
161

A very common requirement for analytical applications is providing sorted
and ranked views of data. Users are always interested in Top-10 lists, and often
in seeing who or what was #1 last month or year. We’ll cover the basics of sort-
ing and ranking in this chapter, and also look at some ins and outs for more
advanced kinds of sorting and ranking calculations.

Functions used in this chapter are Order(), Hierarchize(), Top-
Count(), BottomCount(), TopSum(), BottomSum(), TopPercent(),
BottomPercent(), YTD(), CoalesceEmpty(), Rank(), ParallelPe-
riod(), Generate(), Ancestor(), Descendants(), .Properties(),
DrillDownLevelTop().

The Function Building Blocks

We took a brief look at the Order() function in Chapter 1, so we’ve seen one
building block already. The full set of functions provided for sorting and rank-
ing purposes are as follows:

Sorting and Ranking
in MDX

C H A P T E R

6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 161

FUNCTION PURPOSE

Order() Sort a set of tuples

Hierarchize() Sort a set of tuples into hierarchical order.

TopCount() Select the top N tuples of a set.

BottomCount() Select the bottom N tuples of a set.

TopSum() Select the top tuples of a set whose sum meets
a threshold.

BottomSum() Select the bottom N tuples of a set whose sum
meets a threshold.

TopPercent() Select the tuples of a set corresponding to the
top N% of all in set.

BottomPercent() Select the tuples of a set corresponding to the
bottom N% of all in set.

Rank() Find the ordinal position of a tuple in a set.

Note that all of these functions operate on sets of tuples, not just one-
dimensional sets of members. The following are additionally provided, and
are intended to help support GUI interaction, although any MDX-based appli-
cation may use them. (They are only mentioned briefly within the chapter.)

DrillDownLevelTop() Drills down on members of a specified level in
a set; adds only the top-N members.

DrillDownLevelBottom() Drills down on members of a specified level in
a set; adds only the bottom-N members.

DrillDownMemberTop() Drills down on specified members in a set;
adds only the top-N children.

DrillDownMemberBottom() Drills down on specified members in a set;
adds only the bottom-N children.

Classic Top-N Selections

The TopCount() function is what we would use to create a classic Top-10 list
(or Top-N). Its syntax is as follows:

TopCount (set [, numeric_expression])

162 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 162

The optional numeric_expression gives the number of tuples to take, and it
returns up to that many from the set, in order from largest to smallest. Here is
a query to return the top 5 product subcategories for the whole quarter in the
Northeast, and the results are shown in Figure 6-1:

SELECT

{ [Measures].[Dollar Sales] } on columns,

TopCount (

[Product].[Subcategory].Members,

5,

[Measures].[Dollar Sales]

) on rows

FROM [Sales]

WHERE ([Q2, 2005], [Northeast])

Note that the members are returned in order from largest Dollar Sales to
smallest.

Ranking queries often require a total across the top N, and also a total of all
others, so you can see how the top 10 performed as a group and compare to all
others not in the group. This is a perfect case to use a named set, so we only run
the ranking operation once and use its results multiple times. Let’s update the
last query to incorporate a set total and an all-other total. The fastest way to
calculate the all-other total is not to figure out the set of all-other members and
total across that, but rather to subtract the top-10 group total from the [All
Product] total, which was automatically aggregated. (Remember to leverage
precalculated aggregates wherever you can!)

WITH

SET [TopSelection] AS

‘TopCount (

[Product].Levels(2).Members,

5,

[Measures].[Dollar Sales]

)’

MEMBER [Product].[Total] AS

‘Sum ([TopSelection])’

MEMBER [Product].[All Others] AS

‘[Product].[All Product] - [Product].[Total]’

SELECT

{ [Measures].[Dollar Sales] } on columns,

{

[TopSelection],

[Product].[Total], [Product].[All Others]

} on rows

FROM WM2005.Sales

WHERE [Q2, 2004]

Sorting and Ranking in MDX 163

09_748080 ch06.qxp 1/31/06 7:16 PM Page 163

Figure 6-1 Top-5 query result.

