
When a high fly ball is hit to the outfield, how does the outfielder in the

area know where to be in order to catch it? Often the outfielder will jog

or run at a measured pace to the catch site, arriving just as the ball

does. Playing experience surely helps, but some other factor seems to

be involved. 

58

4 Motion in Two and
Three Dimensions

What clue is
hidden in the
ball’s motion?

The answer is in this chapter.

Source: Rob Tringali/Sports Chrome Inc.
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4-1 | What is Physics? 59

FIG. 4-1 The position vector for a
particle is the vector sum of its vector
components.

r:

WHAT IS PHYSICS?

In this chapter we continue looking at the aspect of physics that analyzes motion,
but now the motion can be in two or three dimensions. For example, medical
researchers and aeronautical engineers might concentrate on the physics of the
two- and three-dimensional turns taken by fighter pilots in dogfights because a
modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot,
in which the ball is pushed away from about shoulder height and then released.
Or the player might use an underhand loop shot, in which the ball is brought
upward from about the belt-line level and released. The first technique is the
overwhelming choice among professional players, but the legendary Rick Barry
set the record for free-throw shooting with the underhand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 | Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and
z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (�3 m, 2 m, 5 m). Along the x axis the particle is 3 m
from the origin, in the � direction. Along the y axis it is 2 m from the origin, in
the � direction.Along the z axis it is 5 m from the origin, in the � direction.

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting �x for (x2 � x1), �y for (y2 � y1), and �z for (z2 � z1):

(4-4)� r: � �x î � �y ĵ � �zk̂.

r:2

r:1

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂,

� r: � (x2î � y2 ĵ � z2k̂) � (x1î � y1 ĵ � z1k̂)

� r: � r:2 � r:1.

� r:
r:2r:1

k̂ĵ
î

r: � (�3 m)î � (2 m)ĵ � (5 m)k̂

r:k̂ĵî

r: � x î � y ĵ � zk̂,

r:
r:

4-1

y

x

z

(–3 m)i
(2 m)j(5 m)k

O

ˆ
ˆ

ˆ

r
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Sample Problem 

In Fig. 4-2, the position vector for a particle initially is

and then later is

.

What is the particle’s displacement from to ?r:2r:1� r:
r:2 � (9.0 m)î � (2.0 m)ĵ � (8.0 m)k̂

r:1 � (�3.0 m)î � (2.0 m)ĵ � (5.0 m)k̂

4-1

Chapter 4 | Motion in Two and Three Dimensions60

The displacement is obtained by sub-
tracting the initial from the later .

Calculation: The subtraction gives us

(Answer) � (12 m)î � (3.0 m)k̂ .

 � [9.0 � (�3.0)]î � [2.0 � 2.0]ĵ � [8.0 � 5.0]k̂

 � r: � r:2 � r:1

r:2r:1

� r:KEY IDEA

Sample Problem 

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The
coordinates (meters) of the rabbit’s position as func-
tions of time t (seconds) are given by

x � �0.31t2 � 7.2t � 28 (4-5)

and y � 0.22t2 � 9.1t � 30. (4-6)

(a) At t � 15 s, what is the rabbit’s position vector in
unit-vector notation and in magnitude-angle notation?

The x and y coordinates of the rabbit’s
position, as given by Eqs. 4-5 and 4-6, are the scalar
components of the rabbit’s position vector .

Calculations: We can write

(4-7)

(We write rather than because the components
are functions of t, and thus is also.)

At t � 15 s, the scalar components are

x � (�0.31)(15)2 � (7.2)(15) � 28 � 66 m

and y � (0.22)(15)2 � (9.1)(15) � 30 � �57 m,

so (Answer)

which is drawn in Fig. 4-3a. To get the magnitude and
angle of , we use Eq. 3-6:

(Answer)

and .

(Answer)

� � tan�1  
y
x

� tan�1 � �57 m
66 m � � �41�

 � 87 m,

 r � √x2 � y2 � √(66 m)2 � (�57 m)2

r:

r: � (66 m)î � (57 m)ĵ,

r:
r:r:(t)

r:(t) � x(t)î � y(t)ĵ.

r:

KEY IDEA

r:

4-2

FIG. 4-2 The displacement extends from the
head of the initial position vector to the head of the later 
position vector .r:2

r:1

� r: � r:2 � r:1

FIG. 4-3 (a) A rabbit’s position vector at time t � 15 s. The
scalar components of are shown along the axes. (b) The rab-
bit’s path and its position at five values of t.

r:
r:

Path of particle

y

x

z

O

r1
r2

    r∆ 

Initial
position

Later
position

This displacement vector is parallel to the xz plane
because it lacks a y component.

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(a)

–41°

r
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4-3 | Average Velocity and Instantaneous Velocity 61

Check: Although � � 139° has the same tangent as
�41°, the components of indicate that the desired an-
gle is  139° � 180° � �41°.

(b) Graph the rabbit’s path for t � 0 to t � 25 s.

r:
Graphing: We can repeat part (a) for several values of t
and then plot the results. Figure 4-3b shows the plots for
five values of t and the path connecting them. We can
also plot Eqs. 4-5 and 4-6 on a calculator.

4-3 | Average Velocity and Instantaneous Velocity

If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval �t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if the particle in Sample Problem 4-1 moves from its initial position
to its later position in 2.0 s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity at some instant. This is the value that approaches in
the limit as we shrink the time interval �t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-4 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval �t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval �t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-4 moves toward so that shrinks
toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.

In the limit as , we have and, most important here,
takes on the direction of the tangent line.Thus, has that direction as well:v:v:avg

v:avg : v:�t : 0
v:v:avg

v:avg� r:/�t
� r:r:1r:2

� r:
r:2r:1

v: �
d r:

dt
.

v:

v:avgv:v:

v:avg �
� r:

�t
�

(12 m)î � (3.0 m)k̂
2.0 s

� (6.0 m/s)î � (1.5 m/s)k̂.

v:avg �
�xî � �yĵ � �zk̂

�t
�

�x
�t

 î �
�y
�t

 ĵ �
�z
�t

 k̂.

� r:
v:avg

v:avg �
� r:

�t
.

average velocity �
displacement
time interval

,

v:avg

� r:

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

FIG. 4-4 The displacement of
a particle during a time interval �t,
from position 1 with position vector

at time t1 to position 2 with
position vector at time t2.The
tangent to the particle’s path at
position 1 is shown.

r:2

r:1

� r:

r1
r2

Path

Tangent

O

y

x

1
2

    r∆ 
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The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-5 shows a velocity vector and its scalar x and y components. Note
that is tangent to the particle’s path at the particle’s position. Caution: When a
position vector is drawn, as in Figs. 4-1 through 4-4, it is an arrow that extends
from one point (a “here”) to another point (a “there”). However, when a velocity
vector is drawn, as in Fig. 4-5, it does not extend from one point to another.
Rather, it shows the instantaneous direction of travel of a particle at the tail, and
its length (representing the velocity magnitude) can be drawn to any scale.

v:
v:

r:v:
v:

vx �
dx
dt

, vy �
dy
dt

, and vz �
dz
dt

.

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d
dt

 (x î � y ĵ � zk̂) �
dx
dt

 î �
dy
dt

 ĵ �
dz
dt

 k̂.

r:
v:

Chapter 4 | Motion in Two and Three Dimensions62

C H E C K P O I N T  1 The figure shows a circular
path taken by a particle. If the instantaneous velocity of
the particle is , through which
quadrant is the particle moving at that instant if it is trav-
eling (a) clockwise and (b) counterclockwise around the
circle? For both cases, draw on the figure.v:

v: � (2 m/s)î � (2 m/s)ĵ

Sample Problem 

For the rabbit in Sample Problem 4-2 find the velocity 
at time t � 15 s.

We can find by taking derivatives of the
components of the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to 
Eq. 4-5, we find the x component of to be

(4-13)

At t � 15 s, this gives vx � �2.1 m/s. Similarly, applying
the vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t � 15 s, this gives vy � �2.5 m/s. Equation 4-11 then
yields

 � 0.44t � 9.1.

 vy �
dy
dt

�
d
dt

 (0.22t 2 � 9.1t � 30)

 � �0.62t � 7.2.

 vx �
dx
dt

�
d
dt

 (�0.31t 2 � 7.2t � 28)

v:

v:KEY IDEA

v:

4-3

–130°

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

x

v

FIG. 4-5 The velocity of a particle,
along with the scalar components of .v:

v:

Path

O

y

x

Tangent

vy

vx

v 

FIG. 4-6 The rabbit’s velocity at t � 15 s.v:

y

x

(Answer)

which is shown in Fig. 4-6, tangent to the rabbit’s path
and in the direction the rabbit is running at t � 15 s.

v: � (�2.1 m/s)î � (�2.5 m/s)ĵ ,
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To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

(Answer) � 3.3 m/s

 v � √vx
2 � vy

2 � √(�2.1 m/s)2 � (�2.5 m/s)2

v:

4-4 | Average Acceleration and Instantaneous
Acceleration

When a particle’s velocity changes from to in a time interval �t, its average
acceleration during �t is

or (4-15)

If we shrink �t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to
obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-7 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-7, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax �
dvx

dt
, ay �

dvy

dt
, and az �

dvz

dt
.

a:

a: � ax î � ay ĵ � azk̂,

 �
dvx

dt
 î �

dvy

dt
 ĵ �

dvz

dt
 k̂.

 a: �
d
dt

 (vx î � vy ĵ � vzk̂)

v:

a: �
dv:

dt
.

a:
a:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

average
acceleration �

change in velocity
time interval

,

a:avg

v:2v:1

and

(Answer)

Check: Is the angle �130° or �130° � 180° � 50°?

� tan�1 1.19 � �130�.

� � tan�1  
vy

vx
� tan�1  � �2.5 m/s

�2.1 m/s �

O

y

x

ay

ax

Path

a

FIG. 4-7 The acceleration of a
particle and the scalar components
of .a:

a:

C H E C K P O I N T  2 Here are four descriptions of the position (in meters) of
a puck as it moves in an xy plane:

(1) x � �3t 2 � 4t � 2 and y � 6t 2 � 4t (3)
(2) x � �3t 3 � 4t and y � �5t 2 � 6 (4)

Are the x and y acceleration components  constant? Is  acceleration constant?a:
r: � (4t 3 � 2t)î � 3ĵ
r: � 2t 2 î � (4t � 3)ĵ
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Sample Problem 

For the rabbit in Sample Problems 4-2 and 4-3, find the
acceleration at time t � 15 s.

We can find by taking derivatives of the
rabbit’s velocity components.

Calculations: Applying the ax part of Eq. 4-18 to Eq.
4-13, we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14
yields the y component as

We see that the acceleration does not vary with time (it
is a constant) because the time variable t does not ap-
pear in the expression for either acceleration compo-
nent. Equation 4-17 then yields

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-8.
To get the magnitude and angle of , either we use a

vector-capable calculator or we follow Eq. 3-6. For the
magnitude we have

(Answer) � 0.76 m/s2.

 a � √ax
2 � ay

2 � √(�0.62 m/s2)2 � (0.44 m/s2)2

a:

a: � (�0.62 m/s2)î � (0.44 m/s2)ĵ ,

ay �
dvy

dt
�

d

dt
 (0.44t � 9.1) � 0.44 m/s2.

ax �
dvx

dt
�

d
dt

 (�0.62t � 7.2) � �0.62 m/s2.

a:

a:KEY IDEA

a:

4-4

For the angle we have

However, this angle, which is the one displayed on a cal-
culator, indicates that is directed to the right and
downward in Fig. 4-8. Yet, we know from the compo-
nents that must be directed to the left and upward. To
find the other angle that has the same tangent as �35°
but is not displayed on a calculator, we add 180°:

�35° � 180° � 145°. (Answer)

This is consistent with the components of . Note that 
has the same magnitude and direction throughout the
rabbit’s run because the acceleration is constant.

a:a:

a:

a:

� � tan�1  
ay

ax
� tan�1 � 0.44 m/s2

�0.62 m/s2 � � �35�.

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

x

145°a

FIG. 4-8 The accel-
eration of the 
rabbit at t � 15 s.
The rabbit happens
to have this same 
acceleration at all
points on its path.

a:

Sample Problem 

A particle with velocity (in meters
per second) at t � 0 undergoes a constant acceleration 
of magnitude a � 3.0 m/s2 at an angle � � 130° from the
positive direction of the x axis. What is the particle’s
velocity at t � 5.0 s?

