


CONTENTS

1.1 Faults and Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Hard Errors and Soft Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Random Errors, Clustered Errors, and Their Mixed-Type Errors . . . . . . 7

1.2.3 Symmetric Errors, Asymmetric Errors, and Unidirectional Errors . . . . . 9

1.2.4 Unequal Error Probability Model and Unequal Error Protection Model . 10

1.3 Error Recovery Techniques for Dependable Systems . . . . . . . . . . . . . . . . . . 10

1.3.1 Error Detection / Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Error Recovery / Error Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Code Design Process for Dependable Systems . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Code Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Code Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



1
Introduction

Before designing a dependable system, we need to have enough knowledge of the system’s

faults, errors, and failures of the dependable techniques including coding techniques, and of

the design process for practical codes. This chapter provides the background on code design

for dependable systems.

1.1 FAULTS AND FAILURES

First, we need to make clear the difference between three frequently encountered technical

terms in designing dependable systems—namely faults, errors, and failures. These terms

are fully defined in [LAPR92, AVIZ04]. Faults are primarily identified as the generic

sources of abnormalities that alter the operation of circuits, devices, modules, systems, and /

or software products. Failure can arise from any type of possible faults. Faults are often

called defects when they occur in hardware and bugs when in software.

1.1.1 Faults

As causes of failure, faults are sometimes predictable but difficult to identify. Faults can occur

during any stage in a system’s or product’s life cycle: during specification, design, production,

or operation. Faults are characterized by their origin and their nature [LAPR92, GEFF02].

Origin of Faults Timing is a factor because faults can provoke failure in the operation phase

at any one of a system’s previous life phases: specification, design, production, and operation.

During the specification phase, for example, an incomplete definition of services may

lead to different interpretations by the client, the designer, and the user. Eventually, in the
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operation phase, the failure becomes evident when the services provided differ from the

user’s expectations.

During the design and the production phases, for example, a designer’s lack of

sufficient knowledge of architectural levels, structural levels, and the like, may result in a

type of physical defect that induces, for example, short or open circuits.

During the operation phase, for example, an elevation of ambient temperature can cause

electronic devices and products to malfunction.

Nature of Faults During the specification and the design phases, faults that occur are called

human-made faults. During the production and the operation phases, these may occur physical

faults, hardware faults, or solid faults. Each type is due to some physical abnormality in the

component arising from aging or defective materials. Faults are of two types in their duration:

1. Permanent. These faults arise, for example, from a power supply breakdown,

defective open or short circuits, bridging or open lines, electro-migration, and so

forth. The defects in the input / output of the logical circuits or lines are called

stuck-at ‘1’ faults or stuck-at ‘0’ faults.

2. Temporal. These faults can be transient or intermittent. Transient faults occur

randomly and externally because of external noise, namely environmental problems

of external electromagnetic waves but also external particles such as a-particles and

neutrons. Intermittent faults occur randomly but internally because of unstable or

marginally stable hardware, varying hardware or software state as a function of load

or activity, or signal coupling (i.e., crosstalk) between adjacent signal lines. Some

intermittent faults may be due to glitches [LO05], which are unpredictable spike

noise pulses occurring and propagated especially in large exclusive-OR (XOR) tree

networks (see Chapter 8). Parallel decoding circuits of error control codes with

large code lengths require large exclusive-OR tree networks, so glitches can become

serious problems. This topic will be covered in more detail in Section 8.3.

Transient faults and Intermittent faults are the major source of errors in modern-day

digital systems. Some reports show that more than 60% of all failures in computer systems

are caused by transient or intermittent faults. For example, in DRAM (Dynamic Random

Access Memory) chips, transient errors result mainly from a-particles emitted by the decay

of radioactive particles in the semiconductor materials [MAY79, NOOR80, SAIH82]. One

identified source of a-particles is the lead solder balls used to attach the chip to the substrate.

