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1202  Fibonacci or Leonardo of Pisa (1170–1240), Liber Abaci (“The
Book of Calculation”); recently translated into English by Laurence E.
Sigler in Fibonacci’s Liber Abaci: A Translation into Modern English of
Leonardo Pisano’s Book of Calculation (New York: Springer-Verlag,
2002).

1478  Unknown Author, The Treviso Arithmetic; translated into English by
David Eugene Smith, pp. 40–175, in Frank J. Swetz, Capitalism and Arith-
metic: The New Math of the 15th Century Including the Full Text of the
Treviso Arithmetic of 1478 (LaSalle, IL: Open Court, 1987).

1761  Edmond Halley (November 8, 1656–January 14, 1742), “Of Com-
pound Interest,” in Henry Sherwin, Sherwin’s Mathematical Tables (pub-
lished posthumously after Halley’s death in 1742, London: W. and J.
Mount, T. Page and Son, 1761).

FIBONACCI SERIES, PRESENT VALUE, PARTNERSHIPS, 
FINITE-LIVED ANNUITIES, CAPITAL BUDGETING

Fibonacci (1202) is well-known as the most influential tract introducing
positional numerical notation into Europe. Arabic numerals were first

developed in India, perhaps in the mid-first millennium A.D. and were sub-
sequently learned by Arab traders and scholars. In turn, Fibonacci learned
about them while traveling through North Africa. He begins Chapter 1
with these words:

These are the nine figures of the Indians: 9, 8, 7, 6, 5, 4, 3, 2, 1.
With these nine figures, and with this sign 0 which in Arabic is
called zephirum, any number can be written, as will be demon-
strated.

After the publication of this tract, computation by Arabic numerals using
pen and ink gradually replaced the use of the abacus. The book also devel-
ops the famous Fibonacci series, 1, 1, 2, 3, 5, 8, 13 . . . .
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Much less appreciated is the role Liber Abaci plays in the develop-
ment of present value calculation, as has been quite recently discovered
by William N. Goetzmann in [Goetzmann (2003)] “Fibonacci and the Fi-
nancial Revolution,” Yale ICF Working Paper No. 03-28 (October 23,
2003). Fibonacci illustrates his methods of calculation through several
numerical examples. Among these are four types of applications to in-
vestments: (1) the fair allocation of profits to members of a partnership
(“On Companies,” pp. 172–173); (2) the calculation of profits from a se-
quence of investments, with intermediate withdrawals (“Problems of
Travelers,” pp. 372–373); (3) the calculation of future value (“A Note-
worthy Problem on a Man Exchanging One Hundred Pounds at Some
Banking House for Interest,” pp. 384–386); and (4) the calculation of
present value (“On a Soldier Receiving Three Hundred Bezants for His
Fief,” p. 392). His solution to (1) is simply to divide profits in proportion
to contributed capital—a solution that is now obvious. As an example of
(3) in Sigler’s translation:

A man placed 100 pounds at a certain [banking] house for 4
denari per pound per month interest, and he took back each year a
payment of 30 pounds; one must compute in each year the 30
pound reduction of capital and profit on the said 100 pounds. It is
sought how many years, months, days and hours he will hold
money in the house. (p. 384)

Fibonacci calculates that the man will have some money with the bank
for 6 years, 8 days, and “(1/2)(3/9)5” hours. This makes use of Fibonacci’s
notation whereby the denominator of each fraction is actually the prod-
uct of its explicit denominator and all the denominators to the right, and
the hours are the sum of these fractions. So the number of hours is 5 +
(3/9)hours + (1/18)hours = 5 and 7/18 hours, in modern notation. Note 
that as antiquated as Fibonacci’s notation has become, it still remains
very useful in situations where small units are measured in a different
number of parts than larger units. For example, Fibonacci would have
written 5 weeks, 3 days, 4 hours, 12 minutes, and 35 seconds as
(35/60)(12/60)(4/24)(3/7)5.

In problem (4), Fibonacci illustrates the use of present value by rank-
ing the present values of two annuities, differing only in the periodicity of
payment, where the interest rate that can be earned on the reinvestment of
amounts received is 2 percent per quarter: Both pay 300 bezants per year,
with one paying quarterly installments of 75 bezants and the other instead
paying the entire 300 bezants at the end of each year.

Due to compounding, present value under a constant interest rate is
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the result of summing a weighted geometric series. Goetzmann speculates
that Fibonacci’s interest in finance may have provided the spark for his fa-
mous work on infinite series. Unfortunately, we know so little about Fi-
bonacci that this cannot be verified.

After Fibonacci’s work, Arabic numerals became widely used in Eu-
rope, particularly for commercial purposes. The Treviso Arithmetic (1478)
published by an unknown author is the earliest known dated and printed
book on arithmetic and serves as an early attempt to popularize the Arabic
numeral system. The book starts by describing how to use Arabic numerals
for enumeration, addition, subtraction, multiplication, and division—the
same procedures in use today. By the Treviso’s time, the numerals had just
previously reached their modern forms. For example, the practice of writ-
ing 0 as Ø died out after 1275. This may be in part due to the Treviso it-
self, since printing technology may have forced standardization. However,
notation for the operations of addition, subtraction, multiplication, and di-
vision was not introduced until later, “+” and “–” in print in 1489, “×” in
1631, and “÷” in 1659. While we are on the subject, “√” was introduced
in 1525, “=” in 1557, “<” and “>” in 1631, “∫” in 1675 (by Gottfried Wil-
helm Leibniz), “f(x)” in 1735 (by Leonhard Euler), and “dx/dy” in 1797
by Joseph-Louis Lagrange. Representation of fractions as decimals did not
occur until 1585. Using letters for unknowns in equations waited until
François Vieta’s (1540–1603) formulation in about 1580. John Napier in-
vented logarithms in 1614 and brought decimal notation for factions to
Europe in 1617.

These operations are illustrated by a number of problems. Partnerships
can be traced as far back as 2,000 B.C. in Babylonia. This form of business
organization provided a way to finance investments requiring large
amounts of capital over extended periods of time. In Christian Europe,
partnerships also provided a way to circumvent usury prohibitions against
charging interest. Here is the first partnership problem posed in the Treviso
(p. 138):

Three merchants have invested their money in a partnership,
whom to make the problem clearer I will mention by name. The
first was called Piero, the second Polo, and the third Zuanne.
Piero put in 112 ducats, Polo 200 ducats, and Zuanne 142 ducats.
At the end of a certain period they found they had gained 563
ducats. Required is to know how much falls to each man so that
no one shall be cheated.

The recommended solution, following the same principle as already set
forth by Fibonacci in his problem “On Companies,” is to divide the profits
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among the investors in proportion to their respective investments. The sec-
ond partnership problem is much more interesting (p. 138):

Two merchants, Sebastiano and Jacomo, have invested their
money for gain in a partnership. Sebastiano put in 350 ducats
on the first day in January, 1472, and Jacomo 500 ducats, 14
grossi on the first day of July, 1472; and on the first day of Janu-
ary, 1474 they found they had gained 622 ducats. Required is
the share of each.

After converting both investments to a common unit, 8,400 grossi 
for Sebastiano and 12,014 grossi for Jacomo, the Treviso adjusts for 
the timing of the investments by the number of months of the respective
investments:

Sebastiano: 8,400 × 24 = 201,600      Jacomo: 12,014 × 18 = 216,252

The profits are then divided according to these proportions. The 
sum 201,600 + 216,252 = 417,852. Sebastiano receives 622 ×
(201,600/417,852) = 300 ducats and Jacomo 622 × (216,252/417,852)
= 322 ducats.

The modern analyst would approach this allocation in one of two
ways, depending on whether Jacomo’s delayed contribution were con-
tracted in advance or whether the terms of his contribution were deter-
mined near the time of his contribution. In the former case, he would then
need to know the interest rate to work out the fair division of profits, and
in the second he would need to know the value of a share in the partner-
ship on July 1, 1472. Although the author of the Treviso has posed an in-
teresting problem and probably learned much from Fibonacci, his answer
suggests he does not yet understand Fibonacci’s more sophisticated present
value analysis.

But by the 1500s, Fibonacci’s work on present value had become bet-
ter known, despite usury laws. Consider, for example, a problem from Jean
Trenchant [Trenchant (1558)], L’Arithmétique, 2nd edition, 1637, Lyons
(p. 307): Which has the higher present value, a perpetual annuity of 4 per-
cent per quarter or a fixed-life annuity of 5 percent per quarter for 41
quarters? Trenchant solves the problem by comparing the future value at
the end of 41 quarters of a 1 percent annuity per quarter, with the present
value in the 41st quarter of a perpetual annuity at 5 percent starting then.
Trenchant’s book also contains the first known table of present value dis-
count factors.

6 A HISTORY OF THE THEORY OF INVESTMENTS
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In the forgotten age before computers, once it was desired to deter-
mine the effects of interest rates on contracts, much work was devoted to
developing fast means of computation. These include the use of loga-
rithms, precalculated tables, and closed-form algebraic solutions to pre-
sent value problems. Edmond Halley, cataloger of stars in the Southern
Hemisphere from telescopic observation, creator of the first meteorologi-
cal charts, publisher of early population mortality tables, is, of course,
best known as the first to calculate the orbits of comets. Not the least of
his achievements includes results in financial economics. Halley (1761) de-
rives (probably not for the first time) the formula for the present value of
an annual annuity beginning at the end of year 1 with a final payment at
the end of year T: [X/(r – 1)][1 – (1/rT)], where r is 1 plus the annual dis-
crete interest rate of the annuity and X is the annual cash receipt from the
annuity. Another relatively early derivation of this formula can be found
in Fisher (1906).

Although valuation by present value, as we have seen, had appeared
much earlier, Fisher (1907) may have been the first to propose that any
capital project should be evaluated in terms of its present value. Using
an arbitrage argument, he compared the stream of cash flows from the
project to the cash flows from a portfolio of securities constructed to
match the project. Despite this, according to Faulhaber-Baumol (1988),
neither the Harvard Business Review from its founding in 1922 to
World War II, nor widely used textbooks in corporate finance as late as
1948, made any reference to present value in capital budgeting. It was
not until Joel Dean in his book [Dean (1951)] Capital Budgeting: Top
Management Policy on Plant, Equipment, and Product Development
(New York: Columbia University Press, 1951) that the use of present
value was popularized. More recently, according to John R. Graham and
Campbell Harvey in [Graham-Harvey (2001)] “The Theory and Practice
of Corporate Finance: Evidence from the Field,” Journal of Financial
Economics 60, Nos. 2–3 (May 2001), pp. 187–243, most large firms use
some form of present value calculation to guide their capital budgeting
decisions.

1494  Luca Pacioli (circa 1445-1517), Summa de arithmetica, geometria,
proportioni et proportionalita (“Everything about Arithmetic, Geometry
and Proportions”); the section on accounting, “Particularis de computis et
scripturus,” translated into English by A. von Gebstattel, Luca Pacioli’s
Exposition of Double-Entry Bookkeeping: Venice 1494 (Venice: Albrizzi
Editore, 1994).
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PROBLEM OF POINTS, ACCOUNTING, DEBITS VS. CREDITS,
ACCOUNTING IDENTITY, ASSETS, LIABILITIES, AND EQUITIES,

CLEAN-SURPLUS RELATION, BOOK VS. MARKET VALUES,
MATCHING PRINCIPLE, CONSISTENCY PRINCIPLE

Pacioli (1494), acknowledging a debt to Euclid (circa 300 A.D.) and Fi-
bonacci (1202), summarizes the basic principles of arithmetic, algebra,

geometry, and trigonometry. More important for our immediate purposes,
Pacioli is often credited with posing the “Problem of Points,” the problem
that eventually ignited the explosive development of modern probability
theory in the seventeenth century (naturally there is some evidence that this
problem originated even earlier):

A and B are playing the fair game of balla. They agree to continue
until one has won six rounds. The game actually stops when A has
won five and B three. How should the stakes be divided?

Pacioli’s (incorrect) solution was simply to divide the stakes in proportion
to the number of games won by each player. So if the stakes were 56 pisto-
las, player A would receive 35 and player B would receive 21.

But Pacioli’s book is best known for its influence on accounting. Ac-
counting in ancient times took the form of a mere physical listing of in-
ventories. Later accounting methods translated these items into a common
unit of measurement, usually a single currency. This mutated into a list of
“charges” and “discharges,” essentially a cash statement showing the
sources and uses of cash designed so that the lord of an estate could mon-
itor his steward who actually dispensed payments. The origins of the more
recent methods of double-entry accounting are a bit obscure. We know
that an Italian merchant firm, Gallerani company of Siena, used double-
entry accounting as early as 1305 (reported by Christopher W. Nobes,
[Nobes (1982)] “The Gallerani Account Book of 1305–1308,” Account-
ing Review 57, No. 2 (April 1982), pp. 303–310). Although Pacioli did
not invent double-entry accounting methods, because he developed double-
entry bookkeeping so thoroughly in this influential work he is often refer-
enced as the original source of these methods and considered “the father
of accounting.” In the accounting section of his book, “Particularis de
computis et scripturus,” Pacioli writes that he is describing “the Venetian
method which certainly among others is much recommended and which
can be used as a guide to all others” (p. 42). He even admonishes would-
be accountants not to rest easy at night until their credits and debits are
equal. Further discussion of the history of financial accounting conven-
tions (for external accounting purposes) takes us beyond the intended
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scope of this book. However, since accounting concepts are important for
measuring the expected return and risk of corporate securities, I instead
discuss the key issues.

First, what is the purpose of external accounting statements? In my
opinion, their primary purpose is to provide information to stockholders.
One could argue that the statements are also useful for employees in eval-
uating the return and risk of investing their human capital with the firm,
or outside suppliers of goods and services who may want to evaluate the
return and risk of dealing with the firm, or debt holders who need to as-
sess the likelihood of default. But I think, particularly since the stockhold-
ers are the owners of the firm and, by determining the stock price,
indirectly make resource allocation decisions for the firm, that the primary
constituency for these statements is the stockholders. While the statements
may have other goals, their paramount purpose is to help stockholders de-
cide the market price of the firm’s stock. This is consistent with the view
taken in financial economics, and largely by the law, that the firm should
be run for the benefit of its shareholders. In practice, while the employees,
suppliers, and debt holders may have access to other information about
the firm, the annual report to shareholders, with its balance sheet and in-
come statement, is their primary source of information, particularly for
large public firms.

One way the firm could meet the obligation of providing information
to shareholders would be to have videos taken of each employee for his
or her entire working year, gather these together, and distribute them to
each stockholder. That way the stockholder would have a fairly complete
and unbiased record of what happened during the year. But, clearly, this
is absurd. At the other extreme, the firm could simply report one number
to its stockholders at the end of every year—its own estimate of what the
stock price should be. But this, too, is not useful since the firm may not
have enough information to make a good estimate of its stock price. As
Hayek (1945) argues, the information needed to determine the stock
price is typically widely dispersed across the economy, and no small sub-
set of individuals, even all the employees of a firm, is sufficient to deter-
mine an informationally efficient price. Even setting this aside, the proper
technique of aggregating this information into a price is not clear, and
firms cannot be relied upon to know how to do this. A firm may also be
tempted to manipulate the resources it receives from investors, or the in-
centive-based compensation paid to its executives, by an intentional over-
valuation of its stock. Finally, as if this were not difficult enough, a
desirable further constraint is not to require firms to release information
that can affect their incentive to compete against other firms, even if this
information aids in valuation. So the challenge of accounting is to find a
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constrained middle ground, some way to summarize what happened dur-
ing the year without leaving out anything important, without relying on
the firm to be completely truthful, and without damaging the firm’s in-
centive to compete.

The solution that has evolved since Pacioli is to provide two financial
statements, the balance sheet and the income statement. The first, like a
snapshot, captures the relevant aspects of the firm at a single point in time;
and the second, like a movie, shows how the firm moves from a balance
sheet at an earlier date to a balance sheet at a later date. The balance sheet
represents every transaction as giving rise to a change in an asset, on the
one hand, and a corresponding change in liability or equity on the other
(occasionally transactions also merely interchange some equities with lia-
bilities, or an asset with another asset). This gives us the famous account-
ing identity that disciplines double-entry accounting:

Assets = Liabilities + Equities

Every transaction has these two faces. Traditionally assets are subdivided
into three main categories: current assets (cash, receivables, inventories,
and prepaid expenses); long-term physical assets like plant and equipment;
and intangible long-term assets like the capitalized value of research and
development expenses and the value of established brand names. Liabilities
are subdivided into two main categories: short-term (payables, deferred
taxes, short-term debt) and long-term (long-term bank loans, publicly
traded corporate bonds). Equities are subdivided into two categories: con-
tributed capital and the accumulated profits. The income statement sub-
tracts several expense items from revenues to yield profits attributed to the
period between two balance sheets. These profits are usually divided by the
number of shares outstanding to determine earnings per share (EPS), and
the proportion of the earnings paid out as dividends is separately reported
to determine dividends per share.

If an investor only wants to take away from this a single number, then
he should just look at earnings per share. This is the accountant’s estimate
of how much the stock price should have changed (with dividends added
back) between the dates of the two balance sheets. That is, if St–1 and St are
the stock prices at dates t – 1 and t, Dt is the dividends paid per share, and
Xt the reported earnings per share between the two dates, then

(St + Dt) – St–1 = Xt

There is a sense in which if the accountants and the stock market have got
it right, the stock price would have changed by exactly this amount.

10 A HISTORY OF THE THEORY OF INVESTMENTS
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Moreover, using the EPS equation and the so-called clean-surplus rela-
tion (assuming no new contributed capital),

Yt = Yt–1 + Xt – Dt

we can prove that the stock price per share St equals the corresponding
book value Yt per share. Starting with the date 0 boundary value at the in-
ception of the firm, S0 = Y0, where the book value Y0 is contributed capital,
and solving these equations recursively:

St = Yt = Y0 + ∑k=1(Xk – Dk)

In practice, even if the market is working properly, the market and
book values of most firms are not equal. Although we can blame this on
the accountants, they are in a tough spot. One problem is created by rev-
enues or expenses that are sometimes delayed until after products have
been delivered or accelerated before products are delivered. So simply to
record as revenues and expenses all transactions during the year can be
misleading. Instead, the matching principle of accounting requires that
only revenues received from products delivered to customers during a year
and only the expenses generated to create those products should be re-
ported on the income statement for that year. Cash received or paid out
during the year that is not matched to products delivered during the year is
recorded as a temporary balance sheet item and typically recognized on the
income statement in the succeeding year when the corresponding products
are delivered. This is called “accrual accounting” in contrast to “cash ac-
counting,” which does not try to match revenues with expenses. So ac-
countants have this trade-off: They can increase the accuracy of the
statements by using cash accounting, or they can provide potentially more
useful but potentially less accurate comparisons by using accrual account-
ing. For external accounting statements, this trade-off today has typically
been decided in favor of accrual accounting.

As a simple example, the matching principle is the cause of inventories
on the balance sheet. These may reflect the purchase of warehoused sup-
plies or finished goods that have been paid for but have not yet been used
in production or delivered to a customer. But even this can create account-
ing questions. If units of a homogeneous item held in inventory have been
purchased at different prices, just which price should be used to expense a
unit used in a product that is delivered? One approach is to assume that
the first unit purchased is the first one used, or first in first out (FIFO) ac-
counting; an alternative is to assume that the last unit purchased is the first
one used, or last in first out (LIFO) accounting.
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As an even more difficult issue, suppose a firm buys long-lived equip-
ment used to manufacture its products, which gradually wears out or
eventually becomes technologically obsolete. The matching principle re-
quires the firm to determine how much of the equipment is used up to
make the products it delivers that year. While the initial cost of purchasing
the equipment is a known fact, and the liquidation revenues eventually re-
ceived perhaps years later from selling the equipment will be a known
fact, there is generally no magical way of determining the correct rate of
depreciation of the equipment in any given year. There is no transaction to
prove what this is. So accountants solve this dilemma in one of their fa-
vorite ways. Depending on the type of equipment, they simply require that
it be depreciated at a specific rate each year. The simplest technique is
straight-line depreciation, whereby, say, 10 percent of the purchase price is
considered an expense in each year for 10 years. But because that may not
correctly represent the rate of depreciation, they may alternatively allow
an accelerated form whereby greater depreciation is taken in earlier years
compared to later years. Accountants try to find a middle ground between
giving firms the latitude they need to do a better job of matching, against
the fear that if too much flexibility is permitted, the firm will use that to
misstate (usually overstate) its earnings. It is just this sort of balancing act
that makes accounting interesting, and its appropriate conventions far
from obvious.

The allocation of research and development expense and marketing
and advertising expenses can be particularly difficult to get right. Should
these be capitalized and then gradually expensed (amortized) over an ex-
tended period, or be immediately expensed? To get this right, one needs to
answer a very difficult question: To what extent do these expenses affect
the revenues and expenses from products delivered not in the years corre-
sponding to these expenses, but in subsequent years?

This example brings out another accounting principle: Since stock-
holders will use accounting information to project future revenues and
expenses, the financial statements need to make it easy for stockholders
to separate revenues and expenses due to ongoing sustainable operations
from one-shot occurrences. To do this, profits and losses are usually bro-
ken up into two categories: ordinary and extraordinary. Extraordinary
profits arise from changes in the value of the firm’s assets and liabilities
that cannot be expected to recur. It is useful to distinguish among three
types of extraordinary profits: (1) profits deriving from random changes
outside the firm’s control, such as movements in interest rates, which af-
fect the present value of the firm’s debt obligations; (2) profits from in-
tentional decisions of the firm, outside the normal operations of the
firm, such as the decision to hold cash in yen rather than in dollars; and
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(3) profits and losses deriving from ex post corrections to previous 
accounting statements, such as losses from stagnant inventories that, 
because of gradual changes in product demand, will never be used. 
Unfortunately, this last category all too often reflects the failure to 
have properly followed the matching principle in prior years. But, for
valuation purposes, it is still better to get the old bad news sooner rather
than later.

Another very difficult accounting question to resolve is the choice be-
tween simply reporting the results of executed transactions and, in addi-
tion, amending these results from time to time to reflect changes in market
values. For example, suppose the most significant asset of a pineapple firm
is land it bought in Hawaii in 1900 at a cost of $1 million. It would then
be reported on the balance sheet as an asset valued at $1 million. Over the
next century, because of the remarkable rise of tourism, the land gradually
becomes worth $100 million. Suppose that today, compared to the value
of the land, the remainder of the firm is worth very little. If the firm con-
tinues to carry the land on its balance sheet at $1 million, stockholders to-
day may have no idea that the firm has assets that could be liquidated at a
significantly higher value. An obvious solution would be for the firm to
have gradually recognized over the century changes in the market value of
the land every year as an extraordinary profit or loss. Had it done so, it
would now have both an offsetting asset and equity: The land would be
valued on the balance sheet at $100 million and additional equity would
be $99 million. Unfortunately, market value accounting, as it solves one
problem, creates another: Since the land has not yet been sold in a closing
transaction, how does the firm know what it is really worth? Although
this uncertainty can be reduced in a variety of ways, it cannot often be
eliminated. If it cannot be eliminated, the profit and loss created from
mark-to-market accounting is of a different reliability compared to situa-
tions where ownership has been bracketed by both an opening and a clos-
ing transaction. Would not stockholders want to distinguish between
unrealized profit from land that has not yet been sold and realized profit
from land that has? Moreover, different experts will often disagree about
the market value of the land until it is actually sold. Which expert should
the stockholders believe? In particular, should they believe experts hired
by the firm when the management of the firm may have an incentive to
overstate the value of the land?

