
Chapter 1: The AutoCAD
Programming Interfaces

In This Chapter
� Finding out what programming AutoCAD can do for you

� Covering the available programming interfaces

� Mastering the ins and outs of the programming interfaces

� Figuring out which programming interface is best for you

Have you ever wanted to create a command alias that represented a
specific option of a command? Or maybe you have established CAD

standards, but some of the settings can’t be set up through a drawing tem-
plate alone. So you want to make sure the settings are finished before any
work on a design begins? If so, you have come to the right place. AutoCAD is
more than just a drafting tool. Although customizing AutoCAD can help
increase productivity by itself, the programming interfaces allow you to tap
into much more powerful resources that are contained in the depths of
AutoCAD. (Okay, saying the resources are in the depths of AutoCAD might
be a bit of an exaggeration since they are used every time you run a com-
mand in the AutoCAD interface.)

This minibook is aimed at AutoCAD users only. Sorry, AutoCAD LT users —
the programming interfaces are limited to AutoCAD.

The supported application programming interfaces (APIs) for AutoCAD are
available after you install AutoCAD or after you’ve downloaded them from
the Autodesk Web site. APIs are used to communicate with the AutoCAD
application, any open drawing files, and objects in a drawing. With some of
the APIs, you can create your own custom commands that users can exe-
cute from the command line. The power behind some of these programming
interfaces is that you don’t need to be a programmer to take advantage of
them.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 653

CO
PYRIG

HTED
 M

ATERIA
L

Discovering What You Can Do by Programming AutoCAD654

Discovering What You Can Do
by Programming AutoCAD

You might be thinking to yourself, “I’m not a programmer, so why do I want
to know about programming interfaces?” The best reason to discover the
programming interfaces is to simplify repetitive tasks in your workflow. If
you can create very basic custom programs that save 15 minutes a day, the
effort is worth your time — especially if you can share these programs with
your coworkers.

Over time, your 15-minute savings can grow into much more as you become
more efficient with the programming interface. Custom programs don’t need
to be complex to increase efficiency. They can be simple, like creating new
commands that can be used to perform a Zoom Previous from the command
line, or complicated, taking on issues such as CAD standards.

Managing CAD standards can be a nightmare, but the process can be
improved by using programming interfaces. Tasks such as making sure
dimensions are placed on the correct layer can be accomplished if you
understand the programming interfaces and how AutoCAD works. You don’t
need to understand how the information is actually written to the file, but
you do need to know how it is logically organized. By logically organized, we
mean you should understand that objects such as layers aren’t just floating
around inside a drawing; instead, they are stored in a table that contains all
the layers in a drawing.

The advantages of using APIs
The advantages of APIs differ based on whether you are already using third-
party applications or add-ons for AutoCAD. Even if you are, you may still dis-
cover advantages to in-house programming. Here are some of the benefits
for creating custom programs for AutoCAD:

✦ Accuracy: By creating a custom program that runs consistently every
time, you can increase the accuracy of your drawings. If a process has a
large number of steps in it, some steps might be overlooked. This can
cause errors to creep into your design.

✦ Appearance: Programming can aid in making drawings look uniform by
allowing you to set up drawing options that can’t be defined in a drawing
template or by allowing you to automate the updating of objects in a
drawing.

✦ Efficiency: Repetitive tasks can be speeded up, enabling drafters to
spend more time on the design process.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 654

Book X
Chapter 1

The AutoCAD
Program

m
ing

Interfaces
Getting to Know the Available Programming Interfaces 655

✦ Training efficiency: Training a new employee is always a challenge. If a
complex or large set of processes must be followed, new employees take
even longer to be productive. Wrapping custom programs around
processes can help get them up and productive in a shorter period of
time.

✦ The downstream effect: Being able to get things done faster and more
efficiently during the drafting process is great, but don’t forget about
those people who use the data after the design has been completed.
Custom programming can be used to extract information out of a draw-
ing or set of drawings that can be useful downstream in manufacturing,
sales and marketing, and many other areas.

The other side of the story
There are always two sides to every story. We’ve covered some of the bene-
fits of using the programming interfaces in AutoCAD, but there has to be a
downside, right? There is, and here are some of the disadvantages to pro-
gramming in AutoCAD:

✦ Cost: Programming in AutoCAD costs money — how much depends on
which programming interface you go with. These costs might be in the
form of software, time, or consulting fees. In the case of a couple of the
programming interfaces, no additional software packages need to be pur-
chased, but, regardless, time is always a cost in these types of projects.

✦ Maintenance: AutoCAD changes from release to release. When you
upgrade to a new version, you often have to spend time updating your
custom programs. Some feature your custom program was using may
get broken, or you may want to take advantage of a new feature that is
introduced to improve a process even further.