The standard behavior for TopCount() is to always return as many tuples
as you specify, unless the input set had fewer to begin with. Suppose that the
set is larger than N, but you have fewer associated data cells that had any data
in them. The topmost tuples will be associated with data, while the remaining
ones will have no data associated with them but still be in the set. Users often
don’t want to see the Top-10 list containing 10 items if only 8 had data and the
other 2 are arbitrary blank choices. They’d rather see the list trimmed down to
just the eight that had data. So, unless you’re confident the data is dense
enough, you may want to filter the data set. The standard means to do this is
to rank on the results of a filter:

TopCount (Filter (the set, Not IsEmpty (criterion)), 10, criterion)

TopCount (Filter (the set, criterion <> 0)), 10, criterion)

In Analysis Services 2005 and 2000, you may get much better performance
with the following, so long as you don’t have real zero values that you also
want to remove:

TopCount (NonEmptyCrossJoin(the set, criterion-measure), 10, criterion)

TopCount (NonEmpty(the set, criterion-measure), 10, criterion)

Figure 6-2 Top-5 query result with group total and “All-Others” total.

Baseball
Coolers
Foot Massagers, Spas
CD Players
Upgrades
Total
All Others

29,930.05
28,994.72
27,085.48
24,589.87
23,941.65

134,541.77
1,637,019.83

Dollar Sales

Baseball
Coolers
Foot Massagers, Spas
CD Players
Upgrades

29,930.05
28,994.72
27,085.48
24,589.87
23,941.65

Dollar Sales

164 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 164

Because this works on tuples, you can use the following to take the top 100
brand-channel combinations in terms of year-to-date units sold:

TopCount (

CrossJoin(

[Product].[Brand].Members,

[Channel].[Channel ID].Members

),

100,

Sum (

YTD(),

[Measures].[Unit Sales]

)

)

Adding Ranking Numbers (Using the Rank() function)
Sometimes a report needs to return the actual rank number (1, 2, 3, and so on).
Furthermore, rank numbers may be necessary sometimes because the mem-
bers are being returned in another order. For example, salespeople may be
ranked both for this year and last year, or the top-10 suppliers returned in
terms of delivery times could have their cost rankings reported as a measure.
Note that Analysis Services 2005 has changed the behavior of a Microsoft
extension to Rank() from its behavior in the 2000 version. The change may be
more convenient, with perhaps no major difference in performance, and we
will highlight this. (Note also that Essbase 9 does not support the Rank()
function, although future releases may.)

Let’s report on the top 10 suppliers in terms of delivery time (shorter time is
better) and their cost rankings. The [Cost Ranking] will be a calculated
member in the query. MDX offers us the Rank() function, which returns the
index that a tuple has in a set. We can sort our suppliers by costs and use that
as the set within which to rank them. Rank counts start at one, so the first one
will be our #1-costing supplier. We don’t want to sort the suppliers over and
over again, so we’ll define a named set to hold the sorted suppliers. Notice that
we sort in descending order, so the highest-cost supplier is at position #1, and
we break the hierarchy so that the order is meaningful:

Sorting and Ranking in MDX 165

MISSING VALUES IN ESSBASE SORTING AND RANK SELECTIONS

By default, Essbase strips tuples with associated missing values from a set
during sorting and ranking operations. To include these, you would need to use
the CoalesceEmpty() function to put them in your preferred place. The
following would virtually guarantee them to be at the end:

TopCount (the set, CoalesceEmpty(criterion, -1.0e+38))

09_748080 ch06.qxp 1/31/06 7:16 PM Page 165

WITH

SET [Cost-Ordered Suppliers] AS

‘Order (

[Supplier].[Supplier].Members,

([Measures].[Total Cost]),

BDESC

)’

MEMBER [Measures].[Cost Ranking] AS

‘Rank (

[Supplier].CurrentMember,

[Cost-Ordered Suppliers]