As they pass through the chip, a-particles create sufficient electron-hole pairs to add

charge to the DRAM capacitor cells. These particles have low energy level, and thus have

very low probability of causing more than one memory cell to flip when the memory cells

are not packed in extreme density. In today’s ultra–high-density RAMs, not only DRAMs

but also SRAMs (Static Random Access Memories), it has been recognized that multiple

cosmic-ray-induced transient errors are a serious problem [OSAD03, 04].

Temporal errors have also been observed in microprocessor chips. The trend toward

smaller geometries by ever-shrinking semiconductor designs results in lower operating signal

voltages and higher speed operation, and therefore brings additional transient or intermittent

errors into play [KARN04]. In today’s ubiquitous digital device or system environment, PDAs

and personal computers equipped with these high-speed microprocessor chips and high-

density RAM chips are further prone to be damaged by even worse circumstances when

operated in airplanes at high altitude or near the high-voltage electric power lines.
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The important point is that the faults due to temporary environmental problems do not

need repair because the hardware is physically undamaged.

Cosmic rays, however, can give rise to significant transient errors, called soft errors

[KARN04, MAKI00, HAZU00, ZIEG98, MASS96, CALV94]. Figure 1.1 shows the

cosmic ray and its influence at the earth surface level. In the cosmic environment heavy

particles with very high energy from solar winds can penetrate the semiconductor chips in

satellite digital systems and cause more than double-bit errors [MUEL99]. Sometimes

they can cause physical faults such as latchup in CMOS circuits.

A detailed report of field testing for soft errors due to cosmic rays was presented in 1996

[ZIEG96a, 96b, 96c, OGOR96, SRIN96]. In the report cosmic rays are defined as particles

in solar wind originating in the sun or as galactic particles that enter the solar system

striking atmospheric atoms and creating a shower of secondary particles. Most such

particles produced by the shower either decay spontaneously or lose energy gradually, and

eventually lose all energy in the cascade. Some of these particles may strike the earth.

Therefore the cosmic rays at sea level consist mostly of neutrons, protons, pions, muons,

electrons, and photons. About 95% of these particles are neutrons with no charge but with

the high energy (more than 10 MeV) that causes significant soft errors or latchups in

electronic circuits. So cosmic rays can create multiple errors. Altitude causes the neutron

flux to increase exponentially, and hence the fail rate of electronic circuits at airplane

altitude is about one hundred times worse than at terrestrial level. Concrete shielding with

several feet of thickness can significantly attenuate the flux of these high-energy particles.

Figure 1:2 shows how neutrons and other particles, including a-particles, generated by

the collision of nuclei in the atmosphere, can strike silicon chips and produce sufficient

electron-hole pairs in the chips to impair their functioning.
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Figure 1.1 Cosmic rays.
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1.1.2 Failures

A failure is defined as nonperformance that occurs when a delivered service no longer

complies with its specifications [LAPR92], and a failure is also defined as nonperformance

when the system or component is unable to perform its intended function for a specified

time under specified environmental conditions [LEVE95].

Some types of failure are defined with respect to specific conditions. For example, a

value failure means that the value of the delivered service does not comply with the

specification and a timing failure represents a response in incorrect timing, either faster or

slower than the specified time. A temporary failure means an erroneous behavior at a

certain moment lasting only a short time. A crash failure, or catastrophic failure, is the one

that stops the mission because the system is completely blocked.

1.2 ERROR MODELS

An error is a manifestation of an unexpected fault within a system that is liable to lead to

system failure. The transformation of a fault to an error is called fault activation. The

mechanism that creates errors in the system and finally provokes a failure is called error

propagation. Before provoking a failure, errors can be masked or corrected by some error

control mechanisms such as error correcting codes, retries, or triple modular redundancy

(TMR) and thus recovered without inducing a system failure.