In their schizoid way, generally accepted accounting principles (GAAP)
provide a complex answer to this problem: Some assets and liabilities can
be revalued at market and others cannot, roughly according to the uncer-
tainty of their market values. Other assets, such as capital equipment,
given intermediate treatment through depreciation rules, are being valued

The Ancient Period: Pre-1950 13

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 13



neither at cost nor at market, but rather by fairly rigid rules designed to
capture their probable decrease in value.

These are only a few of the valuation issues that cause the earlier equa-
tion relating stock price changes to earnings and, as a result, market value
to book value per share to become misaligned. Perhaps the most significant
cause of these differences can be attributed to structural conditions of in-
dustry competition. In many industries, firms are able to establish monop-
olistic or oligopolistic advantages that are not reflected in their book
values. The fact that few firms enter an industry before its demand takes
off can provide a significant first mover advantage. Microsoft, which has
established the most popular personal computer (PC) operating system,
provides a textbook example of how to leverage a singular advantage into
dominance in many PC software applications. Unfortunately, nothing in
Microsoft’s past transactions, even if its physical assets are marked to mar-
ket, can prepare the reader of its financial statements for its high ratio of
market value to book value. The difference between market and book re-
flects not only the very high operating profit margins on its current prod-
ucts, but its unique position to make very profitable investments in the
future, investments that would be denied to other firms that do not have
Microsoft’s monopolistic advantages. The stock market, of course, does
not wait for these profits to appear before embedding them into the stock
price; it anticipates them, thereby causing market values and book values
to diverge significantly.

Because of this argument, financial economists tend to consider firms
with high market-to-book ratios as growth firms, and those with low mar-
ket to book as value firms. Investors can even invest in mutual funds,
some specializing in growth stocks and others in value stocks. But it is
hoped that this discussion makes clear that because there are many rea-
sons why book and market values can become misaligned, the metric of
the market-to-book ratio to distinguish between growth and value stocks
is far from perfect.

Historically, accounting statements designed to measure performance
focus on the level of earnings, a return measure. But, ever since
Markowitz (1952/March) and Roy (1952), financial economists have ar-
gued that a second aspect of performance is also risk. Although it appears
that current accounting conventions are not well designed for this purpose
(and perhaps need to be redesigned to make risk measurement easier),
modern financial statements can still be quite useful. For example, the
time series of ordinary earnings per share provided by these statements
can be used to calculate variance measures of earnings, as an independent
indication of the risk of investing in the stock. Unfortunately, in practice,
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many firms exercise whatever latitude revenue and expense matching con-
ventions allow to smooth earnings over time and thereby give the appear-
ance of reduced risk.

The common way to measure risk from financial statements is ratio
analysis. Traditional examples include the ratio of current assets to current
liabilities, a crude stock indicator of default risk. The ratio of earnings be-
fore interest and taxes (EBIT) to annual interest payments is a flow mea-
sure of default risk. The ratio of long-term assets to short-term assets
measures liquidity and valuation risk, since presumably of the two, short-
term assets are more liquid and have less uncertainty regarding their value.
Although the firm’s stock derives risk from many sources, both from
within the firm and from without, there are three key sources of risk inside
the firm: (1) diversification of sources of revenues, (2) operating risk, and
(3) financial risk.

Current financial statements by themselves usually do not disaggregate
the sources of revenues by product line or industry to help much with mea-
suring diversification, although supporting footnotes and other sources
such as registration statements that accompany new securities issues have
some of this information.

Operating risk can be defined as the ratio of fixed to variable costs.
The higher this ratio for the firm, the more sensitive will be the profits of
the firm to changes in revenues. Although fixed and variable costs are not
directly broken apart on the income statement, to some extent the cate-
gories that are given can be used to disaggregate costs into these two
sources, and a time-series regression analysis of reported expenses against
revenues over time can be used to get a rough idea of this disaggregation.

The common indicator of financial risk is the liabilities-to-equities ra-
tio, using book values. The higher this ratio, presumably the more highly
leveraged the firm and the more sensitive bottom-line earnings will be to
changes in earnings before interest and taxes. However, on one hand, the
book value of equities is often a very poor indicator of the market value of
equities; and on the other, book value liabilities are commonly much more
closely aligned with market values. At the same time, the market values of
equities are often readily available from the stock market. Therefore, finan-
cial economists often prefer the ratio of the book value of liabilities to the
market value of equities to measure financial leverage.

Unfortunately, this measure of financial risk is not free from diffi-
culty. Clearly, as a precondition, transactions must be allocated to liabili-
ties or equities. For the purpose of measuring financial risk, the essence of
liabilities derives from promised fixed payments over time, and, provided
these are paid, liabilities do not share in the success of the firm. At the
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other extreme, equities have no promised payments, but after paying off
all other claimants on the firm (employees, suppliers, debt holders, gov-
ernment) receive whatever is left over. As the “residual claimants” of the
firm, equities derive their value directly from the profitability of the firm.
Some securities, like preferred stock, convertible debt, or employee stock
options, are hybrid securities, containing elements of debt and elements
of stock, and their categorization is problematic.

Consistency is another principle of accounting: The rules for imple-
menting first-order economically equivalent decisions by different firms
should be designed so that comparative accounting measures of return and
risk should not be affected. The controversy in the United States from
1994 to 2005 over accounting for employee stock options illustrates the is-
sue of consistency. As before, consider otherwise identical firms A and B; A
compensates its employees entirely with cash; B compensates its employees
entirely with stock options, originally issued at-the-money. To simplify,
both firms are assumed to receive the same services from their employees.
Naturally, A expenses its cash compensation; what should B do? If, as was
the standard practice, B does not treat the stock options as an expense, B
will report higher profits, even though from an economic point of view the
two firms are doing the same thing; B is really no better than A. So, the
principle of consistency demands that B determine the market value of its
options when they are granted and expense that value.

An insightful example of the difficulty of attaining consistency is ac-
counting for leased assets. Consider two otherwise equivalent firms; firm
A borrows the cost of the purchase of a building, and firm B leases the
same building. On the balance sheet of firm A, accountants will typically
record the purchase price of the building as an asset with an equal off-
setting liability. Reported in this way, the purchase creates an increase in
the debt-to-equity and debt-to-assets ratios. On the balance sheet of firm
B, if the length of the lease is not over the entire life of the building, the
value of the leased asset does not appear on the balance sheet, and its ef-
fect appears only on the income statement through the expensed lease
payments. Reported in this way, firm B will show no change in its debt-
to-equity or debt-to-assets ratios, and so will appear to have less finan-
cial risk than firm A. The apparent reason for this different treatment is
that the legal substance of these two transactions is quite different. Firm
A literally owns the building, while firm B does not. But, from the point
of view of financial analysis, this is a distinction of form, not first-order
economic substance. If the financial economist knew about the lease, he
or she would interpret the lease in this way: It is as if firm B borrowed
the building instead of borrowing cash, pays what are called lease pay-
ments (with a correction for implied depreciation) instead of interest
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payments, and is obligated to pay back (that is, return) the building, just
as firm A is obligated to pay back the cash loan. To abide by the consis-
tency principle, the firm should report the transactions in such a way
that the debt-to-equity ratios of the two firms remain equal. One way to
do this would be to record the value of the leased building as an asset
offset by an equal liability, reflecting firm B’s obligation to “pay back”
the “borrowed” building.

Unfortunately, as sensible as this sounds, further reflection shows how
difficult the standard of consistent accounting is to realize. Accounting for
leases in this way implies that assets are not defined by legal ownership;
rather they are defined by things the firm uses to generate revenues—firm B
does not own the building, but it is using it to generate revenues, so it is an
asset of the firm in this sense. Now, the goal of consistency really gets us
into trouble. Consider this: Both firms also use the streets outside their
headquarters so employees can come to and leave work; they also use seats
on airlines when their employees travel on business; and so forth. To be
consistent, these things are therefore assets and need to be reported on the
balance sheet. Ideally, a financial economist would want the firm to do this.
Again compare two firms, one that uses its own airplanes and roads owned
by the firm financed with debt, and another that uses the externally pro-
vided roads and airline seats. Clearly, carried to this extreme, consistency
becomes impractical.

We should not overplay the significance of designing good accounting
rules. External accounting statements are only one source of information
about the firm. Some individuals, called professional security analysts,
specialize in a single industry and spend a good portion of their lives eval-
uating public firms in that industry. As a result, if we get accounting rules
wrong, although the cost of learning about firm fundamentals will rise,
the market may very well continue to price stocks with reasonable accu-
racy. For example, many corporate executives apparently believe that
since expensing stock options reduces their reported earnings per share,
their stock price will also fall after the accounting change. But, since the
market has other means of learning about their firm’s option plans, what
is far more likely is that their stock price will be virtually unaffected by
the change.

1654  Blaise Pascal (June 19, 1623–August 19, 1662), “Traité du triangle
arithmétique avec quelques autres petits traités sur la même matière”;
translated into English as “Treatise on the Arithmetical Triangle,” and
with Pierre de Fermat (August 17, 1601–January 12, 1665), “Correspon-
dence with Fermat on the Theory of Probabilities” (1654), Great Books of
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the Western World: Pascal (Franklin Center, PA: Franklin Library, 1984),
pp. 447–487.

PASCAL’S TRIANGLE, PROBABILITY THEORY, 
PROBLEM OF POINTS, BINOMIAL CATEGORIZATION,

EXPECTATION, COUNTING PATHS VS. WORKING BACKWARDS,
PATH DEPENDENCE, PASCAL’S WAGER

Early work on combinatorial problems seems to have begun in India,1 so
that by about 1150, Bhaskara understood the general formula for the

number of combinations of n things taken j at a time, n!/[j!(n – j)!]. The
calculation of coefficients from the binomial expansion (a + b)n as well as
arraying these coefficients in the shape of a triangle was known by the Ara-
bian mathematician al-Tusi in 1265, and was known in China in Chu Shi-
Chieh’s Ssu Yuan Yü Chien (1303), the frontispiece of which is reproduced.
The equivalence between the combinatorial formula and these coefficients
was understood by 1636 by Marin Mersenne (1588–1648).

Although clearly the arithmetical triangle was not invented by Pas-
cal (1654), his treatise was the first to bring together all three elements—
combinatorics, binomial expansion coefficients, and their triangular
array. So thoroughly did Pascal investigate the triangle’s properties that
ever since it has been commonly referred to as Pascal’s triangle. It should
be noted that in his discussion of the arithmetical triangle and the Prob-
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lem of Points, Pascal does not directly use the modern concept of proba-
bility, nor even use that term. Instead, he uses combinatoric language,
speaking of an event happening so many times out of a total number of
possible times. So my discussion that follows is a modernized retelling of
Pascal’s results.

The triangle starts with 1 in the top row. Each number in a subsequent
row is generated by summing the two numbers in the previous row that are
just above its location.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

• • •

Pascal shows that the triangle has a number of surprising properties. For
example, numbering the rows starting with 0 for the top row, the nth row
contains the coefficients of the binomial expansion (a + b)n. In general, the
value of the jth entry (starting numbering from the left from 0) in the nth
row is n!/[j!(n – j)!].

Of critical importance for the development of the theory of probabil-
ity, especially as applied to games of chance (investments?), is the Problem
of Points. Recall the basic version of this problem. Two individuals have
staked a given amount to be paid to the one who is the first to win n
points. A point is awarded in a fair round in which each player has an
equal chance of winning. If they decide to stop playing after the first player
A has won x < n points and the second player B has won y < n points, what
is a fair division of the stakes?

As proposed in Pacioli (1494), suppose the two players have bet 28 pis-
tolas each, n = 6 and the points standings are (x, y) = (5, 3), and the game is
then called off. Pacioli argues that the fair division is to divide the total
stakes in direct proportion to the number of games won by each player. So
with 56 pistolas staked, 35 would go to the first player and 21 to the sec-
ond. Jerome Cardan, better known as Gerolamo Cardano (September 24,
1501–September 21, 1576), in [Cardano (circa 1565)] Liber de ludo aleae,
first published posthumously in 1663, translated from Latin into English
by Sydney Henry Gould as The Book on Games of Chance (New York:
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Holt, Reinhart and Winston, 1961), proposed a more sophisticated solu-
tion. He says that the division should depend on the outcome of a new
game created from the rounds remaining to be played. So in Pacioli’s ex-
ample, a new game between A and B is imagined where if A can win 1
point before B can win 3 points, then A will win; otherwise B will win. He
then asks in this new game what would be the fair stakes contribution of
each player. He concludes that B should be willing to stake 1(1 + 1) = 2
units for every 3(3 + 1) = 12 units staked by A. So again, if the original
stakes were 56 pistolas, he would conclude that A should receive 56(12/14)
= 48 and B should receive 56(2/14) = 8.

Neither Pacioli’s nor Cardano’s solution is correct. The problem was
finally solved by Pascal-Fermat (1654) in a famous correspondence that
gave birth to modern probability theory. They developed the idea of math-
ematical expectation, and assumed that each player should receive what he
would have expected had the game not been stopped.

20 A HISTORY OF THE THEORY OF INVESTMENTS

Pascal’s Triangle

Pascal’s triangle exemplifies a recombining binomial tree where the
number at each node is the sum of the two numbers lying in the row di-
rectly above it. The more general nonrecombining binary tree was origi-
nally popularized by Porphyry (circa 234–305), a Neoplatonic
philosopher. In his Introduction to the Categories (or Isagoge), he geo-
metrically represents the relationship of categories from Aristotle’s logi-
cal work Categories as a binary tree, where the set described by each
prior category is divided into two mutually exclusive and exhaustive
subsets. For example:

Substance 
Corporeal Incorporeal

Living Nonliving
Animals Plants

Rational Nonrational

The number of numerical relationships in Pascal’s triangle seems end-
less. Even the Fibonacci sequence lies hidden in the array. Can you find
it? Starting from the left side, add the numbers that lie in a diagonal
line extending above and to the right, and the sums will make a Fi-
bonacci series. Thus, we have: 1 = 1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 + 1 = 5,
1 + 4 + 3 = 8, and so on.
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Fermat’s solution simply requires counting the number of ways (or
paths) A can win and the number of ways B can win.

At (5, 3) standings, the possible remaining outcome sequences are
(where “a” indicates a point won by the first player and “b” a point won
by the second player):

(a a a)    (a b a)    (a b b)    (b b a)

(a a b)    (b a a)    (b a b)    (b b b)

Bolded sequences indicate games won by the first player. Since A wins in 7
out of the 8 possible sequences, A should receive 49 pistolas and B should
receive 7 pistolas.

Pascal’s alternative but equivalent solution uses the method of back-
wards recursive dynamic programming.
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(5, 3)

(6, 3)

(5, 4)

(6, 4)

(5, 5)

(5, 6)

(6, 5)

 Count paths:   7 vs. 1         7/8 ×× 56 = 49

Fermat’s Solution 
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Pascal first asks us to suppose the game is broken off when the stand-
ings are (5, 5). Since A and B then both have an equal chance of winning
56 pistolas, they each expect to win 28 pistolas, so the stakes should be di-
vided equally (28, 28). Moving backwards from that, if instead the stand-
ings are (5, 4), half the time playing one more round brings the standings
to (6, 4) in which case the stakes are divided (56, 0), and half the time the
standings end up (5, 5) in which case I have already established the stakes
should be divided (28, 28). Therefore, when the standings are (5, 4), A is
entitled to 1/2(56) + 1/2(28) = 42, and B is entitled to 1/2(0) + 1/2(28) = 14.
Moving back one more round to the current (5, 3) standings, similar rea-
soning leads to A begin entitled to 1/2(56) + 1/2(42) = 49 pistolas, and B is
entitled to 1/2(0) + 1/2(14) = 7 pistolas.2

Pascal has also been credited as the originator of decision theory. In
[Pascal (1657–1662)] Pensées, Great Books of the Western World: Pascal
(Franklin Center, PA: Franklin Library, 1984), pp. 173–352, particularly
section 3, “Of the Necessity of the Wager,” pp. 205–217, Pascal describes
his famous “wager,” his most unassailable “proof” that you should believe
God exists. Consider, he says, two mutually exclusive possibilities. If there
is no God, then believing in Him or not believing in Him will be of little
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(49, 7)

(56, 0)

(42, 14)

(56, 0)

(28, 28)

(0, 56)

(56, 0)

 Work backwards

 Pascal’s Solution
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matter. However, if there is a God, then believing in Him will bring you
the infinite happiness of an eternity in heaven, and not believing in Him
will bring you the infinite unhappiness of an eternity in hell. So even if
your subjective probability of God existing is arbitrarily small but greater
than zero, your expected gain from believing that God exists will be infi-
nite. Of course, we now understand that Pascal’s reasoning is seriously
flawed since it depends on his particular listing of the possible states of the
world. For example, another possibility is that if God exists, believers are
sent to hell since no human has enough information to conclude this is
true, while doubters, who have the correct view given the information
available, go to heaven.

Tempting as it may be, crediting Pascal as the first decision theorist is
undeserved. The much earlier Talmud (Kethuboth 9q) argues that a man
should not be allowed to divorce his wife for adultery before marriage.
First, there is the possibility the woman may have lost virginity before mar-
riage through the agency of her new husband; and second, even if this did
not happen, the woman may have not been a willing participant. Taken to-
gether, there being four possibilities with only one deserving of divorce, the
weight of the evidence militates against allowing it. Pascal’s wager may
also be another instance of Stephen Stigler’s law of eponymy since
Arnobius of Sicca described a similar choice in his “The Case against the
Pagans” (Book 2, Chapter 4), written in about 303 A.D.

As a striking aspect of the birth of modern probability theory, Pascal
simultaneously and perhaps unconsciously embraced its duality: the in-
terpretation of probabilities as applying (1) to physical processes like
coin flipping and games of chance where probabilities can be indis-
putably calculated (objective probabilities), which we see in the Problem
of Points, or (2) to nonrepeatable events about which there is often con-
siderable disagreement (subjective probabilities), which we see in Pascal’s
wager. Subsequently, it has been argued, for example, by Savage (1954)
in The Foundations of Statistics, that the use of subjective probabilities
applied to nonrepeatable events necessarily falls out from rational choice
among alternatives. But Savage’s analysis works only if bets on alterna-
tives are feasible in the sense that the event that determines the outcome
of the bets is potentially observable. The outcome of a bet on the exis-
tence of life after death is problematic: The winner betting there is no life
after death will find it singularly difficult to collect.

In the latter half of the twentieth century, digital computers became
critical to the further development of the theory of investments, from em-
pirical tests based on extensive databases to solving mathematical prob-
lems with numerical analysis. Very simple calculating machines had long
been in use, such as the abacus from 3000 B.C. The slide rule was invented
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in the years 1630–1632. In 1642–1644, in addition to his many other con-
tributions to science, Pascal, at about age 20, is credited with creating the
first digital computer. Numbers are entered by turning dials, and addition
and subtraction are accomplished by underlying gears that move as the
digits are dialed in, with the total shown in a window above the keys. The
1652 version, signed by Pascal, can be seen in Paris at the Conservatoire
National des Arts et Métiers; and for those who prefer London, a copy can
be found at the Science Museum in South Kensington.

1657  Christiaan Huygens (April 14, 1629–July 8, 1695), De ratiociniis in
aleae ludo (“Calculating in Games of Chance”), first published in Latin as
an appendix to Frans von Schooten’s Exercitationum mathematicarum
libri quinque (1657) and subsequently in Dutch as Van rekiningh in spelen
van geluck (1660); reprinted with annotations by Jakob Bernoulli in Ars
conjectandi, Part 1 (1713); English translation available as of March 6,
2004, on the Internet at www.stat.ucla.edu/history/huygens.pdf.

PROBABILITY THEORY, EXPECTATION, ARBITRAGE, 
STATE-PRICES, GAMBLER’S RUIN PROBLEM

A lready famous for, among other things, the discovery of the rings of Sat-
urn and its largest moon Titan, being the first to notice the markings on

the surface of Mars, and his invention of the pendulum clock in 1656,
Huygens (1657) in quick succession published the first work on probabil-
ity—actually a 16-page treatise that includes a treatment of properties of
expectation (a word he coined as expectatio). Despite the reputation of his
treatise and like Pascal (1654) and Pascal-Fermat (1654), Huygens makes
no reference to our current notion of probability. Moreover, although Huy-
gens’ results can be and have been interpreted in terms of our modern no-
tions of probability and expectation, he had something else in mind. For
him, expectation is the amount someone should pay for a gamble. So in
one of the curious reversals in intellectual history, a problem in investments
provided motivation for the birth of modern probability theory (rather
than, as might have been suspected, the other way around)!

Following the commentary of Ian Hacking in [Hacking (1975)] The
Emergence of Probability (Cambridge: Cambridge University Press, 1975)
to provide a basis for Huygens’ propositions, consider the following lot-
tery. A promoter offers a lottery to players P1 and P2. He will flip a fair
coin and player P1 will try to guess the outcome. If P1 guesses correctly,
the payoff will be X > 0 to player P1, and 0 to player P2, which I will write
(X, 0); if P1 guesses incorrectly, the payoff will be 0 to player P1, and X to
player P2, or (0, X). Huygens tacitly assumes that the value of the payoff
to any player remains unchanged under a permutation across the states. So
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in this case the value of payoff (X, 0) should equal the value of the payoff
(0, X). He then considers the lottery fair if its price (or stakes) to either
player is P = X/2 (Assumption 1). This follows from what we now call an
arbitrage argument. If instead P > X/2, then the promoter makes a sure
profit since his total receipts 2P > X, the prize he must pay out. On the
other hand, if instead P < X/2, then the two players could collude and
make a sure profit at the expense of the promoter.

Huygens now considers a revised lottery in which the winner agrees to
pay the loser a consolation prize 0 < K < X so that neither player will end
up out of pocket; that is, the payoff to each player will be either X – K or
K, with equal chance. Huygens assumes this will not change the price P of
the lottery (Assumption 2). Huygens also assumes that two lotteries with
the same payoffs must have the same price (Assumption 3)—an assump-
tion we would now call “the single-price law.”

Huygens starts by proving three propositions:

1. If there are equal chances of obtaining A or B, then the expectation is
worth (A + B)/2.

2. If there are equal chances of obtaining A, B, or C, then the expectation
is (A + B + C)/3.

3. If the number of chances of receiving A is n1 and the number of chances
of receiving B is n2, then the expectation is (n1A + n2B)/(n1 + n2).

Propositions 1 and 2 deal with equiprobable states. Proposition 3, if in-
terpreted as it subsequently was in modern terms, reaches our current no-
tion of expectation where probabilities do not have to be equal; we would
identify the ratio n1/(n1 + n2) ≡ p, so that the expectation is pA + (1 – p)B.