)’, FORMAT_STRING = ‘#;#;-’

SELECT

{ [Measures].[Delivery Time], [Measures].[Cost Ranking] } on columns,

{ BottomCount (

[Supplier].[Supplier].Members,

10,

[Measures].[Delivery Time]

) } on rows

FROM [Purchasing]

WHERE [Time].[Year].[2004]

We chose BottomCount() instead of TopCount() because the business
problem wanted the top performers, which is opposite of those that have the
top times! BottomCount() is like the reverse of TopCount(). It returns the bot-
tom N tuples from the set, ordered from smallest to largest. The supplier with
the lowest time appears first in the list.

Note that the cost ranking returned from this query for each supplier is that
supplier’s rank among all suppliers in the database, not among the set of 10. If
we only wanted to take the cost ranking among the 10, then we would
rephrase the query like this:

WITH

SET [Delivery-Ordered Suppliers] AS

‘BottomCount (

[Supplier].[Supplier].Members,

10,

([Measures].[Delivery Time])

)’

MEMBER [Measures].[Cost Ranking] AS

‘Rank (

[Supplier].CurrentMember,

[Delivery-Ordered Suppliers] // our 10 suppliers

)’, FORMAT_STRING = ‘#;#;-’

SELECT

{ [Measures].[Total Cost], [Measures].[Cost Ranking] } on columns,

{ [Delivery-Ordered Suppliers] } on rows

FROM [Purchasing]

WHERE [Time].[Year].[2004]

166 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 166

Now, let’s tackle a more demanding yet very real-life query. Let’s say that
you need to generate a report which lists the top-10 salespeople according to
the year-to-date units sold, their ranking number according to those units,
their previous year’s rank, and the difference in units sold between year-to-
date and the previous year’s YTD.

You need to derive the year-to-date units sold to calculate this. You’re also
going to take the ranking of the 10 salespeople within an ordered set of all
salespeople, so you should name that ordered set. Let’s assume that the time
dimension is marked as being a time dimension and that the year level in it is
tagged as being a year-typed level, so that you can make use of the YTD()
function as well:

WITH

// define our year-to-date units count

MEMBER [Measures].[YTD Units Count] AS

‘Sum(YTD(), [Measures].[Units Sold])’

// define a set of ordered salespeople for repeated references

// break the hierarchy, and put the top-valued ones first in the list

SET [Last Year Ordered SalesPeople] AS

‘Order (

[SalesPerson].[Individual].Members,

([Measures].[YTD Units Count], ParallelPeriod ([Time].[Year],1)),

BDESC

)’

MEMBER [Measures].[Previous Year Rank] AS

‘Rank (

[SalesPerson].CurrentMember,

[Last Year Ordered SalesPeople]

)’, FORMAT_STRING = ‘#;#;-’

SET [This Year Top 10 SalesPeople] AS

‘TopCount (

[SalesPerson].[Individual].Members,

10,

[Measures].[YTD Units Count]

)’

MEMBER [Measures].[This Year Rank] AS

‘Rank (

[SalesPerson].CurrentMember,

[This Year Top 10 SalesPeople]

)’, FORMAT_STRING = ‘#;#;-’

MEMBER [Measures].[YTD Units Change] as

‘[YTD Units Count] -

([YTD Units Count], ParallelPeriod ([Time].[Year],1))’

SELECT

{ [Measures].[This Year Rank], [Measures].[YTD Units Count],

[Measures].[Previous Year Rank], [Measures].[YTD Units Change]

} on columns,

{ [This Year Top 10 SalesPeople] } on rows

FROM Sales

WHERE ([Time].[Aug. 2004])

Sorting and Ranking in MDX 167

09_748080 ch06.qxp 1/31/06 7:16 PM Page 167

Note that the WHERE clause defines August 2004 to be the date that the year-
to-date accumulates all the values to.