A fault remains in passive mode until an error first appears at some structure of the

system. This occurrence is called an initial activation and the error is called a primitive

error. In this case latency is defined as the mean time between the fault’s occurrence and its

initial activation as an error. Figure 1:3 presents the causal relationship between fault,

error, and failure. Various types of errors can occur, and these different types are covered

below.
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Figure 1.2 Electron holes in a silicon chip caused by particles.
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1.2.1 Hard Errors and Soft Errors

Hard errors are caused by permanent faults; they therefore affect the system functions for

a long period of time. This type of error is typically provoked by faults that appear as open

or short anywhere on the chips, modules, cards, or boards. Hard errors are also called

permanent errors.

Soft errors, on the other hand, are caused by temporal faults, especially those resulting

from external causes. Soft errors have a limited duration, meaning they interrupt system

functions for a very short time period. The most likely sources of soft errors are radioactive

particles and external noise. Alpha particles and cosmic particles [ZIEG96a, ZIEG96b,

ZIEG96c, OGOR96, SRIN96] are the major contributors mentioned previously. Therefore

soft errors are also called transient errors. The intermittent errors are provoked by

intermittent faults.

1.2.2 Random Errors, Clustered Errors, and Their Mixed-Type Errors

Multiple errors that occur randomly in time and / or space are called random errors.

Error can occur in every bit position of a word with almost equal probability. The

random type of error is unpredictable and is typically caused by white noise or

external particles.

Errors may cluster non-uniformly in a word, and these multiple errors may gather in

particular and unpredictable positions in the word. Clustered errors include burst errors

and byte errors. Burst errors occur typically in disks or tape memory. Byte errors are

typically found in semiconductor memory. The difference is in the data-recording

medium. In disk memory, the data are recorded on a continuous surface. In semiconductor

memory, the data are stored in RAM chips, and a data fragment, called a byte, is read or

stored in each chip. In disk or tape memory, defects or dust particles on the recording

surface can cause burst errors to occur anywhere in the continuous recording medium.

Failure
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(Masked/Recovered)
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Error

(Activated) (Propagated)
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...

System/Module/Product

(Non-activated)

Figure 1.3 Fault, error, and failure.
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Clustered errors may occur in the two-dimensional matrix symbols as well as in the tape or

disk memory of a continuous two-dimensional recording medium. In semiconductor

memory, on the other hand, byte errors may occur in a fragment of readout data, namely in

a single byte, corresponding to the faulty chip. This is because each chip is physically

separated and independent, and therefore the presence of a fault in a chip does not extend

to the adjacent chips. Figure 1.4 illustrates the different cases of random errors, byte errors,

and burst errors.

Another error model consists of mixed clustered and random errors in the operational

phase. The clustered errors mentioned above are sometimes caused by physical faults due
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Figure 1.4 Models of random errors, byte errors, and burst errors.
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to aging problems. However, systems and devices are more prone to damage from

transient faults than from physical faults. Transient faults are source of random errors.

Therefore, when a physical fault occurs during the operational phase, both types of

error—clustered and random—must be taken into account. For example, in semiconductor

memories with byte-organized RAM chips, the major types of errors are transient errors,

(i.e., random bit errors) caused by a-particles or external noises. After some time in

operation, byte errors will occur due to the aging of RAM chips. Therefore both bit errors

and byte errors, meaning both random errors and permanent errors, may occur separately

or simultaneously. A similar situation holds for transmission systems, where both random

bit errors and burst errors can occur. Chapter 6 deals with the codes which control the

mixed type of single-byte errors and random bit errors.

1.2.3 Symmetric Errors, Asymmetric Errors, and Unidirectional Errors

In binary systems the probability of errors that force 0 to 1, called 0-errors, is, in general, equal

to those going from 1 to 0, called 1-errors. This class of errors is known as symmetric errors.

When these errors occur with unequal probabilities, they are called asymmetric errors. In the

binary asymmetric error model, only one type of error, either 0-errors or 1-errors, can occur,

and the error type is known a priori. If both error types occur but are not mixed, then this class

of errors is said to be unidirectional errors [BLAU93]. In binary systems these errors are

caused by symmetric faults, asymmetric faults, or unidirectional faults.