✦ Learning curve: Even though a number of the programming interfaces
are easy for non-programmers to pick up and understand, they still
require you to put in some time if you want to become proficient. So
before you promise your boss that you can deliver improved productiv-
ity, make sure you are comfortable with the programming language you
chose first.

Getting to Know the Available
Programming Interfaces

As AutoCAD has evolved over the years, so have the different programming
interfaces that are available. When AutoCAD was first introduced to the
world, no programming interfaces were built into the application. Only about
three years after the product was released was the first programming inter-
face added to the software. This programming interface was AutoLISP, which

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 655

Getting to Know the Available Programming Interfaces656

was based on the LISP programming language. The introduction of AutoLISP
allowed users of AutoCAD to tailor the program for how they wanted to work
to improve productivity.

After AutoLISP came the introduction of ADS (AutoCAD Development
System), which introduced C-style coding as a programming option. ADS had
a rather short life span because the C language was already being overshad-
owed by the next generation of the C programming language, C++. ADS,
which was only around for about three years, evolved into ObjectARX, which
is still the premier programming option in AutoCAD 2007. If you look at the
install directory of AutoCAD, you can see that this is the tool of choice by
Autodesk itself to extend the core functionality of AutoCAD.

In 1997, Autodesk extended the programming interfaces it was offering to
include ActiveX, which allowed VB programmers to extend the core func-
tionality of AutoCAD. ActiveX is not just for VB programmers; many other
mainstream languages such as Java and C++ support ActiveX so they can
interface with AutoCAD. Autodesk didn’t stop with ActiveX support. It kept
up with the ever-changing landscape of technology and introduced a pro-
gramming interface for .NET that could be used with the new .NET languages
by Microsoft and other development language vendors.

AutoLISP
AutoLISP is a programming language based on the LISP language. LISP stands
for list processing. It was first introduced back in 1958 and was popular
during the ’70s and ’80s. Programmers often joke that the LISP acronym
really stands for Lost In Stupid Parentheses. Take one look at the code, and
you might agree. LISP uses start and end parentheses for a statement, as the
following example shows:

(command “line” “0,0” “5,5” “”)

In the example, you can see the use of the parentheses to start and end the
expression. The example uses the LINE command to draw a line starting at
the coordinate 0,0 and ending at 5,5. As you can see, it’s not much different
from what you are use to typing in at the command line. Although not a very
powerful statement, it is rather easy to understand.

AutoLISP can be used to organize multiple statements into a custom com-
mand that a user can enter at the command line or use in a command macro
for a toolbar button. To create a new command or a function that can be
used to extend the built-in AutoLISP functions, use the function DEFUN —
DEfine FUNction.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 656

Book X
Chapter 1

The AutoCAD
Program

m
ing

Interfaces
Getting to Know the Available Programming Interfaces 657

Although AutoLISP is no longer used as the primary development tool by
Autodesk as it once was, it is still the primary tool that many users work
with because it is easy to learn after you get past all the parentheses. As a
whole, the programming interface is by far one of the most cost-effective and
forgiving of the four different programming interfaces we discuss in this
book.

The last major update to the AutoLISP programming language was back in
1998 when Autodesk purchased a package called Vital LISP. Vital LISP was
then renamed to Visual LISP and sold as an add-on originally for AutoCAD 14.
Visual LISP was then included as part of the AutoCAD 2000 release in 1999.
The Visual LISP environment extended the functionality of the AutoLISP lan-
guage by adding hundreds of functions and allowing AutoLISP to access the
AutoCAD Object Model similar to VBA and ActiveX.

The AutoCAD Object Model is the documented structure of the relationships
between AutoCAD and other objects like lines and blocks that are contained
in an AutoCAD Drawing file. The object model is used as a road map to
locate and access the various different objects in the ActiveX programming
interface for AutoCAD.

ActiveX automation
ActiveX automation is also known as Component Object Model (COM)
automation. COM automation is a form of component-based software archi-
tecture that allows an application to expose its internal functionality in the
form of objects. COM allows applications to cross-communicate with each
other to exchange information or interact. Many of the modern programming
languages like VB/VBA, C++, and Java are capable of using COM automation.

So why is ActiveX automation important in AutoCAD? ActiveX automation
allows you to use a rich and modern programming language like VB or VBA.
When you can use a programming language like VB or VBA when communi-
cating with AutoCAD, you can exchange information with data sources like
an MS Access database or even an MS Excel spreadsheet. This can allow you
to improve downstream processes by providing CAD information in different
systems to non-CAD users who might use the information for billing or
manufacturing.