With our several-hundred-year remove, Proposition 1 may seem obvi-
ous; but that was not so in 1657.
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Proof of Huygens’ Proposition 1

Suppose there is a fair lottery I with two players and prize A + B (where
A < B). It then follows by Assumption 1 that for the lottery to be fair,
the price of a ticket to this lottery must be (A + B)/2. Suppose also that
the winner must pay the loser a consolation prize of A. The payoff from
the lottery for one player will then be either (A + B) – A = B if he wins or
A, the consolation prize if he loses. Notice that the payoff from this lot-
tery is the same as the payoff for fair lottery II where a player has an
equal chance of gaining A or B (by Assumption 2). Since lotteries I and
II have the same payoffs, they must have the same price (by Assumption
3). Finally, since the fair price of a ticket to lottery I is (A + B)/2, that
must also be the fair price for lottery II. Thus, Proposition 1 is proved.
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Proposition 2 is proved by extending the side payment idea of As-
sumption 2 as follows: There are now three players, P1, P2, and P3. Since
the gamble is fair, if P1 wins he receives the entire stakes X, but he agrees
to pay B to P2 and C to P3. So if P1 wins, P1 nets A ≡ X – (B + C). On the
other hand, in return, if P2 wins, he agrees to pay B to P1; and if P3 wins,
he agrees to pay C to P1. So P1 has an equal chance of winning A, B, or C.
P2 and P3 make arrangements between each other that are similar, so that
each player has an equal chance of winning A, B, or C. The following table
displays these outcomes:3

If the The Payoff The Payoff The Payoff 
Winner Is: for P1 Is: for P2 Is: for P3 Is:

P1 X – (B + C) = A B C
P2 B X – (A + B) = C A
P3 C A X – (A + C) = B

Proposition 3 uses yet a further extension of Assumption 2. Huygens
now proposes a lottery with n1 + n2 players. Each player stakes X. The lot-
tery is fair since the total payoff is X × (n1 + n2) and each player has an
equal chance of winning. The first player makes an agreement with the n1 –
1 players that if he wins he will pay each of them A, and if any one of them
wins instead, the winner agrees to pay him A. With the n2 players, if he
wins, he agrees to pay each of them B, and if any one of them wins, the
winner agrees to pay him B. From this, by an argument similar to the ear-
lier propositions, he proves Proposition 3.

Surprisingly, the primitive for Huygens is “value,” not “probabil-
ity.” Linking this with modern finance, it is as if he were thinking of val-
uation directly in terms of state-prices (where interest rates can be
approximated at zero so r = 1) πa and πb, where πa can be identified with
n1/(n1 + n2) and πb with n2/(n1 + n2). So the value of the lottery is πa(A) +
πb(B).

In the state-price interpretation, for the same arbitrage reason, the
sum of state-prices πa + πb must be 1 and each state-price must be positive.
However, the modern theory does not accept Huygens’ tacit assumption
that value is invariant to permuting the payoffs across equiprobable
states. That is, the equal-chance payoffs (X, 0) and (0, X) may not have
the same value.

From the modern perspective, state-prices reflect not only probabili-
ties but also levels of risk and risk aversion. We know that Huygens’ as-
sertion underlying his Assumption 1 that the gamble with equally likely
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payoffs X or 0 would be worth X/2 would not generally be true if that
gamble were traded in a market that did not also include its inverse gam-
ble with payoffs 0 or X in the corresponding states. When both exist in
the same quantity in the same market (as Huygens seems to assume),
since their individual risks can be completely diversified away, they
should be priced at their expected payoffs. But if only one were available
and not also its inverse, since the risk could not be eliminated by diversi-
fication, its price could be more or less than its expected value depending
on the correlation of its payoffs with other available investments, the cor-
relation with other factors of importance to the players, and their risk
aversion. Or, if the outside wealth of the players was, for reasons other
than the gamble, different in the two states, then the prices of the two
gambles would generally not be the same. If aggregate wealth were lower
in the first state than in the second, even though the gamble is a side bet
between two players, the price of the payoff X or 0 would be higher than
the price of the payoff 0 or X (of course, the simple arbitrage argument
given earlier continues to ensure that whatever their prices, the sum of
the two prices must be X).

The winner-take-all University of Iowa presidential election Internet
market immediately comes to mind as a real-life example. In the year
2000, participants were able to place a bet at price PB that would pay X =
$1 if George Bush were elected and 0 if not, or place a bet at price PG

that would pay X = $1 if Al Gore were elected and 0 if not. Ignoring the
small possibility of a third candidate winning, arbitrage requires that the
sum of the prices PB + PG = $1. Indeed, this was in fact true to a very
close approximation. Should one then, as Huygens argues, interpret PB as
the expected value of a bet that Bush will win and PG as the expected
value of a bet that Gore will win? Not quite. For if it were the case, for
example, that participants anticipate better economic times under Bush
than under Gore, and if they are risk averse, then the utility of receiving
an extra dollar if Gore is elected is higher than the utility of an extra dol-
lar if Bush is elected. Or, it may be that if Bush is elected and he had bet
on Bush, a participant may feel so discouraged that he cannot enjoy the
extra dollar as much if instead, Gore had been elected and he had bet on
Gore. Therefore, the prices of bets on Bush and Gore will be affected not
only by subjective probabilities but also by these utilities. In the end, the
price PB of a bet on Bush will be a little lower than the subjective proba-
bility of Bush winning, and PG will be correspondingly higher—in any
case, preserving a sum of $1.

Using these three propositions, Huygens then proves 11 others and
proposes but does not solve five additional problems suggested by 
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Fermat. Propositions 4 through 9 relate to the Problem of Points, ana-
lyzed at about the same time by Pascal-Fermat (1654). Propositions 10
to 14 move to new territory. To get a flavor of these, Proposition 10 an-
swers the question: How many times does one need to toss a single fair
die before one can expect to see the first six? Huygens solves the prob-
lem recursively. The probability of getting a six in the first toss is X1 =
1/6 and the probability of not getting a six is 5/6. The probability of get-
ting a six in the first two tosses is the sum of the probability of getting a
six in the second toss 1/6 plus the probability of having instead rolled a
six in the first toss (5/6)X1. Therefore, the probability of rolling a six in
the first two tosses is X2 = (1/6) + (5/6)X1. The probability of getting a
six in the first three tosses is the sum of the probability of getting a six 
in the third toss 1/6 plus the probability of instead having rolled a six in
the first two tosses (5/6)X2. Therefore, the probability of rolling a six in
the first three tosses is X3 = (1/6) + (5/6)X2. Continuing this line of rea-
soning, the probability of getting a six by the kth toss is Xk = (1/6) +
(5/6)Xk–1. From this, it is easy to see that when k = 4 the probability of
having thrown a six crosses over from below 1/2 to 671/1,296. (Although
Huygens does not solve this sequence of equations analytically, it is easy
to see that Xk = 1 – (5/6)k.)

The last proposition, 14, carries this type of recursive solution one
step further to a situation where the potential number of games is un-
bounded. This proposition answers the question: Suppose two players
take turns tossing two fair dice so that player A wins if he tosses a seven
before player B tosses a six; otherwise player B wins; and B tosses first.
What are the odds that A will win? Clearly, the probability that A will
toss a seven in a single throw is 6/36 and the probability that B will toss
a six in a single throw is 5/36. Huygens solves the problem by setting up
two simultaneous equations. Suppose that the probability that A will
win is p, so that the probability that B will eventually win is 1 – p. Every
time B throws, since it is as if the game just started, the probability that
A will eventually win is p. But every time A tosses, the probability that A
will eventually win is somewhat higher, say q. Therefore, from Proposi-
tion 3, when B tosses, the probability of A eventually winning is also
equal to:

5
36

0
31
36

×






+ ×






=q p
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Similarly, when A tosses, the probability of A eventually winning is:

Solving these two simultaneous equations for p and q, we get p = 31/61, so
the odds that A will win are 31:30.

The last of the five appended problems is the gambler’s ruin problem,
apparently originally posed by Pascal: Consider a game in which two play-
ers start with the same stakes. They play a sequence of rounds. At each
round the first player wins with probability p and receives one unit from
the stakes of the second player, or the second player wins (with probability
1 – p) and receives one unit from the stakes of the first player. The game
ends as soon as one player has no stakes remaining. What is the probability
that this will occur in at most n rounds?

The gambler’s ruin problem was to play a critical role in the subse-
quent development of the mathematics of random walks and Brownian
motion. In modern terminology, we have a random walk between absorb-
ing barriers, where one barrier marks the ruin the first player and the other
the ruin of the second. As discussed in Hald (2003), p. 352, in his 1713
correspondence with Pierre Rémond De Montmort, Nicholas Bernoulli
solves a generalization of this problem when the players start with different
stakes and can play any number of rounds. Suppose player A begins with
stakes a, and player B begins with stakes b, the probability that A will win
any round is p, and the probability that B will win any round is q = 1 – p.
With this notation, the probability R(a, b; p) that B will be ruined (and
perforce A will win all the stakes) is:

R a b
a

a b
, ;  

1
2
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+
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p q
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1662  John Graunt (April 24, 1620–April 18, 1674), Natural and Political
Observations Made Upon the Bills of Mortality (London: Martyn, 1662);
reprinted in B. Benjamin, “John Graunt’s ‘Observations,’ ” Journal of the
Institute of Actuaries 90 (1962), pp. 1–60.

STATISTICS, MORTALITY TABLES, EXPECTED LIFETIME

The field of investments is distinguished by being, after games of chance,
the first to feel the benefits of the new probabilistic reasoning. In turn,

applications in this area led to further advances in probability theory and
literally initiated the related field of statistics. To begin this story, I first
need to explain the incipient effort to construct tables of human mortality,
and then how these tables were used to determine the present value of life
annuities (annuities with payments conditional upon the recipient remain-
ing alive).

The tradition of drawing up a population census dates back at least to
republican Rome. The famous Doomsday Book of 1086, put together for
the purposes of taxation in England, is a much later example. But it re-
mained for Graunt (1662) to conduct the first published statistical analysis
of this type of data, indeed of any type of data, making him the first known
statistician. Not only was his analysis the first of its kind, but it is surpris-
ingly sophisticated, largely remaining a model of good statistical procedure
to the present day. Of course, he was restricted to displaying data in the
form of tables since the representation of time series and cross sections by
graphs was not yet the practice.

According to Anders Hald, in [Hald (2003)] History of Probability and
Statistics and Their Applications before 1750 (Hoboken, NJ: John Wiley &
Sons, 2003), Graunt’s analysis was based on a compendium of vital statistics
for the population of London, gathered weekly starting in 1604, with some
data as late as 1672 (for subsequent editions). Like a good modern statisti-
cian, Graunt first worries about errors by correcting for unreasonable spikes,
running consistency checks, and checking for confirmatory evidence. For ex-
ample, he makes three independent calculations of the number of families in
London by looking separately at births, burials, and the number of houses.
He then finds useful ways to summarize the data. For example, he aggregates
burials over time according to the cause of death (Chapter 2):

Cause of Death Number of Burials

Plague 16,000
Children’s disease 77,000
Aged 16,000
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Cause of Death Number of Burials

“Chronical” diseases 70,000
“Epidemical” diseases 50,000

Total 229,000

He distinguishes between the fixed component of causes of death that
are found every year (“chronical”) and the variable component 
of those that change from year to year (“epidemical”). He notes that 
the fear that many citizens have of dying from particular causes is 
often quite exaggerated and hopes that his statistics will set them at ease.
He also makes other tables that present time-series numbers showing the
changes in the cause of death over time. Although Graunt does not yet un-
derstand with any precision the effect of sample size on reducing variance,
he does know this intuitively since he groups data into subperiods, such as
decades, so that trends will be more discernible. Using his data, he is the
first to note that the numbers of males and females in the population are
consistently nearly equal over time. He formulates and tests the hypothesis
that births are lower in years of relatively more deaths.

Most important for the subsequent development of probability 
theory, Graunt makes the first attempt we know of to create a mortality
table. To do this, he has to infer the total population over time from 
his data and the number of deaths by age. Since he lacks direct information
about this, he devises a clever way to guess this information from the data
at his disposal. Graunt’s resulting mortality table is (Hald 2003, p. 102):

Of the 100 conceived there remains alive at six years end 64.

At sixteen years end 40 At fifty six 6
At twenty six 25 At sixty six 3
At thirty six 16 At seventy six 1
At forty six 10 At eighty 0

It is perhaps worth noting that in the seventeenth century this type of
analysis was originally called “political arithmetic,” and then subsequently
“statistics,” originally taken to mean the collection and analysis of facts re-
lated to affairs of state (status is the Latin word for state).

In 1669, based on Graunt’s mortality table, Christiaan Huygens and
his brother Ludwig made several statistical innovations (these were finally
published in Christiaan Huygens, Oeuvres Complètes, Volume 6 of 22,
1895). Ludwig’s objective is to use Graunt’s table to calculate expected
lifetime conditional on current age. To do this, he assumes a uniform dis-
tribution of the probability of death in between Graunt’s observations.
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Hald (2003), p. 107, represents Ludwig’s calculations in the following
table:

The variables x and lx are taken directly from Graunt’s table; dx is the first
difference in lx; tx is the midpoint of the beginning and ending of the inter-
vals determined by x. Therefore, assuming a uniform distribution of dying
within each interval, tx equals the expected lifetime for the individuals cor-
responding to dx deaths. Ludwig reasons that 1,822 years is the number of
years the 100 individuals starting at age 0 will in total live: 36 will live on
average 3 years, 24 will live on average 11 years, 15 will live on average 21
years, and so on, so that the sum of all these years is 1,822. Then, each of
the 100 individuals at age 0 can expect to live until they are 1,822/100 =
18.22 = E(t0) years old. By similar logic, each of the 64 individuals at age 6
can expect to live until they are 1,714/64 = 26.78 = E(t6) years old. Given
an individual’s age, calculating his or her expected remaining lifetime is
then a simple matter of subtracting age x from E(tx). Interpolating between
17.5 and 15, Ludwig concludes that Christiaan, who at that time was 40,
could expect to live 16.5 more years.

Christiaan takes his brother’s analysis a few steps further. He represents
the first and second columns of the table graphically as an interpolated con-
tinuous function, the first appearance of a distribution function. He shows
how to calculate the median, as opposed to the expected, remaining life. He
also calculates the expected remaining lifetime for the second of two given in-
dividuals A and B to die. That is, if TA, a random variable, is the remaining
lifetime for A, and TB is the remaining lifetime for B, he calculates E[max(TA,
TB)]. First, for each number of years TA remaining in the life of A, assuming
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Ludwig Huygens’ Mortality Table
Number Number Midpoint Accumulation Average Expected

of of of Age of txdx from Age Remaining
Age Survivors Deaths Interval Below at Death Lifetime
x lx dx tx txdx E(tx) ex

0 100 36 3 108 1,822 18.22 18.22
6 64 24 11 264 1,714 26.78 20.78

16 40 15 21 315 1,450 36.25 20.25
26 25 9 31 279 1,135 45.40 19.40
36 16 6 41 246 856 53.50 17.50
46 10 4 51 204 610 61.00 15.00
56 6 3 61 183 406 67.67 11.67
66 3 2 71 142 223 74.33 8.33
76 1 1 81 81 81 81.00 5.00
86 0 0.00
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independence, he calculates E(TB|TB ≥ TA]. Then he weights each of these con-
ditional expectations by the probability of TA and sums the products. Here
we have one of the earliest uses of the idea of conditional expectations. Iden-
tifying T = max(TA, TB), we have the expected remaining lifetime of the sur-
vivor E(T) = E[E(T|TA)], what we now call the law of iterated expectations.

1671  Johan de Witt (September 24, 1625–August 20, 1672), Value of Life
Annuities in Proportion to Redeemable Annuities, published in Dutch
(1671); “Contributions of the History of Insurance and the Theory of Life
Contingencies,” Assurance Magazine 2 (1852), pp. 232–249.

1693  Edmond Halley, “An Estimate of the Degrees of the Mortality of
Mankind, Drawn from Curious Tables of the Births and Funerals in the
City of Breslaw; with an Attempt to Ascertain the Price of Annuities upon
Lives,” Philosophical Transactions of the Royal Society 17 (1693), pp.
596–610.

1725  Abraham de Moivre (May 26, 1667–November 27, 1754), A Trea-
tise of Annuities on Lives; reprinted as an addition to de Moivre’s third
edition (“Fuller, Clearer, and More Correct than the Former”) of The Doc-
trine of Chances (1756); reprinted by the American Mathematical Society
(2000), pp. 261–328.

LIFE ANNUITIES, PRESENT VALUE, 
MORTALITY TABLES, STATE-PRICES, TONTINES

Today, we think of probability theory as the servant of investments, but
this was not always so. In an earlier time, the need to know the present

value of cash flows dependent on mortality played a parenting role in de-
veloping ideas about probability. A life annuity is a contract that pays the
annuitant a given constant amount every year until the death of a given in-
dividual, the “nominee” (usually the same as the annuitant), with no re-
payment of principal. Social Security is today’s ubiquitous version of a life
annuity. A generalization is a joint life annuity, commonly used for married
couples or shipmates, which continues only for so long as they both live. A
tontine (named after a government funding proposal recommended to the
French Cardinal Jules Mazarin in 1653 by Lorenzo Tonti) is similar except
that the arrangement continues as long as one member survives. In a typi-
cal arrangement, a group of contributors place equal amounts of money in
a fund; each then receives an annuity that represents his or her share of a
designated total sum that the annuitants divide equally among themselves
every year. As the annuitants drop out because of their deaths, those 
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remaining divide the same total, leaving a greater payment to each. After
only one annuitant remains, he or she receives the entire annuity payment
each year. Once the last annuitant dies, all payments cease and the corpus
then reverts to the issuer (e.g., the government). In another version, which
provides the theme of Robert Louis Stevenson and Lloyd Osbourne’s
novella, The Wrong Box (1889), the tontine begins with 37 members; no
money is paid out until only one remains alive, whereupon he receives the
entire initial contribution plus all accumulated income.

According to Roman Falcidian Law passed in 40 B.C., during the Civil
War that intervened between the assassination of Julius Caesar in 44 B.C.
and the Battle of Actium in 31 B.C. (dates historians now identify with the
end of the Roman Republic and the start of the Roman Principate), the le-
gal heir, usually the firstborn surviving male, of an estate was guaranteed
to receive at least 25 percent of the value of the estate. Since bequests in
classical Rome often took the form of a life annuity to children who were
not the firstborn, it was necessary to determine their value. Annuities were
quoted in terms of “years’ purchase,” what we would now call the “pay-
back period.” For example, for an annuity of $100 per year, 20 years’ pur-
chase implies a current price of $100 × 20 = $2,000. From the
third-century Roman jurist Domitius Ulpianus (Ulpian), we have a table of
life annuities that apparently recognizes that the value of the annuity
should decrease with the age of the annuitant (although there may have
been an intentional upward bias to protect the estate of the firstborn). In
one of his tables, he quotes that at age 20, a life annuity is valued at 30
years’ purchase, while if one were 60, a life annuity is valued at 7 years’
purchase. We now know how to calculate a simple upper bound to the
years’ purchase. Assuming infinite life and a plausible interest rate of 6 per-
cent, the annuity would be worth $1/.06 = $16.67, implying a years’ pur-
chase of 16.67. That is the most the annuity could be worth since anything
less than an infinite life would produce a smaller value.

The history of life annuities has recently been surveyed in [Poitras
(2000)] Geoffrey Poitras, The Early History of Financial Economics: 1478–
1776: From Commercial Arithmetic to Life Annuities and Joint Stocks
(Cheltenham, U.K.: Edward Elgar, 2000). Beginning in the seventeenth
century, life annuities were used by governments to raise funds. One reason
annuities became quite popular is that they escaped Church usury laws: An
annuity was not considered a loan since the buyer received interest only
and not return of principal, even though a secondary market in annuities
permitted the buyer to cash out early. By that time a more sophisticated
notion of years’ purchase was used. Suppose that P is the price of an annu-
ity certain lasting until some fixed year in the future, X is the annual annu-
ity payment, and the interest return is r. The years’ purchase t satisfies the

34 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 34



equation P = X[∑k=1,2,...,t(1/rk)]. In other words, the years’ purchase is the
time at which the present value of the received annuity equals its price.

Although, as we have seen, the Romans apparently used a crude ad-
justment for the expected life of the nominee, little attempt was made to
make this adjustment with any precision until de Witt (1671). In what may
be regarded as the first formal analysis of an option-style derivative, de
Witt proposed a way to calculate the value of life annuities that takes ac-
count of the age of the nominee. His method was crude by modern stan-
dards, but he did make use of one of the first mortality tables. De Witt
assumed nominees would die according to the following table. Out of
every 768 nominees:

Six will die every six months for the first 50 years.

Four will die every six months for the next 10 years.

Three will die every six months for the next 10 years.

Two will die every six months for the next 7 years.

Assuming a compound interest rate of 4 percent, for each of the 768
times to death, he calculated the present value of the corresponding annu-
ity and then took their arithmetic average to be the price of the annuity. De
Witt also mentions that his calculation will be biased low due to what we
would now call “adverse selection,” since the subset of individuals who
purchase annuities will likely contain those who are comparatively healthy
and therefore likely to live longer than others of their age.

While this history intentionally focuses on the development of ideas, in
contrast to the biographies of the creators of these ideas, I cannot resist
mentioning that in 1672, just one year after de Witt published his now-
classic work on life annuities, he was publicly hanged by a revolutionary
mob in Holland, no doubt because of his prominence as a government
minister with special expertise in finance.

Johan van Waveran Hudde (April 23, 1628–April 15, 1704), who had
been consulted by de Witt, derived his own annuity values using mortality
statistics from 1,495 people who had actually purchased annuities. Halley
(1693) made his own calculations. Apart from using different data, Halley’s
formula led to the same result as de Witt’s. But he restructured the solution in
a more fundamental way. The present value of an annuity certain terminating
at date t is X[∑k=1,2,...,t(1/rk)]. Suppose qt is the probability the annuitant will
die in year t. Then, according to de Witt, the present value of a life annuity is:

A X q
r

t t k t k
≡ ×
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Alternatively, suppose pt is the probability the annuitant will be alive in
year t. Halley first calculated et ≡ pt/r

t, and then used these molecular prices
to calculate the present value of the life annuity:

A X
p

r
X et

t
t t t= ×







= ×Σ Σ
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Proof That Halley’s and de Witt’s 
Formulations Are Equivalent

To derive Halley’s formulation from de Witt’s, first derive the relation
between probabilities qt, that the annuitant dies in year t, and pt, that the
annuitant is alive in year t. pt equals the sum of the probabilities of dying
at dates t + 1, t + 2, t + 3, . . . since if one has not died by date t, one
must then die subsequently. So the probability of being alive at date t
must equal the probability of dying after date t. Consider a special case
where the annuitant must die by date 4. Then:

p1 = q2 + q3 + q4

p2 = q3 + q4

p3 = q4

Solving these equations for q2 and q3: q2 = p1 – p2, q3 = p2 – p3 (and q4 =
p3 – p4, where by assumption p4 = 0). So generally,

qt = pt–1 – pt

This makes intuitive sense since the probability of dying at date t should
equal the probability of being alive at date t – 1 (and therefore not hav-
ing died before that) less the lower probability of being alive at date t;
the difference between these probabilities can only be explained by hav-
ing died at date t.

Substituting this into de Witt’s formulation:

A X p p
r

t t t k t k
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We can think of the et as today’s price of your receiving $1 in year t if
and only if you are alive at that time. In today’s life insurance parlance, the
et is called a “pure endowment” price. Actuaries define pure endowment as
an amount payable to an insured contingent on surviving for a prespecified
length of time; an individual who does not survive receives nothing. En-
dowment insurance is more inclusive: It pays a stated sum plus accruals ei-
ther on a prespecified future date or on the date of death if that occurs
early. Premiums are typically paid in equal installments during the life of
the policy. This type of insurance can therefore be decomposed into pure
endowment insurance, which is canceled if death occurs earlier, before the
designated period is over, plus term insurance, which pays off only if the
insured dies during the period.