In nonbinary systems using numerals, 0; 1; 2; 3; . . . ; 9, or alpha-numeric symbols,

asymmetric errors are the type that occur. That is, the probability of an error that forces one

nonbinary symbol A to another symbol B is sometimes different from that of symbol A

forced to yet another symbol C. For example, in handwritten character recognition

systems, the probability of a 7 being mistaken for a 9 is much higher than that of a 7 being

mistaken for a 4, or pð9j7Þ � pð4j7Þ, where pðBjAÞ means probability of a symbol A being

mistaken for another symbol B. This is because the numbers 7 and 9 are close in shape

whereas 7 and 4 are not so similar. Likewise in keyboard input systems the symbols

located on adjacent keys can be more easily mistyped. Figure 1:5 shows examples of these

error models. In the asymmetric error model, the error graphs are not perfect and

sometimes not bi-directional. On the other hand, in the symmetric nonbinary error model,

they are perfect and bi-directional.

If symbols are removed or added in a word, as is sometimes caused by human mistakes

(i.e., human-made faults), this class of errors is called deletion errors or insertion errors,

respectively.

(a) Example of an asymmetric error graph for handwritten
     character (numerals) recognition systems

(b) Asymmetric error graph for keyboard systems
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Figure 1.5 Asymmetric errors in nonbinary systems. Source: [KANE04] � 2004 IEEE.
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1.2.4 Unequal Error Probability Model and the Unequal Error
Protection Model

The probability of error appearing in any position of a word is usually considered to be

equal. However, there is an error model to consider where some positions of a word have

higher error probability than other positions. These are sometimes caused in the system by

using devices with low reliabilities in the corresponding positions of a word, or by having

error-sensitive areas in some positions of a word which are more vulnerable to external noises

or have a low noise margin. In such cases the erroneous positions or areas with high error

probabilities are known a priori. The type of error model that is relevant here is known as the

unequal error probability model. The codes based on this error model are called unequal

error control (UEC) codes. Chapter 10 will discuss the UEC codes and present its application

to holographic memory, which has non-uniform error probability in the recording medium.

Some types of computer words or communication messages have a structure such that the

information included in one part of the word is more important or more valuable than that in

other parts. Control and address information in the computer or communication messages, and

pointer information in the database words are good examples. In general, errors in this part,

such as errors in control information or in pointer information, will cause much more serious

damage to the subsequent processes in the system. Another example is error in the decimal

numbers. During processing of digital data of conventional decimal numbers or measurement

data, errors in the higher order digits will yield more devastating effects on the subsequent

processes in digital systems than errors in the lower order digits. Therefore the higher order

digits should be more strongly protected against errors than the lower order digits. This type of

error model is known as an unequal error protection model. The codes based on this are called

unequal error protection (UEP) codes and will also be discussed in Chapter 10.

1.3 ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS

Error detection is an essential part of a dependable system design. Ideally, error detection

will block the propagation of an error during online operations, before it reaches the

system interface and causes a system failure. The error is best be detected immediately as

it occurs so that its effect can be minimized.

Upon detecting an error by an error detection mechanism, some error recovery

technique must mask the fault or remove it, and thus block the error’s propagation. Among

such mechanisms, error correcting codes and triple modular redundancy (TMR) correct

errors or mask faults directly, that is, without an additional error detection procedure.

Some important error detection techniques and error recovery techniques, comparative

to the error control coding techniques, are briefly described below. For more information,

the reader is referred to the following excellent texts and papers on dependable systems or

design techniques for fault tolerance: [AVIZ78, SIEW82, RENN84, EZHI86, ABRA86,

PRAD86, JOHN89, LEE90, AVRE00].

1.3.1 Error Detection / Error Checking

Prediction & Comparison The basic error detecting or checking concept for online

operations exists in prediction & comparison. That is, the output of the circuit / module is

predicted from the input, and then the predicted output and the original circuit / module

10 INTRODUCTION



output are compared bit by bit. The errors are detected if the actual output is not perfectly

matched to the predicted output.