One of the advantages to using ActiveX automation is that you are not lim-
ited to just building applications in AutoCAD. If you want to develop a stand-
alone application with VB and communicate with AutoCAD, you can. If you
create a VBA project in MS Word and want to communicate with AutoCAD,
you can do that too. In the remainder of this minibook, we discuss ActiveX
and VBA as one and the same because VBA uses ActiveX automation.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 657

Getting to Know the Available Programming Interfaces658

VBA
VBA — Visual Basic for Applications — has been around for some time and
is an extension of the very popular programming language Visual Basic (VB).
VBA is defined as an object-oriented programming (OOP) language. The con-
cept behind OOP is that a computer program is developed using a collection
of individual units, or objects, as opposed to a listing of instructions. Each
one of the objects has the ability to receive messages, process data, and
transmit messages to other objects.

VBA is part of the programming and development tools that are developed
by Microsoft. Its roots date back to MS-DOS and programming languages like
QBasic and MS-Basic. VB has been around longer than VBA and, unlike VBA,
VB can be used to build standalone applications that are not dependent on a
host application.

A host application is a program that allows the VBA environment to run inside
it; an example of this is AutoCAD. Many popular Windows-based programs
have VBA technology built into them. Some of the other applications are
Autodesk Inventor, AutoCAD-based vertical products such as Architectural
Desktop (ADT), and Microsoft Word and Excel.

VBA in AutoCAD has been a welcomed feature from both the development
and non-development communities. This programming option allows for the
integration of business applications directly into the AutoCAD environment
and allows companies to tap into an existing development community that
knows VB/VBA already.

ObjectARX and ObjectDBX
ObjectARX and ObjectDBX are not programming languages like VBA, but
instead are programming interfaces that allow developers to create and
extend AutoCAD using the object-oriented C++ programming language.
ObjectARX is a collection of library and include files that provides you with
the versatility of tools that Autodesk uses to extend the core functionality of
AutoCAD and other AutoCAD-based products such as Autodesk
Architectural Desktop (ADT) and AutoCAD Mechanical Desktop (MDT).

The vertical products are a collection of ObjectARX programs that are
focused on a specific target audience and the type of work they perform.
ObjectDBX files are used to define custom drawing objects like the ones
found in ADT, instead of user interface elements and commands like in
ObjectARX files. If your programs are calculation-intensive, you might want
to take a look at using ObjectARX for these types of tasks.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 658

Book X
Chapter 1

The AutoCAD
Program

m
ing

Interfaces
Comparing Strengths and Weaknesses of the Programming Interfaces 659

ObjectARX allows for smaller or more compact files, faster execution, and
tighter integration into AutoCAD and Windows. Unlike the other program-
ming options, with ObjectARX, you need to purchase additional develop-
ment tools and download the software development kit from the Autodesk
Web site. When purchasing the development tools, you are limited to the
version that was used to build the AutoCAD release for which you are creat-
ing ObjectARX and ObjectDBX programs.

.NET

.NET is Microsoft’s alternative to portable programming languages like Java
and J2EE. .NET represents Microsoft’s latest generation of the programming
languages that offer flexibility for both application development and usabil-
ity. To make .NET appealing to the development community, the develop-
ment environment Visual Studio .NET incorporates more than 20 different
languages, such as RPG, COBOL, and C#.

The .NET programming interface is very similar to the basic concept of
ActiveX automation, but with much greater flexibility through the use of
newer programming languages and technologies. Like ObjectARX, a separate
development environment must be obtained; it isn’t supplied with AutoCAD.
However, like ActiveX automation, the .NET API is available upon installing
AutoCAD. .NET help and samples are available as part of the ObjectARX
development kit and must be downloaded from the Autodesk Web site.

Comparing Strengths and Weaknesses
of the Programming Interfaces

Now that you have an idea of the programming interfaces that are available
to use with AutoCAD, you’ll want to see how they stack up. Here, we break
down some key areas to help you understand how the different program-
ming interfaces measure up against each other:

✦ Learning curve: If you are not experienced with programming and don’t
have much time to dedicate to mastering a programming language,
AutoLISP is the best option for you. It is very powerful but doesn’t
require you to learn a lot of different concepts to get a basic program
together. If you do have a background in programming, you may want to
look at using VBA in AutoCAD because it is based on a universal pro-
gramming language.

If you have a considerable amount of programming experience, you
might consider using ObjectARX or .NET, which take longer to learn but
are very powerful. (.NET has far fewer pain points compared to
ObjectARX.)

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 659

Comparing Strengths and Weaknesses of the Programming Interfaces660

✦ Execution speed: Both AutoLISP and VBA use interpreters to talk to
AutoCAD, which can cause a lag in execution time and overall execution
speed. ObjectARX is by far the fastest and most efficient of all the differ-
ent programming interfaces. .NET, although flexible, uses Just In Time
(JIT) compiling, which can cause an initial performance lag the first time
the program is run.