Because the acceleration is constant, Eq. 2-
11 (v � v0 � at) applies, but we must use it separately
for motion parallel to the x axis and motion parallel to
the y axis.

Calculations: We find the velocity components vx and vy

from the equations

vx � v0x � axt and vy � v0y � ayt.

In these equations, v0x (� �2.0 m /s) and v0y (� 4.0 m /s)
are the x and y components of , and ax and ay are the 
x and y components of . To find ax and ay, we resolve 

either with a vector-capable calculator or with 
Eq. 3-5:
a:

a:
v:0

KEY IDEA

v:

a:
v:0 � �2.0î � 4.0ĵ ax � a cos � � (3.0 m/s2)(cos 130°) � �1.93 m/s2,

ay � a sin � � (3.0 m/s2)(sin 130°) � �2.30 m/s2.

When these values are inserted into the equations for vx

and vy, we find that, at time t � 5.0 s,

vx � �2.0 m/s � (�1.93 m/s2)(5.0 s) � �11.65 m/s,

vy � 4.0 m/s � (2.30 m/s2)(5.0 s) � 15.50 m/s.

Thus, at t � 5.0 s, we have, after rounding,

. (Answer)

Either using a vector-capable calculator or following
Eq. 3-6, we find that the magnitude and angle of are

(Answer)

and . (Answer)

Check: Does 127° appear on your calculator’s display,
or does �53° appear? Now sketch the vector with its
components to see which angle is reasonable.

v:

� � tan�1  
vy

vx

� 127� � 130�

v � √vx
2 � vy

2 � 19.4 � 19 m/s

v:

v: � (�12 m/s)î � (16 m/s)ĵ

4-5
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In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

FIG. 4-9 A stroboscopic photograph
of a yellow tennis ball bouncing off a
hard surface. Between impacts, the
ball has projectile motion. Source:
Richard Megna/Fundamental
Photographs.

FIG. 4-10 The path of a
projectile that is launched at
x0 � 0 and y0 � 0, with an
initial velocity .The initial
velocity and the velocities at
various points along its path
are shown, along with their
components. Note that the
horizontal velocity compo-
nent remains constant but
the vertical velocity compo-
nent changes continuously.
The range R is the
horizontal distance the pro-
jectile has traveled when it
returns to its launch height.

v:0

x

y

R
O

  0θ  

v0
v0y

v0x

vx

vy
vy = 0

vx

vy

vx

vy θ 

vx

vy

v 

v 

v 

v 

v 

4-5 | Projectile Motion

We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-9) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-10, which is analyzed
in the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle �0 between 
and the positive x direction:

v0x � v0 cos �0 and v0y � v0 sin �0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-9 and 4-10, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 � v0x î � v0y ĵ.

v:0

g:
v:0
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FIG. 4-11 One ball is released from
rest at the same instant that another
ball is shot horizontally to the right.
Their vertical motions are identical.
Source: Richard Megna/ Fundamental
Photographs.

Two Golf Balls

Figure 4-11 is a stroboscopic photograph of two golf balls, one simply released
and the other shot horizontally by a spring. The golf balls have the same vertical
motion, both falling through the same vertical distance in the same interval of
time. The fact that one ball is moving horizontally while it is falling has no effect on
its vertical motion; that is, the horizontal and vertical motions are independent of
each other.

A Great Student Rouser

Figure 4-12 shows a demonstration that has enlivened many a physics lecture. It
involves a blowgun G, using a ball as a projectile. The target is a can suspended
from a magnet M, and the tube of the blowgun is aimed directly at the can. The
experiment is arranged so that the magnet releases the can just as the ball leaves
the blowgun.

If g (the magnitude of the free-fall acceleration) were zero, the ball would
follow the straight-line path shown in Fig. 4-12 and the can would float in place
after the magnet released it.The ball would certainly hit the can.

However, g is not zero, but the ball still hits the can! As Fig. 4-12 shows,
during the time of flight of the ball, both ball and can fall the same distance h
from their zero-g locations. The harder the demonstrator blows, the greater is the
ball’s initial speed, the shorter the flight time, and the smaller the value of h.

C H E C K P O I N T  3 At a certain instant, a fly ball has velocity
(the x axis is horizontal, the y axis is upward, and is in meters per second). Has the
ball passed its highest point?

v:
v: � 25î � 4.9ĵ

4-6 | Projectile Motion Analyzed

Now we are ready to analyze projectile motion, horizontally and vertically.

The Horizontal Motion

Because there is no acceleration in the horizontal direction, the horizontal
component vx of the projectile’s velocity remains unchanged from its initial value
v0x throughout the motion, as demonstrated in Fig. 4-13.At any time t, the projec-
tile’s horizontal displacement x � x0 from an initial position x0 is given by Eq.
2-15 with a � 0, which we write as

x � x0 � v0xt.

Because v0x � v0 cos �0, this becomes

x � x0 � (v0 cos �0)t. (4-21)

The Vertical Motion

The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute �g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin �0. Similarly, Eqs. 2-11 and 2-16 become

vy � v0 sin �0 � gt (4-23)

and (4-24)vy
2 � (v0 sin �0)2 � 2g(y � y0).

� (v0 sin �0)t � 1
2gt 2,

 y � y0 � v0yt � 1
2gt 2

FIG. 4-12 The projectile ball always
hits the falling can. Each falls a dis-
tance h from where it would be were
there no free-fall acceleration.

M

Can
h
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o-g 

 path

G
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FIG. 4-14 (I) The path of a fly ball
calculated by taking air resistance
into account. (II) The path the ball
would follow in a vacuum, calculated
by the methods of this chapter. See
Table 4-1 for corresponding data.
(Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

As is illustrated in Fig. 4-10 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path

We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into Eq.
4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)

This is the equation of the path shown in Fig. 4-10. In deriving it, for simplicity we
let x0 � 0 and y0 � 0 in Eqs. 4-21 and 4-22, respectively. Because g, �0, and v0 are
constants, Eq. 4-25 is of the form y � ax � bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range

The horizontal range R of the projectile, as Fig. 4-10 shows, is the horizontal
distance the projectile has traveled when it returns to its initial (launch) height.
To find range R, let us put x � x0 � R in Eq. 4-21 and y � y0 � 0 in Eq. 4-22,
obtaining

R � (v0 cos �0)t

and

Eliminating t between these two equations yields

Using the identity sin 2�0 � 2 sin �0 cos �0 (see Appendix E), we obtain

(4-26)

Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.

Note that R in Eq. 4-26 has its maximum value when sin 2�0 � 1, which
corresponds to 2�0 � 90° or �0 � 45°.

R �
v0

2

g
 sin 2�0.

R �
2v0

2

g
 sin �0 cos �0.

0 � (v0 sin �0)t � 1
2gt 2.

y � (tan �0)x �
gx2

2(v0 cos �0)2

The horizontal range R is maximum for a launch angle of 45°.

x

y

60°

v0

I

II

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-
tal distance.

The Effects of the Air

We have assumed that the air through which the projectile moves has no effect on
its motion. However, in many situations, the disagreement between our calcula-
tions and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-14, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

TA B L E  4 - 1

Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum 

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-14.The launch angle is 60° and
the launch speed is 44.7 m/s.

FIG. 4-13 The vertical component
of this skateboarder’s velocity is
changing but not the horizontal 
component, which matches the
skateboard’s velocity.As a result, the
skateboard stays underneath him,
allowing him to land on it. Source:
Jamie Budge/Liaison/ Getty Images, Inc.
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C H E C K P O I N T  4 A fly ball is hit to the outfield. During its flight (ignore the
effects of the air), what happens to its (a) horizontal and (b) vertical components of ve-
locity? What are the (c) horizontal and (d) vertical components of its acceleration dur-
ing ascent, during descent, and at the topmost point of its flight?

In Fig. 4-15, a rescue plane flies at 198 km/h (� 55.0 m/s)
and constant height h � 500 m toward a point directly
over a victim, where a rescue capsule is to land.

(a) What should be the angle � of the pilot’s line of sight
to the victim when the capsule release is made?

Once released, the capsule is a projectile,
so its horizontal and vertical motions can be considered
separately (we need not consider the actual curved path
of the capsule).

Calculations: In Fig. 4-15, we see that � is given by

(4-27)

where x is the horizontal coordinate of the victim (and
of the capsule when it hits the water) and h � 500 m.We
should be able to find x with Eq. 4-21:

x � x0 � (v0 cos �0)t. (4-28)

Here we know that x0 � 0 because the origin is placed
at the point of release. Because the capsule is released
and not shot from the plane, its initial velocity is
equal to the plane’s velocity. Thus, we know also that
the initial velocity has magnitude v0 � 55.0 m/s and
angle �0 � 0° (measured relative to the positive
direction of the x axis). However, we do not know
the time t the capsule takes to move from the plane to
the victim.

To find t, we next consider the vertical motion and
specifically Eq. 4-22:

(4-29)

Here the vertical displacement y � y0 of the capsule is 
�500 m (the negative value indicates that the capsule
moves downward). So,

Solving for t, we find t � 10.1 s. Using that value in Eq.
4-28 yields

x � 0 � (55.0 m/s)(cos 0°)(10.1 s),

or x � 555.5 m.

�500 m � (55.0 m/s)(sin 0�)t � 1
2 (9.8 m/s2)t 2.

y � y0 � (v0 sin �0)t � 1
2gt 2.

v:0

� � tan�1 
x
h

,

KEY IDEAS

Then Eq. 4-27 gives us

(Answer)

(b) As the capsule reaches the water, what is its velocity 
in unit-vector notation and in magnitude-angle notation?

(1) The horizontal and vertical components
of the capsule’s velocity are independent. (2) Component
vx does not change from its initial value v0x � v0 cos �0 be-
cause there is no horizontal acceleration. (3) Component
vy changes from its initial value v0y � v0 sin �0 because
there is a vertical acceleration.

Calculations: When the capsule reaches the water,

vx � v0 cos �0 � (55.0 m/s)(cos 0°) � 55.0 m/s.

Using Eq. 4-23 and the capsule’s time of fall t � 10.1 s,
we also find that when the capsule reaches the water,

vy � v0 sin �0 � gt (4-30)

� (55.0 m/s)(sin 0°) � (9.8 m/s2)(10.1 s)

� �99.0 m/s.

Thus, at the water

(Answer)

Using Eq. 3-6 as a guide, we find that the magnitude and
the angle of are

v � 113 m/s and � � �60.9°. (Answer)

v:

v: � (55.0 m/s)î � (99.0 m/s)ĵ.

KEY IDEAS

v:

� � tan�1 
555.5 m
500 m

� 48.0�.

Sample Problem Build your skill4-6

y

θ 

φ 
O

v0

Trajectory
Line of sight

h

x

v 

FIG. 4-15 A plane drops a rescue capsule while moving at
constant velocity in level flight.While falling, the capsule 
remains under the plane.
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(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle �0 of 45°.Thus,

(Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together,eventually merging
at �0 � 45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe.

 � 686 m � 690 m. 

R �
v0

2

g
 sin 2�0 �

(82 m/s)2

9.8 m/s2  sin (2 � 45�)

Sample Problem 

Suppose a baseball batter B hits a high fly ball to the
outfield, directly toward an outfielder F and with a
launch speed of v0 � 40 m/s and a launch angle of 
�0 � 35°. During the flight, a line from the outfielder to
the ball makes an angle � with the ground. Plot eleva-
tion angle � versus time t, assuming that the outfielder is
already positioned to catch the ball, is 6.0 m too close to
the batter, and is 6.0 m too far away.

(1) If we neglect air drag, the ball is a pro-
jectile for which the vertical motion and the horizontal
motion can be analyzed separately. (2) Assuming the
ball is caught at approximately the height it is hit, the
horizontal distance traveled by the ball is the range R,
given by Eq. 4-26 (R � (v2

0/g) sin 2�0).

Calculations: The ball can be caught if the outfielder’s
distance from the batter is equal to the range R of the
ball. Using Eq. 4-26, we find

(4-32)

R �
v2

0

g
 sin 2�0 �

(40 m/s)2

9.8 m/s2  sin (70�) � 153.42 m.

KEY IDEAS

4-8

Figure 4-16 shows a pirate ship 560 m from a fort de-
fending a harbor entrance.A defense cannon, located at
sea level, fires balls at initial speed v0 � 82 m/s.

(a) At what angle �0 from the horizontal must a ball be
fired to hit the ship?

(1) A fired cannonball is a projectile. We
want an equation that relates the launch angle �0 to the
ball’s horizontal displacement as it moves from cannon
to ship. (2) Because the cannon and the ship are at the
same height, the horizontal displacement is the range.

