seasonal behavior and sug-
gesting that further seasonal differencing is
needed. Figure 1c shows the autocorrelation
function of ∇∇12 ln zt. This function contains
no obvious trends, implying that the differ-
enced and transformed series wt = ∇∇12 ln zt
is stationary. The next step is to arrive at an
initial guess of the seasonal and nonseasonal
autoregressive and moving average struc-
ture needed to explain the autocorrelation
function of wt. The autocorrelation functions
of autoregressive-moving average models are
characterized by a discrete number of spikes
corresponding to the moving average part of
the model and damped exponentials and/or
damped sine waves corresponding to the
autoregressive part of the model. The largest
autocorrelations rk in Figure 1c occurs at lags
1 and 12, suggesting an initial model of the
form

∇∇12 ln zt = (1− θB)(1−�B12)at, (20)

where we may take as initial estimates of the
parameters, θ = 0.30 (based on r1 = −0.27)
and �̂ = 0.35 (based on r12 = −0.33), using a
procedure described in Box and Jenkins [1].

The initial model structure (20) may be
fitted to the data by iterative calculation of
the maximum-likelihood∗ estimates, starting
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Figure 1. Various differences of the logarithms of national electricity consumption series, together
with their corresponding autocorrelation functions: (a) ln Yt; (b) ∇ ln Yt; (c) ∇∇12 ln Yt. Reproduced
with the permission of GJP Publications from Practical Experiences with Modeling and Forecasting
Time Series by Gwilym M. Jenkins.

from the initial values given above (see ref.
1, pp. 269–284, for the likelihood∗ function of
autoregressive-moving average models). The
fitted model, based on N = 96 observations,
was

∇∇12 ln Yt = (1− 0.73B)
±0.08

(1− 0.83B12)
at ± 0.05

(21)

with estimated residual variance σ 2
a =

0.0006481(σa = 0.0255). The ± values under-
neath the estimated parameters denote the
1-standard-error∗ limits.

Examination of the residuals at in (21)
showed that none of the residuals was large

compared with their standard deviation σa =
0.0255 and that 5 residuals out of 83 fell out-
side ±2σa, in reasonable accord with expec-
tation. The largest autocorrelations ra(k) of
the residuals at occurred at lags 6 and 24,
suggesting some evidence of model inade-
quacy. However, further elaboration of the
model revealed little improvement on model
(21). Further details of how this model was
built, and how it was elaborated to a transfer
function∗ model relating electricity consump-
tion to temperature, have been given by
Jenkins [4].

Model (21) may be used to forecast future
values zt+l for each lead time l = 1, 2, 3, . . .
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from the current origin t by writing it at time
t+ l in the form

ln zt+l − ln zt+l−1 − ln zt+l−12 + ln zt+l−13

= at+l − 0.73at+l−1 − 0.83at+l−12

+ 0.61at+l−13 (22)

and then taking conditional expectations at
time t, bearing in mind that the conditional
expectation of future values of the random
series at+l for l > 0 are zero. For example,
when l = 1, the one-step-ahead forecast ẑt(1)
can be calculated from

ln ẑt(1) = ln zt + ln zt−11 − ln zt−12

− 0.73at − 0.83at−11 + 0.61at−12,
(23)

where at−j = ln zt−j − ln ẑt−j−1(1) for j � 0.
Thus the forecasts for each lead time l can
be generated recursively, together with the
standard deviations of the forecast errors
et(l) = ln ẑt+l − ln z(l) (see ref. 1). In the
example above, further improvements in
forecasting accuracy could be expected by
introducing into the model other variables
which are related with electricity consump-
tion: e.g., temperature, industrial production,
price. Such transfer function models are dis-
cussed in Box and Jenkins [1] and in Jenk-
ins [4].

MULTIVARIATE ARIMA MODELS

Univariate ARIMA models may be general-
ized to deal with mutual interaction between
several nonstationary time series. To illus-
trate the possibilities, consider two time
series z1t and z2t. First, nonlinear transfor-
mation and nonseasonal differencing may be
needed to produce stationary time series

w1t = ∇d1z1t, w2t = ∇d2z2t. (24)

Then it might be possible to describe the
resulting stationary vector by a multivariate
autoregressive–moving average model∗[

φ11(B) φ12(B)
φ21(B) φ22(B)

] [
w1t − µ1
w2t − µ2

]
(25)

=
[
θ11(B) θ12(B)
θ21(B) θ22(B)

] [
a1t
a2t

]
,

where a1t and a2t are the one-step-ahead
forecast errors or residuals for z1t and z2t,
respectively. If the forecasts are to be optimal,
a1t must be a random series, a2t a random
series, and a1t and a2t mutually uncorre-
lated series except possibly at simultaneous
times. The model defined by (24) and (25)
is an example of an ARIMA(P, d, Q) model,
where P is a matrix whose elements (pij)
define the degrees of the polynomials φij(B)
in the autoregressive matrix, the vector d
has elements di which define the degrees of
differencing needed to induce stationarity of
the time series∗, and Q is a matrix whose ele-
ments (qij) define the degrees of the polynomi-
als θij(B) in the moving average matrix. The
foregoing models may also be generalized to
deal with seasonality [2,4], and may be gener-
alized by introducing explanatory variables∗
to explain the simultaneous behavior of the
vector zt of time series, leading to multi-
ple output–multiple input transfer function
models [4].
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Further Reading

The basic theoretical properties of ARIMA
models are given in Time Series Analysis:
Forecasting and Control by G. E. P. Box and
G. M. Jenkins (Holden-Day, San Francisco,
1970), together with practical procedures for
identifying, fitting, and checking such mod-
els. Further accounts are given in Applied
Time Series Analysis for Managerial Fore-
casting by C. R. Nelson (Holden-Day, San
Francisco, 1973), Time Series Analysis and
Forecasting: The Box-Jenkins Approach by
O. D. Anderson (Butterworth, London, 1975),
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and Forecasting Economic Time Series by
C. W. J. Granger and P. Newbold (Academic
Press, New York, 1977). Theoretical and prac-
tical accounts of multivariate ARIMA mod-
els are given in Practical Experiences with
Modelling and Forecasting Time Series by
G. M. Jenkins (GJP Publications, St. Helier,
N.J., 1979). Numerous papers in the field are
published in Statistical Literature and are
listed in Current Index to Statistics∗ (CIS).

See also AUTOREGRESSIVE–MOVING AVERAGE (ARMA)
MODELS; PREDICTION AND FORECASTING; SEASONALITY;
TIME SERIES; and TRANSFER FUNCTION MODEL.

G. M. JENKINS

AUTOREGRESSIVE MODELS. See
AUTOREGRESSIVE–MOVING AVERAGE (ARMA)
MODELS

AUTOREGRESSIVE–MOVING
AVERAGE (ARMA) MODELS

Data occurring in the form of time series∗

occur in many branches of the physical
sciences, social sciences, and engineering.
Figure 1 shows an example of a single time
series∗ in which the value zt of a certain
variable (the average number of spots on the
sun’s surface) is plotted against time t. Ear-
lier approaches to analyzing time series were
based on decomposing the variance of the
series into components associated with differ-
ent frequencies, based on Fourier analysis∗

and leading more recently to methods based
on spectral analysis∗.