✦ Cost: AutoLISP and VBA are both built in to AutoCAD, so no additional
development tools must be purchased. ObjectARX and .NET require the
purchasing of additional tools that can range in price from hundreds to
thousands of dollars. This might affect which programming interface
you use first.

✦ User input: All of the different programming interfaces allow you to get
information from a user, but how a user’s input is collected varies
slightly. AutoLISP has better command line support over VBA because
AutoLISP allows you to create custom commands and VBA doesn’t. If
you are looking to offer dialog boxes in your programs, you might want
to look at VBA over AutoLISP.

AutoLISP uses a language called DCL (Dialog Control Language) that
defines how a dialog box should look. This is different from the other
programming languages, which use a graphical editor to design the look
of dialog boxes.

ObjectARX has the best support in this area; but it also has a number of
additional things you have to contend with, such as Microsoft
Foundation Classes (MFC), which are tools that help you create robust
dialog boxes and user interfaces. .NET is very flexible in gathering user
input, but, unlike ObjectARX, it lacks some control over UI elements that
are specific to AutoCAD.

✦ Maintenance: AutoLISP and VBA are the easiest to maintain as they typi-
cally work on future releases with few changes required. ObjectARX pro-
grams typically need to be rebuilt about every third release of AutoCAD
due to binary compatibility issues with the library files. .NET is a young
programming interface for AutoCAD. Until it matures, you can almost
guarantee that any custom programs will need to be rebuilt to some
degree between releases. In the long term, we hope that .NET API follows
suit with AutoLISP and VBA to reduce the amount of maintenance
between releases.

✦ Longevity: AutoLISP has been around the longest and is the easiest of
the four programming interfaces to learn. VBA is newer to AutoCAD than
AutoLISP, but it is nearing the end of its life cycle according to Microsoft.
(This is due to the fact that ActiveX is being replaced by .NET, which is
much newer and more flexible.) Keep in mind that just because VBA is
getting close to the end of its life cycle doesn’t mean that support will
suddenly stop; it will just be slowed down.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 660

Book X
Chapter 1

The AutoCAD
Program

m
ing

Interfaces
Deciding Which Programming Interface Is Best for You 661

ObjectARX and .NET are probably the APIs most likely to be around for a
while because they are the ones used by Autodesk. ObjectARX seems to
have a very bright future, but no one ever knows for sure where technol-
ogy will go.

Deciding Which Programming Interface
Is Best for You

So which of the four programming interfaces is best for you? The two that
most users find easiest to use and learn are AutoLISP and VBA, which is why
we cover them in this book. But just because AutoLISP and VBA are covered
in this book doesn’t necessarily make them the right choices for you. To
determine which option is best for you, read the following descriptions of
each programming interface and make a decision based on which descrip-
tion most closely matches your scenario.

AutoLISP is a good fit if you know AutoCAD and the commands that are avail-
able to you pretty well, or if you don’t have much or any experience in pro-
gramming. Most first-time AutoLISP programmers feel that it is a much more
natural transition into programming because they can use the commands
that they are already familiar with to automate tasks. It also allows for plenty
of growth because it can communicate with other applications using the
Visual LISP functions via ActiveX automation. AutoLISP is the easiest for
beginners to learn and work with.

Typically, VBA is a good fit if you don’t really know much about AutoCAD but
have a background in VBA or VB programming. VBA enables companies with
IS departments to get involved with extending AutoCAD because a large
number of programmers know VB. VBA is a good starting point for begin-
ners, but because you are not using AutoCAD commands, the learning curve
is higher. VBA is a programming interface that both beginners and intermedi-
ate users can work with.

.NET is the middle-of-the-road option between VBA and ObjectARX. Although
it requires you to understand one of the newer programming languages, such
as VB.NET or C#, it isn’t as complex as mastering ObjectARX or C++. Although
the .NET programming interface does have some limitations in its current
implementation, it is improving with each new release. .NET provides some of
the simplicity of application development that comes with VBA but has the
power of C++ with a smaller learning curve. Although .NET is different from
VBA, the syntaxes look and feel very similar to each other. One of the impor-
tant things that the two share is the capability to use ActiveX automation.
You could start with VBA and, over time, transition to .NET.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 661

Deciding Which Programming Interface Is Best for You662

ObjectARX should typically be left up to those who have experience with
C++ because a lot of things can go wrong in a hurry if you don’t understand
the C++ programming language. In C++, you are responsible for managing
your own memory, so if you make a mistake, you can develop programs that
bring AutoCAD to its knees quickly. If you can tame the C++ programming
language beast, you will have just about everything you can imagine at your
fingertips for creating custom programs in AutoCAD.

52_752606 bk10ch01.qxp 6/28/06 8:57 PM Page 662