The mathematician de Moivre (1725) also worked on the life annu-
ity problem, deriving “closed-form” results for single-life and joint-life
annuities, tontines, and reversions. His Problem #1 (pp. 265–266) deals
with a single-life annuity. To obtain a solution in closed-form, he as-
sumes that the probability of remaining alive decreases with age in an
arithmetic progression:

Supposing the probabilities of life to decrease in arithmetic 
progression, to find the value of annuity upon a life of an age given.

Using Halley’s formulation, de Moivre therefore assumes that pt = 1 – (t/n),
where n can be interpreted as some maximum number of years remaining
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Proof That Halley’s and de Witt’s 
Formulations Are Equivalent (Continued)

Looking at the first few terms:

This makes intuitive sense since receiving the annuity at each date is
conditional on being alive at that date so that the present value of the
expected annuity at any date t equals pt(1/rt). The result follows since
the present value of a sum equals the sum of the present values.
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that the individual could survive. For example, consider a man of age 30; if n
= 50, the probability he will be alive in one year is p1 = 1 – 1/50 = .98, in two
years is p2 = 1 – 2/50 = .96. The probability that he will be alive in 50 years is
p50 = 1 – 50/50 = 0. Under this assumption, the present value of the annuity is:

Using the properties of geometric series, de Moivre shows that (where r* ≡
r – 1):

De Moivre also provided results for a joint-life annuity (Problem #2,
pp. 266-268):

The value [of a life annuity] of two single lives being given, to
find the value of an annuity granted for the time of their joint
continuance.

Suppose that two individuals at ages x and y were to individually buy an-
nuities, which for simplicity each paid off $1 every year they remain alive. Let
the present value of their annuities Ax ≡ Σt(xpt/r

t) and Ay ≡ Σt(ypt/r
t). Further,

suppose the probability of remaining alive is geometrically decreasing with
time so that xpt = px

t and ypt = py
t . So, for example, for the individual at age x,

the probability that he will be alive in one year is px, the probability that he
will be alive in two years is px

2, and so on. De Moivre proves that if the two
lives are independent, then the present value of an annuity written on their
joint lives (that is, a security that pays off $1 as long as both are alive) is:
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To see this, the probability that both individuals will be alive after t
years from their present ages is (pxpy)t, so that the present value of a joint
annuity is Axy = Σk=1,2, . . . ,∞(pxpy/r)

t. As de Moivre has posed the problem,
we need to express this in terms of single-life annuities. The present
value of a single-life annuity for the first individual is Ax = Σk=1,2, . . . ,∞
(px /r)t = (px/r)/[1 – (px/r)] = px/(r – px), and similarly for the second indi-
vidual Ay = py/(r – py). Solving each of these single-life formulas for px

and py and substituting these expressions for px and py in the expression
for the joint-life annuity, Axy, brings the result.
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De Moivre also considers a tontine problem (Problem #4, p. 270):

The values of two single lives being given, to find the value of an
annuity from the longest of them, that is, to continue so long as ei-
ther of them is in being.

which he proves to be Ax + Ay – Axy, quite generally without special as-
sumptions regarding the dependence of y pt and ypt on t.

De Moivre’s Problem #7 (p. 272) deals with a life annuity that results
from a “reversion”:

Suppose A is in possession of an annuity, and that B after the
death of A should have an annuity for his life only; to find the
value of the life of B after the life of A.

which he proves to be Ay – Axy, again quite generally without special as-
sumptions regarding the dependence of xpt and ypt on t.
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This follows quite simply from the observation that the probability
that at least one of the two individuals remains alive at time t is 
1 – (1 – xpt)(1 – y pt). Therefore the present value of the tontine 
is Σt[1 – (1 – xpt)(1 – y pt)]/r

t. Breaking this apart into three separate
sums, one for terms xpt, one for terms ypt, and one for terms xpt y pt,
yields the result.

This also follows quite simply from the observation that the prob-
ability that A will have died and B will be alive at time t is 
(1 – xpt)ypt. Therefore the present value of the tontine is Σt[(1 – xpt)ypt]/r

t.
Breaking this apart into two separate sums, one for terms y pt and one
for terms xpt y pt, yields the result.
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1738  Daniel Bernoulli (February 8, 1700–March 17, 1782), “Specimen
Theoriae Novae de Mensura Sortis,” in Commentarii Academiae Scien-
tiarum Imperialis Petropolitannae (1738); translated from Latin into Eng-
lish by L. Sommer, “Exposition of a New Theory on the Measurement of
Risk,” Econometrica 22, No. 1 (January 1954), pp. 23–36.

1934  Karl Menger (January 13, 1902–October 5, 1985), “Das Unsicher-
heitsmoment in der Wertlehre,” Zeitschrift für Nationaloekonomie, Band
V, Heft 4 (1934), pp. 459–485, translated from the German into English
by Wolfgang Schoellkopf as “The Role of Uncertainty in Economics,” in
Essays in Mathematical Economics in Honor of Oskar Morgenstern,
edited by Martin Shubik (Princeton, NJ: Princeton University Press,
1967), pp. 211–231.

RISK AVERSION, ST. PETERSBURG PARADOX, 
EXPECTED UTILITY, LOGARITHMIC UTILITY, 

DIVERSIFICATION, WEBER-FECHNER LAW OF PSYCHOPHYSICS,
BOUNDED UTILITY FUNCTIONS

In their solution to the Problem of Points, Pascal-Fermat (1654) had as-
sumed that a gamble was worth its expected value. Huygens (1657), as

well, as I have noted, developed his entire theory of chance with this pre-
sumption. The classic paper of Bernoulli (1738) originates the idea that a
gamble is worth less than its expected value because of risk aversion.
Bernoulli justified risk aversion by use of the St. Petersburg Paradox. How
much would you pay for the opportunity to flip a fair coin until the first
time it lands heads? If it first lands heads on the nth toss, you will receive
2n dollars. The expected value of this gamble equals

yet you would pay only a finite amount for it, no doubt far less than
your total wealth; therefore, the gamble must be worth less than its ex-
pected value.

For a solution, Bernoulli proposed that individuals instead maximize
expected utility, or as he then phrased it, “moral expectation.” In particu-
lar, Bernoulli suggested using a utility function U(W) with the property
that “the utility resulting from any small increase in wealth will be in-
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versely proportional to the quantity of goods previously possessed [W]”;
that is:

The solution to this is U(W) = a + b(log W) (where log(•) represents the
natural logarithm), or defined up to an increasing linear transformation,
simply log W. In that case, the expected utility of the gamble is:

implying that the individual would pay at most four ducats for the gamble.
Bernoulli notes that his cousin, Nicholas Bernoulli (October 10, 1687–
November 29, 1759), initially proposed the St. Petersburg Paradox. To
Nicholas, the Paradox was quite disturbing since it undermined his sense
that expected value was the essence of fairness. Daniel also notes that the
mathematician Gabriel Cramer anticipated much of his own solution sev-
eral years earlier in a letter to his cousin in 1728.

Anticipating Markowitz (1952/March) and Roy (1952), Daniel
Bernoulli also argues that risk-averse investors will want to diversify: “. . .
it is advisable to divide goods which are exposed to some small danger into
several portions rather than to risk them all together.” Bernoulli is hardly
the first to appreciate the benefits of diversification. For example, accord-
ing to Talmudic advice, “A man should always keep his wealth in three
forms: one third in real estate, another in merchandise, and the remainder
in liquid assets.” In The Merchant of Venice, Act 1, Scene 1, William
Shakespeare has Antonio say:

. . . I thank my fortune for it,
My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year.

Antonio rests easy at the beginning of the play because he is diversified
across ships, places, and time, although this turns out to be mistaken 
security.

An application of Bernoulli’s logarithmic utility appears in [Weber
(1851)] Ernst Heinrich Weber’s (June 24, 1795–January 26, 1878) Der
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Tastsinn und das Gemeingefühl (1851, “The Sense of Touch and the Com-
mon Sensibility”), one of the founding documents of experimental psy-
chology, which defines the threshold of intensity of any stimulus that must
be reached before it can be noticed, called the “just noticeable difference.”
He proposes that this difference divided by the current intensity of the
stimulus is a constant (Weber’s Law). Gustav Theodor Fechner (April 19,
1801–November 18, 1887), in [Fechner (1860)] Elemente der Psy-
chophysik (1860, “Elements of Psychophysics”), adapted this to explain
why, although the mind and the body appear separate, they are actually
different manifestations of the same reality. He proposed that a change in
sensation (as experienced by the mind) is proportional to the constant
from Weber’s Law.

Menger (1934) points out that concave utility—now commonly
termed “diminishing marginal utility”—is not sufficient to solve general-
ized versions of the St. Petersburg Paradox.4 For example, suppose the
payoff from the gamble were e raised to the power 2n dollars if heads
first appears on the nth toss; then the expected logarithmic utility of the
gamble is:

Indeed, Menger shows that as long as the utility function is un-
bounded, there always exists a St. Petersburg type gamble for which its ex-
pected utility will be infinite. As a result, many economists believe that
boundedness is a prerequisite for a reasonable utility function, although
this continues to be a matter of some controversy.

Menger also discusses another solution to the Paradox that will be
picked up much later by behavioral economists, namely that individuals
tend to ignore completely outcomes with sufficiently small probability of
occurrence—a solution suggested quite early by Georges-Louis Leclerc,
Comte de Buffon (September 7, 1707–April 16, 1788), in [Buffon (1777)]
“Essai d’arithmétique morale,” Supplément à l’Histoire Naturelle 4
(1777). Menger notes that individuals tend to underestimate the probabili-
ties of extreme events, small as well as large, and correspondingly overesti-
mate the probabilities of intermediate events.

Menger’s observation concerning unboundedness led Kenneth Joseph
Arrow, in [Arrow (1965/A)] “Exposition of the Theory of Choice under
Uncertainty,” Essay 2 in Essays in the Theory of Risk Bearing (Chicago:
Markham, 1971), pp. 44–89 (part of which was first published in 1965 as
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Lecture 1 in Aspects of the Theory of Risk Bearing, Yrjo Jahnsson Lec-
tures, Helsinki), reprinted in Collected Papers of Kenneth J. Arrow: Indi-
vidual Choice under Certainty and Uncertainty, Volume III (Cambridge,
MA: Harvard University Press, 1984), pp. 5–41, to conclude that not all
uncertain outcomes could be admitted under the von Neumann–Morgen-
stern (1947) axioms since both the completeness and continuity axioms
could be violated by St. Petersburg gambles of the Menger type unless the
utility function were required to be bounded both below and above. For
example, one could easily imagine two such gambles, one clearly preferred
to another, but both with infinite expected utility. However, these flights of
fancy do not trouble someone like Paul Anthony Samuelson who, in
[Samuelson (1977)] “St. Petersburg Paradoxes: Defanged, Dissected, and
Historically Described,” Journal of Economic Literature 15, No. 1
(March 1977), pp. 24–55, consoles himself that such gambles, while inter-
esting thought experiments, “do not seem to be of moment in real life.”
Nonetheless, the Paradox has played a lengthy and significant role in the
history of the economics of uncertainty, causing Samuelson to conclude
that it “enjoys an honored corner in the memory bank of the cultured an-
alytic mind.”

Samuelson raises perhaps a more troubling objection to unbounded
utility that does not rely on the infinities of the St. Petersburg Paradox.
Suppose there is a payoff $X, arbitrarily large, that an agent can receive
with certainty. If his utility is unbounded above, there will always exist an
even larger amount $Y that the agent will prefer even though he has an ar-
bitrarily small probability of obtaining it. Unbounded utility, then, implies
a sort of extreme form of nonsatiation. On the other side, in [Arrow
(1974)] “The Use of Unbounded Utility Functions in Expected Utility
Maximization: Response,” Quarterly Journal of Economics 88, No. 1
(February 1974), pp. 136–138, reprinted in Collected Papers of Kenneth J.
Arrow: Individual Choice under Certainty and Uncertainty, Volume III
(Cambridge, MA: Harvard University Press, 1984), pp. 209–211, Arrow
proves that if the utility function U(X) is monotone increasing and concave
with U(0) finite and if E(X) is finite, then E[U(X)] will also be finite. There-
fore, if gambles such as the St. Petersburg gamble with infinite expected
value are not available, as a practical matter, even utility functions that are
unbounded above should not present problems.

1780  Jeremy Bentham (February 15, 1748–June 6, 1832), An Introduc-
tion to the Principles of Morals and Legislation (privately printed); full ver-
sion published 1789.
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1906  Vilfredo Pareto (July 15, 1848–August 20, 1923), Manual of Politi-
cal Economy; translated from Italian into English (New York: Augustus
M. Kelly, 1971).

1951  Kenneth Joseph Arrow (August 23, 1921–), “An Extension of the
Basic Theorems of Classical Welfare Economics,” Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability; edited by
J. Neyman (Berkeley: University of California Press, 1951), pp. 507–532;
reprinted in Collected Papers of Kenneth J. Arrow: General Equilibrium,
Volume II (Cambridge, MA: Harvard University Press, 1983), pp. 13–45.

ORDINAL VS. CARDINAL UTILITY, PARETO OPTIMALITY,
OPTIMALITY OF COMPETITIVE EQUILIBRIUM

Bentham (1780) advocates that the goal of human life is to obtain happi-
ness, that happiness can be numerically measured, and that, in their

choices, humans make careful hedonic calculations trading off advantages
against disadvantages. Bentham writes:

Nature has placed mankind under the governance of two sover-
eign masters, pain and pleasure. It is for them alone to point out
what we ought to do as well as to determine what we shall do. On
the one hand, the standard of right and wrong, on the other the
chain of cause and effects, are fastened to their throne.

He also believes that wealth is a means to (and hence to some extent
a measure of) happiness, but that greater and greater wealth will result in
continually diminishing increments to happiness—what is now called
“diminishing marginal utility of wealth” (from this he was able to deduce
that gambling is “bad” and insurance is “good”). The goal of society is
to produce the maximum happiness for all, where the numerical value of
the happiness of each of its members is simply equally weighted and
summed to produce the total. Combining these ideas results in the pre-
scription of redistribution of wealth from rich to poor, although Bentham
realized that the benefits of such a policy had to be balanced against a re-
duction in productivity incentives. One of the many problems with this
prescription is how to decide which people are to be included as “mem-
bers” of the society (voters only, men only, citizens only, etc.?). Although
these views have been significantly modified by modern economists, Ben-
tham is nonetheless rightfully deserving of the title “the father of the util-
ity function.”

In contrast, the Greek philosophers believed that each man has a de-
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fined place in the broad scheme of the world; some men are born to be
slaves, and at the other extreme, others—the philosophers—should be the
rulers. Men are naturally superior to women. That one man would work
for the happiness of another, or that one man deserved greater happiness
than others, was fully compatible with their view of justice.

Pareto (1906) realized that he could dispense with the cardinality of
utility (presumed by Bentham) and more weakly simply interpret prefer-
ences as an ordering, yet still derive the same results. But more famously,
he realized that Alfred Marshall’s (July 26, 1842–July 13, 1924) [Mar-
shall (1890)] Principles of Economics, Volume 1 (1890), eighth edition
retitled Principles of Economics: An Introductory Volume (New York:
Macmillan, 1920), and others’ use of utility to make interpersonal wel-
fare comparisons was too strong, and introduced what has ever since
been called “Pareto optimality”: a characterization of a candidate equi-
librium in which no alternative reallocation of commodities across agents
can make some agents better off while making no other agent worse off
(where each agent evaluates his own welfare in terms of his own utility).
Since it was later shown that a competitive equilibrium is Pareto-optimal,
Pareto optimality has become the modern justification for Adam Smith’s
invisible hand.

Arrow (1951) proves the two optimality theorems for the competitive
equilibrium also described in Debreu (1959):

First Optimality Theorem: If an equilibrium exists and all com-
modities relevant to preferences and production are priced by the
market, then the competitive equilibrium must be Pareto-optimal;
that is, any change in the equilibrium allocation of commodities
across consumers cannot make some consumers better off while
making none worse off.

Here we have the modern justification for the invisible hand of Smith
(1776).

Second Optimality Theorem: If there are no increasing returns to
scale in production and certain other minor conditions are met,
then every Pareto-optimal allocation of commodities across con-
sumers is a competitive equilibrium for some initial allocation of
endowments.5

The second theorem implies a very useful way to identify whether a
proposed allocation is Pareto-optimal. Assuming concave utility for all
consumers, an allocation will be Pareto-optimal if and only if it maximizes
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a positively weighted sum of consumer utilities subject to constraints on
the aggregate supply of consumption.

Pareto optimality is one of the modern justifications for a competitive
price system (the others have to do with incentives and the communication
of information (Hayek 1945)): That is, it leads to an allocation of re-
sources across consumers and firms so that there is no other allocation that
can make some consumers better off (relative to it) while making no one
worse off. A secondary justification is that the equilibrium of a competitive
price system lies within “the core of the economy”: the set of allocations
that make everyone at least as well off relative to one’s endowed allocation
(everyone is born into the economy with given endowed resources).

Of course, the set of Pareto-optimal allocations is not unique and the
competitive price system simply picks one of them. But Arrow shows that
every Pareto-optimal allocation can be attained through a competitive
price system by an appropriate reshuffling of endowments (before any ex-
change or production has occurred) among consumers. So the exact
Pareto-optimal allocation the society wants can be reached by first redis-
tributing wealth and then letting the price system do its magic. Since mod-
ern economists eschew interpersonal welfare comparisons, it is not the
province of economics to say what that initial wealth distribution should
be—these are matters for political science. Economics always ducks the re-
ally hard questions.

Proofs of these theorems were independently discovered by Gerard De-
breu in [Debreu (1951)] “The Coefficient of Resource Utilization,” Econo-
metrica 19, No. 3 (July 1951), pp. 273–292, and in [Debreu (1954)]
“Valuation Equilibrium and Pareto-Optimum,” Proceedings of the Na-
tional Academy of Sciences (1954).

1835  Lambert Adolphe Jacques Quetelet (February 22, 1796–February
17, 1874), Sur l’homme et le développement de ses facultés, ou Essai de
physique sociale (Paris: Bachelier, 1835); translated from French into Eng-
lish as A Treatise on Man and the Development of His Faculties (Edin-
burgh: Chambers, 1942).

AVERAGE OR REPRESENTATIVE MAN, NORMAL DISTRIBUTION,
PROBABILITY IN THE SOCIAL SCIENCES

L’homme moyen, or the “average man,” the most famous fictional char-
acter in the social sciences, makes his debut in Quetelet (1835).

Quetelet constructs his average man from a sample of about 100,000
French conscripts, measuring their average height and weight. He even
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goes so far as to determine from arrest records the propensity of the aver-
age man to commit a crime. The “average man” who became better
known as the “representative man,” was to play a central role in the devel-
opment of financial economics more than a century later.

Quetelet’s second important contribution was to assume that many
natural processes, if properly sorted, conform to a normal curve. As noted
to me by my student, Luca Barone, we may also owe to Plato (427 B.C.–
347 B.C.), with some liberality of interpretation, the first written descrip-
tion of a unimodal symmetric frequency distribution, along with the belief
that most traits are naturally distributed in that manner:

. . . for experience would have taught him that the true state of
the case, that few are the good and few the evil, and that the
great majority are in the interval between them. I mean . . . as
you might say of the very large and very small—that nothing 
is more uncommon than a very large or a very small man; and
this applies generally to all extremes, whether of great and
small, or swift and slow, or fair and foul, or black and white:
and whether the instances you select be men or dogs or anything
else, few are the extremes, but many are in the mean in between
them. (Great Books of the Western World: Plato, Volume I:
Phaedo, Franklin Center, PA: Franklin Library, 1979, pp. 385–
439, especially p. 415)

Quetelet added the more specific property of normality,6 observing
that a key requirement for his result is that the sample be sufficiently ho-
mogeneous in all ways but the single source of variation under examina-
tion. So confident was he of his normal law that when he observed
considerably more conscripts in the lowest-height group than he observed
in the next higher group, he concluded that the large number in the lowest
group, where service was voluntary, was evidence that about 2,000 men
had fraudulently avoided conscription.

In 1843, Antoine-Augustin Cournot (August 18, 1801–March 31,
1877) in [Cournot (1843)] Exposition de la théorie des chances et des
probabilities (Paris: Hachette, 1843) expressed serious reservations about
the application of probability theory to the social sciences. This is all the
more surprising coming from Cournot, who in 1838 can be credited with
introducing mathematical methods into economics. His argument, like his
1838 book, was well ahead of its time. The problem lay in choosing
testable hypotheses. He believed that the social sciences offered such a
large variety and number of ways of sorting and classifying data that some
samples that would seem to support hypotheses could not be relied upon,
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since by chance some hypotheses would necessarily be spuriously statisti-
cally significant. He writes:

It is evident that as the number of divisions increases without
limit, it is a priori more and more probable that, by chance alone,
at least one of the divisions will produce ratios of male to female
births for the two classes that are sensibly different.

In particular, Cournot worried that it would be tempting to choose hy-
potheses after peeking at the data to be used for the test. Today we have a
name for this pernicious error: “data mining.”

At the other extreme lay the views of Henry Thomas Buckle, who, in
History of Civilization in England, Volume 1 (London: J.W. Parker,
1857), looked forward to the day when the power of statistics would
forge laws of the social sciences and afford a comparable predictability to
that acquired by physics through the use of mathematics. The future, of
course, was to reveal that the truth lay in between the visions of Cournot
and Buckle. But even in the mid-twentieth century, the most famous of sci-
ence fiction sagas, The Foundation Trilogy (1951–1953) by Isaac Asimov
(January 2, 1920–April 6, 1992), predicted that a kind of social statistical
mechanics applied on a galactic scale would eventually permit statistically
significant forecasts of dominant social trends that lay hundreds of years
in the future.

1900  Louis Bachelier (March 11, 1870–April 26, 1946), “Théorie de la
spéculation,” Annales Scientifiques de l’Ecole Normale Supérieure 17
(Third Series 1900), pp. 21–86; translated from French into English by A.
James Boness, “The Theory of Speculation,” in The Random Character of
Stock Market Prices, edited by Paul H. Cootner; reprinted (London: Risk
Publications, 2000), pp. 18–91; also reprinted in the original French as
“Théorie de la speculation & théorie mathématique de jeu,” Les Grandes
Classiques Gauthier Villars (Paris: Éditions Jacques Gabay, 1995), Part 1,
pp. 21–86.

BROWNIAN MOTION, OPTION PRICING, 
RANDOM WALK, NORMAL DISTRIBUTION

Bachelier (1900) in this doctoral thesis shows that probability theory can
be used to describe the movement of security prices. His is very likely

the first such attempt of which there is record. Bachelier gives the first
mathematical description of a continuous-time, continuous-state stochastic
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process (arithmetic Brownian motion), amazingly with the goal of valuing
“options” (French rentes, or perpetual government bonds). Although that
goal was only partially realized, his paper—a thesis submitted to the Acad-
emy of Paris—anticipated Einstein’s work on Brownian motion by six
years as well as the mathematical basis for the Black-Scholes formula
(which is based on geometric Brownian motion) by 73 years.