Alternative historical approaches were
based on building a model for the time
series in the time domain. The main moti-
vation for building such a model was to
forecast future values of the time series
given its past history. However, such a
model could be used (a) to gain a better
understanding of the mechanisms generat-
ing the series, (b) to smooth the random
variation in the series, and (c) to allow for
dependence in the series when the data
were used for other statistical purposes,
such as testing the differences between the
means of two sets of data or relating one
time series to another as in some form of
regression∗ analysis. The first practically

useful models for describing time series
were the autoregressive models introduced
by G. U. Yule and G. Walker (see below)
and the moving average∗ models introduced
by Slutsky, Wold, and others. Later, it
was recognized that more general structures
could be obtained by combining autoregres-
sive and moving average models, leading
to autoregressive-moving average (ARMA)
models.

GENERAL LINEAR MODEL∗

When forecasting∗ an observed time series
zt from a knowledge of its past history, it
is natural to think of the forecast as being
obtained by applying a set of weights to past
values of the time series. Thus, the one-step-
ahead forecast of zt made from origin (t− 1)
may be written

forecast = π1zt−1 + π2zt−2 + π3zt−3 + · · · ,
(1)

where πj is the weight applied to the previous
observation zt−j in order to forecast zt. When
the future observation zt comes to hand, it
follows that

zt = forecast+ forecast error (2)

Substituting for the forecast from (1) and
denoting the forecast error by at, (2) becomes

zt = π1zt−1 + π2zt−2 + π3zt−3 + · · · + at. (3)

If the forecast one step ahead of zt is the
best possible, then the forecast errors at, at−1,
at−2 . . . should be a random series∗, or white
noise∗. If not, it should be possible to forecast
the forecast errors and add this forecast to
forecast (1) to obtain a better forecast. Model
(3), with at a random series, is called a linear
model∗. In practice, the forecast errors at may
depend on the level of the series, in which
case a better representation is obtained by
using a nonlinear transformation of zt in (3),
such as a log or square-root transformation∗.
From now on it will be assumed that the
notation used in (3) denotes a representation
for zt or a suitable nonlinear transforma-
tion of zt chosen so as to make the forecast
errors at homoscedastic∗. Although the rep-
resentation (3) provides a useful general way
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Figure 1. Plot of annual Wölfer sunspot numbers (1770–1869), together with histograms of
residuals at from: (a) model (zt − 46.9) = 1.42(zt−1 − 46.9)− 0.73(zt−2 − 46.9)+ at; (b) model (

√
zt −

7.4)+ 1.41(
√

zt−1 − 7.4)− 0.70(
√

zt−2 − 7.4)+ at.

of modeling a time series, it suffers from
the disadvantage that it contains a large
(potentially infinite) number of weights or
parameters πi. Since it would be impossible to
estimate very accurately such a large number
of weights, a practical solution to time-series
problems requires a more parsimonious rep-
resentation, containing as few parameters
as possible. Such economy in parameteriza-
tion can be achieved using autoregressive and
moving average models.

PURE AUTOREGRESSIVE MODELS

From now on it is assumed that the time
series is stationary∗, i.e., that it is in statis-
tical equilibrium about a fixed mean µ and
that it possesses, among other properties, a
constant variance and a covariance structure
which depends only on the difference k (or lag)
between two time points. Suppose also that
the weights πi applied to past observations
in the representation (3) are zero beyond a
certain point p. Then, writing the series as a

deviation about its mean µ, (3) becomes

(zt − µ) = φ1(zt−1 − µ)+ φ2(zt−2 − µ)

+ · · · + φp(zt−p − µ)+ at, (4)

where the finite set of weights or parameters
φi may be estimated from the data. In words,
(4) implies that the current deviation of the
time series from its mean is a linear com-
bination of the p previous deviations plus a
random residual∗ at. The analogy between (4)
and a multiple regression model∗ should be
noted. Because the regressor variables in (4)
are lagged values of the series itself and not
distinct variables, (4) is called an autoregres-
sive model of order p, or an AR(p). Model (4)
also implies that the best forecast of zt made
from origin (t− 1) is a linear combination of
the past p-values of the series.

Introducing the backward-shift operator∗
B, such that Bzt = zt−1, Bjzt = zt−j, (4) may
be written in the alternative form

(1− φ1B− φ2B2 − · · · − φpBp)(zt − µ) = at.

(5)
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Thus an AR(p) model is characterized by an
operator

φ(B) = (1− φ1B− φ2B2 − · · · − φpBp), (6)

which is a polynomial of degree p in the
backward-shift operator B. The polynomial
(6) may have real factors of the form (1−GiB)
or complex factors corresponding to complex
roots of φ(B) = 0. Complex factors indicate
the presence of a quasi-cyclic∗ component in
the data. Such cycles∗ do not have fixed peri-
ods, as in a sine wave, but are subject to
random changes in amplitude, phase, and
period. The fact that complex roots in (6) pro-
duce quasi-cyclical behavior in zt may be seen
by noting that if p = 2 and at = 0, the solution
of the difference equation∗ (6) is a damped
sine wave, as in the motion of a damped
simple pendulum. When the zero on the right-
hand side is replaced by a random series at,
the sine wave is prevented from damping
out by a series of random shocks, producing
randomly disturbed sinusoidal behavior.

Autoregressive models were first sugges-
ted by G. U. Yule [9] who used a second-order
model to describe the annual series of Wölfer
sunspot numbers. Figure 1 shows a plot of
this series, based on the annual average of
daily readings, for the period 1770–1869. The
fitted model∗ is

(zt − 46.9) = 1.42(zt−1 − 46.9)
±0.07

− 0.73(zt−2 − 46.9)+ at,
±0.07

(7)

where the ± values underneath the esti-
mated parameters are their estimated stan-
dard error limits. The variance of the resid-
uals at can be estimated together with the
parameters µ, φ1, and φ2 [2] and was σ 2

a =
228.0 in this example. The operator (1−
1.42B+ 0.73B2) corresponding to (7) has com-
plex factors with a period p that can be
calculated from

cos
2π
p
= φ1

2
√−φ2

= 1.42

2
√

0.73

and is 10.65 years. Figure 1 also shows
the histogram∗ of the residuals at corre-
sponding to model (7). The distribution is
skew, suggesting that a transformation of

the data is needed before fitting a model.
Using an approach due to Box and Cox [1]
(see BOX–COX TRANSFORMATION—I), it may
be shown that a better representation is
obtained using the following model based on
a square-root transformation∗:

(
√

zt − 7.4) = 1.41
±0.07

(
√

zt−1 − 7.4)

− 0.70
±0.07

(
√

zt−2 − 7.4)+ at (8)

with σ 2
a = 1.994. Note that the parameter

estimates are changed only very slightly by
transformation. Its main affect is to shrink
the peaks and stretch the troughs in the
series, resulting in a more symmetric distri-
bution∗ of the residuals, as shown in Fig. 1.
The estimate of the average period corre-
sponding to model (8) is 11.05 years, much
closer than the previous value of 10.65 years
to the period quoted by meteorologists for this
series.

PURE MOVING AVERAGE MODELS

For autoregressive models the π -weights in
the representation (8) have a cut-off after p,
where p is the order of the model. In some sit-
uations it may be more appropriate to apply
steadily declining weights to generate the
forecasts rather than weights which have an
abrupt cut-off. Such a pattern of weights may
be obtained, e.g., by using a moving average
model

zt − µ = at − θat−1 = (1− θB)at. (9)

Inverting (9), we obtain

at = 1
1− θB

(zt − µ)

and provided that |θ | < 1 and |B| < 1, this
expression may be expanded to give

at = (1+ θB+ θ2B2 + · · ·)(zt − µ), (10)

so that the π -weights decay exponentially.
More generally, a moving average model of
order q, or MA(q) is defined by

(zt − µ) = at − θ1at−1 − θ2at−2

− · · · − θqat−q (11)
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where at is a random series. The model (11)
contains q parameters θ1, θ2, . . . , θq, which can
be estimated from the data. It implies that
the current deviation of the series zt from its
mean µ is a linear combination of the current
and q previous random shocks at (or one-step-
ahead forecast errors) which have entered
the system. In backward-shift notation, (11)
may be written as (zt − µ) = θ (B)at, where
the moving average operator θ (B) is given by

θ (B) = 1− θ1B− θ2B2 − · · · − θqBq. (12)

The model (11) has π -weights consisting of a
mixture of real exponentials, corresponding
to real factors of θ (B), and of damped sine
waves, corresponding to complex factors of
θ (B).