Duplication is an important and popularly used error detection technique in dependable

digital systems. This is a special case of prediction & comparison, because the output is

generated, or predicted, by a copy of the circuit / module and then compared with that of

the original. This concept exists also in software duplication where a copy of the same or

equivalent software is prepared and executed, and then the outputs are compared.

Parity-prediction is another important and popularly applied technique. The output

parity bit is predicted from the input, and then compared with the parity bit generated from

the original output.

Error Detecting Codes Error detecting codes typically deal with simple parity-check

codes, cyclic codes, checksum codes, and other basic linear codes, as will be explained in

Section 2.3. Some further important and newly developed codes will be presented in later

chapters.

The application of error detecting codes in online operations is also called checking or

an online testing. The error detection circuit is denoted as a checker. These applications

will be examined in-depth in Section 12.1 where the self-checking concept is presented.

Additional topics on how to detect errors caused by faults in the checker itself and how

to design such checkers are covered in Section 12.2 where self-testing checkers are dis-

cussed. In summary, Chapter 12 covers error-checking concepts, self-testing checker design

methodologies, and concrete checker design for logic circuits and for computer systems.

Watchdog Timer and Watchdog Processor A watchdog timer is very useful for

detecting faults in a system. The idea behind this scheme is that some part of the system should

act to indicate fault-free status so that absence of this action is indicative of a fault. Also the

timer must be repeatedly reset by the system. Failure of the system to perform the reset func-

tion results in the system being turned off to prevent a system failure from occurring.

Awatchdog timer can be used to detect faults in both the hardware and the software of a

system. In many applications software routines are expected to execute within pre-

specified time frame. In digital control systems, for example, the routines execute

repetitively at specified intervals. If a routine suddenly needs more than the expected time

to execute, the fault may be in the software’s, for example, infinite loop [JOHN89]. In this

regard the watchdog timer is an important control flow check tool.

A watchdog processor is an extension of the concept of a watchdog timer. This is a

special subprocessor that checks the online operations of the processor being checked. The

watchdog processor runs the watchdog programs that collect information from the

processor being checked and generate signatures, such as address and data information,

and processor state information, during online operations. The new information is then

compared to that already prepared in the watchdog program.

1.3.2 Error Recovery / Error Masking

Error recovery techniques are essential to improving system reliability. The important

recovery techniques, as was mentioned before, include coding techniques and some modular

redundancy techniques, such as TMR, that correct or mask the faults directly. Other

effective error detection methods are also available to mask the faults after the detection of

errors, for example, self-checked duplication and sift-out redundancy, as discussed below.

ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS 11



Error Correcting Codes Many different error control codes have been studied and

developed to correct and / or detect the types of errors mentioned in Section 1.2. Among

the most practical matrix codes are those presented in this book.

Error correcting codes head the list of the most effective and efficient techniques used

to mask faults, both temporal and permanent. The coding approach involves some

redundancy, for example, additional check bits, additional hardware in the form of

encoding / decoding logic circuits, and additional decoding time delay. Nevertheless, the

coding performance is superior to that competitive techniques, especially in quickly

masking of temporal faults. For this reason error control codes are still being extensively

applied to various digital systems to improve their reliability.

Retry Just as space redundancy requires additional hardware resources, the retry

method called time redundancy which requires additional time to perform multiple iden-

tical operations of commands or programs immediately after errors are detected. This very

simple technique requires almost no additional hardware but can very effectively recover

system operations from temporary faults, meaning transient and intermittent faults. There-

fore the retry method is popularly applied to digital systems, including processors, main

memories, disk memories, tape memories, and I/O devices.