Calculations: We can relate the launch angle �0 to the
range R with Eq. 4-26 which, after
rearrangement, gives

(4-31)

One solution of sin�1 (54.7°) is displayed by a calcula-
tor; we subtract it from 180° to get the other solution
(125.3°).Thus, Eq. 4-31 gives us

and . (Answer)�0 � 63��0 � 27�

�
1
2

 sin�1 0.816.

�0 �
1
2

 sin�1 
gR
v2

0
�

1
2

 sin�1 
(9.8 m/s2)(560 m)

(82 m/s)2

(R � (v0
2/g) sin 2�0),

KEY IDEAS

Sample Problem 4-7

FIG. 4-16 A pirate ship under fire.

27°
x

y

63°

R = 560 m

B F
x

y

y

φ 

φ 

x R – x
R

(a) (b)

90

60

30

0 1 2 3
t (s)

4 5

(d
eg

)

Too close

Too far

FIG. 4-17 The elevation angle � for a ball hit toward an out-
fielder is (a) defined and (b) plotted versus time t.

Figure 4-17a shows a snapshot of the ball in flight when
the ball is at height y and horizontal distance x from the
batter (who is at the origin). The horizontal distance of
the ball from the outfielder is R � x, and the elevation
angle � of the ball in the outfielder’s view is given by
tan � � y/(R � x). For the height y, we use Eq. 4-22 
(y � y0 � (v0 sin �0)t � gt2), setting y0 � 0. For the1

2
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At time t � 0, a golf ball is shot from ground level into
the air, as indicated in Fig. 4-18a. The angle � between
the ball’s direction of travel and the positive direction
of the x axis is given in Fig. 4-18b as a function of time t.
The ball lands at t � 6.00 s. What is the magnitude v0 of
the ball’s launch velocity, at what height (y � y0) above
the launch level does the ball land, and what is the ball’s
direction of travel just as it lands?

(1) The ball is a projectile, and so its hori-
zontal and vertical motions can be considered sepa-
rately. (2) The horizontal component vx (� v0 cos �0) of
the ball’s velocity does not change during the flight.
(3) The vertical component vy of its velocity does
change and is zero when the ball reaches maximum
height. (4) The ball’s direction of travel at any time dur-
ing the flight is at the angle of its velocity vector just
then.That angle is given by tan � � vy /vx, with the veloc-
ity components evaluated at that time.

Calculations: When the ball reaches its maximum height,
vy � 0. So, the direction of the velocity is horizontal, at
angle � � 0°. From the graph, we see that this condition
occurs at t � 4.0 s.We also see that the launch angle �0 (at
t � 0) is 80°. Using Eq. 4-23 (vy � v0 sin �0 � gt), with t �
4.0 s, g � 9.8 m/s2, �0 � 80°, and vy � 0, we find

v:

v:

KEY IDEAS

v0 � 39.80 � 40 m/s. (Answer)

The ball lands at t � 6.00 s. Using Eq. 4-22 (y � y0 �
(v0 sin �0)t � gt2) with t � 6.00 s, we obtain

y � y0 � 58.77 m � 59 m. (Answer)

Just as the ball lands, its horizontal velocity vx is still 
v0 cos �0; substituting for v0 and �0 gives us vx � 6.911 m/s.
We find its vertical velocity just then by using Eq. 4-23
(vy � v0 sin �0 � gt) with t � 6.00 s, which yields 
vy � �19.60 m/s.Thus, the angle of the ball’s direction of
travel at landing is

(Answer)� � tan�1 
vy

vx
� tan�1 

�19.60 m/s
6.911 m/s

� �71�.

1
2

Sample Problem Build your skill4-9
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horizontal distance x, we substitute with Eq. 4-21 
(x � x0 � (v0 cos �0)t), setting x0 � 0. Thus, using
v0 � 40 m/s and �0 � 35°, we have

(4-33)

Graphing this function versus t gives the middle
plot in Fig. 4-17b. We see that the ball’s angle in the
outfielder’s view increases at an almost steady rate
throughout the flight.

If the outfielder is 6.0 m too close to the batter,
we replace the distance of 153.42 m in Eq. 4-33 with

� � tan�1 
(40 sin 35�)t � 4.9t 2

153.42 � (40 cos 35�)t
.

153.42 m � 6.0 m � 147.42 m. Regraphing the function
gives the “Too close” plot in Fig. 4-17b. Now the eleva-
tion angle of the ball rapidly increases toward the end
of the flight as the ball soars over the outfielder’s head.
If the outfielder is 6.0 m too far away from the batter,
we replace the distance of 153.42 m in Eq. 4-33 with
159.42 m. The resulting plot is labeled “Too far” in the
figure: The angle first increases and then rapidly
decreases. Thus, if a ball is hit directly toward an
outfielder, the player can tell from the change in the
ball’s elevation angle � whether to stay put, run toward
the batter, or back away from the batter.

t (s)

y

(a) (b)

80

40

0

–40

–80

θ (
d

eg
)

x

2 4 6

FIG. 4-18 (a) Path of a golf ball shot onto a plateau. (b) The
angle � that gives the ball’s direction of motion during the
flight is plotted versus time t.

4-7 | Uniform Circular Motion

A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-19 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The acceleration
is always directed radially inward. Because of this, the acceleration associated
with uniform circular motion is called a centripetal (meaning “center seeking”)
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FIG. 4-19 Velocity and acceleration
vectors for uniform circular motion.

v 

v 

v 

a

a
a

C H E C K P O I N T  5 An object moves at constant speed along a circular path in
a horizontal xy plane, with the center at the origin. When the object is at x � �2 m, its
velocity is �(4 m/s) . Give the object’s (a) velocity and (b) acceleration at y � 2 m.ĵ

acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2	r) in time

(period). (4-35)

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34

To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-20. In Fig. 4-20a, particle p moves at constant speed
v around a circle of radius r.At the instant shown, p has coordinates xp and yp.

Recall from Section 4-3 that the velocity of a moving particle is always tan-
gent to the particle’s path at the particle’s position. In Fig. 4-20a, that means is
perpendicular to a radius r drawn to the particle’s position. Then the angle � that

makes with a vertical at p equals the angle � that radius r makes with the x axis.
The scalar components of are shown in Fig. 4-20b. With them, we can write

the velocity as

. (4-36)

Now, using the right triangle in Fig. 4-20a, we can replace sin � with yp/r and 
cos � with xp/r to write

(4-37)

To find the acceleration of particle p, we must take the time derivative of
this equation. Noting that speed v and radius r do not change with time, we obtain

(4-38)

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt � vx, and, again from Fig. 4-20b, we see that vx �
�v sin � and vy � v cos �. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-20c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle � shown in Fig. 4-20c:

.

Thus, � � �, which means that is directed along the radius r of Fig. 4-20a,
toward the circle’s center, as we wanted to prove.

a:

tan � �
ay

ax
�

�(v2/r) sin �
�(v2/r) cos �

� tan �

a:

a � √ax
2 � ay

2 �
v2

r
 √(cos �)2 � (sin �)2 �

v2

r
 √1 �

v2

r
,

a: � ��
v2

r
 cos �� î � ��

v2

r
 sin �� ĵ

a: �
dv:

dt
� ��

v

r
 
dyp

dt � î � � v

r
 
dxp

dt � ĵ.

a:

v: � ��
vyp

r � î � � vxp

r � ĵ .

v: � vx î � vy ĵ � (�v sin �)î � (v cos �)ĵ

v:
v:

v:

v:
v:

T �
2	r

v

a �
v2

r

a:

FIG. 4-20 Particle p moves in coun-
terclockwise uniform circular mo-
tion. (a) Its position and velocity at
a certain instant. (b) Velocity .
(c) Acceleration .a:

v:
v:

y

x
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θ 
p

yp
r

xp
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vy
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ax
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FIG. 4-21 Alex (frame A) and
Barbara (frame B) watch car P, as
both B and P move at different
velocities along the common x axis of
the two frames.At the instant shown,
xBA is the coordinate of B in the A
frame.Also, P is at coordinate xPB in
the B frame and coordinate xPA �
xPB � xBA in the A frame.

4-8 | Relative Motion in One Dimension

Suppose you see a duck flying north at 30 km/h.To another duck flying alongside,
the first duck seems to be stationary. In other words, the velocity of a particle de-
pends on the reference frame of whoever is observing or measuring the velocity.
For our purposes, a reference frame is the physical object to which we attach our
coordinate system. In everyday life, that object is the ground. For example, the
speed listed on a speeding ticket is always measured relative to the ground. The
speed relative to the police officer would be different if the officer were moving
while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4-21) is parked by the side
of a highway, watching car P (the “particle”) speed past. Barbara (at the origin of
frame B) is driving along the highway at constant speed and is also watching car
P. Suppose that they both measure the position of the car at a given moment.
From Fig. 4-21 we see that

xPA � xPB � xBA. (4-40)

The equation is read: “The coordinate xPA of P as measured by A is equal to the
coordinate xPB of P as measured by B plus the coordinate xBA of B as measured
by A.” Note how this reading is supported by the sequence of the subscripts.

Taking the time derivative of Eq. 4-40, we obtain

Thus, the velocity components are related by

vPA � vPB � vBA. (4-41)

This equation is read: “The velocity vPA of P as measured by A is equal to the
velocity vPB of P as measured by B plus the velocity vBA of B as measured by A.”
The term vBA is the velocity of frame B relative to frame A.

d
dt

 (xPA) �
d
dt

 (xPB) �
d
dt

 (xBA).

“Top gun” pilots have long worried about taking a turn
too tightly. As a pilot’s body undergoes centripetal
acceleration, with the head toward the center of curva-
ture, the blood pressure in the brain decreases, leading
to loss of brain function.

There are several warning signs. When the cen-
tripetal acceleration is 2g or 3g, the pilot feels heavy. At
about 4g, the pilot’s vision switches to black and white
and narrows to “tunnel vision.” If that acceleration is
sustained or increased, vision ceases and, soon after, the
pilot is unconscious—a condition known as g-LOC for
“g-induced loss of consciousness.”

What is the magnitude of the acceleration, in
g units, of a pilot whose aircraft enters a horizontal cir-
cular turn with a velocity of � (400î � 500ĵ) m/s
and 24.0 s later leaves the turn with a velocity of 

� (�400î � 500 ĵ) m/s?

We assume the turn is made with uniform
circular motion. Then the pilot’s acceleration is
centripetal and has magnitude a given by Eq. 4-34 
(a � v2/R), where R is the circle’s radius. Also, the time

KEY IDEAS

v:
f

v:i

required to complete a full circle is the period given by
Eq. 4-35 (T � 2	R/v).

Calculations: Because we do not know radius R, let’s
solve Eq. 4-35 for R and substitute into Eq. 4-34.We find

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of
the initial velocity into Eq. 3-6:

To find the period T of the motion, first note that the fi-
nal velocity is the reverse of the initial velocity. This
means the aircraft leaves on the opposite side of the cir-
cle from the initial point and must have completed half
a circle in the given 24.0 s. Thus a full circle would have
taken T � 48.0 s. Substituting these values into our
equation for a, we find

(Answer)a �
2	(640.31 m/s)

48.0 s
� 83.81 m/s2 � 8.6g.

v � √(400 m/s)2 � (500 m/s)2 � 640.31 m/s.

a �
2	v
T

.

Sample Problem 4-10

x

Frame A Frame B

vBA

P

x

yy

xPA = xPB + xBAxBA

xPB
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Here we consider only frames that move at constant velocity relative to each
other. In our example, this means that Barbara (frame B) drives always at con-
stant velocity vBA relative to Alex (frame A). Car P (the moving particle), how-
ever, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take
the time derivative of Eq. 4-41:

Because vBA is constant, the last term is zero and we have

aPA � aPB. (4-42)

In other words,

d
dt

 (vPA) �
d
dt

 (vPB) �
d
dt

 (vBA).

Observers on different frames of reference that move at constant velocity relative to
each other will measure the same acceleration for a moving particle.

In Fig. 4-21, suppose that Barbara’s velocity relative to
Alex is a constant vBA � 52 km/h and car P is moving in
the negative direction of the x axis.

(a) If Alex measures a constant vPA � �78 km/h for car
P, what velocity vPB will Barbara measure?

We can attach a frame of reference A to
Alex and a frame of reference B to Barbara. Because
the frames move at constant velocity relative to each other
along one axis, we can use Eq. 4-41 (vPA � vPB � vBA) to
relate vPB to vPA and vBA.