MIXED AUTOREGRESSIVE–MOVING
AVERAGE MODELS

Result (10) shows that an MA(1) can be writ-
ten as an autoregressive model of infinite
order. If θ is small, say θ = 0.3, then from
a practical point of view the infinite series
in (10) can be truncated after the term in B
since it would require a long length of series
to detect the parameter 0.09 in the next term
0.09B2 in the expansion. However, if θ is mod-
erate or large, several terms would be needed
in (10) to provide an adequate approximation
to the single-parameter model (9). Thus if
the moving average model were incorrectly
specified as an autoregressive model, involv-
ing several parameters, the estimates of the
parameters in the autoregressive representa-
tion would tend to have high standard errors
and be highly correlated.

Conversely, the AR(1) model

(1− φB)(zt − µ) = at (13)

can be written as an infinite-order moving
average model

(zt − µ) = at + φat−1 + φ2at−2 + · · · , (14)

and hence estimation problems will be
encountered if an autoregressive model is
incorrectly specified as a moving average
model. To achieve parsimony in parameteri-
zation in a given practical situation, it may be

necessary to include both autoregressive and
moving average terms in the model. Thus
the mixed autoregressive–moving average
model, or ARMA(p, q), is defined by [8]

(zt − µ) = φ1(zt−1 − µ)+ · · ·
+ φp(zt−p − µ)+ at − θ1at−1

− · · · − θqat−q. (15)

Written in terms of the backward shift oper-
ator, (15) becomes

(zt − µ) = 1− θ1B− · · · − θqBq

1− φ1B− · · · − φpBp at. (16)

The form (15) represents the time series zt
(or an appropriate nonlinear transformation
of zt) as the output from a linear filter whose
input is a random series and whose trans-
fer function∗ is a rational function of the
backward-shift operator B. In words, (15)
implies that the current deviation of the time
series from its mean is a linear combina-
tion of the p previous deviations and of the
current and q previous residuals at (or one-
step-ahead forecast errors). The ARMA(p, q)
model (15) is capable of generating π -weights
in (1), the first p of which follow no fixed
pattern and the remainder of which lie on a
curve that is a mixture of damped exponen-
tials and sine waves. Table 1 shows special
cases of the general ARMA(p, q) model of the
kind that frequently arise in practice.

STATIONARITY AND INVERTIBILITY
CONDITIONS

The parameters in the ARMA(p, q) model (16)
must satisfy the following two conditions. (a)
For zt to be written in the π -weight form (1),
i.e.,1−

∞∑
j=1

πjBj

 (zt − µ) = θ−1(B)φ(B)zt

= at

for |B| < 1,

the factors of θ (B) must be less than unity
in modulus (the invertibility condition). This
condition implies that the forecast weights
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πj die out; i.e., the forecast depends less on
what has happened in the distant past than
in the recent past. (b) For zt to be written in
the ψ-weight form

(zt − µ) =
1+

∞∑
j=1

ψjBj

at = φ−1(B)θ (B)at

for |B| < 1,

the factors of θ (B) must be less than unity
in modulus (the stationarity condition). This
condition implies that the series is station-
ary with finite variance. Table 2 shows the
characteristic shapes of the π -weights and ψ-
weights for the AR(p), MA(q), and AR-MA(p,
q) models.

AUTOCORRELATION FUNCTIONS

The autocovariance functions γk = E[(zt −
µ)(zt+k − µ)] shows how the dependence bet-
ween neighboring values of the series varies
with the lag∗ k. It may be calculated from the
autocovariance generating function

γ (B) =
∞∑

k=−∞
γkBk

= σ 2
aφ
−1(B)φ−1(B−1)θ (B)θ (B−1). (17)

Table 2 shows the characteristic patterns of
the autocorrelation functions ρk = γk/γ0 of
AR(p), MA(q), and ARMA (p, q) models. Such
patterns may be used to provide an initial
guess of the structure of an observed time
series [2].

PARTIAL AUTOCORRELATION FUNCTIONS

A complementary tool to the autocorrelation
function for identifying the structure of an
ARMA(p, q) model is the partial autocorre-
lation function sk [2]. The partial autocorre-
lation function may be estimated by fitting
autoregressive models of orders 1, 2, 3, . . . , k
to a time series and picking out the esti-
mates s1, s2, . . . , sk of the last parameter in
the model. Table 2 shows the partial auto-
correlation function shapes corresponding to
AR(p), MA(q), and ARMA(p, q) models. The
duality in the properties of autoregressive
and moving average models should be noted.

MULTIVARIATE AUTOREGRESSIVE–MOVING
AVERAGE MODELS

If zt denotes an m-vector of mutually inter-
acting time series, the univariate ARMA(p,
q) model (16) may be generalized to

φ(B)(zt − µ) = θ (B)at, (18)

where φ(B) is an autoregressive matrix whose
elements φij(B) are autoregressive operators,
µ a vector of mean values, θ(B) a moving
average matrix with elements θij(B), and at
a vector of random series that are mutually
uncorrelated. For further discussion of the
properties of multivariate ARMA models, the
reader is referred to Quenouille [7], Hannan
[4], Box and Tiao [3], and Jenkins [5,6].

Since time series occurring in practice are
rarely stationary with fixed means, ARMA
models are of limited use in describing prac-
tical situations. The modifications necessary

Table 1. Some Simple Special Cases of the Autoregressive–Moving Average Model

(p, q) Nature of Model Mathematical Form of Model Backward-Shift-Operator
Form of Model

(1, 0) First-order autoregressive zt − µ = φ1(zt−1 − µ)+ at zt − µ = 1
1− φ1B

at

(2, 0) Second-order
autoregressive

zt − µ = φ1(zt−1 − µ)+ φ2(zt−2 −
µ)+ at

zt − µ = 1
1− φ1B− φ2B2 at

(0, 1) First-order moving average zt − µ = at − θ1at−1 zt − µ = (1− θ1B)at

(0, 2) Second-order moving
average

zt − µ = at − θ1at−1 − θ2at−2 zt − µ = (1− θ1B− θ2B2)at

(1, 1) First-order autoregressive,
first-order moving
average

zt − µ = φ1(zt−1 − µ)+
at − θ1at−1

zt − µ = 1− θ1B
1− φ1B

at
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Table 2. Summary of Properties of AR, MA, and ARMA Models

AR(p) Models MA(q) Models ARMA(p, q) Models

π -weights and partial
autocorrelations
function

Cutoff after p; follow
no fixed pattern

Infinite; mixture of
damped
exponentials and
sine waves

First p values follow
no fixed pattern;
thereafter, mixture
of damped
exponentials and
sine waves

ψ-weights and
autocorrelation
function

Infinite; mixture of
damped
exponentials and
sine waves

Cutoff after q; follow
no fixed pattern

First q values follow
no fixed pattern;
thereafter, mixture
of damped
exponentials and
sine waves

to make them practically useful are discussed
under autoregressive-integrated moving
average (ARIMA) models∗.
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FURTHER READING

The first balanced account of theoretical and
practical aspects of autoregressive–moving
average models is given in the book by Wold
[8]. Box and Jenkins [2] summarize the prop-
erties of these models and also give practical
guidelines for identifying, fitting, and check-
ing such models given the data. Pioneering

work on multivariate models is to be found in
Quenouille [7], and Hannan [4] discusses the
theoretical background for both univariate
and multivariate models. Practical guide-
lines for building multivariate autogressive-
moving average models have been given by
Jenkins [6].