Alternate data retry, abbreviated by ADR [SHED78], is a kind of retry operation that is

effective in masking permanent faults besides temporary faults. Figure 1:6 presents the

principle behind masking a single permanent fault by ADR. Note that this simple example

shows the even-parity encoded bus circuit with four lines, including a parity line. Figure

1:6(a) shows that if a stuck-at ‘0’ permanent fault occurs in the first bus line, then the even-

parity encoded data from circuit A, here 1001, is received at the input of the circuit B as

0001, which is an odd-parity encoded data. Therefore a single error can be detected by

examining the parity check of the data. Next, by the ADR method, in Figure 1:6(b), the

bit-by-bit complement of the original data, which is 0110, is transmitted from circuit A to

(a)  Error detection by parity check

A

1

0

0

1

0

0

0

1

stuck-at ‘0’ fault

(b)  Retried by complemented data

A

B

B

0

1

1

0

0

1

1

0

stuck-at ‘0’ fault

Inverted

1

0

0

1

Figure 1.6 Principle of ADR (illustrated by even-parity encoded bus line circuits as an example).
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the input of the circuit B. Even though the first line is still preserving a stuck-at ‘0’ fault,

the fault is masked because the data on this line are also a ‘0’. Finally the received data are

inverted, and then the original correct data, 1001, are recovered. In this example, a

permanent fault is masked at the second stage of ADR, and finally the correct data are

recovered at the third stage of ADR. Also, in this example, if the fault in Figure 1:6(a) is a

temporary fault, the error it caused can be completely masked and will have no effect

because the temporary fault will disappear by the time of the second stage of ADR.

In general, if the logic circuit that performs the function FðXÞ for the circuit input X

satisfies the relation

FðXÞ ¼ FðXÞ;

where X means the complement of X, then the ADR with bit-by-bit complementary retry

at the second stage can be performed successfully. The function F that satisfies the relation

above is called a self-complementary function, and the circuit that satisfies the relation is

called a self-complementary circuit. The former even-parity busline circuit is a self-

complementary circuit. The adder, the multiplier, and the divider are also good examples

of self-complementary circuits.

N-Modular Redundancy (NMR) and Reconfiguration Triple modular redundancy

(TMR) is the most typical form of N-modular redundancy. The TMR method triplicates the

original module and performs a majority vote to determine the output of the system. If one of

the modules becomes faulty, the other two fault-free modules mask the results of the faulty

one when the majority vote is performed. This is shown in Figure 1:7(a). This voting concept

(a)  Triple modular redundancy (TMR)

(B)  Triple modular redundancy with triplicated voters

Input 1
Output 1VoterModule 1

Input 2
Output 2VoterModule 2

Input 3
Output 3VoterModule 3

Input 1

Input 2

Input 3

Module 1

Module 2

Module 3

Voter Output

Figure 1.7 Triple modular redundancy (TMR).
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is applied to TMR software to protect against software faults in any one of three identical or

equivalent software programs that perform the same function.

The difficulty in the TMR exists in its voter. That is, if the voter fails, the system

completely fails. One approach is to apply TMR to the voter itself such that three voters are

used and three independent voting results are provided as shown in Figure 1:7(b). The

three modules are functionally identical and receive identical inputs. The results generated

by three modules are voted on by the three voters to produce three results. Each result is

correct unless more than one module or input is faulty.

N-Modular redundancy (NMR) is a generalization of the TMR and is a typical space

redundancy technique. In most cases, N is selected as an odd number so that a majority

voting principle can be applied. For example, the 5MR system consists of five identical

modules and a voter. This system produces correct output in the presence of, or masks, as

many as two faulty modules.

The modular redundancy concept has been extended and modified by combining the

concept of reconfiguration. The following forms show some such combinations.

Self-checked duplication is an extended form of duplication in which each module has

its own self-checking mechanism in order to identify the faulty state of the module itself.

In this system, two self-checked modules are operated and checked in parallel at all times.