Calculation: We find

�78 km/h � vPB � 52 km/h.

Thus, vPB � �130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by
a cord wound on a spool, the cord would be unwinding
at a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus
relative to the ground) in time t � 10 s at constant ac-
celeration, what is its acceleration aPA relative to Alex?

To calculate the acceleration of car P rela-
tive to Alex, we must use the car’s velocities relative to
Alex. Because the acceleration is constant, we can use

KEY IDEAS

KEY IDEAS

Eq. 2-11 (v � v0 � at) to relate the acceleration to the
initial and final velocities of P.

Calculation: The initial velocity of P relative to Alex is
vPA � �78 km/h and the final velocity is 0.Thus,

(Answer)

(c) What is the acceleration aPB of car P relative to
Barbara during the braking?

To calculate the acceleration of car P rela-
tive to Barbara, we must use the car’s velocities relative
to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vPB � �130 km/h).The final veloc-
ity of P relative to Barbara is �52 km/h (this is the velocity
of the stopped car relative to the moving Barbara). Thus,

(Answer)

Comment: We should have foreseen this result:
Because Alex and Barbara have a constant relative
velocity, they must measure the same acceleration for
the car.

 � 2.2 m/s2.

aPB �
v � v0

t
�

�52 km/h � (�130 km/h)
10 s

 
1 m/s

3.6 km/h

KEY IDEA

 � 2.2 m/s2.

 aPA �
v � v0

t
�

0 � (�78 km/h)
10 s

 
1 m/s

3.6 km/h

Sample Problem 4-11

4-9 | Relative Motion in Two Dimensions

Our two observers are again watching a moving particle P from the origins of refer-
ence frames A and B, while B moves at a constant velocity relative to A. (The
corresponding axes of these two frames remain parallel.) Figure 4-22 shows a cer-
tain instant during the motion.At that instant, the position vector of the origin of B

v:BA
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FIG. 4-22 Frame B has the constant
two-dimensional velocity rela-
tive to frame A. The position vector
of B relative to A is .The position
vectors of particle P are relative
to A and relative to B.r:PB

r:PA

r:BA

v:BA

x

x

y

y

rPB
rPA

rBA
Frame B

Frame A

vBA

P

In Fig. 4-23a, a plane moves due east while the pilot
points the plane somewhat south of east, toward a
steady wind that blows to the northeast. The plane has
velocity relative to the wind, with an airspeed
(speed relative to the wind) of 215 km/h, directed at
angle � south of east.The wind has velocity relative
to the ground with speed 65.0 km/h, directed 20.0° east
of north. What is the magnitude of the velocity of
the plane relative to the ground, and what is �?

The situation is like the one in Fig. 4-22.
Here the moving particle P is the plane, frame A is at-
tached to the ground (call it G), and frame B is
“attached” to the wind (call it W).We need a vector dia-
gram like Fig. 4-22 but with three velocity vectors.

Calculations: First we construct a sentence that relates
the three vectors shown in Fig. 4-23b:

velocity of plane velocity of plane velocity of wind 
relative to ground

�
relative to wind

�
relative to ground.

(PG) (PW) (WG)

This relation is written in vector notation as

(4-46)

We need to resolve the vectors into components on the
coordinate system of Fig. 4-23b and then solve Eq. 4-46
axis by axis. For the y components, we find

vPG,y � vPW,y � vWG,y

or 0 � �(215 km/h) sin � � (65.0 km/h)(cos 20.0°).

v:PG � v:PW � v:WG.

KEY IDEAS

v:PG

v:WG

v:PW

Solving for � gives us

(Answer)

Similarly, for the x components we find

vPG,x � vPW,x � vWG,x.

Here, because is parallel to the x axis, the compo-
nent vPG,x is equal to the magnitude vPG. Substituting
this notation and the value � � 16.5°, we find

vPG � (215 km/h)(cos 16.5°) � (65.0 km/h)(sin 20.0°)

� 228 km/h. (Answer)

v:PG

� � sin�1  (65.0 km/h)(cos 20.0�)
215 km/h

� 16.5�.

Sample Problem 4-12

θ

θ

vPG

vPW vWG

vPG

vPW vWG

N

y

N
E

20°

x

(a)

(b)

relative to the origin of A is .Also, the position vectors of particle P are rel-
ative to the origin of A and relative to the origin of B. From the arrangement of
heads and tails of those three position vectors, we can relate the vectors with

(4-43)

By taking the time derivative of this equation, we can relate the velocities 
and of particle P relative to our observers:

(4-44)

By taking the time derivative of this relation, we can relate the accelerations 
and of the particle P relative to our observers. However, note that because

is constant, its time derivative is zero.Thus, we get

(4-45)

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will
measure the same acceleration for a moving particle.

a:PA � a:PB.

v:BA

a:PB

a:PA

v:PA � v:PB � v:BA.

v:PB

v:PA

r:PA � r:PB � r:BA.

r:PB

r:PAr:BA

FIG. 4-23 A plane flying in a wind.
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REVIEW & SUMMARY

Position Vector The location of a particle relative to the
origin of a coordinate system is given by a position vector ,
which in unit-vector notation is

(4-1)

Here x , y , and z are the vector components of position vec-
tor , and x, y, and z are its scalar components (as well as the
coordinates of the particle). A position vector is described
either by a magnitude and one or two angles for orientation,
or by its vector or scalar components.

Displacement If a particle moves so that its position vec-
tor changes from to , the particle’s displacement is

(4-2)

The displacement can also be written as

(4-3)

� �x � �y � �z . (4-4)

Average Velocity and Instantaneous Velocity If a
particle undergoes a displacement in time interval �t, its
average velocity for that time interval is

(4-8)

As �t in Eq. 4-8 is shrunk to 0, reaches a limit called either
the velocity or the instantaneous velocity :

(4-10)

which can be rewritten in unit-vector notation as

(4-11)

where vx � dx /dt, vy � dy/dt, and vz � dz /dt. The instanta-
neous velocity of a particle is always directed along the
tangent to the particle’s path at the particle’s position.

Average Acceleration and Instantaneous Accele-
ration If a particle’s velocity changes from to in time
interval �t, its average acceleration during �t is

(4-15)

As �t in Eq. 4-15 is shrunk to 0, reaches a limiting value
called either the acceleration or the instantaneous accel-
eration :

(4-16)

In unit-vector notation,

(4-17)

where ax � dvx/dt, ay � dvy/dt, and az � dvz/dt.

a: � ax î � ay ĵ � azk̂,

a: �
d v:

dt
.

a:

a:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

v:2v:1

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d r:

dt
,

v:
v:avg

v:avg �
� r:

�t
.

v:avg

� r:

k̂ĵî

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂

� r: � r:2 � r:1.

� r:r:2r:1

r:
k̂ĵî

r: � x î � y ĵ � zk̂.

r:
Projectile Motion Projectile motion is the motion of a
particle that is launched with an initial velocity . During its
flight, the particle’s horizontal acceleration is zero and its
vertical acceleration is the free-fall acceleration �g. (Upward
is taken to be a positive direction.) If is expressed as a
magnitude (the speed v0) and an angle �0 (measured from the
horizontal), the particle’s equations of motion along the hori-
zontal x axis and vertical y axis are

x � x0 � (v0 cos �0)t, (4-21)

, (4-22)

vy � v0 sin �0 � gt, (4-23)

. (4-24)

The trajectory (path) of a particle in projectile motion is
parabolic and is given by

, (4-25)

if x0 and y0 of Eqs. 4-21 to 4-24 are zero. The particle’s
horizontal range R, which is the horizontal distance from the
launch point to the point at which the particle returns to
the launch height, is

(4-26)

Uniform Circular Motion If a particle travels along a cir-
cle or circular arc of radius r at constant speed v, it is said to be
in uniform circular motion and has an acceleration of con-
stant magnitude

(4-34)

The direction of is toward the center of the circle or circular
arc, and is said to be centripetal. The time for the particle to
complete a circle is

. (4-35)

T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B
are moving relative to each other at constant velocity, the
velocity of a particle P as measured by an observer in frame A
usually differs from that measured from frame B. The two
measured velocities are related by

(4-44)

where is the velocity of B with respect to A. Both
observers measure the same acceleration for the particle:

(4-45)a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA,

T �
2	r

v

a:
a:

a �
v2

r
.

a:

R �
v2

0

g
 sin 2�0.

y � (tan �0)x �
gx2

2(v0 cos �0)2

v2
y � (v0 sin �0)2 � 2g(y � y0)

y � y0 � (v0 sin �0)t � 1
2gt2

v:0

v:0
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QUESTIONS

1 Figure 4-24 shows the initial position i and the final posi-
tion f of a particle. What are the (a) initial position vector 
and (b) final position vector , both in unit-vector notation?
(c) What is the x component of displacement ?� r:

rf
:

r:i

vertically. Rank those three windows according to (a) the time
the cream tangerine takes to pass them and (b) the average
speed of the cream tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5,
and 6, which are identical in size and irregularly spaced hori-
zontally. Rank those three windows according to (c) the time
the cream tangerine takes to pass them and (d) the average
speed of the cream tangerine during the passage, greatest first.

FIG. 4-24 Question 1.

FIG. 4-25 Question 2.

FIG. 4-26 Question 4.

z

x

i

f

y

4 m
4 m

1 m

2 m
3 m

3 m

3 m 5 m

a i b c

2 Figure 4-25 shows the path
taken by a skunk foraging
for trash food, from initial point i.
The skunk took the same time T
to go from each labeled point to
the next along its path. Rank
points a, b, and c according to the
magnitude of the average veloc-
ity of the skunk to reach them
from initial point i, greatest first.

3 You are to launch a rocket, from just above the ground,
with one of the following initial velocity vectors: (1) 

, (2) , (3) , (4) 
. In your coordinate system, x runs along level ground

and y increases upward. (a) Rank the vectors according to the
launch speed of the projectile, greatest first. (b) Rank the vectors
according to the time of flight of the projectile,greatest first.

4 Figure 4-26 shows three situations in which identical pro-
jectiles are launched (at the same level) at identical initial
speeds and angles.The projectiles do not land on the same ter-
rain, however. Rank the situations according to the final
speeds of the projectiles just before they land, greatest first.

�20î � 70ĵ
v:0 �v:0 � 20î � 70ĵv:0 � �20î � 70ĵ20î � 70ĵ
v:0 �

(a) (b) (c)

5 When Paris was shelled from 100 km away with the WWI
long-range artillery piece “Big Bertha,” the shells were fired
at an angle greater than 45º to give them a greater range, pos-
sibly even twice as long as at 45º. Does that result mean that
the air density at high altitudes increases with altitude or
decreases?  

6 In Fig. 4-27, a cream tangerine is thrown up past windows
1, 2, and 3, which are identical in size and regularly spaced

1

2

3
4

5

6

FIG. 4-27 Question 6.

7 Figure 4-28 shows three
paths for a football kicked from
ground level. Ignoring the ef-
fects of air, rank the paths
according to (a) time of flight,
(b) initial vertical velocity com-
ponent, (c) initial horizontal ve-
locity component, and (d) ini-
tial speed, greatest first.

8 The only good use of a
fruitcake is in catapult prac-
tice. Curve 1 in Fig. 4-29 gives
the height y of a catapulted
fruitcake versus the angle �
between its velocity vector and
its acceleration vector during
flight. (a) Which of the lettered
points on that curve corre-
sponds to the landing of the fruitcake on the ground? (b)
Curve 2 is a similar plot for the same launch speed but for a
different launch angle. Does the fruitcake now land farther
away or closer to the launch point?

9 An airplane flying horizontally at a constant speed of 
350 km/h over level ground releases a bundle of food supplies.
Ignore the effect of the air on the bundle.What are the bundle’s
initial (a) vertical and (b) horizontal components of velocity? (c)
What is its horizontal component of velocity just before hitting
the ground? (d) If the airplane’s
speed were, instead, 450 km/h,
would the time of fall be longer,
shorter, or the same?

10 A ball is shot from
ground level over level ground
at a certain initial speed.
Figure 4-30 gives the range R

1 2 3

FIG. 4-28 Question 7.

y

θ 
A B

2

1

FIG. 4-29 Question 8.

R

θ 0

b
a

c

FIG. 4-30 Question 10.
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of the ball versus its launch angle
�0. Rank the three lettered points
on the plot according to (a) the
total flight time of the ball and
(b) the ball’s speed at maximum
height, greatest first.