See also AUTOREGRESSIVE–INTEGRATED MOVING AVERAGE

(ARIMA) MODELS; MOVING AVERAGES; PREDICTION

AND FORECASTING; TIME SERIES; and TRANSFER

FUNCTION MODEL.
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AVAILABILITY

Availability is a property of a system, defined
as the proportion of time the system is
functioning (properly). If failure and repair
times are each distributed exponentially∗

with expected values θ and φ, then the
availability is θ/(θ + φ). Sometimes the avail-
ability is defined generally in this way with
θ = E [time to failure], φ = E [repair time].
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AVERAGE CRITICAL VALUE METHOD

Geary’s [1] average critical value (ACV)
method applied to a statistic T used to test the
hypothesis H0 : θ = θ0 against the alternative
H1 : θ = θ1 determines what the difference
between θ0 to θ1 should be for E[T|θ1] to fall
on the boundary of the critical region of the
test. Test statistics with small differences
correspond to tests with high efficiency∗. The
advantage of this method is that it requires
only the calculation of the expected value
E[T|θ1] rather than the distribution of T. (The
latter is required for power∗ function calcula-
tions.) Examples are given by Geary [1] and
Stuart [2]. Stuart in 1967 showed that the
ACV method of gauging the efficiency of tests
can usually be represented as an approxi-
mation to the use of the asymptotic relative
efficiency∗ of the tests.
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AVERAGE EXTRA DEFECTIVE LIMIT
(AEDL)

The average extra defective limit (AEDL) is
a concept introduced by Hillier [1] as a mea-
sure of effectiveness of a continuous sampling
plan∗ in adjusting to a process that has gone
out of control.

Assume that a process has been operat-
ing in control at a quality level p0 and then
instantaneously deteriorates after the mth
item to a level p1, where 0 � p0 < p1 � 1. Let
D be the number of uninspected defectives
among the next L items after the mth item is
observed. The expected value of D, E (D), is a
well-defined quantity for a specific sampling
plan. An average extra defective limit is the
smallest number denoted by AEDL satisfying

E(D) � AEDL + L× A

for all possible values of L, p0, or p1, where A
is the average outgoing quality limit (AOQL)∗
of the plan.

Equivalently, let

Xm =


1 if the mth item is defective
but not inspected,

0 otherwise.

Let the m0th item be the last item before
the shift in quality from p0 to p1; then

AEDL = sup
(p0,p1)

sup
L

m0+L∑
m=m0+1

[E(Xm)− A].

Intuitively, AEDL is the upper limit to the
expected number of ‘‘extra’’ defectives that
will be left among outgoing items when the
process goes out of control regardless of L, p0,
or p1. Additional interpretations of AEDL, its
uses, and methods of computation for contin-
uous sampling plans have been discussed by
Hillier [1].
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AVERAGE OUTGOING QUALITY
(AOQ)

The definition of this concept suggested by
the Standards Committee of ASQC [3] is:
‘‘the expected quality of the outgoing product
following the use of an acceptance sampling
plan∗ for a given value of incoming product
quality.’’ It is basically a ratio of defective
items to total items, i.e., the total number of
defectives in the lots accepted divided by the
total number of items in those lots. Two other
formal (but not equivalent) definitions are: (1)
the average fraction defective in all lots after
rejected lots have been sorted and cleared of
defects—this is an average based on practi-
cally perfect lots (those sorted) and lots still
with fraction of defectives approximately p
(it is assumed that lots of stable quality are
offered), and (2) the expected fraction of defec-
tives, after substituting good items for bad
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ones in rejected lots, and in samples taken
from accepted lots.

The AOQ serves as a performance mea-
sure associated with an (attribute) accep-
tance sampling plan∗ when the same sam-
pling plan is used repeatedly.

Wortham and Mogg [4] present formulas
for calculating AOQ for nine different ways
of carrying out rectifying inspection∗. For
example, if the defective items are replaced
by good ones (thereby returning the lot to its
original size N), then

AOQ = Pa × p× (N − n)
n

,

where Pa is the probability of acceptance
using the given acceptance plan, p the frac-
tion defective, N the lot size, and n the sample
size.
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AVERAGE OUTGOING QUALITY
LIMIT (AOQL)

The current ‘‘official’’ definition of this concept
as suggested by the Standards Committee
of ASQC [3] reads: ‘‘For a given acceptance
sampling plan∗ AOQL is the maximum AOQ
over all possible levels of incoming quality.’’

Originally, AOQL was defined by Dodge
[1] as the upper limit to the percent of defec-
tive units that remain in the output after
inspection, given that the process is in statis-
tical control (i.e., the proportion of defectives
being produced is constant). In other words,
it represents the worst average quality the
consumer will accept under a particular rec-
tifying inspection∗ scheme.
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AVERAGE RUN LENGTH (ARL)

The length of time the process must run,
on the average, before a control chart∗ will
indicate a shift in the process level∗ is called
the average run length (ARL). It is, of course,
desirable that the ARL should be long when
no shift has occurred, but short when a shift
has occurred.

The ARL is usually measured in terms of
the number of consecutive points plotted on
the control chart.
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AVERAGE SAMPLE NUMBER (ASN)

In a sequential test∗ S , the final size of the
sample (N) required by the test is a ran-
dom variable. If the sample sequential test
S is carried out repeatedly, N will generally
assume different values in successive repe-
titions of the test. The average amount of
sampling per test that would result from the
use of S is measured by the expected value
of N and is called the average sampling num-
ber (ASN) of the test. If the test relates to the
value of a parameter θ , we have formally

E[N; θ ] =
∞∑

n=1

np(n; θ ),
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where p(n; θ ) = Pr[N = n|θ ] is the probability
of reaching the terminal decision at sample
size n. A graph showing E[N; θ ] against var-
ious values of θ is called the ASN curve or
ASN surface, according as θ is a scalar or a
vector, respectively.
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AND STOPPING TIMES.

AVERAGED SHIFTED HISTOGRAM

For a random univariate sample of size n, the
classic histogram∗ takes the value

f̂ (x) = bin count
nh

,

where h is the width of a bin. Important
details of proper histogram construction are
usually overlooked. In practice, continuous
data have a finite number of significant dig-
its, with resultant accuracy ±δ/2. In this
view, the raw data have been rounded and
assume values at the midpoints of a finer
histogram mesh with bin width δ. Let the
kth such bin be denoted by Bk = [tk, tk+1),
−∞ < k <∞, where the bin edges {tk} satisfy
tk+1 − tk = δ for all k. If νk is the bin count
for Bk, then

∑
k νk = n. Thus the classic his-

togram should obey two constraints: first, the
bin width should be a multiple of δ, that is,
h = mδ for some integer m; and second, the
bins of the histogram should conform to the
finer mesh, for example, [tk, tk+m). The bin
count for this wider bin, [tk, tk+m), would be
computed as

∑m−1
i=0 νk+i.

If the point of estimation, x, falls in the
(narrower) bin Bk, precisely which histogram
with bin width h should be selected? Clearly,
there are exactly m such shifted histograms,
with explicit bin intervals ranging from
[tk−m+1, tk+1) to [tk, tk+m). The ordinary aver-
aged shifted histogram (ASH) estimates the
density at x ∈ Bk as the arithmetic mean of

these m shifted histogram estimates. A sim-
ple calculation shows that the ordinary ASH
is given by

f̂ (x) = 1
m

m−1∑
i=1−m

(m− |i|)νk+i

nh

= 1
nh

m−1∑
i=1−m

(
1− |i|

m

)
νk+i,

x ∈ Bk.