He precociously anticipated the now-ubiquitous assumption of ran-
dom walks and normal distributions. He justified randomness by arguing
that at the current price there must be as many buyers who believe the
price will rise as there are sellers who believe that the price will fall. And
since there is no reason to think that either group is wiser than the other,
the probability must be about the same that the next price change will be
up or down. So he concluded that a trader should expect to make zero
profit, and that the market is therefore a “fair game.”

The implications of the random walk of prices led Bachelier to dis-
cover the now well-known result that volatility expands in proportion to
the square root of time,7 and he derives a differential equation governing
the asset price diffusion. He observes that if price changes are serially inde-
pendent and identically distributed random variables with finite variance
observed over reasonably short intervals, then price changes across longer
intervals will be approximately normally distributed according to the
Pierre-Simon Marquis de Laplace (March 23, 1749—March 5, 1827) cen-
tral limit theorem from his [Laplace (1814)] Essai philosophique sur les
probabilités (A Philosophical Essay on Probabilities), 1814. Bachelier also
derives the first published option pricing formula and then goes on to test it
empirically, noting a strong resemblance between his theoretical values and
market prices. He ends his thesis by writing:

Perhaps a final remark will not be pointless. If, with respect to sev-
eral questions treated in this study, I have compared the results of
observation with those of theory, it was not to verify the formulas
established by mathematical methods, but only to show that the
market, unwittingly, obeys a law which governs it, the law of
probability. (p. 87)

This Vincent van Gogh of financial economics received only average
marks on his thesis. Ironically, we can see now that it is undoubtedly the
finest thesis ever written in financial economics. In 1906, he published
“Théorie des probabilités continues” (Paris: Gauthier-Villars), in which he
defined several types of stochastic processes, including Markov and Ornstein-
Uhlenbeck processes, which were subsequently rediscovered; and he de-
scribed stochastic processes in terms of their drift and diffusion coefficient.
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Despite this, he could not find an academic job until several years later; and
even then, he had to settle for an obscure teaching post until he retired in
1937, nine years before his death in 1946. Unfortunately forgotten for more
than 50 years, Bachelier’s thesis was rediscovered by Paul Anthony Samuel-
son, who said in the transcript of the PBS television program “NOVA 2074:
The Trillion Dollar Bet,” broadcast February 8, 2000:

In the early 1950s I was able to locate by chance this unknown
book, rotting in the library of the University of Paris, and when
I opened it up it was as if a whole new world was laid out before
me. In fact as I was reading it, I arranged to get a translation 
in English, because I really wanted every precious pearl to be
understood.8

1921  Frank Hyneman Knight (November 7, 1885–April 15, 1972), Risk,
Uncertainty and Profit (Boston: Houghton Mifflin, 1921).

RISK VS. UNCERTAINTY, 
SOURCE OF BUSINESS PROFIT, DIVERSIFICATION

Knight (1921) is known primarily for two ideas. The first is his distinc-
tion between “risk” and “uncertainty,” and the second is his location of

the source of “profit” in the returns from exposure of business activities to
uncertainty. Knight’s analysis is somewhat confusing, tempting the false in-
terpretation of his writing in too modern a light. With that in mind, Knight
associates risk with circumstances in which probabilities can be more or
less objectively measured, or in which the law of large numbers can be
brought into play to eliminate all uncertainty by combining the results of
several related endeavors.

As we have repeatedly pointed out, an uncertainty which can by
any method be reduced to an objective, quantitatively determinant
probability, can be reduced to complete certainty by grouping
cases. (Chapter 7)

On the other hand, singular events or events for which science can
make no clear predictions are associated with uncertainty. In human af-
fairs, prominent among the latter are judgments of the decision-making
skill of other human beings. Knight believed that for uncertain events it is
meaningless to speak of them probabilistically—a view that was later to
play a significant role in challenges to the usefulness of maximizing ex-
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pected utility based on subjectively formed probability beliefs, in particu-
lar, Ellsberg (1961).

Richard Cantillon (circa 1690–May 14, 1734), in [Cantillon (1755]
his 1755 Essay of the Nature of Commerce (but written in the 1720s), had
realized quite early that the source of profit within a firm was the remuner-
ation that was contingent on the success of the firm after all fixed payment
contracts are honored, including interest, wages, and rent. However, in a
competitive economy under certainty all profit is competed away so that
profits are zero in equilibrium. Knight therefore argued that profits could
arise only in an economy where the future was not known with certainty.
Perhaps with some license, representing his theory with mathematics
(which Knight did not do), I can write:

rj = r + δj + εj

where rj is the realized return to the stockholders of a firm j, r is the riskless
return, εj is the portion of the realized return of the firm that it can, in prin-
ciple, eliminate by diversification. Today we would call εj the return from
“residual risk.” That leaves δj, the portion of the return that Knight would
associate with uncertainty and a measure of Knight’s notion of “profit.”
Knight associates profit then with the random portion of a firm’s return
that cannot be eliminated by diversification, hedged, or insured. What
causes this portion of the return? Knight argues that if probability distribu-
tions cannot be objectively measured, their uncertainty cannot be diversi-
fied away. And most significantly, the results of human judgments in
deciding the course of a firm and in choosing individuals to whom to dele-
gate authority within the firm cannot be measurably predicted with proba-
bilities. So it is “entrepreneurship” that is the ultimate source of profit.

The only “risk” which leads to profit is a unique uncertainty re-
sulting from an exercise of ultimate responsibility which in its very
nature cannot be insured nor capitalized nor salaried. Profit arises
out of the inherent, absolute unpredictability of things, out of the
sheer brute fact that the results of human activity cannot be antici-
pated and then only in so far as even a probability calculation in
regard to them is impossible and meaningless. (Chapter 10)

What is the expected value of δj? For Knight, a good guess made by the
market would be that E(δj) < 0 for what we would now call behavioral rea-
sons: (1) the tendency of entrepreneurs to be overconfident and therefore to
overinvest, (2) overpaying because of failure to appreciate the so-called win-
ner’s curse, (3) the reluctance to abandon an effort once the commitment
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has been made, and (4) the satisfaction of working for oneself. But clearly
Knight had no real concept of what today we could call “systematic risk,”
that is, risk borne by the whole society from which an individual cannot es-
cape without sacrificing expected return.

1923  John Maynard Keynes (June 5, 1883–April 21, 1946), “Some As-
pects of Commodity Markets,” Manchester Guardian (1923).

1949  Holbrook Working (1895–October 5, 1985), “The Theory of Price
of Storage,” American Economic Review 39, No. 6 (December 1949),
pp. 1254–1262.

SPOT VS. FORWARD PRICES, FORWARD VS. EXPECTED PRICES,
NORMAL BACKWARDATION, CONVENIENCE YIELD, 

HEDGING VS. SPECULATION

One of the earliest issues in financial economics that attracted the atten-
tion of economists was the question of the normal relation between to-

day’s price for future delivery (the futures or forward price F0) and the
expected future underlying asset price on the delivery date E(St). In his
newspaper article, Keynes (1923) first formulated his theory of “normal
backwardation” in the futures market, arguing that F0 is typically less than
the expected value of St. He believed that hedgers who were naturally short
would have to pay speculators a risk premium to convince them to accept
their risk. Keynes spelled his argument out in more detail in [Keynes
(1930)] A Treatise on Money, Volume II: The Applied Theory of Money
(London: Macmillan, 1930), pp. 142–147.

Of course, it was understood quite clearly that for certain types of un-
derlying assets, arbitrage reasoning (and I will update this and add risk
aversion) creates a form of normal backwardation. For example, if the un-
derlying asset is a stock market index, assuming no arbitrage and perfect
markets, F0 = S0(r/d)t, where S0 is the current underlying asset price, r is the
riskless return, d is the payout return on the index, and t is the time to de-
livery. Typically, since risk aversion implies that E(St) > S0(r/d)t, taken to-
gether this implies that F0 < E(St).

The really interesting situation relates to underlying assets that are
used for consumption or production purposes (that is, commodities). For
these, because the underlying commodity may not be easily shorted (bor-
rowed and sold), arbitrage cannot force F0 = S0(rc)t, where c is one plus
the rate of storage cost; rather it can only assure that S0c

t ≤ F0 ≤ S0(rc)t. It
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is also possible for commodities that E(St) < S0(rc)t. Therefore, the ques-
tion becomes interesting whether after accounting for the opportunity
costs of holding the underlying commodity, its forward price will be less
than its expected future spot price: F0 < E(St)/(rc)t. This creates an extra
benefit to current owners of the commodity dubbed a “convenience
yield” by Nicholas Kaldor in [Kaldor (1939)] “Speculation and Eco-
nomic Stability,” Review of Economic Studies 7, No. 1 (October 1939),
pp. 1–27.

As stated by John R. Hicks (April 8, 1904–May 20, 1989), in [Hicks
(1939)] Value and Capital: An Inquiry into Some Fundamental Principles
of Economic Theory (Oxford: Clarendon Press, 1939, and revised second
edition, 1946), investors will typically have to be induced to buy commod-
ity futures since it is not a position they would naturally prefer:

They know that the demands and supplies which can be fixed up
in advance for any particular date [by a forward contract] may
have little relation to the demands and supplies which will actually
be forthcoming at that date; and, in particular, they cannot foretell
at all exactly what quantities they will themselves desire to buy or
sell at a future period. Consequently, the ordinary business man
only enters into a forward contract if by doing so he can “hedge”—
that is to ssay, if the forward transaction lessens the riskiness of his
position. And this will only happen in those cases where he is
somehow otherwise committed to making a sale or a purchase. . . .
[T]echnical conditions give the entrepreneur a much freer hand
about the acquisition of inputs (which are largely needed to start
new processes) than about the completion of outputs (whose
process of production . . . may already have begun). Thus, while
there is likely to be some desire to hedge planned purchases, it
tends to be less insistent than the desire to hedge planned sales.
(second edition, p. 137)

Keynes and Hicks believed that typically businessmen have much more
flexibility (today, we might say they have more valuable “real options”) in
choosing when, if, and from whom to buy inputs needed for production
than they have to sell outputs they were often partially or fully committed
to produce. So there is, in their language, a “congenital weakness” on the
demand side for commodities. Taking up the slack on the buy side of the
forward transaction are the speculators who, because they lack a natural
reason to be long, require a convenience yield (that is, a lower forward
price) to be induced to go long and take that risk.
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Since the expected future spot price is not observable, the signature of
normal backwardation will be the tendency of the forward price to rise
(more than the opportunity costs of holding the commodity would suggest)
as the delivery date approaches.

It is commonly thought that today’s futures price is largely determined
by today’s expectation of the future spot price on the delivery date of the
future. Further, differences in the futures prices for different delivery dates
for otherwise identical futures are often thought to reflect differences in ex-
pectations concerning future spot prices corresponding to the two dates.
Working (1949/December) argues that this is not generally correct.

He notes that the ratio of the futures prices quoted in the market at
time t (say January 2006) for delivery of a commodity at time t + k (say
September 2006) to the same commodity at time t + h (say March 2006)
where 0 < h < k often stays constant even as the spot price of the commod-
ity changes or as changes in expected future harvests occur. Working points
out that the key condition for this to hold is that current stocks of the com-
modity be plentiful relative to expected future stocks and that it be possible
to store the commodity to carry it forward. For then, the current price of
the commodity can adjust so that an owner of the commodity is indifferent
among selling it for consumption at t, t + h, or t + k, provided only that he
is compensated for the cost of storing the commodity should he decide to
keep it in inventory. Since storage costs are presumably higher the longer
the commodity is stored, the futures price for delivery at increasingly dis-
tant dates will be higher than at earlier dates, and the difference will be the
cost of storage.

But occasionally the futures prices are inverted so that the nearer-term
futures price is higher than the farther-term futures price. This can happen
if current stocks may be low relative to current demand and future harvests
are expected to be large. In that case, it may not be desirable to carry any
of the current stock forward, and all of it should be consumed before the
next harvest. This decouples the futures price from the cost of storage and
creates “convenience yield.”

1930  Irving Fisher (February 27, 1867–April 29, 1947), The Theory of In-
terest: As Determined by Impatience to Spend Income and Opportunity to
Invest It (New York: Macmillan, 1930); reprinted (New York: Augustus
M. Kelley, 1955).

INTERTEMPORAL CONSUMPTION, PRODUCTION, 
AND EXCHANGE, RATE OF INTEREST, FISHER EFFECT,

IMPATIENCE VS. OPPORTUNITY, 
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FISHER SEPARATION THEOREM, COMPETITIVE MARKETS,
UNANIMITY VS. PARETO OPTIMALITY, REAL OPTIONS,

SPECULATION, CAPITAL BUDGETING

F isher (1930) is the seminal work for most of the financial theory of in-
vestments during the twentieth century. Fisher refines and restates many

earlier results that had appeared in his [Fisher (1896)] Appreciation and
Interest; [Fisher (1906)] The Nature of Capital and Income (New York:
Macmillan, 1906), reprinted (New York: Augustus M. Kelley, 1965); and
[Fisher (1907)] The Rate of Interest. As Fisher states, some of his ideas
were foreshadowed by John Rae (June 1, 1796–July 12, 1872), to whom
Fisher dedicates his 1930 book, in [Rae (1834)] Statement of Some New
Principles on the Subject of Political Economy, Exposing the Fallacies of
the System of Free Trade, and Some Other Doctrines Maintained in “The
Wealth of Nations” (Boston: Hilliard Gray & Co., 1834). Fisher develops
the first formal equilibrium model of an economy with both intertemporal
exchange and production. In so doing, at one swoop, he not only derives
present value calculations as a natural economic outcome in calculating
wealth, he also justifies the maximization of present value as the goal of
production and derives determinants of the interest rates that are used to
calculate present value.

He assumes each agent is both the consumer and the producer of a sin-
gle aggregate consumption good under certainty. This single-good simplifi-
cation allows him to abstract from the unnecessary complications of the
multicommodity Walrasian paradigm, and has ever since been at the heart
of theoretical research in finance. At each date, exchange is effected by
means of a short-term default-free bond maturing at the end of the period.
In this context, among its many contributions to economic thought are (1)
an analysis of the determinants of the real rate of interest and the equilib-
rium intertemporal path of aggregate consumption, (2) the “Fisher effect”
relating the nominal interest rate to the real interest rate and the rate of in-
flation, and (3) the Fisher Separation Theorem justifying the delegation of
production decisions to firms that maximize present value, without any di-
rect dependence on shareholder preferences, and justifying the separation
of firm financing and production decisions. Most subsequent work in the
financial theory of investments can be viewed as further elaboration, par-
ticularly to considerations of uncertainty and to more complex financial in-
struments for the allocation of consumption across time and across states
of the world.

Fisher reconciles the two previous explanations of the rate of interest,
one based on productivity (“opportunity”) and the other based on con-
sumer psychology, or time preference—“impatience,” a term coined by

The Ancient Period: Pre-1950 55

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 55



Fisher (1907) in The Rate of Interest—showing that they are jointly needed
for a comprehensive theory: “So the rate of interest is the mouthpiece at
once of impatience to spend income without delay and of opportunity to
increase income by delay” (p. 495).

Fisher describes his economy in three ways: in words, with graphs, and
with equations. It is interesting that, even at this time in the development
of economic thought, Fisher finds it necessary to justify the usefulness of
algebraic formulations, pointing out that by this method one could be sure
that the number of unknowns and number of independent equations are
the same. In addition, he writes:

The contention often met with that the mathematical formulation
of economic problems gives a picture of theoretical exactitude un-
true to actual life is absolutely correct. But, to my mind, this is
not an objection but a very definite advantage, for it brings out
the principles in such sharp relief that it enables us to put our fin-
ger definitely on the points where the picture is untrue to real life.
(p. 315)9

Fisher develops a simple example with just two time periods and three
consumers for the case where only consumer time preference determines
interest rates. Let:

r be the equilibrium riskless return.

C0
i,C1

i be the endowed consumption of consumer i at dates 0 and 1.

x0
i, x1

i be the amount of borrowing or lending of consumer i at dates 0
and 1 that each consumer can choose subject to his or her budget
constraint: x0

i + x1
i/r = 0.

C0
i ≡ C0

i + x0
i, C1

i ≡ C1
i + x1

i be the optimal amounts of consumption that
consumer i chooses at dates 0 and 1.

He then assumes that a consumer’s rate of time preference will depend on
the chosen consumption stream: fi = Fi(C0

i, C1
i) is the rate of time preference

of consumer i.
In the appendix to his Chapter 12, Fisher relates the rate of time pref-

erence to the utility of consumption, Ui(C0
i, C1

i) such that: fi =
[Ui′(C0

i)/Ui′(C1
i)] – 1.

He argues that in equilibrium the rate of time preference of each con-
sumer must equal the riskless return, so that:

f1 = f2 = f3 = r
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For the market to clear, he requires that net borrowing and lending at each
date across all consumers be 0: x0

1 + x0
2 + x0

3 = 0 and x1
1 + x1

2 + x1
3 = 0. The

seven unknowns, C0
1, C0

2, C0
3, C1

1, C1
2, C1

3, and r are matched by seven inde-
pendent equations.
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Fisher’s Economy

A modernized representative agent proof would go something like this.
Let:

U(C0), U(C1) be the utility of consumption at dates 0 and 1.

ρ be the rate of patience.

Ω0 be the initial endowment of the consumption good.

X0 be the amount of Ω0 used up in production so that C0 = Ω0 – X0.

f(X0) be the output from production of date 1 consumption so that
C1 = f(X0).

W0 be the current wealth of the consumer so that W0 = C0 + C1/r.

Assume that U′(C) > 0 (nonsatiation), U″(C) < 0 (diminishing marginal
utility), 0 < ρ < 1 (tendency to prefer current over future consumption),
f ′(X0) > 0 (more input yields more output), and f″(X0) < 0 (diminishing
returns to scale).

The production problem for the consumer is:

Substituting in the constraints, differentiating the utility function, and set-
ting the derivative equal to zero to characterize the maximum, it follows
that:

The exchange problem for the consumer is:

(Continued)

max ( ) ( )
,C C

U C U C W C
C
r0 1

0 1 0 0
1+ = +ρ  subject to 

′
′

= ′U C
U C

f X
( )
( )

( )0

1
0ρ

max ( ) ( ) ( )
,C C

U C U C C X C f X
0 1

0 1 0 0 0 1 0+ = − =ρ  subject to  and Ω
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Fisher’s Economy (Continued)

Again, substituting in the constraint, differentiating the utility function,
and setting the derivative equal to zero, it follows that:

Gathering these two results together:

(1)

Thus, we have Fisher’s two-sided determinants of the interest rate: The
equilibrium riskless return equals what we would call today the mar-
ginal rate of substitution (what Fisher called “the rate of time prefer-
ence”), and it equals the marginal productivity of capital.

For a more concrete example, suppose U(Ct) = log Ct and f(X0) =
αX0

β with 0 < β < 1 and α > 0. These satisfy the required derivative con-
ditions on utility and the production function. α can be interpreted as a
pure measure of productivity since the greater α, the more output from
any given input. Substituting into equation (1):

Solving this for the unknowns C0 and r:

Differentiating the solution for the riskless return:

So we see a pure isolation of the effects of Fisher’s impatience (ρ) and
opportunity (α) on the interest rate.

dr
dρ

α β ρ ρβ
ρβ

β
β

= −
+







<− −( )1
1

00
1 2Ω  (time preference)

dr
dα

β ρβ
ρβ

β

=
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−

1
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1

Ω  (productivity)
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Fisher also claims that separate rates of interest for different time peri-
ods are a natural outcome of economic forces, and not something that can
be arbitraged away in a perfect market.

The other corollary is that such a formulation reveals the necessity
of positing a theoretically separate rate of interest for each sepa-
rate period of time, or to put the same thing in more practical
terms, to recognize the divergence between the rate for short terms
and long terms. This divergence is not merely due to an imperfect
market and therefore subject to annihilation, as Böhm-Bawerk,
for instance, seemed to think. They are definitely and normally
distinct due to the endless variety in the conformations of income
streams. No amount of mere price arbitrage could erase these dif-
ferences. (p. 313)10

More generally, Fisher argues that the rate of interest is determined by:
(1) the relative distribution of endowed resources across time, (2) time
preferences of consumer/investors, (3) production opportunities that pro-
vide a way of transforming aggregate current endowments into aggregate
future consumption, (4) the general size of endowed resources, (5) risk
aversion and the time structure of risk, and (6) the anticipated rate of infla-
tion. With a noticeably behavioral orientation, Fisher attributed factor (2)
to lack of foresight, lack of self-control, habit formation, expected lifetime,
and a bequest motive. He shows how all six factors will affect the decisions
made by economic agents and how these decisions will aggregate up to de-
termine the equilibrium rate of interest.

Fisher then considers a number of potential objections to his theory.
An objection still popular is that tying the determinants of interest to as-
pects of intertemporal consumption choice may be elegant, but narrow. In
fact, interest is largely determined by the “supply and demand for loanable
funds.” Fisher replies that this supply and demand is the intermediate ef-
fect of the fundamental underlying needs of producers to maximize present
value and of consumers to optimally balance their consumption over their
lifetimes. But he also admits that there may be myriad institutional influ-
ences on interest rates that he has not considered, but that these factors
will be secondary.

Fisher worded his separation result as follows:

But we see that, in such a fluid world of options as we are here as-
suming, the capitalist reaches the final income through the cooper-
ation of two kinds of choice of incomes which, under our
assumptions, may be considered and treated as entirely separate.
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To repeat, these two kinds of choice are: first, the choice from
among many possible income streams of that particular income
stream with the highest present value, and secondly, the choice
among different possible modifications of this income stream by
borrowing and lending or buying and selling. The first is a selec-
tion from among income streams of differing market values, and
the second, a selection from among income streams of the same
market value. (p. 141)11

This “separation” must be carefully interpreted to mean that the second
choice is not independent of the first choice. In order to know what second
choice to make, the implications of the first choice must be known. How-
ever, the first choice can be made before making the second. Fisher also
made it quite clear that his separation result depends on a competitive mar-
ket where capitalists are “unconscious” of any impact they might have on
interest rates, and he made it clear that his result requires the equivalency
of borrowing and lending rates (perfect markets).

This suggests that, provided firms act as competitive present value
maximizers, firms can make the same production decisions their sharehold-
ers would make on their own without knowledge of their time preferences
or their endowments. If true, this dramatically simplifies the problem of re-
source allocation in a competitive economy.

Despite this, Mark Rubinstein, in [Rubinstein (1978)] “Competition
and Approximation,” Bell Journal of Economics 9, No. 1 (Spring 1978),
pp. 280–286, argues that the widely believed Fisher Separation Theorem
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Proof of Fisher’s Separation Theorem

To derive the separation theorem, continuing with our earlier example,
suppose the production decision were delegated to a competitive present
value–maximizing firm. Such a firm would then choose X0 to:

where it disregards any influence it may have over r (that is, it chooses
X0 as if dX0/dr = 0). Differentiating the present value and setting the de-
rivative equal to zero, it follows that: r = f ′(X0), precisely the decision
that representative consumers would have made on their own.

max
( )

X
X

f X
r0

0
0− +
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(in perfect and competitive financial markets, firms that choose invest-
ments that maximize present value make choices unanimously preferred by
all their stockholders) is essentially incorrect, particularly in a market of
well-diversified investors, because it is not robust to the assumption of
competition.