TI P Rank() returns 0 when the tuple isn’t found in the set. In reports like
these, users will probably want to see a blank or a symbol like - to indicate
“not found.” You can use a format string that replaces zero values with the
appropriate indicator in these calculated members. Each of the examples in this
section will display a dash (-) instead of 0. See Appendix D for format code
details.

Handling Tied Ranks: Analysis Services

What if there’s a tie for third place in the top 10? You want to see 3 for each of
the tuples in positions 3, 4, and 5, and then you want to see “6” for the tuple in
position 6. As an extension to the standard, Analysis Services supports an
optional third argument to Rank() that is the sort criteria expression used to
sort the set. The semantics for this function have changed between Analysis
Services 2000 and 2005. When the expression is provided, it is used to deter-
mine if ties exist and what the right rank should be. In Analysis Services 2000,
the expression was used when the tuple was found to search neighbors in the
set and determine fair ranking numbers. For example, if you had defined the
rank calculated members above as the following, you would get fair scoring
across the salespeople:

MEMBER [Measures].[Previous Year Rank] AS

‘Rank (

[Last Year Ordered SalesPeople],

[SalesPerson].CurrentMember,

([Measures].[YTD Units Count], ParallelPeriod ([Time].[Year],1))

)’

...

MEMBER [Measures].[This Year Rank] AS

‘Rank (

[This Year Top 10 SalesPeople],

[SalesPerson].CurrentMember,

[Measures].[YTD Units Count]

)’

With these semantics, regardless of whether the set is sorted in ascending or
descending order in terms of the expression, the rank numbers reflect tied
ordering from the first item. The set was not actually ordered in any way by
the Rank() function, so if it wasn’t sorted by the expression, then you may or
may not get the results you wanted.

168 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 168

In Analysis Services 2005, this extended version of the Rank() function
does sort the set, in ascending order. This means two things:

1. You don’t actually need to sort the set prior to calling Rank() on it.

2. Whether or not you pass it a sorted set, you need to take the negative of
the sort criteria to get the rank number in terms of descending order.

For example, the following rephrases the foregoing example to use the new
semantics (note the unary negation operator, -, being used):

MEMBER [Measures].[Previous Year Rank] AS

‘Rank (

[Last Year Ordered SalesPeople],

[SalesPerson].CurrentMember,

- ([Measures].[YTD Units Count], ParallelPeriod ([Time].[Year],1))

)’

...

MEMBER [Measures].[This Year Rank] AS

‘Rank (

[This Year Top 10 SalesPeople],

[SalesPerson].CurrentMember,

- [Measures].[YTD Units Count]

)’

Taking the Top-N Descendants or Other Related
Members across a Set
A single ranked report is as easy as our first example. However, you may need
to build a more general report, where you need to drill down on a set of mem-
bers that is selected by other logic in the query. We have two ways to do this:

■■ Employ the DrillDownLevelTop() function or one of its kin:
DrillDownLevelBottom(), DrillDownMemberTop(), Drill-
DownMemberBottom().

■■ Use Generate() to repeat the TopCount() function over the set.

DrillDownLevelTop() is tailor-made if you only need the top/bottom
children, and is more convenient if the set has more than one dimension in
it. It’s really well-suited to a graphical user interface (GUI) that provides a
top-N drill function, which may not have full knowledge of how the set was
constructed in the first place. Otherwise, the for-each capability of Gener-
ate() can be used here. (Note that Essbase 9 does not support the
DrillDownXXXTop/Bottom functions.) For example, let’s say that you want
the top three product subcategories for each product family. You can express
that with the following:

Sorting and Ranking in MDX 169

09_748080 ch06.qxp 1/31/06 7:16 PM Page 169

SELECT { [Measures].[Dollar Sales] } on axis(0),

Generate (

[Product].[Family].Members,

{[Product].CurrentMember,

TopCount (

Descendants (

[Product].CurrentMember,

[Product].[Subcategory]

),

3,

[Measures].[Dollar Sales]

)}

)

on axis(1)

FROM [Sales]

Note that Generate() returns the family-level member followed by the top
three results by creating a set using {}.