As m→∞, Scott [3] showed that f̂ (x) con-
verges to the kernel density estimator

f̂ (x) = 1
nh

n∑
i=1

K
(

x− xi

h

)
,

with the triangle kernel K(t) = 1− |t| on
(−1, 1). The ASH may be generalized to mimic
any kernel K(t) defined on (−1, 1) such that
K(±1) = 0 by

f̂ (x) = 1
nδ

m−1∑
i=1−m

wm(i)νk+i, x ∈ Bk,

by defining the weights

wm(i) = K(i/m)∑m−1
j=1−m K(j/m)

.

In this form, the ASH is seen as a dis-
crete convolution of adjacent bin counts. In
practice, popular kernels are the biweight
and triweight, which equal 15

16 (1− t2)2 and
35
32 (1− t2)3 on (−1, 1), respectively. Silverman
[6] provided a fast-Fourier-transform proce-
dure for the Normal kernel, which does not
have finite support. Fan and Marron [1] com-
pare many algorithms.

MULTIVARIATE ASH

Binning∗ seems an effective device in dimen-
sions up to four or five. For example, with
bivariate data, (x1, x2), construct a fine mesh
of size δ1 × δ2. Then construct bivariate his-
tograms with bins of size h1 × h2, where
h1 = m1δ1 and h2 = m2δ2. Then the bivariate
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ASH is the average of the m1 ×m2 shifted
histograms, and for (x1, x2) ∈ Bkl,

f̂ (x1, x2)

= 1
nδ1δ2

m1−1∑
i=1−m1

m2−1∑
j=1−m2

wm1 (i)wm2 (j)νk+i,l+j

with obvious extension to more dimensions.
Scott [4] discusses visualization of trivariate
and quadrivariate densities with applications
in clustering and discrimination.

COMPUTATION AND ASYMPTOTICS

The computational advantage of the ASH
derives from the fact that the smoothing
is applied to perhaps 50–500 bin counts,
rather than to the raw data themselves. ASH
software is available from Statlib or from
ftp.stat.rice.edu by anonymous ftp.

From the point of view of statistical effi-
ciency, the ordinary ASH represents a com-
promise between the histogram and triangle-
kernel estimator∗. For the univariate ASH,
the asymptotic mean integrated squared
error (AMISE) is

AMISE(h, m) = 2
3nh

(
1+ 1

2m2

)
+ h2

12m2 R(f ′)

+ h4

144

(
1− 2

m2 +
3

5m2

)
R(f ′′),

where R(φ) = ∫
φ(x)2 dx. When m = 1, the

bias has the usual O(h2) behavior of the his-
togram, whereas the bias is of order O(h4) as
m→∞ as for the positive kernel estimator.
If a piecewise linear interpolant of the ASH
midpoints is used, then the bias is O(h4) for
all m. Thus, linear interpolation is almost
always recommended for the ASH.

The exact optimal choices of h and m
depend on the unknown density through
R(f ′′). However, Terrell and Scott [7] pro-
vide useful upper bounds for h using any
reasonable estimate of the standard devi-
ation: for the ordinary ASH with m = 1,
h < 3.73σn−1/3; for the ASH with m→∞,
h < 2.78σn−1/5. These estimates converge at
the rates O(n−2/3) and O(n−4/5), respectively.
However, if the linear interpolant is used,
the bound for the ASH with m = 1 is h <
2.33σn−1/5; the m→∞ bound is unchanged.

If δ is fixed, these formulas give upper bounds
for m. A discussion of algorithms for choos-
ing h may be found in Scott and Terrell [5]
and Scott [4]. A simple table of factors to
obtain smoothing parameters for use with
other kernel weights is given on p. 142 in
Scott [4].

ASH REGRESSION

An efficient nonparametric regression∗ esti-
mate may be constructed by using the mul-
tivariate ASH. For example, with data (x, y),
construct the bivariate ASH and then com-
pute the conditional mean of the estimate.
The result is particularly simple as δy → 0:

m̂(x) =
∑m1−1

i=1−m1
wm1 (i)νk+iyk+i∑m1−1

i=1−m1
wm1 (i)νk+i

,

x ∈ Bk,

where yk is the average of the yi’s for those
points (xi, yi), where xi ∈ Bk and νk is the
univariate bin count. This estimator was
introduced by Härdle and Scott [2]; two- and
three-dimensional versions with application
to spatial estimation from sample surveys of
agriculture data are given in Whittaker and
Scott [8].

EXAMPLES

Bradford Brown (see ref. [4], Appendix B.4)
measured the thickness of 90 U.S. pennies
to the nearest tenth of a mil. Two shifted
histograms plus an ASH are shown in Fig. 1,
all with smoothing parameter h = 1.5 mils.
The visual impression of the two histograms
is markedly different. The ASH essentially
removes the effect of the choice of bin ori-
gin, which is a nuisance parameter. With a
smaller smoothing parameter (h = 0.9), two
extra modes appear (rather than only one) at
55.9 and 57.1 mils.

A fuller view of these data may be obtained
by plotting them as a time series as in Fig. 2.
Contours of the bivariate ASH, together
with the regression ASH, are also displayed.
Apparently, the thickness of pennies has
changed more than once since World War II.
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Figure 1. Two shifted histograms and the ASH of the penny thickness data. The bin origins for
the histograms were 50.55 and 49.65. The triweight kernel was used for the ASH with δ = 0.1 and
m = 1.

Figure 2. Bivariate ASH density and regression estimates of the penny data.
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DAVID W. SCOTT

AXIAL DISTRIBUTIONS. See
DIRECTIONAL DISTRIBUTIONS

AXIOMS OF PROBABILITY

THE AXIOMATIC METHOD

It is perhaps no coincidence that the
axiomatic method in mathematics became
prominent somewhat before the ‘‘use’’ theory
of meaning became prominent in philosophy.
An axiomatic system aims to capture and
formalize some way of using language and
it sidesteps the difficulties of explicit defini-
tions.

The advantage of the axiomatic method is
that theorems can in principle be deduced
mathematically from the axioms without
new assumptions creeping in surreptitiously,
and without necessary philosophical commit-
ment. In other words, the theorems can be
proved rigorously according to the usual stan-
dards of pure mathematics without involve-
ment in the controversial problems of appli-
cation to the real world. In practice it is
difficult to be totally rigorous, as has been
found by philosophers of mathematics. An
early example of the axiomatic method is in
the geometry of Euclid, although his axioms
do not satisfy most modern pure mathemati-
cians. The value of a more precise axiomatic
approach was emphasized by David Hilbert
near the beginning of the twentieth century.

The approach has become a paradigm for
pure mathematics, but less so for applied
mathematics and for physics because it can
lead to rigor mortis (to quote Henry Mar-
genau’s joke). Probability theory is both pure
and applied∗, so that different specialities put
more or less emphasis on axiomatic systems.

NOTATION

Many theories of probability have been pro-
posed, and many different notations have
been used. In this article we use notations
such as P(E|F), which can be read as the prob-
ability of E given (or assuming, or conditional
on) F. Here, depending on the theory or the
context, E and F might denote propositions,
events∗, hypotheses∗, scientific theories, or
sets, or might even be abstract symbols, such
as those in abstract algebra, without ordinary
definitions but subject only to some axioms.
We can regard P(·|·) as a function of two vari-
ables, and the domains of E and F are not
necessarily identical. The notation P(E) is
read ‘‘the probability of E’’ and is used either
when F is taken for granted or, in some theo-
ries, not as a conditional probability∗ but as a
so-called ‘‘absolute probability’’ in which offi-
cially nothing is ‘‘given’’ or ‘‘assumed’’ other
than logic and mathematics (were that possi-
ble).