Perfect competition is sometimes defined to require that no firm by its
actions can have any influence whatsoever on prices. Joan Violet Robinson
(October 31, 1903–August 5, 1983), in [Robinson (1934)] “What Is Per-
fect Competition?,” Quarterly Journal of Economics 49, No. 1 (November
1934), pp. 104–120, takes issue with the practical implausibility of this re-
quirement for commodities with rising marginal costs of production (nec-
essary if more than one firm is to survive in a market where all firms sell
the same commodity at the same price), for then the number of firms must
literally be infinite. With a finite number of firms, when one firm increases
its output, the corresponding decrease in the optimal output of other firms
will partially but not completely offset the increase, leaving prices some-
what changed. She concludes:

Let us agree to call competition perfect if the price cut associated
with a unit increase of output by one firm is less than a certain def-
inite amount. Then for any given slope in the marginal cost curves,
there is a certain number of firms which will make competition
perfect. This number will be smaller the smaller the slope of the
marginal cost curves, and greater the greater the slope of the mar-
ginal cost curves. (p. 119)12

If competition is defined according to Robinson’s classic paper, then
unanimity generally (or, as an empirical matter, probably typically) will not
occur. This can be demonstrated even in a single-period economy under
certainty. The basic idea is that with a large number of small firms, while
the production decision of any one firm has a very small effect on the inter-
est rate (effect 1), well-diversified investors allocate only a very small por-
tion of their wealth to each firm. Therefore, each firm also has only a very
small influence on their wealth (effect 2). Thus, in voting for the firm’s pro-
duction decision, each investor must make the trade-off between two small
effects. Since some investors (lenders) will want a higher interest rate and
others (borrowers) a lower rate, they will disagree. Matters are not saved
by increasing the number of firms, since, as the paper shows, each of the
two effects diminishes at the same rate.

Although the competitive present value decision is not generally
unanimously supported by all investors (unless they are identical),
nonetheless it remains Pareto-optimal. The paper argues that the great
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virtue of present value maximization is that it is the only way a firm can
make Pareto-optimal investment decisions irrespective of the identities
of its shareholders. Despite the publication of this paper more than 20
years ago, introductory texts in finance continue ultimately to justify
maximization of present value on the false basis of unanimity. One
prominent text continues to list unanimity as the first of seven great
ideas of financial economics.

Fisher may also have been the first economist to emphasize the role of
what are now called “real options” in increasing the flexibility of produc-
tion opportunities, which now play a key role in modern treatments of pre-
sent value for corporate investments:

This brings us to another large and important class of options;
namely the options of effecting renewals and repairs, and the op-
tions of effecting them in any one of many different degrees. . . .
But the owner has many other options than that of thus maintain-
ing a constant stock of goods. He may choose to enlarge his busi-
ness as fast as he makes money from it. . . . A third option is
gradually to go out of business. . . . Another case of optional in-
come streams is found in the choice between different methods of
production, especially between different degrees of so-called capi-
talist production. . . . The alternatives constantly presented to
most business men are between policies which may be distin-
guished as temporary and permanent. The temporary policy in-
volves use of easily constructed instruments which soon wear out,
and the permanent policy involves the construction at great cost of
instruments of great durability. . . . In all cases, the “best” results
are secured when the particular series of renewals, repairs, or bet-
terments is chosen which renders the present value of the prospec-
tive income stream the maximum. (pp. 194–199)13

Fisher also discusses dynamic properties of interest rate changes,
whereby, for example, increasing interest rates leads to a change in the uti-
lization of production opportunities that in turn tends to stabilize interest
rates, creating the mean reversion we typically observe.

While Fisher provides a qualitative discussion of the first-order effects
of uncertainty, he expresses considerable pessimism about prospects for
formal generalization of his theory:

To attempt to formulate mathematically in any useful, complete
manner the laws determining the rate of interest under the sway of
chance would be like attempting to express completely the laws

62 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 62



which determine the path of a projectile when affected by random
gusts of wind. Such formulas would need to be either too general
or too empirical to be of much value. (p. 316)14

So Fisher left it for others to explain a wide variety of economic phenom-
ena such as insurance, the use of both debt and equity, the demand for liq-
uidity, the use of diversified portfolios, and the extreme diversity of types
of securities with differing returns, all of which largely rely on uncertainty
for their existence.

In his earlier book, The Nature of Capital and Income, Fisher
(1906) expressed his views about the rationality of markets and the role
of speculation:

The evils of speculation are particularly acute when, as generally
happens with the investing public, the forecasts are not made in-
dependently. A chief cause of crises, panics, runs on banks, etc.,
is that risks are not independently reckoned, but are a mere mat-
ter of imitation. . . . Where, on the other hand, speculation is
based on independent knowledge, its utility is enormous. It op-
erates both to reduce risk by utilizing the special knowledge of
speculators, and also to shift risk from those who lack this
knowledge to those who possess it. . . . Risk is one of the direst
economic evils, and all of the devices which aid in overcoming
it—whether increased guarantees, safeguards, foresight, insur-
ance or legitimate speculation—represent a great boon to hu-
manity. (pp. 296–300)

Jack Hirshleifer in [Hirshleifer (1958)] “On the Theory of Optimal In-
vestment Decision,” Journal of Political Economy 66, No. 4 (August
1958), pp. 329–352, integrates the theory of capital budgeting by firms
into Fisher’s model of simultaneous consumption and investment choice,
setting a strong economic foundation and resolving a number of controver-
sies concerning the use of present value and the internal rate of return as
investment criteria. In addition, he considers the impact of certain market
imperfections such as differences between borrowing and lending rates and
capital rationing, as well as mutually exclusive investments.

1931  Harold Hotelling (September 29, 1895–December 26, 1973), “The
Economics of Exhaustible Resources,” Journal of Political Economy 39,
No. 2 (April 1931), pp. 137–175.
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EXHAUSTIBLE RESOURCES, HOTELLING’S RULE, 
EXTRACTION AS AN OPTION, GOLD

A ssuming (as we would say today) no arbitrage, perfect and competitive
markets, and certainty, Hotelling (1931) derives the result that the price

of an exhaustible resource (e.g., precious metal, copper, oil, etc.) must
grow over time at the riskless rate of interest. This is often called
“Hotelling’s Rule.” So if P0 is its price per unit today, then after elapsed
years t > 0 with per annum riskless interest return r, its price will be Pt =
P0r

t. He reasons thus. In competitive equilibrium, the resource must be ex-
tracted at a rate such that at the margin there will be no gain from shifting
extraction between any two periods. For that to be true, the present value
of owning the resource must be the same whether one chooses to extract
and sell the resource today or at any date t > 0. But if that is true, then the
undiscounted price must be growing at the riskless rate of interest; that is,
if P0 = PV0(Pt), then Pt = P0r

t. With extraction costs, the rule must be revised
to say that the price net of extraction costs grows at the rate r – 1.
Hotelling then argued that the prevalent fear that an exhaustible resource
will be exhausted too quickly is typically misplaced. As long as the re-
source’s industry is competitive, it will be extracted at the socially optimal
rate, requiring no government intervention.

Hotelling left it for others to generalize his rule to uncertainty. It is use-
ful to distinguish between two types of uncertainty: (1) uncertainty of sup-
ply, arising from either extraction costs, the contents of the mine, or the
rate of exploration, and (2) uncertainty in demand (that is, in the future
value of using the resource). Financial economists have taken a particular
interest in the latter. For example, consider an oil well with known con-
tents and known extraction costs; at what rate should the oil be extracted?
Octavio A. Tourinho in [Tourinho (1979)] “The Option Value of Reserves
of Natural Resources,” unpublished working paper (September 1979),
University of California at Berkeley, was the first to analyze this problem as
an option. He compares the decision to extract the resource to the decision
to exercise a perpetual payout-protected American call option on the price
of oil with a known and fixed strike price (i.e., the cost of extraction).
Paradoxically, just as one would never optimally exercise such a call option
early (Samuelson-Merton 1969), so, too, it would seem one would never
extract the resource. Tourinho’s solution was to suppose that the extrac-
tion cost was growing at a sufficient rate over time to make extraction op-
timal. However, if extraction costs are constant over time, then Tourinho
leaves the paradox unresolved. Clearly, the economy should not choose
never to consume oil, for example, even if extraction costs were known
and fixed. While subsequent analysis has largely resolved this paradox for
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exhaustible resources used for consumption, the paradox still remains for a
resource such as gold, which is overwhelmingly held for investment and
not consumption purposes, even in situations where there is no fear of na-
tional expropriation of a privately held mine.

Michael John Brennan, in [Brennan (1990)] “Latent Assets,” Journal
of Finance 45, No. 3 (July 1990), pp. 709–730, Presidential Address to the
American Finance Association, considers this paradox: Why should any-
one mine gold when gold is held almost exclusively for investment pur-
poses, the cost of extraction increases more slowly than the rate of interest,
and the mine cannot be expropriated? The opportunity to mine gold is
therefore similar to a perpetual American call that it would never pay to
exercise early. Brennan observes that firms mine gold nonetheless. He ar-
gues that to have their stock price properly valued, they need to mine gold
to prove to investors that they have the quantity of gold reserves that they
claim. Unfortunately, this strikes me as a very unconvincing solution to the
paradox; but like the Sherlock Holmes maxim, when one has considered
and rejected the probable, whatever remains, however improbable, must
be the truth.

1933  Alfred Cowles 3rd (September 15, 1891–December 28, 1984), “Can
Stock Market Forecasters Forecast?,” Econometrica 1, No. 3 (July 1933),
pp. 309–324.

INVESTMENT PERFORMANCE, EFFICIENT MARKETS

Cowles (1933) may be the first published statistical test of the ability of
experts to “beat the market.” Cowles examines 7,500 recommendations

of 16 financial services on individual stocks over the period 1928–1932.
He gives the following characterization of this sample:

The forecasters include well-known organizations in the different
fields represented, many of which are large and well financed, em-
ploying economists and statisticians of unquestioned ability. . . .
Some of the forecasters seem to have taken a page from the book
of the Delphic Oracle, expressing their prophecies in terms suscep-
tible of more than one construction. (p. 309)15

The average recommendation led to market performance worse than
the market average by 1.4 percent per annum. After comparing the dis-
tribution of returns of the actual forecasters to the distribution of re-
turns of portfolios constructed from randomly selected investments, he
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also concluded that there was no significant statistical evidence that the
best performing forecaster outperformed the market by skill. He also ex-
amined the investments of 20 leading fire insurance companies and fore-
casts of 24 financial publications with similar results, except that here
the least successful investors seem to have done even worse than what
would have been expected by chance.

J.G. Cragg and Burton G. Malkiel in [Cragg-Malkiel (1968)] “The
Consensus and Accuracy of Some Predictions of the Growth of Corporate
Earnings,” Journal of Finance 23, No. 1 (March 1968), pp. 67–84, provide
a more recent study of the Cowles type. In particular, they examine the ac-
curacy of consensus forecasts by security analysts of future corporate earn-
ings. To their surprise they find for their sample that these forecasts are
little better than forecasts obtained by simple extrapolations of past earn-
ings growth.

1934  Benjamin Graham (May 8, 1894–September 21, 1976) and David
L. Dodd, Security Analysis: Principles and Technique (New York: Mc-
Graw-Hill, 1934); revised several times, including Benjamin Graham,
David L. Dodd, and Sidney Cottle (New York: McGraw-Hill, fourth edi-
tion, 1962).

1949  Benjamin Graham, The Intelligent Investor, fourth revised edition
(New York: HarperCollins, 1973), first published in 1949.

SECURITY ANALYSIS, FUNDAMENTAL ANALYSIS, 
CAPITAL STRUCTURE, GROWTH VS. VALUE, REBALANCING,

DOLLAR-COST AVERAGING, EFFICIENT MARKETS,
MATHEMATICAL FINANCE, 

EXTREMES OF INVESTMENT PERFORMANCE

In perhaps the most famous book written on the stock market, Graham-
Dodd (1934) advocate the fundamental approach to determining invest-

ment value and develop techniques to analyze balance sheets and income
statements. From the hindsight of later developments, their primary fail-
ings were (1) not to consider the full role of diversification, (2) not to em-
bed the role of risk in determining value in an equilibrium context, and (3)
not to give sufficient consideration to the forces that tend to make markets
informationally efficient.

Graham and Dodd’s handling of the issue of the relevancy of corporate
capital structure is instructive. They compare three firms with the same
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cash flows per annum from operations ($1,000,000), but different capital
structures:

The bonds are all assumed to pay 5 percent and the stocks are all as-
sumed to capitalize earnings in a ratio of 10:1, so for firm B, earnings to
stock = 1,000,000 – (.05 × 5,000,000) = 750,000; for firm C, earnings to
stock = 1,000,000 – (.05 × 10,000,000) = 500,000; with 10:1 capitaliza-
tion, for firm B, the value of stock = 750,000 × 10 = 7,500,000; for firm
C, value of stock = 500,000 × 10 = 5,000,000 (pp. 461–463, original
edition, 1934).

They immediately point out that this situation is at first blush unex-
pected since three firms with the same cash flows have different total val-
ues. It also suggests that firm value can be influenced by voluntary changes
in capital structure. This leads them to pose the question: “Can the value
of an enterprise be altered through arbitrary variations in capital struc-
ture?” Upon closer scrutiny, Graham and Dodd point out that the stock of
firm A can be interpreted as really a combination of the bonds and stock of
company B. So the stock of firm A should in theory be worth 5,000,000 +
10 × (1,000,000 – .05 × 5,000,000) = 12,500,000. This is very close to the
analysis of Modigliani-Miller (1958) and Modigliani-Miller (1969). Unfor-
tunately, Graham and Dodd, now on the verge of discovering one of the
most important ideas in the history of investments, in the very next sen-
tence turn away from this promising direction with these words:

But this $12,500,000 value for Company A stock would not ordi-
narily be realized in practice. The obvious reason is that the com-
mon-stock buyer will rarely recognize the existence of a “bond
component” in a common-stock issue; and in any event, not want-
ing such a bond component, he is unwilling to pay extra for it.
This fact leads to an important principle, both for the security
buyer and for corporate management, viz.:
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The optimum capitalization structure for any enterprise in-
cludes senior securities to the extent that they may safely be issued
and bought for investment. (p. 463)

Graham (1949) forcefully expounds his investment philosophy in the
popular investment classic, The Intelligent Investor. Graham, known as
“the father of value investing,” advises investing based on a careful analy-
sis of business fundamentals, paying close attention to price-earnings (P/E)
ratios, dividend yield, and other tools of security analysis, and only invest-
ing in stocks with market values not far above the value of their tangible
assets. While some growth stocks turn out ex post to have high returns,
Graham believes that buyers of these stocks are too subject to unpre-
dictable and extreme price fluctuations to make investment advisable. His
general rule is to divide investible wealth between high-grade bonds and a
portfolio of 10 to 30 stocks, maintaining at least 25 percent in each cate-
gory, and rebalancing relatively frequently to preset target proportions. He
also advocates dollar-cost averaging, wherein one invests the same dollar
amount in common stocks at fixed periodic intervals, rather than lump-
sum investing. He justifies this strategy by arguing that “In this way, he
buys more shares when the market is low than when it is high, and he is
likely to end up with a satisfactory overall price for his holdings” (p. 10).
Although Graham’s conclusion is correct, the implication he draws from it
is not. Paradoxically, just because the average price per share of stock is re-
duced does not mean the investor is better off.

Unfortunately, some of Graham’s prescriptions are little more than
platitudinous common sense. For example, he writes: “To enjoy a reason-
able chance for continued better than average results, the investor must fol-
low policies which are (1) inherently sound and promising, and (2) not
popular in Wall Street” (p. 13) and “The more the investor depends on his
portfolio and the income therefrom, the more necessary it is for him to
guard against the unexpected and the disconcerting in this part of his life.
It is axiomatic that the conservative investor should seek to minimize his
risks” (p. 25).

Graham believes that an astute investor can find ample opportunities
to make excess profits:

It has been an old and sound principle that those who cannot af-
ford to take risks should be content with a relatively low return on
their invested funds. From this there has developed the general no-
tion that the rate of return which the investor should aim for is
more or less proportionate to the degree of risk he is ready to run.
Our view is different. The rate of return sought should be depen-
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dent, rather, on the amount of intelligent effort the investor is will-
ing and able to bring to bear on his task. (p. 40)16

This is the diametrically opposite view of those who have come to advo-
cate “efficient markets” wherein no amount of “intelligent effort” can be
cost-effective, so that the reward/risk trade-off dominates all other con-
siderations.

And what does Graham think of sophisticated mathematical ap-
proaches to investing in stock to detect these inefficiencies? Here is the an-
swer he gave in May 1958 in [Graham (1958)] an address entitled “The
New Speculation in Common Stocks” given at the annual convention of
the National Federation of Financial Analysts Societies (reproduced in the
appendix to The Intelligent Investor on pp. 315–325):

In forty years of Wall Street experience and study I have never
seen dependable calculations made about common-stock values,
or related investment policies, that went beyond simple arith-
metic or the most elementary algebra. Whenever calculus is
brought in, on higher algebra, you could take it as a warning sig-
nal that the operator was trying to substitute theory for experi-
ence, and usually also to give speculation the deceptive guise of
investment. (p. 321)17

Those who would criticize Graham’s investment philosophy must
contend with his spectacular investment record, purported to have re-
turned about 17 percent per annum from 1929 to 1956. Even worse,
one must now deal with the unabashed support and investment results
of Graham’s most famous disciple, Warren E. Buffett, the most famous
and successful stock investor of the twentieth century. In [Buffett
(1984)] “The Superinvestors of Graham-and-Doddsville,” an edited
transcript of a 1984 talk given at Columbia University commemorating
the 50th anniversary of the publication of Security Analysis, printed as
an appendix to The Intelligent Investor, pp. 291–313, Buffett readily ac-
knowledges that with enough investors, just random chance will cause
some investors to realize extraordinary returns. But he argues that if you
could identify many of these investors in advance of their success, and if
you found, for instance, that a disproportionate number came from Om-
aha, yet they made independent investments, you might conclude that
there was something about Omaha that creates skillful investing. In his
own admittedly casual empirical test, Buffett summarizes the results of
nine extremely successful investors with two things in common: (1) they
were all identified by Buffett in advance as probable successful investors,
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and (2) they all by and large follow the tenents of Benjamin Graham. As
he writes:

Our Graham & Dodd investors, needless to say, do not discuss
beta, the capital asset pricing model, or covariance in returns
among securities. These are not subjects of any interest to them. In
fact, most of them would have difficulty defining these terms. The
investors simply focus on two variables: price and value. (p. 294)18

Although these investors followed the same general principles, there was
little duplication in the securities they selected, so their portfolios on the
surface appear to be relatively independent; in addition, casual observa-
tion suggests low risk. Buffett summarizes his attitude toward “efficient
markets”:

I am convinced there is much inefficiency in the market. These
Graham-and-Doddsville investors have successfully exploited
gaps between price and value. When the price of a stock can be
influenced by a “herd” on Wall Street with prices set at the mar-
gin19 by the most emotional person, or the greediest person, or the
most depressed person, it is hard to argue that the market always
prices rationally. In fact, market prices are frequently nonsensical.
(p. 299)20

Of course, the highest compound annual rate of return in Buffett’s sample
is Buffett’s own partnership, which from 1957 to 1969 experienced a rate
of return of 29.5 percent (23.8 percent to the limited partners), while the
average investor who held the Dow Jones Industrial Average (DJIA) would
have earned 7.4 percent! More astonishing is the record of Buffett’s hold-
ing company, Berkshire Hathaway, from its inception in 1965 to 2001,
which experienced a compound annual rate of return in book value per
share of 22.6 percent compared to 11.0 percent inclusive of dividends for
the S&P 500 index. Over these 37 years, in only 4 did Berkshire Hathaway
underperform the Index. In particular, from 1980 through 1998, the firm
outperformed the index in every single year. Let’s face it: It is hard to argue
with success.

Or is it? There is a sense in which Buffett “cheats.” Buffett is not al-
ways passive, like most institutional investors. To the contrary, he often ac-
quires a sufficiently large stake in a few corporations that he is able to
influence their internal investment decisions and cost-control policies. Few
would argue that the market for physical capital is efficient. In many cases,
nothing short of bankruptcy21 prevents corporate managers from making
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inefficient productive investments. In contrast, in an efficient stock market,
excluding trading costs, there can be no ex ante poor investors since all
prices are fair.

Another famous investor is Peter Lynch, who managed Fidelity’s Mag-
ellan (mutual) Fund over the 13 years from 1977 through 1989. Over this
period, Magellan outperformed the S&P 500 index in 11 out of 13 years
and had an average annualized compound return of 28 percent, consider-
ably exceeding the 17.5 percent annual return of the S&P 500 index over
the same period. Perhaps even more astounding, in the first seven years be-
fore the fund was burdened with very large size, Magellan beat the S&P
500 by more than 15 percent in every single year. Alan J. Marcus in [Mar-
cus (1990)] “The Magellan Fund and Market Efficiency,” Journal of Port-
folio Management 17, No. 1 (Fall 1990), pp. 85–88, asks whether
Magellan’s performance was due to luck or skill. Suppose in any year the
probability of a single fund outperforming the market by chance is 1/2.
Then the probability that a single fund identified at the outset could, by
chance, outperform the market in at least 11 out of 13 years equals
[13!/(11! × 2!) + 13!/(12! × 1!) + 13!/(13! × 0!)](1/213) ≈ .01. However, as
Marcus points out, Magellan was not identified as a winner in advance,
but only after the fact. In that case, the appropriate question is: What is the
probability that the best-performing fund out of the universe of competing
funds would end up, by chance, outperforming the market in at least 11
out of 13 years? Simulation shows that with 500 competing funds over the
13-year period, the probability that, by chance, the best-performing fund
would outperform the market in at least 11 years is 99.8 percent. So mea-
sured in these terms, we would hardly be impressed to find that Magellan
had done so well.

However, suppose instead we ask: What is the probability that the
best-performing fund out of 500 over the 13 years would end up, by
chance, having an annualized compound return of at least 28 percent
while the market’s return was 17.5 percent? The answer to this question
depends on the probability distribution of returns of the funds had they
selected portfolios by chance. To get a rough answer, Marcus supposes
that this distribution is normal with a standard deviation of return of 10
percent over a single year (and an annualized mean of 17.5 percent).
Over a 13-year period, the standard deviation of the annualized com-
pound return would then be 10%/√—

13 = 2.77%. A rough estimate from
Marcus’ paper suggests that the probability that Magellan’s performance
could have happened by chance is about 17 percent. But this figure does
not correct for the fact that the true universe may be even larger than
Marcus considers since the time period over which fund performance was
measured was selected after the fact. Contrary to Marcus’ conclusion,
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one suspects that if we were to enlarge the universe to consider other 13-
year periods, we should not be surprised that in the entire history of U.S.
mutual funds, the best-performing mutual fund would have done as well
as Magellan.

1936  John Maynard Keynes (June 5, 1883–April 21, 1946), The General
Theory of Employment, Interest and Money (New York: Macmillan,
1936); reprinted (Norwalk, CT: Easton Press, 1995).