If one module is found to have errors by its own error detection mechanism, then the

system output is switched to the error-free module, meaning it is reconfigured. This concept

is a form of hot standby sparing in which the spare module operates synchronously with the

online module and is prepared to take over at any time. When the online module is failed,

the standby spare module takes over immediately. In contrast to the hot standby sparing,

there exists cold standby sparing where the spare is unpowered until needed to replace a

faulty module.

N-Modular redundancy with spares is also known as hybrid redundancy. It provides a

basic core of N modules arranged in a voting system, and in addition spares are provided to

replace faulty modules. For example, while the TMR with one spare masks one faulty

module, the spare will replace the faulty module immediately upon the detection of the

fault. After that spare is used, the system is still capable of masking another faulty module.

Therefore two faulty modules can be masked in this system. The aforementioned 5MR

requires five modules in order to mask two faulty modules, but the TMR with one spare

approach requires only four modules. The system remains in the basic NMR configuration

until the disagreement detector determines that a faulty module exists. One approach to

fault detection is to compare the output of the voter with the individual outputs of the

modules. A module that disagrees with the majority is regarded as faulty and removed

from the NMR core. A spare module is then switched in to replace the faulty module. The

reliability of the basic NMR system is maintained as long as the pool of spares is not

exhausted. This is shown in Figure 1:8.

Self-Purging Redundancy is similar to the NMR with the spare modules approach. The

main difference is that all modules operate actively in this redundancy system, unlike the

NMR with spares where some spare modules are not an active part of the system until a

fault occurs. This is shown in Figure 1:9. Each switch in the self-purging redundancy

separates the faulty module if the module output is not equal to the voter output. The

reconfiguration is essentially accomplished by the system logically removing the faulty

module via the switch and thus reducing the number of N in the reconfigured NMR system.

Sift-out redundancy also requires N identical modules in the system but with every pair

of two module outputs compared to identify faulty modules. If there exist N ¼ 5 modules,
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ten comparisons are performed. This redundancy requires an N-way multiplexer instead of

an N-input voter, as shown in Figure 1:10. The comparator in this redundancy circuit

receives all outputs of the modules and produces comparison outputs of every two

modules, that is, NðN � 1Þ=2 outputs, and then determines the faulty modules in the

detection circuit. Finally the output of the N-way multiplexer is selected based on the

faulty indication outputs of the detection circuit. This essentially masks the effects of any

faulty modules.

This redundancy can tolerate up to N � 2 faulty modules. Its tolerance is therefore

equal to the TMR system with N � 3 spares and also to the self-purging system having a

voter with threshold level of two.
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Figure 1.8 N-modular redundancy with spares (i.e., hybrid redundancy).
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Figure 1.9 Self-purging redundancy.
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System Recovery by Software Retry techniques require error detection by checkers,

and immediately after the error detection the same operations are performed. In contrast,

checkpoint techniques allow some latency time after error detection because the process

can be restored to an earlier point of execution. Checkpointing is mostly implemented in soft-

ware and requires some hardware to store the backup data. The techniques result from a com-

bination of checkpointing and rollback. In checkpointing, complete copy of the system state

should be saved at specific points, namely checkpoints, during process execution. The infor-

mation to be stored is the set of system state including data, programs, machine state, and so

forth, which is necessary to restart the continued successful execution from the checkpoint.

Rollback is a part of actual recovery process and occurs after the repair, such as by reconfi-

guration, that removes faulty modules or equipments from the system, or after the error due to

transient faults has died out. An important design criterion is how often checkpoints are to be

set, that is, in determining checkpoint intervals. If the checkpoints are too infrequent for the

actual error rate experienced, too much computation time will be lost due to rollback. On the

other hand, too frequent checkpoints result in an unnecessary increase in operation time and

memory due to the overhead of saving system states when establishing checkpoints.

1.4 CODE DESIGN PROCESS FOR DEPENDABLE SYSTEMS

What types of dependable techniques are the most effective in the design of dependable

systems? In some cases other than coding techniques, or a combination of coding

techniques and other dependable techniques, will better meet the reliability requirement or

the cost / performance requirement of a system.