When a theory of probability is expressed
axiomatically there will usually be axioms
satisfied by such symbols as E and F and
further axioms satisfied by the ‘‘probabili-
ties’’ themselves. Some theories of probability
are formulated as theories of rationality, and
then the set of axioms needs to mention either
decisions or ‘‘utilities’’ (=‘‘desirabilities’’). See
DECISION THEORY.

ARGUMENTS OF P(E|F)

A theory in which E and F denote sets or
are abstract symbols can be regarded as a
branch of pure mathematics, but proposi-
tions, events, and hypotheses are not purely
mathematical concepts when they are inter-
preted as ordinary English words. We shall
not try to define the English meanings of
events, hypotheses, and theories, but the
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meaning of ‘‘proposition’’ is especially con-
troversial: see, for example, Gale [11]. Per-
haps the best definition is that a proposition
is ‘‘the meaning of a clear statement.’’ By
ruling out unclear statements we are ade-
quately justified in assuming that each propo-
sition is capable of being either true or false,
although really there are degrees of mean-
ingfulness because statements can be more
or less vague.

Moreover, a statement can be either empir-
ically or mathematically meaningful, a point
that is relevant to the choice of axioms. For
example, to say that a measurement of a
continuous variable lies between 5.25 and
5.35 inches is often empirically meaningful,
whereas to say that it is exactly 5.30 inches,
with no error at all, is at best mathematically
meaningful within an idealized mathemati-
cal model. Again, to say that ‘‘the limit of the
proportion of time that a coin comes up heads
is approximately 0.5 in an infinite sequence
of tosses’’ can be fully meaningful only within
pure mathematics, because all sequences of
tosses in the real world are of finite length.

AXIOMS FOR PROPOSITIONS AND SETS

The conjunction of propositions E and F is
the proposition E & F and is denoted in this
article by EF. The disjunction of E and F
is denoted by E ∨ F. This proposition asserts
that E or F or both are true. The negation
of E is denoted by Ẽ or by ∼ E. If E and F
denote the same proposition, then we write
E = F. (Other notations are in use.)

Some axioms for propositions are:

A1 If E is a proposition, then Ẽ is also.
This axiom might not be accepted by
those who define a proposition as (sci-
entifically) meaningful only if it is
refutable if false. This first axiom,
if applied to scientific propositions,
forces us to the view that a proposi-
tion is also scientifically meaningful
when it is confirmable if true. There
are, however, degrees in these mat-
ters: see Good [15, pp. 492–494].

A2 ∼ (∼ E) = E.
A3 If E and F are both propositions, then

so is EF.

A4 Commutative law. EF = FE.
A5 Associative law. E(FG) = (EF)G.
A6 De Morgan’s law. ∼ (EF) = Ẽ ∨ F̃.

From this we can prove that the com-
mutative and associative laws apply
also to disjunctions.

A7 Distributive laws

E(F ∨G) = (EF) ∨ (EG)

and

E ∨ (FG) = (E ∨ F)(E ∨G),

of which the second law can be inferred
from the first by means of de Morgan’s
law∗.

To these seven axioms, which are essen-
tially the axioms of Boolean algebra, we can
appendthe optional axiom (A8) and perhaps
(A9):

A8 The conjunction and disjunction of a
countably infinite number of proposi-
tions are propositions, with a corre-
sponding ‘‘de Morgan law,’’

∼ (E1E2E3 · · ·) = Ẽ1 ∨ Ẽ2 ∨ Ẽ3 ∨ · · · .

A9 The conjunction and disjunction of any
infinite number of propositions are
propositions, with yet another ‘‘de Mor-
gan law’’: The negation of the conjunc-
tion is the disjunction of the nega-
tions.1

ORIGINS OF THE AXIOMS

In most theories of probability the proba-
bilities lie in some sense between 0 and 1
and satisfy axioms somewhat resembling in
appearance the addition and product axioms,
namely:

P(A ∨ B) = P(A)+ P(B)

when A and B are mutually exclusive∗ and

P(AB) = P(A) · P(B|A).

These comments will be clarified in what
follows.
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The addition and product axioms were
known at least implicitly to Fermat∗ and
Pascal∗ in 1654 and perhaps to Cardano∗

in the sixteenth century. But it is more
convenient to express the axioms explicitly,
formally, and completely.

Axioms are seldom slapped down arbi-
trarily; a system of axioms should be cho-
sen either as a convenient form of other
axioms or should be constructed to capture
some intuitive ideas about the world or about
mathematics, so that the system has some
prior justification. The axioms can also be
justified by their practical and philosophical
implications; e.g., they should not be seen to
lead to an irresolvable contradiction. Before
the axioms can have practical meaning, some
formal rules of application to the real world
must be provided. Moreover, in practice a set
of axioms and rules of application are still not
sufficient: a theory needs to become to some
extent a technique if it is to be useful. One
needs informal suggestions of how to apply
the theory, although these suggestions are
not logically essential. In this article no more
will be said about such practical suggestions
because such matters belong properly to a
discussion of the relationship between prob-
ability and statistics or between probability
and practical decision making. See DECISION

THEORY.
The prior justification of a set of axioms

must depend on some concept of probability,
however vague. One of the earliest concepts
of probability was derived from games of
chance∗, such as those depending on coin
spinning, dice throwing, and card drawing. In
such games there are some symmetry prop-
erties that suggest that some outcomes are
at least approximately equally probable, and
this is so even for people who have not much
idea of what probability means. In the con-
text of such games one might be ready to
accept Laplace’s∗ definition of the probability
of an event E as k/m, where m is the number
of ‘‘equally possible’’ cases (meaning equally
probable cases) that could occur, and k is
the number of those cases that constitute E.
When this ‘‘definition’’ is applicable, it leads
to a familiar set of axioms. The main dis-
advantage of this approach is that a clearly
exhaustive set of ‘‘equally probable cases’’
cannot usually be specified with reasonable

objectivity in scientific applications. Also, the
definition is somewhat circular.

In many experiments or observational cir-
cumstances the kind of symmetry required
for the direct application of the classical
definition of probability is lacking. To get
around this difficulty, or for other reasons, a
definition in terms of long-run proportional
frequency of ‘‘successes’’ was explicitly pro-
posed by Leslie Ellis and Cournot∗ in 1843,
and developed in much detail by Venn in
1866. (For these references and further his-
tory, see Keynes [21, pp. 92–93]). As usual
with simple ideas, ‘‘frequentism’’ had been to
some extent foreshadowed long before, e.g.,
by Aristotle, who said that the probable is
what usually happens, or Greek words to that
effect, but a self-respecting kudologist would
not on that account attribute the theory to
Aristotle alone. The frequentist definition is
associated with physical probability rather
than with logical or subjective (= personal)
probability. For discussions of kinds of prob-
ability, see BELIEF, DEGREES OF and its refer-
ences, and PROBABILITY, FOUNDATIONS OF—I.

It is by no means simple to construct a
satisfactory definition of physical probability
based on limiting frequencies. Consider, e.g.,
the following naive approach. By a ‘‘trial’’
we mean an experiment whose outcome is
either some event E, or is the negation of
E, a ‘‘failure’’ F. For example, a trial might
be the tossing of a coin or the throw of
a die and E might denote ‘‘heads’’ or ‘‘a
six.’’ Let an infinite sequence of such trials
be performed under ‘‘essentially equivalent’’
conditions. Then the proportion of successes
in the first n trials might tend to a limit p
when n→∞. If so, then p might be called
the probability of a success.