11 In Fig. 4-31, particle P is in
uniform circular motion, cen-
tered on the origin of an xy coor-
dinate system. (a) At what values
of � is the vertical component ry of
the position vector greatest in magnitude? (b) At what values of
� is the vertical component vy of the particle’s velocity greatest
in magnitude? (c) At what values of � is the vertical component

ay of the particle’s acceleration
greatest in magnitude?

12 (a) Is it possible to be acceler-
ating while traveling at constant
speed? Is it possible to round a curve
with (b) zero acceleration and (c) a
constant magnitude of acceleration?

13 Figure 4-32 shows four tracks
(either half- or quarter-circles)
that can be taken by a train, which
moves at a constant speed. Rank
the tracks according to the magni-
tude of a train’s acceleration on
the curved portion, greatest first.

PROBLEMS

sec. 4-2 Position and Displacement
•1 A positron undergoes a displacement 

, ending with the position vector ,
in meters.What was the positron’s initial position vector?

•2 A watermelon seed has the following coordinates: x �
�5.0 m, y � 8.0 m, and z � 0 m. Find its position vector (a) in
unit-vector notation and as (b) a magnitude and (c) an angle
relative to the positive direction of the x axis. (d) Sketch the
vector on a right-handed coordinate system. If the seed is
moved to the xyz coordinates (3.00 m, 0 m, 0 m), what is its
displacement (e) in unit-vector notation and as (f) a magni-
tude and (g) an angle relative to the positive x direction?

•3 The position vector for an electron is 
. (a) Find the magnitude of . (b) Sketch

the vector on a right-handed coordinate system.

••4 The minute hand of a wall clock measures 10 cm from
its tip to the axis about which it rotates. The magnitude and
angle of the displacement vector of the tip are to be deter-
mined for three time intervals. What are the (a) magnitude
and (b) angle from a quarter after the hour to half past, the (c)
magnitude and (d) angle for the next half hour, and the (e)
magnitude and (f) angle for the hour after that?

sec. 4-3 Average Velocity and Instantaneous Velocity
•5 An ion’s position vector is initially 

, and 10 s later it is , all in meters.
In unit-vector notation, what is its during the 10 s?

•6 An electron’s position is given by 
, with t in seconds and in meters. (a) In unit-

vector notation, what is the electron’s velocity ? At t �

2.00 s, what is (b) in unit-vector notation and as (c) a magni-
tude and (d) an angle relative to the positive direction of the x
axis?

•7 A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and

v:
v:(t)

r:4.00t2ĵ � 2.00k̂
r: � 3.00t î �

v:avg

r: � �2.0î � 8.0ĵ � 2.0k̂2.0k̂
6.0ĵ �r: � 5.0î �

r:(3.0 m)ĵ � (2.0 m)k̂
r: � (5.0 m)î �

r: � 3.0ĵ � 4.0k̂3.0ĵ � 6.0k̂
� r: � 2.0î �

then west for 50.0 min. What are the (a) magnitude and
(b) angle of its average velocity during this trip?

••8 A plane flies 483 km east from city A to city B in
45.0 min and then 966 km south from city B to city C in 1.50 h.
For the total trip, what
are the (a) magnitude
and (b) direction of the
plane’s displacement,
the (c) magnitude and
(d) direction of its aver-
age velocity, and (e) its
average speed?

••9 Figure 4-33 gives
the path of a squirrel
moving about on level
ground, from point A
(at time t � 0), to
points B (at t � 5.00
min), C (at t � 10.0
min), and finally D (at t
� 15.0 min). Consider the average velocities of the squirrel
from point A to each of the other three points. Of them, what
are the (a) magnitude and (b) angle of the one with the least
magnitude and the (c) magnitude and (d) angle of the one
with the greatest magnitude?

•••10 The position vector
locates

a particle as a function of time t.
Vector is in meters, t is in sec-
onds, and factors e and f are
constants. Figure 4-34 gives
the angle � of the particle’s di-
rection of travel as a function
of t (� is measured from the
positive x direction). What are
(a) e and (b) f, including units?

r:

r: � 5.00t î � (et � ft2)ĵ

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at

• – ••• Number of dots indicates level of problem difficulty ILW Interactive solution is at

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

http://www.wiley.com/college/halliday

x

y

θ 
r

P

3

4

2

1

FIG. 4-31 Question 11.

FIG. 4-32 Question 13.

D

CA

B

25 50

50

25

0

–25

–50

y (m)

x (m)

FIG. 4-33 Problem 9.

θ 

20°

0°

–20°

10 20

t (s)

FIG. 4-34 Problem 10.
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sec. 4-4 Average Acceleration and Instantaneous
Acceleration
•11 A particle moves so that its position (in meters) as
a function of time (in seconds) is . Write
expressions for (a) its velocity and (b) its acceleration as func-
tions of time.

•12 A proton initially has and then 
4.0 s later has (in meters per second).
For that 4.0 s, what are (a) the proton’s average acceleration

in unit-vector notation, (b) the magnitude of , and (c)
the angle between and the positive direction of the x axis?

•13 The position of a particle moving in an xy plane is
given by , with in
meters and t in seconds. In unit-vector notation, calculate (a)

, (b) , and (c) for t � 2.00 s. (d) What is the angle between
the positive direction of the x axis and a line tangent to the
particle’s path at t � 2.00 s?   

•14 At one instant a bicyclist is 40.0 m due east of a park’s
flagpole, going due south with a speed of 10.0 m/s. Then 30.0 s
later, the cyclist is 40.0 m due north of the flagpole, going due
east with a speed of 10.0 m/s. For the cyclist in this 30.0 s
interval, what are the (a) magnitude and (b) direction of
the displacement, the (c) magnitude and (d) direction of the
average velocity, and the (e) magnitude and (f) direction of
the average acceleration?

••15 A cart is propelled over an xy plane with acceleration
components ax � 4.0 m/s2 and ay � �2.0 m/s2. Its initial
velocity has components v0x � 8.0 m/s and v0y � 12 m/s. In
unit-vector notation, what is the velocity of the cart when it
reaches its greatest y coordinate?

••16 A moderate wind accelerates a pebble over a horizon-
tal xy plane with a constant acceleration 

. At time t � 0, the velocity is (4.00 m/s)i. What are
the (a) magnitude and (b) angle of its velocity when it has
been displaced by 12.0 m parallel to the x axis?

••17 A particle leaves the origin with an initial velocity 
and a constant acceleration 

. When it reaches its maximum x coordinate, what
are its (a) velocity and (b) position vector?

••18 The velocity of a particle moving in the xy plane is
given by , with in meters per
second and t (
 0) in seconds. (a) What is the acceleration
when t � 3.0 s? (b) When (if ever) is the acceleration zero? (c)
When (if ever) is the velocity zero? (d) When (if ever) does
the speed equal 10 m/s?

•••19 The acceleration of a particle moving only on a hori-
zontal xy plane is given by , where is in meters
per second-squared and t is in seconds. At t � 0, the position
vector locates the particle, which
then has the velocity vector

.
At t � 4.00 s, what are (a) its po-
sition vector in unit-vector nota-
tion and (b) the angle between
its direction of travel and the
positive direction of the x axis?

•••20 In Fig. 4-35, particle A
moves along the line y � 30 m
with a constant velocity of
magnitude 3.0 m/s and parallel

v:

v: � (5.00 m/s)î � (2.00 m/s)ĵ

r: � (20.0 m)î � (40.0 m)ĵ

a:a: � 3t î � 4t ĵ

v:v: � (6.0t � 4.0t2)î � 8.0ĵ
v:

0.500ĵ) m/s2
a: � (�1.00î �(3.00î) m/s

v: �

î(7.00 m/s2)ĵ
a: � (5.00 m/s2)î �

a:v:r:

r:r: � (2.00t3 � 5.00t)î � (6.00 � 7.00t4)ĵ
r:

a:avg

a:avga:avg

v: � �2.0î � 2.0ĵ � 5.0k̂
v: � 4.0î � 2.0ĵ � 3.0k̂

r: � î � 4t2ĵ � tk̂

to the x axis.At the instant particle A passes the y axis, particle B
leaves the origin with zero initial speed and constant acceleration

of magnitude 0.40 m/s2. What angle � between and the
positive direction of the y axis would result in a collision?

sec. 4-6 Projectile Motion Analyzed
•21 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed
of 250 m/s. (a) How long does the projectile remain in the air?
(b) At what horizontal distance from the firing point does it
strike the ground? (c) What is the magnitude of the vertical
component of its velocity as it strikes the ground?

•22 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm
the 23-year long-jump record set by Bob Beamon. Assume
that Powell’s speed on takeoff was 9.5 m/s (about equal to that
of a sprinter) and that g � 9.80 m/s2 in Tokyo. How much less
was Powell’s range than the maximum possible range for a
particle launched at the same speed?

•23 The current world-record motorcycle jump is 77.0 m, set
by Jason Renie.Assume that he left the take-off ramp at 12.0º to
the horizontal and that the take-off and landing heights are the
same. Neglecting air drag, determine his take-off speed.

•24 A small ball rolls horizontally off the edge of a tabletop
that is 1.20 m high. It strikes the floor at a point 1.52 m hori-
zontally from the table edge. (a) How long is the ball in the
air? (b) What is its speed at the instant it leaves the table?

•25 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at
point Q on the rim, vertically below P, 0.19 s later. (a) What is
the distance PQ? (b) How far away from the dart board is the
dart released?

•26 In Fig. 4-36, a stone is projected at a cliff of height h
with an initial speed of 42.0 m/s directed at angle �0 � 60.0°
above the horizontal. The stone strikes at A, 5.50 s after
launching. Find (a) the height h of the cliff, (b) the speed of the
stone just before impact at A, and (c) the maximum height H
reached above the ground.

a:a:

xB

A

y

θ 

v 

a

FIG. 4-35 Problem 20.
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FIG. 4-36 Problem 26.

•27 A certain airplane has a
speed of 290.0 km/h and is
diving at an angle of � � 30.0°
below the horizontal when
the pilot releases a radar de-
coy (Fig. 4-37). The horizontal
distance between the release
point and the point where the
decoy strikes the ground is d �
700 m. (a) How long is the de-
coy in the air? (b) How high
was the release point?
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d

FIG. 4-37 Problem 27.
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Problems 79

•28 A stone is catapulted at time t � 0, with an initial veloc-
ity of magnitude 20.0 m/s and at an angle of 40.0° above the
horizontal. What are the magnitudes of the (a) horizontal and
(b) vertical components of its displacement from the catapult
site at t � 1.10 s? Repeat for the (c) horizontal and (d) vertical
components at t � 1.80 s, and for the (e) horizontal and (f)
vertical components at t � 5.00 s.

••29 A lowly high diver pushes off horizontally with a speed
of 2.00 m/s from the platform edge 10.0 m above the surface
of the water. (a) At what horizontal distance from the edge is
the diver 0.800 s after pushing off? (b) At what vertical dis-
tance above the surface of the water is the diver just then? (c)
At what horizontal distance from the edge does the diver
strike the water?

••30 A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled
against a wall to break apart the wall. The machine was not
placed near the wall because then arrows could reach it from
the castle wall. Instead, it was positioned so that the stone hit
the wall during the second half of its flight. Suppose a stone is
launched with a speed of v0 � 28.0 m/s and at an angle of �0 �
40.0°. What is the speed of the stone if it hits the wall (a) just
as it reaches the top of its parabolic path and (b) when it has
descended to half that height? (c) As a percentage, how much
faster is it moving in part (b) than in part (a)?  

••31 A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of
730 m. The projectile hits the ground 5.00 s after release.
(a) What is the speed of the plane? (b) How far does the
projectile travel horizontally during its flight? What are the (c)
horizontal and (d) vertical components of its velocity just be-
fore striking the ground?

••32 During a tennis match, a player serves the ball at 
23.6 m/s, with the center of the ball leaving the racquet hori-
zontally 2.37 m above the court surface. The net is 12 m away
and 0.90 m high. When the ball reaches the net, (a) does the
ball clear it and (b) what is the distance between the center of
the ball and the top of the net? Suppose that, instead, the ball
is served as before but now it leaves the racquet at 5.00° below
the horizontal. When the ball reaches the net, (c) does the ball
clear it and (d) what now is the distance between the center of
the ball and the top of the net?

••33 In a jump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle
of the spike is difficult. Suppose a ball is spiked from a height of
2.30 m with an initial speed of 20.0 m/s at a downward angle of
18.00°. How much farther on the opposite floor would it have
landed if the downward angle were, instead, 8.00°?

••34 A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m
away in the direction of the kick starts running to meet the
ball at that instant. What must be his average speed if he is to
meet the ball just before it hits the ground?