Module
2

Module
N

System
inputs

Module
1

N

Detection circuit
N(N-1)/2

Comparator

N-Input
multiplexer

System
output

indicating faulty module

Figure 1.10 Shift-out redundancy.
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Before designing the error control codes, we therefore have to pay attention to a number of

preconditions or preparatory measures: Where to apply the code? How to apply the code

effectively?Howmuchreliabilityof thesystemto improve and satisfy itsperformance by coding

techniques? What are the requirements for decoding speed, and how much decoder hardware?

What about the detection capability of errors falling outside the capability of the code? This

section addresses all these important questions with respect to the code design process.

1.4.1 Code Functions

Error detection and error correction are the more known code functions. An important

code function that lies midway between these two functions is error location. The error

locating code indicates which blocks, or components of a word contain error but does not

indicate the precise erroneous digit position nor the error value. This is a code function that

is efficient for retransmission of a word segment, especially in communication systems

where whole words do not need retransmitting [WOLF63]. Also in computer systems the

error locating code provides the information on where to find the faulty module, faulty

package / card, or faulty device, which is very useful for system maintenance. If the system

is equipped with spares, then the system can be recovered by removing the faulty blocks

and switching to the spares.

Figure 1:11 shows the different functions of these three code types. Because erroneous

position, and error value can be determined by use of ‘‘error correction’’, all errors can be

Figure 1.11 Code functions.
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corrected. Of course, use of ‘‘error detection’’ alone does not allow any erroneous

position nor error value to be determined; it only indicates the presence of error in a

word. For ‘‘error location’’, as was mentioned before, only the area where the word

includes an erroneous position is indicated by the code. For example, note in Figure 1:11

that the code’s information is that errors exist in the second block of the word and

no definite error positions in the block nor the error values are determined. Error

locating codes will be covered in Chapter 9. Many practical codes, in general, have

a mixture of these code functions, for example, single error correction and double

error detection.

1.4.2 Code Deisgn Process

Before attempting the design of codes, we need to give the following items our careful

consideration:

1. Circumstance where the systems or equipments with the coding techniques are to be

applied, for example, the particular needs of medical appliances, nuclear appli-

ances, or digital systems in aircraft or satellite,

2. Fabrication structure, that is, how the systems or the equipments are organized, for

example, chip / card (package) organization, bit / byte organization, or binary / nonbinary,

3. Devices, such as memories, logic circuits, or FPGAs that are used in the system to

which the coding techniques are to apply.

4. Combination of fault / error masking techniques with coding techniques.

The design process for the error control codes is presented next, and is shown in Figure

1:12. Steps 1 through 3 pertain to the phase of setting code parameters, and steps 4 and 5

are for the phase of code designing.

Step 1. Determine error rates and error types:

� Raw error rate of devices, modules, or systems, and what target error rate to attain

� Whether symmetric error, asymmetric error, or unidirectional error

� Whether equal error or unequal error

� Whether random bit error, byte error, spotty byte error,a or burst error

� Whether bit or byte error,* or rather, bit plus byte errorb

Step 2. Determine code parameters and code constraints:

� Information-bit length, and required check-bit length

� Maximum random bit error length—or byte error length, spotty error length,a or

burst error length

� Required decoding speed

� Required decoder hardware complexity

aSee Chapter 7.
bSee Chapter 6.
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Step 3. Determine code function:

� Error detection, error correction, error location, or mixed type of these code functions

Step 4. Design code, and calculate code bounds:

� Theoretical bound on code length or check-bit length

� Mathematical knowledge required for code design, for example, algebra, combina-

torial mathematics, number theory, graph theory, statistics, and probability theory

Step 5. Evaluate the code designed:

� Check-bit length, and comparison to its bound

� Decoding speed

� Decoder hardware complexity

� Error detection probability of multiple errors beyond the code capability

� If the code does not satisfy the requirements, then go back to step 4
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