This naive definition of physical prob-
ability by long-run or limiting frequency∗
has some disadvantages. Even if we admit
the possibility of an infinite sequence of
trials in the real world, as some kind of
approximation, the definition says nothing
about whether the sequence of outcomes is
in any sense random. A more sophisticated
long-run-frequency definition of probability
was proposed by von Mises [24] based on
the prior notion of a random sequence or
irregular Kollektiv∗. This approach requires
axioms for random sequences and again has
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severe mathematical and logical difficulties,
although it can be presented fairly convinc-
ingly to the intuition in terms of generalized
decimals [17, and references therein]. The
theory of von Mises can be made logically
rigorous and then leads to a familiar set of
axioms for probability [6,23]. For a discus-
sion of randomness, with further references,
see also Coffa et al. [5] and the article on
RANDOMNESS, BDS TEST FOR in the present
encyclopedia.

An approach to the axioms via sharp abso-
lute probabilities, when there are fewer than
26M possible mutually exclusive propositions,
where M = 101000, is to argue as follows. Sup-
pose that the N mutually exclusive possible
propositions E1, E2, . . . , EN of interest have
sharp probabilities approximated to ν places
of decimals by p1, p2, . . . , pN , where ν is large,
so that pi = mi10−ν , where mi is a positive
integer, and

∑
mi = 10ν . For each i, take

a well-shuffled pack of cards containing mi
equiprobable cards and use it to break Ei
into mi mutually exclusive propositions each
of probability 10−ν . This leads to 10ν equally
probable propositions and the classical defi-
nition can now be used to arrive at a familiar
set of axioms. (Compare ref. 12, p. 33, where
the argument was expressed somewhat dif-
ferently.)

An approach that again assumes that
probabilities mean something and can be
expressed numerically was apparently first
suggested by S. N. Bernstein∗ [3]. It depends
on ideas such as that P((E ∨ F) ∨G) must
equal P(E ∨ (F ∨G)). It is assumed further
that, when E and F are mutually exclu-
sive, then P(E ∨ F) is some function of P(E)
and P(F). The assumptions lead to functional
equations that must be satisfied by proba-
bilities, and these equations can be used to
justify the axioms. The idea was developed
independently by Schrödinger [32], Barnard
and Good [12, pp. 107–108] and especially
by R. T. Cox [7,8]. Cox’s assumptions were
weakened by Aczél [1]. The approach again
leads to a familiar set of axioms, and seems to
be the most convincing justification of these
axioms for numerical subjective probability
among those approaches that makes no ref-
erence to decisions or to gambles.

An advantage of bringing decisions or
gambles into the discussion is that a prior

intuitive concept of probability is then less
necessary in arriving at axioms for sub-
jective probabilities. We are then led to a
behavioral approach that many people find
more convincing than a more purely lin-
guistic approach. With some ingenuity the
behavioral approach can be developed to the
point where no explicit definition of either
probability or utility∗ is assumed, but only
preferences between acts. This approach was
adopted by F. P. Ramsey [27], B. de Finetti
[9], and L. J. Savage [31]. They assumed that
‘‘your’’ preferences between acts can be com-
pletely ordered, and that the preferences
satisfy desiderata for rationality that many
people find compelling once the complete
ordering is granted. These desiderata lead
to the conclusion that if you were perfectly
rational, you would behave as if you had a
set of probabilities (degrees of belief∗) satis-
fying familiar axioms, and a set of utilities,
and that you would always prefer the act of
maximum expected utility. In this approach
the concepts of probability and utility are not
separately defined, nor are they taken for
granted. In fact, a perfectly rational person
might not know the concepts of probability
and utility, but these concepts can be used
by some one else to describe the rational
person. We can imagine a doctor or war-
rior, for example, who always makes the best
decisions, although never having heard of
probabilities.

THE PURELY MATHEMATICAL APPROACH

Since most of the philosophical approaches
lead to somewhat similar formal theories, it
is natural for a mathematician to choose a
set of axioms based on earlier formalisms. By
separating the symbols E, F, etc., from their
concrete meanings, the mathematician can
avoid philosophical controversies and get on
with the job. This approach was adopted by
A. N. Kolmogorov∗ [22], following some ear-
lier writers. His axioms were expressed in
the language of sets and measure theory.
Borel–Lebesgue measure was introduced at
the turn of the century: see, e.g., Carathéo-
dory [4, p. 702]. Before 1890 set theory was
not regarded as mathematically respectable,
but by 1930 it was regarded as part of the
foundation of pure mathematics.
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Kolmogorov stated that he agreed with
von Mises’s frequency interpretation∗ of prob-
ability, but his axioms do not presuppose this
interpretation. To begin with, he assumes
that there is a set � of ‘‘elementary events’’
ω, but the concept of an elementary event
requires no definition as long as we are con-
cerned only with the mathematics, and each
ω can instead be called a ‘‘point’’ if this helps
the imagination. A class S of subsets of �
are called ‘‘events,’’ not yet to be interpreted
in the ordinary sense; and it is assumed that
if the subset S is an element of S , then
so is its complement �− S. Furthermore,
it is assumed that if S and T both belong
to �, then so does the union of S and T.
‘‘Events’’ satisfying these assumptions are
said to constitute an algebra of events∗ or
field of events. Note the similarity to the
axioms for propositions given earlier. If the
union of any countable infinity of events is
also in S , then S is unfortunately said to
be a σ -algebra. We shall soon see why the
condition of countability is assumed.

A symbol P(S) is introduced and is called
the (absolute) probability of S. It is assumed
that P(S) is a real number and lies in
the closed interval [0,1], also that � ∈ S

and that P(�) = 1. Finally, if a countable
class of sets S1, S2, S3, . . . are disjoint, then
P(S1 ∪ S2 ∪ · · ·) = P(S1)+ P(S2)+ · · ·, where
∪ denotes union. This last assumption is
called the axiom of complete additivity. A
weaker axiom asserts the property only for
two sets (which implies the property for any
finite number of sets) instead of for a count-
able infinity of sets. The axiom of complete
additivity is the main feature of Kolmogorov’s
system and makes his system highly reminis-
cent of Lebesgue measure.

The product axiom is introduced through
the back door by defining the conditional
probability P(S|T) by the quotient P(S ∩ T)/
P(T) when P(T) �= 0, where ∩ denotes the
intersection of sets.

The theory is applied by interpreting
‘‘events’’ as meaning physical events.

Kolmogorov’s axioms, perhaps better
called the measure-theoretic axioms, are the
most popular among mathematical statisti-
cians at present. He did not pretend that he
had no predecessors, and Rényi [29, p. 55]
cites Borel (1909), Lomnicki (1923), Lévy

(1925), Steinhaus (1923), and Jordan (1925).
As Rényi says, the measure-theoretic app-
roach leads to a rigorous mathematical the-
ory of stochastic processes.

The analogy with Lebesgue measure
makes it clear why the axiom of complete
additivity is stated only for a countable infin-
ity of sets: the Lebesgue measure of a unit
interval is unity, but this measure can hardly
be expressed as the sum of the noncountable
number of zero measures of the points in the
interval. A similar objection has been raised
by de Finetti [10, p. 124] against the axiom
of complete additivity itself. For consider an
infinite sequence in which it is known that
there is precisely one ‘‘success’’ but where this
success might be anywhere. In the von Mises
theory the probability of a success would
apparently be zero, and the axiom of com-
plete additivity appears then to lead to the
contradiction 1 =∑

0 = 0. Perhaps the res-
olution of this difficulty is to deny that the
foregoing sequences count as Kollektivs and
say that one models zero probability by a
Kollektiv in which the limiting proportional
frequency of ‘‘successes’’ is zero. Then there
are a noncountable number of such Kollektivs
and no paradox arises. (How you could rec-
ognize such Kollektivs in practice from finite
initial segments is another problem.)