What if you want to add group totals to the Top-3 lists here? See Chapter 7
for the techniques.

To simply drill from our family members down to the top three children
each, the DrillDownLevelTop() function could hardly be easier:

SELECT { [Measures].[Dollar Sales] } on axis(0),

DrillDownLevelTop (

[Product].[Family].Members,

3,

, // intentionally blank

[Measures].[Dollar Sales]

)

on axis(1)

FROM [Sales]

The empty third argument to the function tells it to drill down on the mem-
bers at the lowest level in the set (which is all of them because they’re all at the
same depth in the hierarchy).

You can employ the Generate() function to take the top N of the top N as
well, for example, the top five products for each of the top five customers as
shown in the following query; the results are shown in Figure 6-3:

Generate (

TopCount (

[Customer].[Cust ID].Members,

5,

[Measures].[Dollar Sales]

170 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 170

),

CrossJoin (

{ Customer.CurrentMember },

TopCount (

[Product].[Subcategory].Members,

5,

[Measures].[Dollar Sales]

)

),

ALL

)

Figure 6-3 Result of Top-5 of Top-5 query.

Camp Kitchen
Tents
Razor Accessories
Construction
Action Figures
Games
Musical
Baseball
Blank Media
CD Players
Cordless Phones With Call
Headphones
Garage Door Openers
Cordless Phones
Weights
Pools, Pumps
Rainwear
Medical Supplies
Trampolines
Camp Furniture
Vitamins, Nutrition
DVD Players
Electrical Shop
GamePlace
Bags

667900

507450

465300

450850

479600

36,447.40
36,337.90
35,936.50
17,705.10
11,149.10
27,323.50
25,131.80
21,104.50
21,067.50
13,330.70
30,601.40
26,872.80
23,697.80
21,234.30
12,791.20
33,520.00
23,620.90
18,807.80
18,237.10
16,075.70
38,006.90
30,529.60
18,907.00

4,057.40
3,751.20

Dollar Sales

Sorting and Ranking in MDX 171

09_748080 ch06.qxp 1/31/06 7:16 PM Page 171

Getting the Fewest/Most Tuples to Reach
a Threshold

Suppose that you want to find the smallest set of products to focus your efforts
on in order to reach some target of sales. Or, you want to obtain the largest set
of customers for which the total cost to reach them does not exceed some
threshold. Another pair of functions, TopSum() and BottomSum(), rank and
select tuples based on a threshold value, and can be used to solve selection
problems like the ones described. The syntax of TopSum() and BottomSum() is

TopSum (set [, numeric_expression])

BottomSum (set [, numeric_expression])

The optional numeric_expression provides the target to which values of the set
are summed.

Using TopSum() is straightforward. For example, the following selects the
top products that will meet the expected quota of $5,000,000:

TopSum (

[Product].[Category].members,

5000000,

([Measures].[Dollar Sales], [Scenario].[Quota])

)

BottomSum() is almost as straightforward. Depending on your application,
you may or may not want to exceed the threshold. If you want to include the
last tuple that causes you to exceed your threshold, it is just as simple. If you
want to get the group of the smallest such that you do not exceed your budget,
you need to trim the last tuple from the returned set only if the sum was
greater than your target. Also, it’s almost guaranteed that you want to trim
tuples with related values that are missing. You would want to trim the tuples
from the input to BottomSum(), and you can only remove the extra tuple on
the results. So, you would compose MDX like the following for Analysis Ser-
vices:

Head (

BottomSum (

NonEmptyCrossJoin (

[Customer].[City].members,

{[Measures].[Ad Budget]},

1

)

172 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 172

5000000,

[Measures].[Ad Budget]

) AS [A],

Iif (

Sum ([A], [Measures].[Ad Budget]) > 5000000,

[A].Count - 1,

[A].Count

)

)

Note that the set alias [A] is used to refer to the results of BottomSum(), so
you don’t need to run BottomSum() more than once, and you don’t need to
create a named set outside of the Head().