••35 A projectile’s launch speed is five times its speed at
maximum height. Find launch angle �0.

••36 Suppose that a shot putter can put a shot at the world-
class speed v0 � 15.00 m/s and at a height of 2.160 m. What
horizontal distance would the shot travel if the launch angle �0

is (a) 45.00° and (b) 42.00°? The answers indicate that the

angle of 45°, which maximizes the range of projectile motion,
does not maximize the horizontal distance when the launch
and landing are at different heights.

••37 A ball is shot from the ground into the air. At a height
of 9.1 m, its velocity is , with horizontal
and upward. (a) To what maximum height does the ball rise?
(b) What total horizontal distance does the ball travel? What
are the (c) magnitude and (d) angle (below the horizontal) of
the ball’s velocity just before it hits the ground?

••38 You throw a ball toward
a wall at speed 25.0 m/s and at
angle �0 � 40.0° above the hori-
zontal (Fig. 4-38). The wall is
distance d � 22.0 m from the
release point of the ball.
(a) How far above the release
point does the ball hit the wall?
What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d)
When it hits, has it passed the highest point on its trajectory?

••39 A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with
the rifle, how high above the target must the rifle barrel be
pointed so that the bullet hits dead center?

••40 A baseball leaves a pitcher’s hand horizontally at
a speed of 161 km/h. The distance to the batter is 18.3 m.
(a) How long does the ball take to travel the first half of that
distance? (b) The second half? (c) How far does the ball fall
freely during the first half? (d) During the second half?
(e) Why aren’t the quantities in (c) and (d) equal?

••41 In Fig. 4-39, a ball is
thrown leftward from the left
edge of the roof, at height h
above the ground. The ball hits
the ground 1.50 s later, at dis-
tance d � 25.0 m from the
building and at angle � � 60.0°
with the horizontal. (a) Find h. (Hint: One way is to reverse the
motion, as if on videotape.) What are the (b) magnitude and (c)
angle relative to the horizontal of the velocity at which the ball
is thrown? (d) Is the angle above or below the horizontal?

••42 A golf ball is struck at
ground level. The speed of the
golf ball as a function of the
time is shown in Fig. 4-40, where
t � 0 at the instant the ball is
struck. (a) How far does the golf
ball travel horizontally before
returning to ground level? (b)
What is the maximum height
above ground level attained by
the ball?

••43 In Fig. 4-41, a ball is
launched with a velocity of
magnitude 10.0 m/s, at an angle
of 50.0° to the horizontal. The
launch point is at the base of a ramp of horizontal length d1 �
6.00 m and height d2 � 3.60 m. A plateau is located at the top
of the ramp. (a) Does the ball land on the ramp or

ĵ
îv: � (7.6î � 6.1ĵ) m/s
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•••51 A football kicker can give the ball an initial speed of
25 m/s. What are the (a) least and (b) greatest elevation
angles at which he can kick the ball to score a field goal
from a point 50 m in front of goalposts whose horizontal bar
is 3.44 m above the ground?

•••52 A ball is to be shot
from level ground with a cer-
tain speed. Figure 4-47 shows
the range R it will have versus
the launch angle �0. The value
of �0 determines the flight time;
let tmax represent the maximum
flight time. What is the least
speed the ball will have during
its flight if �0 is chosen such that
the flight time is 0.500tmax?

•••53 A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm
wide.Which step does the ball hit first?

Chapter 4 | Motion in Two and Three Dimensions80

the plateau? When it lands, what are the (b) magnitude and
(c) angle of its displacement from the launch point?

••44 In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme:After being shot from a cannon,
he soared over three Ferris wheels and into a net (Fig. 4-42). (a)
Treating him as a particle, calculate his clearance over the first
wheel. (b) If he reached maximum height over the middle wheel,
by how much did he clear it? (c) How far from the cannon should
the net’s center have been positioned (neglect air drag)?  

••45 Upon spotting an insect
on a twig overhanging water, an
archer fish squirts water drops
at the insect to knock it into the
water (Fig. 4-43). Although the
fish sees the insect along a
straight-line path at angle � and
distance d, a drop must be
launched at a different angle �0

if its parabolic path is to inter-
sect the insect. If � � 36.0°, d �
0.900 m, and the launch speed
is 3.56 m/s, what �0 is required
for the drop to be at the top of
the parabolic path when it
reaches the insect?  

••46 In Fig. 4-44, a ball is
thrown up onto a roof, landing
4.00 s later at height h � 20.0
m above the release level. The
ball’s path just before landing
is angled at � � 60.0° with the roof. (a) Find the horizontal dis-
tance d it travels. (See the hint to Problem 41.) What are the
(b) magnitude and (c) angle (relative to the horizontal) of the
ball’s initial velocity?

••47 A batter hits a pitched ball when the center of the ball
is 1.22 m above the ground. The ball leaves the bat at an angle
of 45° with the ground. With that launch, the ball should have
a horizontal range (returning to the launch level) of 107 m. (a)
Does the ball clear a 7.32-m-high fence that is 97.5 m horizon-
tally from the launch point? (b) At the fence, what is the dis-
tance between the fence top and the ball center?

••48 In basketball, hang is an illusion in which a player
seems to weaken the gravitational acceleration while in
midair. The illusion depends much on a skilled player’s ability
to rapidly shift the ball between hands during the flight, but it
might also be supported by the longer horizontal distance the

player travels in the upper part of the jump than in the lower
part. If a player jumps with an initial speed of v0 � 7.00 m/s at
an angle of �0 � 35.0°, what percent of the jump’s range does
the player spend in the upper half of the jump (between maxi-
mum height and half maximum height)?  

•••49 A skilled skier knows to jump upward before reach-
ing a downward slope. Consider a jump in which the launch
speed is v0 � 10 m/s, the launch angle is �0 � 9.0°, the initial
course is approximately flat, and the steeper track has a
slope of 11.3°. Figure 4-45a shows a prejump that allows
the skier to land on the top portion of the steeper track.
Figure 4-45b shows a jump at the edge of the steeper track. In
Fig. 4-45a, the skier lands at approximately the launch level.
(a) In the landing, what is the angle � between the skier’s path
and the slope? In Fig. 4-45b, (b) how far below the launch
level does the skier land and (c) what is �? (The greater fall and
greater � can result in loss of control in the landing.)  

•••50 A ball is to be shot from level ground toward a wall at
distance x (Fig. 4-46a). Figure 4-46b shows the y component vy

of the ball’s velocity just as it would reach the wall, as a func-
tion of that distance x. What is the launch angle?
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81Problems

•••54 Two seconds after being projected from ground level,
a projectile is displaced 40 m horizontally and 53 m vertically
above its launch point. What are the (a) horizontal and
(b) vertical components of the initial velocity of the projec-
tile? (c) At the instant the projectile achieves its maximum
height above ground level, how far is it displaced horizontally
from the launch point?   

•••55 In Fig. 4-48, a baseball is hit at a height h � 1.00 m
and then caught at the same height. It travels alongside a wall,
moving up past the top of the wall 1.00 s after it is hit and then
down past the top of the wall 4.00 s later, at distance D � 50.0
m farther along the wall. (a) What horizontal distance is trav-
eled by the ball from hit to catch? What are the (b) magnitude
and (c) angle (relative to the horizontal) of the ball’s velocity
just after being hit? (d) How high is the wall?

sec. 4-7 Uniform Circular Motion
•56 A centripetal-acceleration addict rides in uniform circu-
lar motion with period T � 2.0 s and radius r � 3.00 m. At t1

his acceleration is . At that
instant, what are the values of (a) and (b) ?

•57 A woman rides a carnival Ferris wheel at radius 15 m,
completing five turns about its horizontal axis every minute.
What are (a) the period of the motion, the (b) magnitude and
(c) direction of her centripetal acceleration at the highest
point, and the (d) magnitude and (e) direction of her cen-
tripetal acceleration at the lowest point?

•58 What is the magnitude of the acceleration of a sprinter
running at 10 m/s when rounding a turn of a radius 25 m?

•59 When a large star becomes a supernova, its core may be
compressed so tightly that it becomes a neutron star, with a ra-
dius of about 20 km (about the size of the San Francisco area).
If a neutron star rotates once every second, (a) what is the
speed of a particle on the star’s equator and (b) what is the
magnitude of the particle’s centripetal acceleration? (c) If the
neutron star rotates faster, do the answers to (a) and (b) in-
crease, decrease, or remain the same?

•60 An Earth satellite moves in a circular orbit 640 km
above Earth’s surface with a period of 98.0 min. What are the
(a) speed and (b) magnitude of the centripetal acceleration of
the satellite?

•61 A carnival merry-go-round rotates about a vertical axis
at a constant rate. A man standing on the edge has a constant
speed of 3.66 m/s and a centripetal acceleration of mag-
nitude 1.83 m/s2. Position vector locates him relative to
the rotation axis. (a) What is the magnitude of ? What is the
direction of when is directed (b) due east and (c) due
south?

•62 A rotating fan completes 1200 revolutions every
minute. Consider the tip of a blade, at a radius of 0.15 m.

a:r:
r:

r:
a:

r: � a:v: � a:
a: � (6.00 m/s2)î � (�4.00 m/s2)ĵ

(a) Through what distance does the tip move in one revolu-
tion? What are (b) the tip’s speed and (c) the magnitude of its
acceleration? (d) What is the period of the motion?

••63 A purse at radius 2.00 m and a wallet at radius 3.00 m
travel in uniform circular motion on the floor of a merry-
go-round as the ride turns. They are on the same radial line.
At one instant, the acceleration of the purse is (2.00 m/s2) �
(4.00 m/s2) . At that instant and in unit-vector notation, what
is the acceleration of the wallet?

••64 A particle moves along a circular path over a hori-
zontal xy coordinate system, at constant speed. At time t1 �
4.00 s, it is at point (5.00 m, 6.00 m) with velocity (3.00 m/s)
and acceleration in the positive x direction.At time t2 � 10.0 s,
it has velocity (�3.00 m/s) and acceleration in the positive
y direction. What are the (a) x and (b) y coordinates of the
center of the circular path if t2 � t1 is less than one period?

••65 At t1 � 2.00 s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s2) � (4.00 m/s2) . It
moves at constant speed. At time t2 � 5.00 s, its acceleration is
(4.00 m/s2) � (�6.00 m/s2) . What is the radius of the path
taken by the particle if t2 � t1 is less than one period?   

••66 A particle moves horizontally in uniform circular
motion, over a horizontal xy plane. At one instant, it moves
through the point at coordinates (4.00 m, 4.00 m) with a
velocity of �5.00 m/s and an acceleration of �12.5 m/s2.
What are the (a) x and (b) y coordinates of the center of the
circular path?

•••67 A boy whirls a stone in a horizontal circle of radius
1.5 m and at height 2.0 m above level ground. The string
breaks, and the stone flies off horizontally and strikes the
ground after traveling a horizontal distance of 10 m. What is
the magnitude of the centripetal acceleration of the stone dur-
ing the circular motion?

•••68 A cat rides a merry-go-round turning with uniform
circular motion. At time t1 � 2.00 s, the cat’s velocity is 

, measured on a horizontal xy coordi-
nate system. At t2 � 5.00 s, its velocity is 

. What are (a) the magnitude of the cat’s cen-
tripetal acceleration and (b) the cat’s average acceleration
during the time interval t2 � t1, which is less than one period?

sec. 4-8 Relative Motion in One Dimension
•69 A cameraman on a pickup truck is traveling westward
at 20 km/h while he videotapes a cheetah that is moving west-
ward 30 km/h faster than the truck. Suddenly, the cheetah
stops, turns, and then runs at 45 km/h eastward, as measured
by a suddenly nervous crew member who stands alongside the
cheetah’s path. The change in the animal’s velocity takes 2.0 s.
What are the (a) magnitude and (b) direction of the animal’s
acceleration according to the cameraman and the (c) magni-
tude and (d) direction according to the nervous crew member?