As indicated earlier, from a strictly practi-
cal point of view it makes no sense to choose
a precise real number at random; in fact,
to do so would be like selecting the infinite
sequence of its decimal digits. When E and
F denote meaningful practical propositions
the measure-theoretic approach is not essen-
tial, but the approach compensates for this by
its valuable mathematical convenience. Then
again a price is paid because the mathematics
becomes advanced.

The approach in terms of propositions
appears more general than in terms of sets,
because there need be no concept of an ‘‘ele-
mentary proposition.’’ It would, however, be
possible, at least if the total number of propo-
sitions if finite, to define an elementary propo-
sition as a conjunction of propositions that is
(a) not strictly impossible while (b) if it can
be made any less probable by being conjoined
with another proposition, then it becomes
impossible. An elementary proposition would
be an interpretation of an elementary event
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ω. In this manner one might be able to
subsume the propositional approach under
the measure-theory umbrella, but if there
were only a finite number of propositions,
the axiom of complete additivity would be
unnecessary.

AXIOMS EXPRESSED IN TERMS OF
CONDITIONAL PROBABILITIES

Since probabilities in practice are always
conditional, absolute probabilities do not
capture anything concrete, so several writ-
ers have proposed sets of axioms stated
directly in terms of conditional probabilities;
e.g., Wrinch and Jeffreys [33], Keynes [21],
Reichenbach [28], Good [12], Popper [26], and
Rényi [29]. Some of these writers expressed
the axioms in terms of the probabilities of
propositions. We give here an example of such
a system of axioms based on Good [12,13]. In
these axioms, the symbol H does not nec-
essarily denote a hypothesis, but in many
applications it does.

A1 P(E|F) is a real number if F is not
self-contradictory. (A similar caveat
applies in the remaining axioms.)

A2 0 � P(E|F) � 1.
A3 If P(EF|H) = 0, then P(E ∨ F|H) =

P(E|H)+ P(F|H).
A4 If H logically implies E (i.e., if H ∨ E is

a tautology), then P(E|H) = 1 (but not
conversely).

A5 (Axiom of equivalence.) If neither HE
nor HF is self-contradictory and HE
implies F and HF implies E, then
P(E|H) = P(F|H).

A6 P(EF|H) = P(E|H)P(F|EH).
A7 P(H∗|H∗) �= 0, where H∗ denotes the

basic assumptions of logic and pure
mathematics.

A8 P(E∗|H∗) = 0 for some proposition E∗.
A9 (Complete additivity: optional.) If

P(EiEj|H) = 0(i < j; i, j = 12, . . .), then
P(E1 ∨ E2 ∨ · · · |H) =∑

P(Ei|H).
A10 (The principle of cogent reason: op-

tional: see Keynes [21, p. 56], Russell
[30, p. 397], Good [12, p. 37].) Let φ and
ψ be propositional functions. Then, for

all a and b for which the functions are
defined, we have

P(φ(a)|ψ(a)) = P(φ(b)|ψ(b)).

For example, the probability of get-
ting 7 hearts in a whist hand, given
only that the pack contains 13 hearts,
is the same if we change ‘‘hearts’’ to
‘‘diamonds.’’

In this theory, the main rule of applica-
tion is obtained by thinking of the axioms
as the workings of a black box∗ into which
judgments of probability inequalities can be
plugged and from which discernments of new
inequalities can be read. This black-box the-
ory is explained in more detail in the article
BELIEF, DEGREES OF. Following Keynes [21],
who, however, dealt with logical probabili-
ties, Good assumes that (subjective) proba-
bilities are only partially ordered and the use
of axioms for sharp probabilities is only a
device for expressing the theory in a highly
intelligible form. From this form of the theory
it is shown by Good [14] that one can derive
axioms for the upper∗ and lower∗ probabil-
ities themselves. For example, the product
axiom splits into six axioms, one of which is

P∗(EF|H) � P∗(E|H) · P∗(F|EH).

One can think of upper and lower probabili-
ties as exterior and interior measures, and in
a frequency theory they might correspond to
upper and lower limits.

If one wishes to talk meaningfully about
the probability of a mathematical theorem,
as is desirable for the formalizing of ‘‘plausi-
ble reasoning’’ (see, e.g., Pólya [25]), then
it is necessary as in Good [12, p. 49] to
replace the axiom of equivalence by some-
thing like A5′. If at time t you have seen that E
and F are equivalent, then Pt(E|H) = Pt(F|H)
and Pt(H|E) = Pt(H|F), where the subscript
t is self-explanatory. [Judgments are needed
to decide whether Pt(G|K) = Ps(G|K), where
t �= s.] This axiom allows subjective probabili-
ties to vary as time passes, without changing
ordinary empirical evidence. This is not, of
course, the same as the elementary fact that
P(E|GH) is not in general equal to P(E|H). By
allowing probabilities to have the dynamic
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feature of varying as a consequence of cal-
culations and thinking, such as the vari-
ables in FORTRAN, one can say meaning-
fully and quantitatively that a mathemat-
ical theorem conveys information, and one
can also solve some otherwise intractable
philosophical problems concerning scientific
induction. (For example, see Good [16,18,19],
where these varying probabilities are called
‘‘evolving’’ or ‘‘dynamic.’’)

The theory for partially ordered or compar-
ative probability, as just discussed, extends
immediately to a theory of rational behavior,
by introducing utilities. For details, see Good
[13].

A difficulty in theories of subjective prob-
ability, pointed out by Richard Jeffrey [20,
p. 154], is that a subjective probability can
change as a consequence of an experience
that ‘‘you’’ cannot express in words. As a
matter of fact, badly remembered experi-
ences cause the same difficulty. Although
you might have experiences that you cannot
personally express fully in words, you can
describe them as experiences that occurred
at a certain time, and the meaning of this
description can be regarded as a proposition
in an extended sense. By allowing the mean-
ing of ‘‘proposition’’ to be extended in this
manner, the difficulty seems to be overcome
without the need for any new axioms. The dif-
ficulty would not be overcome within a theory
of logical rather than subjective probability.

A distinctive feature of Jeffrey [20, p. 83]
is connected with utilities. Previous theories
had led to the conclusion that if preference
rankings∗ are sufficiently extensive, probabil-
ities can be uniquely determined but utilities
can be determined only up to linear transfor-
mations; that is, if a set of (expected) utilities
is given, then each element u of this set
can be replaced by au+ b, where a and b
are constants, and this substitution will have
no effects on any recommended decisions. In
Jeffrey’s theory, in which both probabilities
and utilities refer to propositions, the prob-
abilities and utilities can undergo a class of
transformations, the transformation of the
utility being of the form (au+ b)/(cu+ d). He
attributes this result to independent personal
communications from Kurt Gödel and Ethan
Bolker.

In summary, distinct purposes and dis-
tinct philosophies can be associated with
distinct systems of axioms of probability,
although these systems fortunately have
much in common.

NOTE

1. All these axioms and comments are
applicable mutatis mutandis to sets as
well as to propositions. For proposi-
tional functions, with ‘‘quantifiers’’ such
as ‘‘for all’’ and ‘‘there exists,’’ further
axioms are necessary, but we shall not
labor this point.
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