MARKET RATIONALITY, MARKET PSYCHOLOGY, 
MARKETS VS. BEAUTY CONTESTS VS. CASINOS, 

RISK VS. UNCERTAINTY, LIQUIDITY PREFERENCE

For many economists, even as late as 1936 when Keynes wrote his Gen-
eral Theory (no doubt the most influential book written in economics in

the twentieth century), the stock market was seen essentially as a casino
where economic logic did not apply. Keynes (1936) clearly subscribed to
this view:

Day-to-day fluctuations in the profits of existing investments,
which are obviously of ephemeral and non-significant character,
tend to have an altogether excessive, and an even absurd, influence
on the market. It is said, for example, that the shares of American
companies which manufacture ice tend to sell at a higher price in
summer when their profits are seasonally high than in winter when
no one wants ice. A conventional valuation which is established as
the outcome of the mass psychology of a large number of ignorant
individuals is liable to change violently as the result of sudden fluc-
tuation of opinion due to factors which do not really make much
difference to the prospective yield; since there will be no strong
roots of conviction to hold it steady. In abnormal times in particu-
lar, when the hypothesis of an indefinite continuance of the exist-
ing state of affairs is less plausible than usual even though there
are no express grounds to anticipate a definite change, the market
will be subject to waves of optimistic and pessimistic sentiment,
which are unreasoning and yet in a sense legitimate where no solid
basis exists for a reasonable calculation.

But there is one feature in particular which deserves our atten-
tion. It might have been supposed that competition between ex-
pert professionals, possessing judgment and knowledge beyond
that of the average private investor, would correct the vagaries of
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the ignorant individual left to himself. It happens, however, that
the energies and skill of the professional investor and speculator
are mainly occupied otherwise. For most of these persons are, in
fact, largely concerned, not with making superior long-term fore-
casts of the probable yield of an investment over its whole life, but
with foreseeing changes in the conventional basis of valuation a
short time ahead of the general public. They are concerned, not
with what an investment is really worth to a man who buys it “for
keeps,” but with what the market will value it at, under the influ-
ence of mass psychology, three months or a year hence. (Chapter
7, pp. 153–155)22

Then he makes his famous comparison between the stock market and
a beauty competition:

[P]rofessional investment may be likened to those newspaper com-
petitions in which the competitors have to pick out the six prettiest
faces from a hundred photographs, the prize being awarded to the
competitor whose choice most nearly corresponds to the average
preferences of the competitors as a whole; so that each competitor
has to pick, not those faces which he himself finds the prettiest,
but those which he thinks likeliest to catch the fancy of the other
competitors, all of whom are looking at the problem from the
same point of view. It is not a case of choosing those which, to the
best of one’s judgment, are really the prettiest, nor even those
which the average opinion genuinely thinks the prettiest. We have
reached a third degree where we devote our intelligences to antici-
pating what average opinion expects the average opinion to be.
And there are some, I believe, who practice the fourth, fifth, and
higher degrees. (Chapter 7, p. 156)

With the prevalence of views such as these, it is easy to understand why it
took so long for the study of the stock market to be taken seriously.

In the clarification of his book, in [Keynes (1937)] “The General
Theory of Employment,” Quarterly Journal of Economics 51, No. 2
(February 1937), pp. 209–223, Keynes famously supports Knight (1921)
in his distinction between risk and uncertainty:

The calculus of probability, tho mention of it was kept in the
background, was supposed to be capable of reducing uncertainty
to the same calculable status as that of certainty itself; just as in
the Benthamite calculus of pains and pleasures or of advantage
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and disadvantage. . . . Actually, however, we have, as a rule, only
the vaguest idea of any but the most direct consequences of our acts.

By “uncertain” knowledge, let me explain. I do not mean
merely to distinguish between what is known for certain and what
is only probable. The game of roulette is not subject, in this case,
to uncertainty. . . . The sense in which I am using the terms is that
in which the prospect of a European war is uncertain, or the price
of copper and rate of interest twenty years hence. . . . About these
matters there is no scientific basis on which to form any calculable
probability whatever. We simply do not know. Nevertheless, the
necessity for action and for decision compels us as practical men
to do our best to overlook this awkward fact and to behave ex-
actly as we should if we had behind us a good Benthamite calcula-
tion of a series of prospective advantages and disadvantages, each
multiplied by its appropriate probability, waiting to be summed.

How do we manage in such circumstances to behave in a
manner which saves our faces as rational, economic men? We have
devised for the purpose a variety of techniques. . . .

1. We assume the present is a much more serviceable guide to the
future than a candid examination of past experience would
show it to have been hitherto. In other words we largely ig-
nore the prospect of future changes about the actual character
of which we know nothing.

2. We assume the existing state of opinion as expressed in prices
and the character of existing output is based on correct sum-
ming up of future prospects so that we can accept it as such
unless and until something new and relevant comes into the
picture.

3. Knowing that our individual judgment is worthless, we en-
deavor to fall back on the judgment of the rest of the world
which is perhaps better informed. That is, we endeavor to
conform to the behavior of the majority or the average.

. . . All these pretty, polite techniques, made for a well-paneled
Board Room and a nicely regulated market, are liable to collapse.
At all times the vague panic fears and equally vague and unrea-
soned hopes are not really lulled, but lie a little way below the sur-
face. (pp. 213–215)23

Keynes then uses this argument to justify another determinant of the
rate of interest, “liquidity preference,” that had not been on the list in
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Fisher (1930). He argues that some individuals tend to hoard money,
even though it is barren, yielding no explicit return, to protect them-
selves through its extreme liquidity against the indefinable future. So, in
order to be held, interest-bearing securities need to compensate the mar-
ginal individual for not holding money. Hence, they have higher rates 
of interest than they would otherwise have in the absence of liquidity
preference.

1938  John Burr Williams (1899–1989), The Theory of Investment Value
(Cambridge, MA: Harvard University Press, 1938); reprinted (Burlington,
VT: Fraser Publishing, 1997).

PRESENT VALUE, DIVIDEND DISCOUNT MODEL, 
PERPETUAL DIVIDEND GROWTH FORMULA, ARBITRAGE,

DISCOUNTING EARNINGS VS. DIVIDENDS, VALUE ADDITIVITY,
ITERATED PRESENT VALUE, CAPITAL STRUCTURE, 

LAW OF THE CONSERVATION OF INVESTMENT VALUE, 
LAW OF LARGE NUMBERS, MARGINAL INVESTOR

The author of an insufficiently appreciated classic, Williams (1938) was
one of the first economists to interpret stock prices as determined by

“intrinsic value” (that is, discounted dividends). Harry M. Markowitz
writes in his Nobel Prize autobiography: “The basic concepts of portfolio
theory came to me one afternoon in the library while reading John Burr
Williams’ The Theory of Investment Value” (in [Markowitz (1991)]
“Foundations of Portfolio Theory,” Les Prix Nobel 1990, Nobel Founda-
tion, 1991, p. 292).

While, as we have seen, Williams did not originate the idea of present
value, he nonetheless develops many implications of the idea that the value
of a stock under conditions of certainty is the present value of all its future
dividends. His general present value formula is:

where Dt is the dividend paid at date t, r(t) is the current (date t = 0) annu-
alized riskless discount return for dollars received at date t, and P0 is the
current (date t = 0) value of the stock. A nice way to build up to this is to
start with the recursive relation Pt = (Dt+1 + Pt+1)/r(t + 1). Successive substitu-
tions for Pt through date T lead to P0 = [Σt=1, . . . ,TDt /r(t)

t] + PT /r(T)T. The re-
sult then follows for T = ∞.

P
D

r t

t t
t0

1= = ∞Σ , ,
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K
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The modern view would be that this formula follows from no 
arbitrage. Consider the present value now of receiving a single cash 
flow of Dt at date t. The present value PV0(Dt) is defined as the amount
of money you would need to set aside today to ensure that you would
have Dt at date t. This could be done by investing Dt /r(t)

t today in 
default-free zero-coupon bonds maturing at date t and holding this 
position until date t. Note that this investment would grow by date t
to (Dt /r

t)rt = Dt . Therefore, Dt /r(t)
t must be the present value of Dt. It

must also be what you would need to pay in a market to receive Dt at
date t for there to be no arbitrage opportunities between that investment
and the zero-coupon bonds. More generally, the date 0 present value
PV0(D1, D2, . . . , Dt, . . .) is the amount of money you would need to in-
vest today in default-free zero-coupon bonds such that you are sure to
have exactly D1 at date 1, D2 at date 2, . . . , Dt at date t, . . . , which
would clearly be:

Williams argues against discounting earnings instead of dividends and
quotes the advice an old farmer gave his son (p. 58):

A cow for her milk,
A hen for her eggs,
And a stock, by heck,
For her dividends.

His book contains the derivation of the simple formula for the pre-
sent value of a perpetually and constantly growing stream of income, P0 =
D1/(r – g), where r is the constant annualized riskless discount rate and g is
the constant annualized growth rate in dividends.

PV D D D
D

r t
t

t t
t0 1 2( , , , , )

( )
  . . .   . . . = Σ
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Proof of the Perpetual Dividend Growth Formula

Here is a proof. Define a ≡ D1/r and x ≡ g/r. Then, P0 = a(1 + x + x2 + · · ·).
Multiplying both sides by x, we have P0x = a(x + x2 + x3 + · · ·). Subtract-
ing this from the previous expression for P0, P0(1 – x) = a. Substituting
back for a and x, P0[1 – (g/r)] = D1/r. Therefore, P0 = D1/(r – g).
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Williams actually writes this formula in the form P0 = D0x/(1 – x)
where x ≡ g/r—p. 88, equation (17a)—and notes that finite stock prices
require g < r. This is commonly and mistakenly called the “Gordon
growth formula” after its restatement in [Gordon-Shapiro (1956)] My-
ron J. Gordon and Eli Shapiro, “Capital Equipment Analysis: The Re-
quired Rate of Profit,” Management Science 3, No. 1 (October 1956),
pp. 102–110.24

Gordon and Shapiro popularized the formula by rewriting it as k =
(D1/P0) + g, where k equals r under certainty, but under uncertainty
could loosely be interpreted as the expected return to stock. Breaking
apart this expected return into two components, the dividend yield and
growth, translated Williams’ formula into a language that popularized it
among investment professionals. For example, in the early 1960s, al-
though the dividend yield of U.S. Steel was higher than IBM’s, IBM
could have a higher k and P/E ratio because its prospects for growth
were so spectacular.

Here are two useful corollaries in present value calculations:

COROLLARY 1. Law of Value Additivity: The present value of a sum of
cash flows equals the sum of their present value:

PV0(D1, D2, D3, . . . , Dt, Dt+1, Dt+2, . . . , DT) 

= PV0(D1, D2, . . . , Dt) + PV0(Dt+1, Dt+2, . . . , DT)

COROLLARY 2. Law of Iterated Present Value: The date 0 present value
of a series of cash flows beginning at date t + 1 equals the present value at
date 0 of the present value of the cash flows at date t:

PV0(Dt+1, Dt+2, . . . , DT) = PV0[PVt(Dt+1, Dt+2, . . . , DT)]
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Derivation and Application of the Present 
Value Formula for a Finite-Lived Annuity

With these corollaries, one can easily derive a simple formula for a finite-
lived constantly growing stream of cash flows; that is, where D2 = D1g, D3
= D1g

2, D4 = D1g
3, . . . , DT = D1g

T–1. In that case, I can interpret this pre-
sent value as the difference between the present values of two perpetually
growing dividend streams, where the second begins at date DT+1:

By corollary 1: PV0(D1, D2, . . . , DT) = PV0(D1, D2, . . .) – PV0(DT+1, DT+2, . . .)

(Continued)
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Following in the footsteps of de Moivre (1725) and Halley (1761),
Williams also develops a very extensive analysis of a variety of generaliza-
tions, for example for a constant growth rate over n years, followed by div-
idends that exponentially level off toward a limiting amount that is twice
the dividend in the nth year (p. 94, equation [27a]):
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Derivation and Application of the Present 
Value Formula for a Finite-Lived Annuity (Continued)

By corollary 2: 

A nice application of these results is to determine the present value of a
series of cash flows growing at g1 from dates 1 to t + 1, and then grow-
ing at g2 from dates t + 1 to date T:

PV0(D1, D2, . . . , Dt, Dt+1, Dt+2, . . . , DT) 

= PV0(D1, D2, . . . , Dt) + PV0(Dt+1, Dt+2, . . . , DT)

= PV0(D1, D2, . . , Dt) + PV0[PVt(Dt+1, Dt+2, . . . , DT)]

= PV0(D1, D1g1, . . . , D1g1
t-1) + PV0[PVt(D1g1
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His book also contains what is probably the first exposition of the
Modigliani-Miller (1958) proposition on the irrelevancy of capital structure,
which Williams poetically calls the “Law of the Conservation of Investment
Value.” Williams writes with borrowed nineteenth-century elegance:

If the investment value of an enterprise as a whole is by definition
the present worth of all its future distributions to security holders,
whether on interest or dividend account, then this value in no wise
depends on what the company’s capitalization is. Clearly, if a sin-
gle individual or a single institutional investor owned all of the
bonds, stocks and warrants issued by the corporation, it would
not matter to this investor what the company’s capitalization was
(except for details concerning the income tax). Any earnings col-
lected as interest could not be collected as dividends. To such an
individual it would be perfectly obvious that total interest- and
dividend-paying power was in no wise dependent on the kind of
securities issued to the company’s owner. Furthermore no change
in the investment value of the enterprise as a whole would result
from a change in its capitalization. Bonds could be retired with
stock issues, or two classes of junior securities could be combined
into one, without changing the investment value of the company
as a whole. Such constancy of investment value is analogous to the
indestructibility of matter or energy: it leads us to speak of the
Law of the Conservation of Investment Value, just as physicists
speak of the Law of the Conservation of Matter, or the Law of the
Conservation of Energy. (pp. 72–73)25

Although this exposition does not use the magical word arbitrage, in
his next paragraph on the subject Williams says that his Law will not hold
exactly in practice (he had not yet absorbed later notions of information-
ally efficient markets). But, he says, that simply leaves open “opportunities
for profit by promoters and investment bankers.” From his analysis of
United Corporation, it is clear that he sees “promoters” profiting by taking
advantage of naive techniques used by investors to value the separate secu-
rities in the recapitalization; had the investors but understood the Law of
the Conservation of Investment Value, they would have defeated the pro-
moters’ efforts.

Williams had very little to say about the effects of risk on valuation
(pp. 67–70) because he believed that all risk could be diversified away:

The customary way to find the value of a risky security has been to
add a “premium for risk” to the pure rate of interest, and then use
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the sum as the interest rate for discounting future receipts. . . .
Strictly speaking, however, there is no risk in buying the bond in
question if its price is right. Given adequate diversification, gains
on such purchases will offset losses, and a return at the pure inter-
est rate will be obtained. Thus the net risk turns out to be nil. (pp.
67–69)26

As precocious as Williams was, he got this wrong, which makes subse-
quent discoveries all the more impressive. Knight (1921) also makes a
similar error based on the law of large numbers developed by Jakob
Bernoulli (1713).

Despite this, because in 1938 Williams had not yet read Markowitz
(1952/March) or Roy (1952), he did not appreciate the portfolio point of
view. In his discussion of how stock is allocated among different investors,
he emphasizes that investors will have different beliefs about the value of
that stock, but he believes investors with the highest valuations will end up
owning all of the stock. He ignores the good sense of holding some stocks
to take advantage of risk reduction through diversification, even if they are
not your first choice and may even seem somewhat overpriced. As a result,
he argues that the only investor who determines the price of a stock is the
marginal or last investor who is the most relatively pessimistic among all
the optimistic investors who own the stock. With the later perspective of
Markowitz and Roy, in the absence of short sales (implicitly assumed by
Williams), the modern view is to see each investor who owns the stock as a
candidate to purchase even more should its price fall, so that the price of
the stock is not simply determined by the preferences and beliefs of the
marginal investor, but rather the preferences and beliefs of the average in-
vestor who holds the stock.

1938  Frederick R. Macaulay, Some Theoretical Problems Suggested 
by the Movements of Interest Rates, Bond Yields and Stock Prices in 
the U.S. since 1856, National Bureau of Economic Research (New York:
Columbia University Press, 1938); reprinted (London: Risk Publica-
tions, 2000).

DURATION, FOUR PROPERTIES OF DURATION, 
PARALLEL SHIFT IN INTEREST RATES, ARBITRAGE

W hat is the average time to the receipt of cash flow from a bond, usually
called the “duration” of the bond? For a zero-coupon bond, this is

clearly its time to maturity. For a coupon bond, it must be less than its time

80 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 80



to maturity. Let Xt be the cash flow from a bond at date t, and r(t) be the
annualized return of a zero-coupon bond maturing at date t. Then B =
ΣtXt /r(t)

t is the present value of the bond. Macaulay (1938) (see in particu-
lar pp. 43–53) proposes that its duration D be defined as:

where the sum is taken from 1 to T (the date of the last cash flow from the
bond). Thus, Macaulay duration is the time to receipt of the average dollar
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Proof of the Additivity Property of Duration

To see this, consider two bonds 1 and 2:

Form a portfolio of the two bonds so that the total value of this
portfolio is B ≡ B1 + B2. Consider the following weighted average of the
durations of the two bonds: (B1/B)D1 + (B2/B)D2. Writing this after sub-
stituting the definition of duration:
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of present value from the bond. This has several nice properties. First, the
duration of the zero-coupon bond equals its time to maturity. Second, the
duration of a portfolio of bonds equals a weighted average of the dura-
tions of its constituent bonds, where the weights are the relative values of
the bonds.

Third, if forward rates remain unchanged and an unrevised portfolio
of bonds experiences no cash flows between dates t and t + 1, then if the
duration of the portfolio is D measured at date t, the duration will be D –
1 at date t + 1.

Although Macaulay clearly realized that the prices of bonds with
longer durations would be more sensitive to interest rates than shorter-
duration bonds, it remained for Hicks (1939) and Paul Anthony Samuelson,
in [Samuelson (1945)] “The Effect of Interest Rate Increases on the Bank-

82 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of Time Reduction Property of Duration

Proof of third property: changes in duration over time. Consider a
three-period coupon bond with:

X1 = 0, X2 > 0, X3 > 0

Duration at date 0 is:

Duration at date 1, assuming unchanged forward returns, is:
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ing System,” American Economic Review 35, No. 1 (March 1945), pp. 16-
27, to point out that the same calculation of duration measures the elastic-
ity of the bond price with respect to the interest rate. Suppose r(t) = y for
all t, then it is easy to see that dB/B = – (D/y)dy. This implies that the values
of bonds with similar durations have similar sensitivities to changes in inter-
est rates; and the greater the duration, the more sensitive the present value
of the bond is to changes in interest rates.

Later it was realized that this interpretation of duration, as the sensi-
tivity of bond prices to a parallel shift in interest rates, has a technical
problem. For example, in a simple situation suppose the term structure of
spot returns (and hence forward returns) is flat at r per annum (irrespective
of maturity). Now suppose the entire term structure shifts to a new level,
say return s (irrespective of maturity) greater or less than r, so that the term
structure of spot returns continues to be flat but at a different level s ≠ r. If
this happens, bond prices would change, and the duration of a bond, as we
have seen, predicts the price change. Unfortunately, one can show that the
assumption that the term structure can only shift in parallel violates the
fundamental assumption of financial economics: no arbitrage.
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Proof of the Risk Quantification 
Property of Duration

To see this, B = ΣtXty
–t, so that dB/dy = – ΣttXty

–t–1. Therefore, dB =
–y–1(ΣttXty

–t)dy. Then, dB/B = –y–1[Σtt(Xty
–t)/B]dy. Then, by the defini-

tion of duration, dB/B = – (D/y)dy.

Proof of the Contradiction between 
Parallel Yield Shifts and No Arbitrage

To see this, I want to borrow from an analysis in [Davis (2001)] Morton
D. Davis, The Math of Money (New York: Springer-Verlag, 2001), pp.
66–67. Assume as usual no arbitrage and perfect markets. Consider the
following portfolio of bonds (each is a zero-coupon bond with a princi-
pal payment of $1 at maturity) purchased when the term structure is r:

(a) Agree now (date 0) to buy one bond at the end of one year (date
1) that matures two years after (date 3); this is called a “for-
ward rate agreement.”

(Continued)
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84 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of the Contradiction between 
Parallel Yield Shifts and No Arbitrage (Continued)

(b) Agree now (date 0) to sell (2/r) bonds at the end of one year
(date 1) that mature one year after (date 2); this is another for-
ward rate agreement.

Note that under these agreements, no money changes hands at date 0;
rather the purchase and sale of the bonds and any payment or receipt of
cash for this occurs at date 1.

Now, suppose after having formed this portfolio of forward rate
agreements at date 0, the term structure of spot returns then shifts to s
after date 0 but before date 1 and remains at this level on date 1. On this
date (date 1), liquidate the portfolio.

At date 1, the gain or loss on forward rate agreement (a) is:

and at date 1, the gain or loss on forward rate agreement (b) is:

Adding these together, the total liquidation value of the portfolio at date
1 is:

Now this must necessarily be greater than 0 (and not equal to 0)
since r ≠ s. Indeed, whatever happens, whether s > r or s < r, the liquida-
tion cash flow to the investor will be positive regardless of whether the
term structure shifts up or down. But since the portfolio of the two for-
ward rate agreements costs nothing at date 0 but is worth a positive
amount for certain at date 1, there is an arbitrage opportunity. This con-
tradicts our original assumption of no arbitrage; hence the situation de-
scribed is not consistent. To conclude, the assumption that the only way
the term structure can shift is in parallel is inconsistent with the most
basic principle of financial economics: namely, no arbitrage.
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Macaulay was pessimistic about extending his analysis to deal with
embedded options. He put it this way:

Convertible bonds and bonds carrying special privileges of any
kind, such as “circulation” privileges, present similar difficulties.
The promise to make future money payments is only one of ele-
ments determining their prices and yields. They are mongrels and
it is next to impossible to measure the degree of their contamina-
tion. (pp. 70–71)

A historical review of the development of the concept of duration can
be found in [Weil (1973)] Roman L. Weil, “Macaulay’s Duration: An Ap-
preciation,” Journal of Business 46, No. 4 (October 1973), pp. 589–592.

Duration is now one of three standard methods to measure the risk of
securities. Duration measures the sensitivity of bond prices to changes in
interest rates, beta measures the sensitivity of the excess return (over the
riskless return) of a stock to the excess return of a stock market index,
and delta measures the sensitivity of the value of an option to dollar
changes in its underlying asset price. All three measures are linear so that
the duration of a portfolio of bonds, the beta of a portfolio of stocks, and
the delta of a portfolio of options on the same underlying asset are
weighted sums of the corresponding risk measures of their portfolio’s con-
stituent securities.

1945  Friedrich August von Hayek (May 8, 1899–March 23, 1992), “The
Use of Knowledge in Society,” American Economic Review 35, No. 4
(September 1945), pp. 519–530.

AGGREGATION OF INFORMATION, PRICE SYSTEM, 
EFFICIENT MARKETS, SOCIALISM VS. CAPITALISM

This relatively short and elegantly written paper is surely one of the
gems in the crown of economics. Just as Abraham Lincoln’s Gettys-

burg Address (1863) pointed the United States in a new direction, so,
too, Hayek (1945) can be viewed as a call for economics to take the cru-
cial next step. The standard competitive equilibrium model, which
shows how the price system results in a Pareto-optimal outcome, is in
Hayek’s words “no more than a useful preliminary to our study of the
main problem” (p. 530), for it takes as given the beliefs (and implicitly
the information) of each agent and imposes no cost on the operation of
the price system. Because there is no treatment of the costs and methods
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of forming these beliefs or of implementing the price system itself, the eco-
nomic solution could just as well, in principle, be reached by a benevolent
central planner in possession of the same information. While the competi-
tive model proves that the price system can in principle solve the problem
of economic order, it does not show that it is the best way to solve it.