NOTE Essbase only supports Count() syntax but does filter out empty
values, so the following would be the equivalent:

Head (

BottomSum (

[Customer].[City].members,

5000000,

[Measures].[Ad Budget]

) AS [A],

Iif (

Sum ([A], [Measures].[Ad Budget]) > 5000000,

Count ([A], INCLUDEEMPTY) - 1,

Count ([A], INCLUDEEMPTY)

)

)

BottomSum() (and BottomPercent(), described next) are the ranking
functions from which you will most likely want to strip empty and/or zero
values.

Sorting and Ranking in MDX 173

BOTTOMSUM() AND TOPSUM() USUALLY WANT POSITIVE NUMBERS

While you use BottomSum() to accumulate the set associated with the smallest
numbers, note that the function sums values tuples until the sum is greater
than the threshold. If your target is positive, summing negative numbers gets
you farther away from the goal, not nearer to it. If your target is negative, then
you’ll either start off above your goal, or you will never get any closer.

09_748080 ch06.qxp 1/31/06 7:16 PM Page 173

Retrieving the Top N Percent of Tuples

While many reports are interested in the top N tuples, the components of the
top N percent are also quite useful for understanding true business drivers.
(The top 10 customers may account for only 5 percent of the business, which is
important but doesn’t help you address the 80/20 picture.) The TopPer-
cent() and BottomPercent() functions let you directly request a propor-
tional threshold. The syntax for these functions is

TopPercent (set [, numeric_expression])

BottomPercent (set [, numeric_expression])

TopPercent() returns the largest values required to hit the percentage, in
descending order, while BottomPercent() returns the smallest values required
to hit the percentage, in ascending order.

For example, you can determine the top 20 percent of customers in terms of
dollar sales with the following:

TopPercent (

[Customer].[Customer ID].Members,

20,

[Measures].[Dollar Sales]

)

The result set may have one customer, or it may contain many customers.
This is the beginning of Pareto analysis. There are other parts of really pro-

viding insight into the 80/20 populations, and we will describe another part of
constructing 80/20 reports in Chapter 7.

Retrieving the Top N Percent of the Top N Percent
When you are attempting to understand business drivers, you may need to see
drivers of more than one dimension. For example, once you know the top 20
percent of customers in terms of sales, you may want to understand the top 20
percent of products for each of the customers. This is another case where you
see the phrase “for each” in the business statement of the problem and reach
for the Generate() function. Say that you want to see the top 20 percent of
customers, and for each of them you want to see the total across all products
and the top 30 percent of product categories for each customer. The query
looks very similar to the one we used for the top N of the top N earlier:

SELECT

{ [Measures].[Dollar Sales] } on axis(0),

Generate (

TopPercent (

174 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 174

[Customer].[Customer ID].members,

20,

[Measures].[Dollar Sales]

),

CrossJoin (

{ [Customer].CurrentMember },

{ [Product].[All Product],

TopPercent (

[Product].[Category].Members,

30,

[Measures].[Dollar Sales]

) }

)

)

on axis(1)

FROM [Sales]

One notable difference is that you see CrossJoin() used here. Remember
from Chapter 1 that you can’t make a set of tuples without using it. You want to
return (Customer, Product) combinations, where customer is a single member,
but product is a list. So, you CrossJoin() the current customer, which is one
of the top 20 percent, with the set of products, to produce the combinations.

A more sophisticated analysis would look at the products across these cus-
tomers, and we will continue the example in Chapter 7 to see how you can
extract more relevant business information from this selection.

Putting Members/Tuples in Dimension Order
(Ancestors First or Last)

There are a number of reasons that you might want to arrange a set of mem-
bers (or tuples) into the order defined by the dimension(s). They may have
been picked via a GUI and sequenced in the order in which they were picked.
They may have been selected by one of the ranking functions here. And you
may be looking to incorporate parents or ancestors, either to include database
aggregates, to include Analysis Services visual totals (discussed in Chapter 7),
or to enable more coherent drill-up/drill-down. You may simply be trying to
get higher-level aggregates to appear below their children, for example on a
financial statement. All of these cases are handled by using the Hierar-
chize() function.