•70 A boat is traveling upstream in the positive direction of
an x axis at 14 km/h with respect to the water of a river. The
water is flowing at 9.0 km/h with respect to the ground. What
are the (a) magnitude and (b) direction of the boat’s velocity
with respect to the ground? A child on the boat walks from
front to rear at 6.0 km/h with respect to the boat.What are the
(c) magnitude and (d) direction of the child’s velocity with re-
spect to the ground?
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ĵî

î
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••71 A suspicious-looking man runs as fast as he can along
a moving sidewalk from one end to the other, taking 2.50 s.
Then security agents appear, and the man runs as fast as he
can back along the sidewalk to his starting point, taking 10.0 s.
What is the ratio of the man’s running speed to the sidewalk’s
speed?

sec. 4-9 Relative Motion in Two Dimensions
•72 A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He
can legally pass the ball to a teammate as long as the ball’s
velocity relative to the field does not have a positive x compo-
nent. Suppose the player runs at speed 4.0 m/s relative to the
field while he passes the ball with velocity relative to him-
self. If has magnitude 6.0 m/s, what is the smallest angle it
can have for the pass to be legal?

••73 Two ships, A and B, leave port at the same time. Ship A
travels northwest at 24 knots, and ship B travels at 28 knots in
a direction 40° west of south. (1 knot � 1 nautical mile per
hour; see Appendix D.) What are the (a) magnitude and
(b) direction of the velocity of ship A relative to B? (c) After
what time will the ships be 160 nautical miles apart? (d) What
will be the bearing of B (the direction of B’s position) relative
to A at that time?

••74 A light plane attains an airspeed of 500 km/h.The pilot
sets out for a destination 800 km due north but discovers that
the plane must be headed 20.0° east of due north to fly there
directly. The plane arrives in 2.00 h. What were the (a) magni-
tude and (b) direction of the wind velocity?

••75 Snow is falling vertically at a constant speed of 8.0 m/s.
At what angle from the vertical do the snowflakes appear to
be falling as viewed by the driver of a car traveling on a
straight, level road with a speed of 50 km/h?

••76 After flying for 15 min in a wind blowing 42 km/h at an
angle of 20° south of east, an airplane pilot is over a town that
is 55 km due north of the starting point. What is the speed of
the airplane relative to the air?

••77 A train travels due south at 30 m/s (relative to the
ground) in a rain that is blown toward the south by the wind.
The path of each raindrop makes an angle of 70° with the ver-
tical, as measured by an observer stationary on the ground.An
observer on the train, however, sees the drops fall perfectly
vertically. Determine the speed of the raindrops relative to the
ground.

••78 A 200-m-wide river flows due east at a uniform speed
of 2.0 m/s. A boat with a speed of 8.0 m/s relative to the water
leaves the south bank pointed in a direction 30° west of north.
What are the (a) magnitude and (b) direction of the boat’s ve-
locity relative to the ground? (c) How long does the boat take
to cross the river?   

••79 Two highways intersect as shown in Fig. 4-49. At the
instant shown, a police car P is distance dP � 800 m from the
intersection and moving at speed vP � 80 km/h. Motorist M
is distance dM � 600 m from the intersection and moving
at speed vM � 60 km/h. (a) In unit-vector notation, what is the
velocity of the motorist with respect to the police car? (b) For
the instant shown in Fig. 4-49, what is the angle between the
velocity found in (a) and the line of sight between the two

v:BP

v:BP

cars? (c) If the cars maintain their velocities, do the answers to
(a) and (b) change as the cars move nearer the intersection?

••80 In the overhead
view of Fig. 4-50, Jeeps P
and B race along straight
lines, across flat terrain,
and past stationary bor-
der guard A. Relative to
the guard, B travels at a
constant speed of 20.0
m/s, at the angle �2 �
30.0°. Relative to the
guard, P has accelerated
from rest at a constant
rate of 0.400 m/s2 at the angle �1 � 60.0°. At a certain time
during the acceleration, P has a speed of 40.0 m/s. At that
time, what are the (a) magnitude and (b) direction of the ve-
locity of P relative to B and the (c) magnitude and (d) direc-
tion of the acceleration of P relative to B?

•••81 Ship A is located 4.0 km north and 2.5 km east of ship
B. Ship A has a velocity of 22 km/h toward the south, and ship
B has a velocity of 40 km/h in a direction 37° north of east. (a)
What is the velocity of A relative to B in unit-vector notation
with toward the east? (b) Write an expression (in terms of 
and ) for the position of A relative to B as a function of t,
where t � 0 when the ships are in the positions described
above. (c) At what time is the separation between the ships
least? (d) What is that least separation?

•••82 A 200-m-wide river has a uniform flow speed of 
1.1 m/s through a jungle and toward the east. An explorer
wishes to leave a small clearing on the south bank and
cross the river in a powerboat that moves at a constant speed
of 4.0 m/s with respect to the water. There is a clearing on
the north bank 82 m upstream from a point directly opposite
the clearing on the south bank. (a) In what direction must the
boat be pointed in order to travel in a straight line and land in
the clearing on the north bank? (b) How long will the boat
take to cross the river and land in the clearing?

Additional Problems
83 You are kidnapped by political-science majors (who are
upset because you told them political science is not a real
science). Although blindfolded, you can tell the speed of their
car (by the whine of the engine), the time of travel (by men-
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Problems 83

tally counting off seconds), and the direction of travel (by
turns along the rectangular street system). From these clues,
you know that you are taken along the following course:
50 km/h for 2.0 min, turn 90° to the right, 20 km/h for 4.0 min,
turn 90° to the right, 20 km/h for 60 s, turn 90° to the left,
50 km/h for 60 s, turn 90° to the right, 20 km/h for 2.0 min, turn
90° to the left, 50 km/h for 30 s. At that point, (a) how far are
you from your starting point, and (b) in what direction relative
to your initial direction of travel are you?

84 Curtain of death. A large metallic asteroid strikes Earth
and quickly digs a crater into the rocky material below ground
level by launching rocks upward and outward. The following
table gives five pairs of launch speeds and angles (from the
horizontal) for such rocks, based on a model of crater forma-
tion. (Other rocks, with intermediate speeds and angles, are
also launched.) Suppose that you are at x � 20 km when the
asteroid strikes the ground at time t � 0 and position x � 0
(Fig. 4-51). (a) At t � 20 s, what are the x and y coordinates of
the rocks headed in your direction from launches A through
E? (b) Plot these coordinates and then sketch a curve through
the points to include rocks with intermediate launch speeds
and angles. The curve should indicate what you would see as
you look up into the approaching rocks and what dinosaurs
must have seen during asteroid strikes long ago.

Launch Speed (m/s) Angle (degrees)

A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0

85 In Fig. 4-52, a lump of wet
putty moves in uniform circu-
lar motion as it rides at a radius
of 20.0 cm on the rim of a
wheel rotating counterclock-
wise with a period of 5.00 ms.
The lump then happens to fly
off the rim at the 5 o’clock
position (as if on a clock face). It leaves the rim at a height of 
h � 1.20 m from the floor and at a distance d � 2.50 m from
a wall.At what height on the wall does the lump hit?

86 A particle is in uniform circular motion about the origin
of an xy coordinate system, moving clockwise with a period 
of 7.00 s. At one instant, its position vector (from the origin) is

. At that instant, what is its veloc-
ity in unit-vector notation?

87 In Fig. 4-53, a ball is shot directly upward from the
ground with an initial speed of v0 � 7.00 m/s. Simultaneously,
a construction elevator cab begins to move upward from the

r: � (2.00 m)î � (3.00 m)ĵ

ground with a constant speed of
vc � 3.00 m/s. What maximum
height does the ball reach rela-
tive to (a) the ground and (b)
the cab floor? At what rate does
the speed of the ball change rel-
ative to (c) the ground and (d)
the cab floor?

88 In Fig. 4-54a, a sled moves in the negative x direction at
constant speed vs while a ball of ice is shot from the sled with 
a velocity relative to the sled. When the ball
lands, its horizontal displacement �xbg relative to the ground
(from its launch position to its landing position) is measured.
Figure 4-54b gives �xbg as a function of vs. Assume the ball
lands at approximately its launch height. What are the values
of (a) v0x and (b) v0y? The ball’s displacement �xbs relative to
the sled can also be measured. Assume that the sled’s velocity
is not changed when the ball is shot.What is �xbs when vs is (c)
5.0 m/s and (d) 15 m/s?

v:0 � v0xî � v0yĵ
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89 A woman who can row a boat at 6.4 km/h in still water
faces a long, straight river with a width of 6.4 km and a current
of 3.2 km/h. Let î point directly across the river and ĵ point di-
rectly downstream. If she rows in a straight line to a point di-
rectly opposite her starting position, (a) at what angle to î
must she point the boat and (b) how long will she take? (c)
How long will she take if, instead, she rows 3.2 km down the
river and then back to her starting point? (d) How long if she
rows 3.2 km up the river and then back to her starting point?
(e) At what angle to iî should she point the boat if she wants to
cross the river in the shortest possible time? (f) How long is
that shortest time?

90 In Fig. 4-55, a radar station detects an airplane approach-
ing directly from the east.At first observation, the airplane is at
distance d1 � 360 m from the station and at angle �1 � 40°
above the horizon. The airplane is tracked through an angular
change �� � 123° in the vertical east–west plane; its distance
is then d2 � 790 m. Find the (a) magnitude and (b) direction of
the airplane’s displacement during this period.
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91 A rifle is aimed horizontally at a target 30 m away. The
bullet hits the target 1.9 cm below the aiming point. What are
(a) the bullet’s time of flight and (b) its speed as it emerges
from the rifle?

92 The fast French train known as the TGV (Train à Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the
train goes around a curve at that speed and the magnitude of
the acceleration experienced by the passengers is to be limited
to 0.050g, what is the smallest radius of curvature for the
track that can be tolerated? (b) At what speed must the train
go around a curve with a 1.00 km radius to be at the accelera-
tion limit?

93 A magnetic field can force a charged particle to move
in a circular path. Suppose that an electron moving in 
a circle experiences a radial acceleration of magnitude 
3.0 � 1014 m/s2 in a particular magnetic field. (a) What is the
speed of the electron if the radius of its circular path is 15 cm?
(b) What is the period of the motion?

94 The position vector for a proton is initially 
and then later is ,

all in meters. (a) What is the proton’s displacement vector, and
(b) to what plane is that vector parallel?

95 A particle P travels with
constant speed on a circle of
radius r � 3.00 m (Fig. 4-56)
and completes one revolution
in 20.0 s. The particle passes
through O at time t � 0. State
the following vectors in mag-
nitude-angle notation (angle
relative to the positive direc-
tion of x). With respect to O,
find the particle’s position vec-
tor at the times t of (a) 5.00 s,
(b) 7.50 s, and (c) 10.0 s.

(d) For the 5.00 s interval from the end of the fifth second
to the end of the tenth second, find the particle’s displace-
ment. For that interval, find (e) its average velocity and its ve-
locity at the (f) beginning and (g) end. Next, find the
acceleration at the (h) beginning and (i) end of that interval.

96 An iceboat sails across the surface of a frozen lake with
constant acceleration produced by the wind. At a certain
instant the boat’s velocity is (6.30 � 8.42 ) m/s.Three seconds
later, because of a wind shift, the boat is instantaneously at
rest.What is its average acceleration for this 3 s interval?

97 In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east,
and 2.88 km upward from its release point on the ground. Find
(a) the magnitude of its average velocity and (b) the angle its
average velocity makes with the horizontal.

98 A ball is thrown horizontally from a height of 20 m and
hits the ground with a speed that is three times its initial
speed.What is the initial speed?

99 A projectile is launched with an initial speed of 30 m/s at
an angle of 60° above the horizontal. What are the (a) magni-
tude and (b) angle of its velocity 2.0 s after launch, and (c) is
the angle above or below the horizontal? What are the (d)
magnitude and (e) angle of its velocity 5.0 s after launch, and
(f) is the angle above or below the horizontal?

100 An airport terminal has a moving sidewalk to speed

ĵî

r: � �2.0î � 6.0ĵ � 2.0k̂5.0î � 6.0ĵ � 2.0k̂
r:

 
�

passengers through a long corridor. Larry does not use the
moving sidewalk; he takes 150 s to walk through the corridor.
Curly, who simply stands on the moving sidewalk, covers the
same distance in 70 s. Moe boards the sidewalk and walks
along it. How long does Moe take to move through the corri-
dor? Assume that Larry and Moe walk at the same speed.

101 A football player punts the football so that it will have a
“hang time” (time of flight) of 4.5 s and land 46 m away. If the
ball leaves the player’s foot 150 cm above the ground, what
must be the (a) magnitude and (b) angle (relative to the hori-
zontal) of the ball’s initial velocity?

102 For women’s volleyball the top of the net is 2.24 m
above the floor and the court measures 9.0 m by 9.0 m on each
side of the net. Using a jump serve, a player strikes the ball at a
point that is 3.0 m above the floor and a horizontal distance of
8.0 m from the net. If the initial velocity of the ball is horizon-
tal, (a) what minimum magnitude must it have if the ball is to
clear the net and (b) what maximum magnitude can it have if
the ball is to strike the floor inside the back line on the other
side of the net?

103 Figure 4-57 shows the straight path of a
particle across an xy coordinate system as the
particle is accelerated from rest during time in-
terval �t1. The acceleration is constant. The xy
coordinates for point A are (4.00 m, 6.00 m);
those for point B are (12.0 m, 18.0 m). (a) What
is the ratio ay /ax of the acceleration compo-
nents? (b) What are the coordinates of the par-
ticle if the motion is continued for another interval equal to �t1?

104 An astronaut is rotated in a horizontal centrifuge at a
radius of 5.0 m. (a) What is the astronaut’s speed if the cen-
tripetal acceleration has a magnitude of 7.0g? (b) How many
revolutions per minute are required to produce this accelera-
tion? (c) What is the period of the motion?

105 (a) What is the magnitude of the centripetal accelera-
tion of an object on Earth’s equator due to the rotation of
Earth? (b) What would Earth’s rotation period have to be for
objects on the equator to have a centripetal acceleration of
magnitude 9.8 m/s2?

106 A person walks up a stalled 15-m-long escalator in 90 s.
When standing on the same escalator, now moving, the person
is carried up in 60 s. How much time would it take that person
to walk up the moving escalator? Does the answer depend on
the length of the escalator?

107 A baseball is hit at ground level. The ball reaches its
maximum height above ground level 3.0 s after being hit.Then
2.5 s after reaching its maximum height, the ball barely clears a
fence that is 97.5 m from where it was hit. Assume the ground
is level. (a) What maximum height above ground level is
reached by the ball? (b) How high is the fence? (c) How far
beyond the fence does the ball strike the ground?

108 The range of a projectile depends not only on v0 and �0

but also on the value g of the free-fall acceleration, which
varies from place to place. In 1936, Jesse Owens established a
world’s running broad jump record of 8.09 m at the Olympic
Games at Berlin (where g � 9.8128 m/s2). Assuming the same
values of v0 and �0, by how much would his record have dif-
fered if he had competed instead in 1956 at Melbourne (where
g � 9.7999 m/s2)?
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109 During volcanic eruptions, chunks of solid rock can be
blasted out of the volcano; these projectiles are called volcanic
bombs. Figure 4-58 shows a cross section of Mt. Fuji, in Japan.
(a) At what initial speed would a bomb have to be ejected, at
angle �0 � 35° to the horizontal, from the vent at A in order to
fall at the foot of the volcano at B, at vertical distance h � 3.30
km and horizontal distance d � 9.40 km? Ignore, for the mo-
ment, the effects of air on the bomb’s travel. (b) What would
be the time of flight? (c) Would the effect of the air increase or
decrease your answer in (a)?

110 Long flights at midlatitudes in the Northern
Hemisphere encounter the jet stream, an eastward airflow
that can affect a plane’s speed relative to Earth’s surface. If a
pilot maintains a certain speed relative to the air (the plane’s
airspeed), the speed relative to the surface (the plane’s ground
speed) is more when the flight is in the direction of the jet
stream and less when the flight is opposite the jet stream.
Suppose a round-trip flight is scheduled between two cities
separated by 4000 km, with the outgoing flight in the direction
of the jet stream and the return flight opposite it. The airline
computer advises an airspeed of 1000 km/h, for which the dif-
ference in flight times for the outgoing and return flights is
70.0 min.What jet-stream speed is the computer using?

111 A particle starts from the origin at t � 0 with a velocity
of 8.0 m/s and moves in the xy plane with constant accelera-
tion (4.0 � 2.0 ) m/s2. When the particle’s x coordinate is
29 m, what are its (a) y coordinate and (b) speed?

112 A sprinter running on a circular track has a velocity of
constant magnitude 9.2 m/s and a centripetal acceleration of
magnitude 3.8 m/s2. What are (a) the track radius and (b) the
period of the circular motion?

113 An electron having an initial horizontal velocity of
magnitude 1.00 � 109 cm/s travels into the region between
two horizontal metal plates that are electrically charged.
In that region, the electron travels a horizontal distance of
2.00 cm and has a constant downward acceleration of magni-
tude 1.00 � 1017 cm/s2 due to the charged plates. Find (a) the
time the electron takes to travel the 2.00 cm, (b) the vertical
distance it travels during that time, and the magnitudes of its
(c) horizontal and (d) vertical velocity components as it
emerges from the region.

114 An elevator without a ceiling is ascending with a con-
stant speed of 10 m/s. A boy on the elevator shoots a ball
directly upward, from a height of 2.0 m above the elevator
floor, just as the elevator floor is 28 m above the ground. The
initial speed of the ball with respect to the elevator is 20 m/s.
(a) What maximum height above the ground does the ball
reach? (b) How long does the ball take to return to the eleva-
tor floor?

ĵî
ĵ

115 Suppose that a space probe can withstand the stresses
of a 20g acceleration. (a) What is the minimum turning radius
of such a craft moving at a speed of one-tenth the speed of
light? (b) How long would it take to complete a 90° turn at
this speed?

116 At what initial
speed must the basket-
ball player in Fig. 4-59
throw the ball, at angle
�0 � 55° above the hori-
zontal, to make the foul
shot? The horizontal dis-
tances are d1 � 1.0 ft
and d2 � 14 ft, and the
heights are h1 � 7.0 ft
and h2 � 10 ft.

117 A wooden boxcar is moving along a straight railroad
track at speed v1. A sniper fires a bullet (initial speed v2) at it
from a high-powered rifle. The bullet passes through both
lengthwise walls of the car, its entrance and exit holes being
exactly opposite each other as viewed from within the car.
From what direction, relative to the track, is the bullet fired?
Assume that the bullet is not deflected upon entering the car,
but that its speed decreases by 20%. Take v1 � 85 km/h and v2

� 650 m/s. (Why don’t you need to know the width of the box-
car?)

118 You are to throw a ball
with a speed of 12.0 m/s at a
target that is height h � 5.00
m above the level at which you
release the ball (Fig. 4-60).You
want the ball’s velocity to
be horizontal at the instant it
reaches the target. (a) At what
angle � above the horizontal
must you throw the ball? (b) What is the horizontal distance
from the release point to the target? (c) What is the speed of
the ball just as it reaches the target?

119 Figure 4-61 shows the
path taken by a drunk skunk
over level ground, from initial
point i to final point f. The an-
gles are �1 � 30.0°, �2 � 50.0°,
and �3 � 80.0°, and the dis-
tances are d1 � 5.00 m, d2 �
8.00 m, and d3 � 12.0 m. What
are the (a) magnitude and (b)
angle of the skunk’s displace-
ment from i to f?

120 A projectile is fired with
an initial speed v0 � 30.0 m/s
from level ground at a target
that is on the ground, at dis-
tance R � 20.0 m, as shown in
Fig. 4-62. What are the (a)
least and (b) greatest launch
angles that will allow the pro-
jectile to hit the target?

121 Oasis A is 90 km due
west of oasis B.A desert camel
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leaves A and takes 50 h to walk 75 km at 37° north of due east.
Next it takes 35 h to walk 65 km due south. Then it rests for
5.0 h. What are the (a) magnitude and (b) direction of the
camel’s displacement relative to A at the resting point? From
the time the camel leaves A until the end of the rest period,
what are the (c) magnitude and (d) direction of its average ve-
locity and (e) its average speed? The camel’s last drink was at
A; it must be at B no more than 120 h later for its next drink. If
it is to reach B just in time, what must be the (f) magnitude and
(g) direction of its average velocity after the rest period?

122 A graphing surprise. At time t � 0, a burrito is launched
from level ground, with an initial speed of 16.0 m/s and launch
angle �0. Imagine a position vector continuously directed
from the launching point to the burrito during the flight.
Graph the magnitude r of the position vector for (a) �0 �
40.0° and (b) �0 � 80.0°. For �0 � 40.0°, (c) when does r reach
its maximum value, (d) what is that value, and how far (e) hor-
izontally and (f) vertically is the burrito from the launch
point? For �0 � 80.0°, (g) when does r reach its maximum
value, (h) what is that value, and how far (i) horizontally and
(j) vertically is the burrito from the launch point?

123 In Sample Problem 4-7b, a ball is shot through a hori-
zontal distance of 686 m by a cannon located at sea level and
angled at 45° from the horizontal. How much greater would
the horizontal distance have been had the cannon been 30 m
higher?

124 (a) If an electron is projected horizontally with a speed
of 3.0 � 106 m/s, how far will it fall in traversing 1.0 m of hori-
zontal distance? (b) Does the answer increase or decrease if
the initial speed is increased?

125 The magnitude of the velocity of a projectile when it is
at its maximum height above ground level is 10 m/s. (a) What
is the magnitude of the velocity of the projectile 1.0 s before it
achieves its maximum height? (b) What is the magnitude of
the velocity of the projectile 1.0 s after it achieves its maxi-
mum height? If we take x � 0 and y � 0 to be at the point of
maximum height and positive x to be in the direction of the
velocity there, what are the (c) x coordinate and (d) y coordi-
nate of the projectile 1.0 s before it reaches its maximum
height and the (e) x coordinate and (f) y coordinate 1.0 s after
it reaches its maximum height?

126 A frightened rabbit moving at 6.0 m/s due east runs
onto a large area of level ice of negligible friction. As the rab-
bit slides across the ice, the force of the wind causes it to have
a constant acceleration of 1.4 m/s2, due north. Choose a coor-
dinate system with the origin at the rabbit’s initial position on
the ice and the positive x axis directed toward the east. In unit-
vector notation, what are the rabbit’s (a) velocity and (b) posi-
tion when it has slid for 3.0 s?

127 The pilot of an aircraft flies due east relative to the
ground in a wind blowing 20 km/h toward the south. If the
speed of the aircraft in the absence of wind is 70 km/h, what is
the speed of the aircraft relative to the ground?

128 The pitcher in a slow-pitch softball game releases the
ball at a point 3.0 ft above ground level.A stroboscopic plot of
the position of the ball is shown in Fig. 4-63, where the read-
ings are 0.25 s apart and the ball is released at t � 0. (a) What
is the initial speed of the ball? (b) What is the speed of the ball
at the instant it reaches its maximum height above ground
level? (c) What is that maximum height?

r:
129 The New Hampshire State Police use aircraft to enforce
highway speed limits. Suppose that one of the airplanes has a
speed of 135 mi/h in still air. It is flying straight north so that it
is at all times directly above a north–south highway.A ground
observer tells the pilot by radio that a 70.0 mi/h wind is blow-
ing but neglects to give the wind direction. The pilot observes
that in spite of the wind the plane can travel 135 mi along
the highway in 1.00 h. In other words, the ground speed is the
same as if there were no wind. (a) From what direction is the
wind blowing? (b) What is the heading of the plane; that is, in
what direction does it point?

130 The position of a particle moving in the xy plane is
given by , where is in meters
and t is in seconds. (a) Calculate the x and y components of the
particle’s position at t � 0, 1.0, 2.0, 3.0, and 4.0 s and sketch the
particle’s path in the xy plane for the interval 0 � t � 4.0 s. (b)
Calculate the components of the particle’s velocity at t � 1.0,
2.0, and 3.0 s. Show that the velocity is tangent to the path of
the particle and in the direction the particle is moving at each
time by drawing the velocity vectors on the plot of the parti-
cle’s path in part (a). (c) Calculate the components of the par-
ticle’s acceleration at t � 1.0, 2.0, and 3.0 s.

131 A golfer tees off from the top of a rise, giving the golf
ball an initial velocity of 43 m/s at an angle of 30° above the
horizontal.The ball strikes the fairway a horizontal distance of
180 m from the tee. Assume the fairway is level. (a) How high
is the rise above the fairway? (b) What is the speed of the ball
as it strikes the fairway?

132 A track meet is held on a planet in a distant solar sys-
tem. A shot-putter releases a shot at a point 2.0 m above
ground level. A stroboscopic plot of the position of the shot is
shown in Fig. 4-64, where the readings are 0.50 s apart and the
shot is released at time t � 0. (a) What is the initial velocity of
the shot in unit-vector notation? (b) What is the magnitude of
the free-fall acceleration on the planet? (c) How long after it
is released does the shot reach the ground? (d) If an identical
throw of the shot is made on the surface of Earth, how long af-
ter it is released does it reach the ground?

r:r: � 2tî � 2 sin[(	/4 rad/s)t] ĵ
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