Syntactically, Hierarchize() simply takes a set and returns the set put into
hierarchical order. The default and standard behavior is to put parents before
children as well. Both Analysis Services and Essbase take an additional option
flag (POST) that specifies that parents should follow children, as in a financial
statement.

Sorting and Ranking in MDX 175

09_748080 ch06.qxp 1/31/06 7:16 PM Page 175

The following simply takes the Terms dimension’s members and puts par-
ents after children:

Hierarchize (

[Terms].Members,

POST

)

Let’s say that you want to drill up from the top 25 product subcategories,
instead of drilling down on product families to the top three subcategories
each. Once again, you use Generate(), as shown in the following expression:

Hierarchize(

Generate (

TopCount (

[Product].[Subcategory].Members,

25,

[Measures].[Dollar Sales]

),

{ Ancestor(

[Product].CurrentMember,

[Product].[Family]

),

[Product].CurrentMember

}

)

)

Instead of concatenating a product with its descendants as in the earlier
example, you concatenate the ancestor of the product with the product. It
doesn’t matter whether the ancestor comes first or second, because Hierar-
chize() is going to sort things afterwards.

However, you may be asking, “Why don’t we get duplicates? Can’t two sub-
categories have the same family?” Yes, two subcategories can have the same
category, but by default, Generate() strips duplicate values from the set it
returns. So, there’s no harm in putting the ancestor in twice or more.

Reversing a Set

One technical need that comes up occasionally is reversing a set. There is no
direct general way to do this in standard MDX. Depending on the origin of the
set, you might be able to just sort them, or else you can use the Rank() func-
tion. You can’t use the Hierarchize(,POST) function, because that only
reverses the order of parents relative to children. Members are still within
dimension order overall. In Analysis Services, it’s perhaps better done using a
stored procedure or external function. You will look at the stored procedure

176 Chapter 6

09_748080 ch06.qxp 1/31/06 7:16 PM Page 176

method in Chapter 10. However, maybe you don’t have the ability to add a
stored procedure, and you need a pure-MDX solution. In Analysis Services, if
the set is in the dimension’s hierarchical ordering, you can reverse it by sorting
on the intrinsic ID property. For example, the following would sort a collection
of time members into reverse-hierarchical order (the extra TYPED argument
was introduced with AS2005):

Order (

[Time].[2006].Children,

[Time].CurrentMember.Properties (“ID”, TYPED),

BDESC

)

Otherwise, you sort on the rank:

Order (

[Time].[2006].Children,

Rank([Time].CurrentMember, [Time].[2006].Children),

BDESC

)

In Analysis Services 2005, you can make use of the .CurrentIndex function to
reverse a set without resorting to sorting. The following would accomplish the
task (notice that you need to use a named set or alias as the argument for .Cur-
rentIndex):

Generate (

[Time].[2006].Children AS [Alias_Children],

[Alias_Children].Item (

[Alias_Children].Count - [Alias_Children].CurrentIndex - 1

),

ALL

)

Summary

The sorting and ranking functions directly implement a large number of user
requests. Somewhat more advanced requests are readily satisfied by combin-
ing these functions with other functions like Generate(), CrossJoin(),
and others that are part of the core “moving parts” of MDX. Hopefully, this
chapter has both introduced you to the ranking and sorting functions and
deepened your capacity for translating user requirements into MDX composi-
tions. The next chapter will start the real focus on patterns of MDX and how to
combine component expressions into elegant assemblies of high value to the
users.

Sorting and Ranking in MDX 177

09_748080 ch06.qxp 1/31/06 7:16 PM Page 177

09_748080 ch06.qxp 1/31/06 7:16 PM Page 178