Hayek then describes qualitatively the key (but not the only) reason
why the price system is the preferred method of solution. He argues that
the role of the price system is to efficiently aggregate widely dispersed bits
of information into a single sufficient statistic, the price, that summarizes
for economic agents all they need to know (in addition to the particular
knowledge of their own circumstances) about the dispersed information to
make the correct decisions for themselves—the essence of the rationalist
view of markets. He writes:

The peculiar character of the problem of rational economic order
is determined precisely by the fact that the knowledge of the cir-
cumstances of which we must make use never exists in concentrate
or integrated form, but solely as disbursed bits of incomplete and
frequently contradictory knowledge which all the separate individ-
uals possess. The economic problem of society is thus . . . a prob-
lem of the utilization of knowledge not given to anyone in its
totality. (pp. 519–520)

The most significant fact about the [price] system is the econ-
omy of knowledge with which it operates, or how little the indi-
vidual participants need to know in order to be able to take the
right action. In abbreviated form, by a kind of symbol [the price],
only the most essential information is passed on, and passed on
only to those concerned. (pp. 526–527)27

He also brilliantly restates the description of Smith (1776)28 of the key
problem that is solved by a competitive price system:

I am convinced that if it were the results of deliberate human design,
and if the people guided by the price changes understood that their
decisions have significance far beyond their immediate aim, this
mechanism [the price system] would have been acclaimed as one of
the greatest triumphs of the human mind. . . . The problem is pre-
cisely how to extend the control of any one mind; and, therefore,
how to dispense with the need of conscious control and how to pro-
vide inducements which will make the individuals do the desirable
things without anyone having to tell them what to do. (p. 527)29
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The motivation behind much of Hayek’s work was his role in the de-
bate over the social alternatives of capitalism versus socialism. He stead-
fastly argued that the key issue in this debate was the creation and
communication of relevant economic information, and that for a variety
of reasons, capitalism was much better suited to that task. He was there-
fore concerned about the causes of economic failure under capitalism,
most prominently experienced as depression. For Hayek, the roundabout
nature of production, that it takes time, and that the more sophisticated
the economy, the more time production typically takes, is the key eco-
nomic fact responsible for depression. Production requires a partially irre-
versible commitment of resources for some time before the resulting
output can be consumed. The longer the time for this commitment, and
the more prices fail to function as correct signals for production planning,
the more likely cumulative errors of over- or underinvestment will lead to
economic collapse. For example, if the prices of some commodities needed
for production are temporarily artificially low, producers will be tempted
to commit to greater production than is profitable, and may suddenly be
forced in the future to cut back, while they accumulate inventories and re-
duce employment.

Hayek distinguishes between two types of economic knowledge: (1)
general scientific or theoretical knowledge and (2) specific knowledge of
the individual circumstances of time and place. Advocates of socialism im-
plicitly require that economic planners have access to both types, while ad-
vocates of rational expectations, such as Lucas (1972) and Grossman
(1976), concentrate both types of knowledge with market participants.
Both are mistaken. For example, the flaw in rational expectations is that in
order for market participants to extract from prices all the information
they need to make the correct decisions, they would need to have knowl-
edge of type (2), which includes the aggregated preferences and endow-
ments of all other participants and how these fit together to determine their
demands.

Hayek won the 1974 Nobel Prize in Economic Science “for [his] pio-
neering work in the theory of money and economic fluctuations and for
[his] penetrating analysis of the interdependence of economic, social and
institutional phenomena.”

1947  John von Neumann (December 3, 1903–February 8, 1957) and Os-
kar Morgenstern (January 24, 1902–July 26, 1977), Theory of Games and
Economic Behavior, second edition (Princeton, NJ: Princeton University
Press, 1947) (first edition without appendix, 1944).
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1951  Frederick Mosteller (December 24, 1916–) and Philip Nogee, “An
Experimental Measurement of Utility,” Journal of Political Economy 59,
No. 5 (October 1951), pp. 371–404.

1953  Maurice Allais (May 31, 1911–), “Le comportement de l’homme ra-
tionnel devant le risqué: critique des postulats et axioms de l’école Améri-
caine,” with English summary, Econometrica 21, No. 4 (October 1953),
pp. 503–546; reprinted and translated as “The Foundations of a Positive
Theory of Choice Involving Risk and a Criticism of Postulates and Axioms
of the American School,” in Expected Utility Hypothesis and the Allais
Paradox, edited by Maurice Allais and O. Hagen (Norwell, MA: D. Reidel
Publishing, 1979).

1954  Leonard J. Savage (November 20, 1917–November 1, 1971), The
Foundations of Statistics (New York: John Wiley & Sons, 1954); second
revised edition (New York: Dover 1972).

EXPECTED UTILITY, INDEPENDENCE AXIOM, 
SUBJECTIVE VS. OBJECTIVE PROBABILITY, ALLAIS PARADOX,

EXPERIMENTAL MEASUREMENT OF UTILITY

D espite the earlier work of Daniel Bernoulli (1738), there was little at-
tempt to analyze the effects of uncertainty on economic decisions for

the next 200 years. A notable exception was Knight (1921), who argues
that profits and the very existence of the market system are due to the dis-
tinction between risk and uncertainty. Although Bernoulli’s assumption of
diminishing marginal utility had been picked up by Marshall (1890) and
other economists, his second great idea of expected utility left a number of
economists uncomfortable with the conclusion that fair gambles should
be avoided; this suggested that risk taking was irrational and therefore
something that would have to be considered outside the normal confines
of economics.

John von Neumann and Oskar Morgenstern’s Theory of Games and
Economic Behavior decisively changed this view. To develop their new
“game theory,” they needed utility-type payoffs with mixed strategy prob-
abilities. So in the second edition of the book, von Neumann-Morgenstern
(1947), an appendix (pp. 617–632) provides an axiomatic analysis justify-
ing the idea that rational individuals should make choices by maximizing
their expected utility. Unknown to von Neumann-Morgenstern, an earlier
and probably first proof, but based on somewhat different rationality ax-
ioms, appeared in [Ramsey (1926)] Frank Plumpton Ramsey’s (February
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22, 1903–January 19, 1930) “Truth and Probability” (1926), published
posthumously after his tragic death from an operation for jaundice in 1930
at the age of 26, in the Foundations of Mathematics and Other Logical Es-
says (Harcourt Brace, 1931), reprinted (Totowa, NJ: Littlefield, Adams,
1965), pp. 156–198. In 1937, Bruno de Finetti (June 13, 1906–July 20,
1985), in [de Finetti (1937)] “La Prevision: ses lois logiques ses sources sub-
jectives,” Annales de l’Institut Henri Poincaré 7 (1937), pp. 1–68, trans-
lated and published as “Foresight: Its Logical Laws, Its Subjective
Sources,” in Studies in Subjective Probability, edited by Henry E. Kyburg
Jr., and Howard E. Smokler (New York: Robert E. Krieger Publishing, sec-
ond edition, 1980), unaware of Ramsey, also shows how to deduce subjec-
tive probabilities from choices.

A convenient version of the axioms follows. Suppose Ω represents
the set of all possible gambles over all possible outcomes, say x1, x2, and
x3 and p, q, r ∈ Ω. Suppose by p we mean a gamble leading to outcomes
x1, x2, and x3 with respective probabilities p1, p2, and p3. And suppose q
represents a gamble leading to the same outcomes with respective proba-
bilities q1, q2, and q3; and r represents a gamble leading to the same out-
comes with respective probabilities r1, r2, and r3. The relation ≥ (“is
preferred or indifferent to”) is a binary relation over gambles. So I write
p ≥ q meaning gamble p is preferred or indifferent to q. I also write p = q
if and only if p ≥ q and q ≥ p; and I write p > q if and only if p ≥ q and
not p = q.

AXIOM 1. Completeness: For all p, q ∈ Ω, either p ≥ q or p ≤ q.

AXIOM 2. Transitivity: For all p, q, r ∈ Ω, if p ≥ q and q ≥ r, then p ≥ r.

AXIOM 3. Continuity: For all p, q, r ∈ Ω, if p > q and q > r, then there ex-
ists an α, β ∈ (0, 1) such that αp + (1 – α)r > q and q > βp + (1 – β)r.

AXIOM 4. Independence: For all p, q, r ∈ Ω and for any α ∈ (0, 1), p >
q if and only if αp + (1 – α)r > αq + (1 – α)r.

The expected utility representation theorem says: Axiom 1–4 if and only
if there exists a function U defined on the outcomes x1, x2, and x3 such that
for every p, q ∈ Ω:

p ≥ q if and only if ΣjpjU(xj) ≥ ΣjqjU(xj)

(where to the right ≥ means equal to or greater than)

U is called a utility function. It is easy to see that U is not a unique func-
tion, but rather is defined up to an increasing linear transformation; that
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is, for any real numbers a and b > 0, U is a utility function if and only if
V = a + bU is also a utility function (in other words, U and V preserve the
same ordering of all possible gambles). It follows that simply assuming
choices are made by maximizing expected utility is a shorthand for as-
suming choices are consistent with the von Neumann–Morgenstern ax-
ioms—a convenience that many economists have adopted.

The von Neumann–Morgenstern axioms did not explicitly use the
“independence axiom,” but their axioms were independently reformu-
lated using this axiom by Jacob Marschak in [Marschak (1950)] “Ratio-
nal Behavior, Uncertain Prospects and Measurable Utility,”
Econometrica 18, No. 2 (April 1950), pp. 111–141, and Paul Anthony
Samuelson in [Samuelson (1966)] “Utility, Preference and Probability,”
an abstract of a paper presented orally May 1952, reprinted in The Col-
lected Scientific Papers of Paul A. Samuelson, Volume 1 (Cambridge,
MA: MIT Press, 1966), pp. 127-136. Edmond Malinvaud, in [Malin-
vaud (1952)] “Note on von Neumann–Morgenstern’s Strong Indepen-
dence Axiom,” Econometrica 20, No. 4 (October 1952), p. 679, then
showed that the independence axiom is actually implied by the original
von Neumann–Morgenstern axioms. This axiom implies that the utility
of the outcome in each state is independent of the outcomes in all other
states. Starting with, say, a function F(C1, C2, . . . Cs, . . . , CS) describing
a preference ordering over consumption in states s = 1, 2, . . . , S, it is
easy to understand intuitively that the independence axiom allows this
to be written as ΣspsU(Cs).

The independence axiom is probably the weakest link in the von
Neumann–Morgenstern theory and has led to many ingenious arguments
that it can be inconsistent with reasonable behavior. For example, sup-
pose x1 is a trip to London and x2 is a trip to Paris, and suppose p = (1, 0)
is a sure trip to London, and q = (0, 1) is a sure trip to Paris. Assume p >
q. Now suppose I introduce a third outcome x3: viewing a movie about
London. Considering this, say your choice is now between p = (.8, 0, .2)
and q = (0, .8, .2). The independence axiom requires that as before p > q.
That is, since the common opportunity to view a movie about London is
added to both choices, your preference ordering should remain un-
changed. But isn’t it possible that if you take p and end up with only a
movie about London you will feel so badly about missing an actual trip
to London that you will wish you had chosen q instead and then never
would have had to bear this disappointment? This kind of reversal is
ruled out by the independence axiom.

The most famous early challenge to the independence axiom was in-
vented in Allais (1953). Suppose the outcomes x1 = $0, x2 = $100, and x3 =
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$500. Consider a pair of gambles, p1 = (0, 1, 0) and p2 = (.01, .89, .10).
Empirically, for most people p1 > p2. Now consider a second pair of gam-
bles, q1 = (.89, .11, 0) and q2 = (.90, 0, .10). Empirically, the same people
for whom p1 > p2, also q2 > q1. Yet, it turns out these choices violate the in-
dependence axiom. To see this, if p1 > p2, then by the expected utility repre-
sentation theorem there exists a function U such that

U($100) > .01U($0) + .89U($100) + .10U($500)

Adding .89U($0) to both sides and subtracting .89U($100) from both
sides:

.89U($0) +.11U($100) > .90U($0) + .10U($500)

which, of course, implies that q1 > q2.
Von Neumann and Morgenstern took it for granted that agents

make choices as if they employ probabilities. Savage (1954) provides 
an axiomatic analysis justifying the view that all uncertainties may be 
reduced to subjective probabilities. He shows that if an individual fol-
lows certain logical behavioral postulates that he identifies with rational
behavior, the individual will behave as if he makes decisions based on
maximizing his expected utility where the expectation is taken with re-
spect to his subjective probabilities. Savage’s work can also be viewed as
an extension of von Neumann–Morgenstern to incorporate subjective
probabilities.

About 30 years earlier, Ramsey (1926) had initiated the axiomatic jus-
tification of subjective probabilities. He began by rejecting the path of
defining probabilities in terms of the intensity of internal human psycho-
logical states. Instead, he argued that it would be more useful to deduce
the implicit use of subjective probabilities from the actions of individuals,
assumed to make choices based on certain postulates that one might asso-
ciate with rationality. To take a very simple example, suppose there are
two equally pleasant stores, equally distant from your home, that both sell
your favorite brand of ice cream. However, sometimes one or the other
store is temporarily out of stock. I might deduce from your consistent
choice of one of the stores that you believe that store is more likely to
have the ice cream.

This inference from actions to probabilities proves particularly 
pragmatic for a theory of human economic choice: It is unnecessary 
to interrogate individuals about how they think; one need only ob-
serve what alternative acts they would choose. Moreover, by observing
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their choices, it is possible to separate out their preferences from their
beliefs, a distinction that was to prove critical to almost all work in 
“asset pricing” during the remainder of the twentieth century. Ramsey
writes:

I mean the theory that we act in the way we think most likely to
realize the objects of our desires, so that a person’s actions are
completely determined by his desires and opinions. . . . It is a sim-
ple theory and one that many psychologists would obviously like
to preserve by introducing unconscious opinions in order to bring
it more in harmony with the facts. How far such fictions can
achieve the required results I do not attempt to judge: I only claim
for what follows an approximate truth, or truth in relation to this
artificial system of psychology, which like Newtonian mechanics
can, I think, still be profitably used even though it is known to be
false. (p. 173)

Unfortunately, even if an observed agent is perfectly rational, the pro-
gram of inferring probabilities and preferences from observed choices con-
tains many hidden shoals that can ground the unwary. For example,
having observed an individual bet on a racehorse does not necessarily im-
ply that, given the track odds, he believes the horse will win; the bettor
may simply like the name of the horse. For an agent to reveal his prefer-
ences and probabilities from his choices, the full implications for the agent
of each choice must be specified and the menu of all possible choices must
be known.

Mosteller-Nogee (1951) describe what was to be the first in a long
line of experiments testing the expected utility theory of von Neumann–
Morgenstern (1947) and by extension Savage (1954). They confront sev-
eral college undergraduates and National Guardsmen with a long series of
gambles to see if, for each subject, there exists a single utility function con-
sistent with all his choices. Of course, given the complexity of the task, no
subject was perfectly consistent. However, Mosteller and Nogee conclude
that, with the exception of a few subjects, their responses were sufficiently
consistent (1) that it is “feasible to measure utility experimentally, (2) that
the notion that people behave in such a way as to maximize expected util-
ity is not unreasonable, [and] (3) that on the basis of empirical curves it is
possible to estimate future behavior in comparable but more complicated
risk-taking situations.”

In 1988, Allais won the Nobel Prize in Economic Science “for his pio-
neering contributions to the theory of markets and efficient utilization of
resources.”
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1948  Milton Friedman (July 31, 1912–) and Leonard J. Savage, “The Util-
ity Analysis of Choices Involving Risk,” Journal of Political Economy 56,
No. 4 (August 1948), pp. 279–304.

1952  Harry M. Markowitz (August 24, 1927–), “The Utility of Wealth,”
Journal of Political Economy 60, No. 2 (April 1952), pp. 151–158.

1979  Daniel Kahneman (1934–) and Amos Tversky (March 16, 1937–
June 2, 1996), “Prospect Theory: An Analysis of Decision under Risk,”
Econometrica 47, No. 2 (March 1979), pp. 263–291.

RISK AVERSION AND GAMBLING, LOTTERIES, 
REFERENCE-DEPENDENT UTILITY, 

PROSPECT THEORY, DYNAMIC STRATEGIES

W ith the work of von Neumann–Morgenstern (1947), which provided a
rational justification for maximizing expected utility, the conclusions

of Daniel Bernoulli (1738) concerning risk aversion could now be taken se-
riously. Friedman-Savage (1948) was the first to do so (although their
work was partially anticipated by L. Törnqvist in [Törnqvist (1945)] “On
the Economic Theory of Lottery Gambles,” Skandinavisk Aktuarietidskrift
28, Nos. 3–4 (1945), pp. 298–304). Their paper contains the first diagrams
of utility as a function of income with the geometric result that an individ-
ual will avoid fair binomial gambles if a chord drawn between the two out-
comes of the gamble lies below the utility function.

Such a risk-averse agent will never accept a fair or an unfair gamble.
Yet curiously it is commonplace for the same individual to be risk averse
for the most part and even purchase insurance, yet also quite happily buy
lottery tickets. Earlier economists were unable to explain this because they
had given up on maximizing expected utility rather than jettison the hy-
pothesis of diminishing marginal utility. Friedman and Savage now re-
versed this priority of hypotheses and thereby reconciled gambling with
rational behavior.

Friedman and Savage begin by postulating a singly inflected utility
function with a concave (to the origin) segment over low levels of income
followed by a convex segment over high levels of income. Supposing that
an individual finds his current wealth in the domain of the concave seg-
ment, he will simultaneously buy insurance against small and large losses,
avoid all fair gambles with small potential gains, but also accept unfair
gambles with potentially large gains. That is, he will willingly buy gambles
that have a large probability of a small loss but a small probability of a
large gain (long shots). To explain as well why lotteries tend to have many
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winning prizes of moderate size rather than a single extremely large prize,
Friedman and Savage postulate that the convex segment be followed by a
second upper concave segment.

Markowitz (1952/April) points out that the simultaneous preference
for insurance and long-shot gambles is not confined to individuals with
low wealth (whose wealth falls in the domain of the lower concave seg-
ment) but rather to individuals with wealth at all levels. So, rather than
interpret the Friedman and Savage utility function as static, he prefers to
assume that as an individual’s wealth changes, the utility function will,
perhaps with some short delay, move horizontally, tending to keep the in-
dividual’s current wealth, low or high, at the origin. This may be the first
occurrence of a formally expressed habit formation or reference-dependent
behavioral argument in financial economics, anticipating by 17 years the
“prospect theory” of Kahneman-Tversky (1979).30 Markowitz’s full the-
ory supposes that an individual’s utility function is monotonically in-
creasing and bounded above and below—to avoid the generalized St.
Petersburg Paradox (Menger 1934)—and has three inflection points, with
the middle inflection point at the origin (the individual’s customary
wealth level). The first inflection point to the left of the origin separates a
convex segment (the farthest left) and a concave segment ending at the
origin, and the third inflection point to the right of the origin also sepa-
rates a convex segment beginning at the origin and a concave segment
(the farthest right). Similar to Kahneman-Tversky (1979), Markowitz
also assumes that the concave segment just to left of the origin is steeper
(that is, more concave) than the convex segment to the right of the origin.
This implies that the individual will tend to ignore symmetric gambles
but be quite interested in gambles that are highly skewed to the right
(long shots or lotteries).

Markowitz argues that behavior that seems to indicate a willingness to
accept symmetric gambles is often part of a strategy in which the individ-
ual is making a sequence of bets and plans to increase the size of future
bets if the person has been winning, and decrease the size of future bets if
he has been losing. Taken together, this compound gamble is skewed to the
right around the individual’s customary wealth, and therefore is just the
sort of overall gamble that Markowitz’s theory predicts will be attractive.
This is the earliest example of a description I can find of a dynamic strategy
that produces nonsymmetric outcomes (in this case, similar to a call), an-
ticipating by 20 years the Black-Scholes (1973) equivalence between dy-
namic strategies and options.

For many years, the Friedman-Savage and Markowitz departures from
strictly concave utility were largely discounted. Apparently risk-preferring
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behavior was explained by the inherent “joy of gambling” that appeals to
some individuals. A common proof is that individuals seldom stake a large
fraction of their wealth on a fair or an unfair gamble. Instead, they bet
only small amounts, perhaps repetitively. However, more recently, the
prospect theory of Kahneman-Tversky (1979) has revived interest in utility
functions that have a convex region.

In 2002, Daniel Kahneman was awarded the Nobel Prize in Economic
Science “for having integrated insights from psychological research into
economic science, especially concerning human judgment and decision-
making under uncertainty.”

1949  Holbrook Working, “The Investigation of Economic Expectations,”
American Economic Review 39, No. 3 (May 1949), pp. 150–166.

RANDOM WALK, MARTINGALES, EFFICIENT MARKETS

Kendall (1953) writes:

It may be that the motion [of stock prices] is genuinely random
and that what looks like a purposive movement over a long period
is merely a kind of economic Brownian motion. But economists—
and I cannot help sympathizing with them—will doubtless resist
any such conclusion very strongly. (p. 18)31

The fear that the phenomenon one is examining is just random, having nei-
ther rhyme nor reason, is the primal fear of the scientist. However, Work-
ing (1949/May) observes, perhaps for the first time—apart from Bachelier
(1900)—that this is precisely what a good economist would expect from
price changes. The profit-seeking behavior of investors will tend to elimi-
nate any predictable movement in prices, leaving a random walk as the
only equilibrium outcome:

[I]f the futures prices are subject only to necessary inaccuracy
(that irreducible minimum of inaccuracy which must result from
response of prices to unpredictable changes in supply and in
consumption demand schedules), the price changes will be com-
pletely unpredictable. The proposition is readily proved from a
consideration of the alternative condition in which price
changes are predictable. If it is possible under any given combi-
nation of circumstances to predict future price changes and have
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the predictions fulfilled, it follows that the market expectations
must have been defective; ideal market expectations would have
taken full account of the information which permitted successful
prediction of the price change. . . . Apparent imperfection of
professional forecasting, therefore, may be evidence of perfec-
tion of the market. The failures of stock market forecasters, to
which we referred earlier, reflect credit on the market. . . . The
fundamental statistical basis for discriminating between neces-
sary and objectionable inaccuracy is that necessary inaccuracy
produces price changes among which all serial correlations tend
to be zero, whereas objectionable inaccuracy tends to produce
price changes which have certain serial correlations that differ
significantly from zero. (pp. 159, 160, 163)32

Although subsequent work has shown this explanation to be over-
simplified and incorrect, it has nonetheless become part of the fabric 
of everyday thinking about markets and is no doubt, in practice, a 
very useful and close approximation to the truth (particularly over the
short run).

So Working provides perhaps the first formulation of the random
walk interpretation of what later became known as “efficient markets”
(Fama 1965; 1970/May). In [Working (1958)] “A Theory of Anticipatory
Prices,” American Economic Review 48, No. 2 (May 1958), pp. 188–199,
Working carries this one logical step further and observes that as a conse-
quence, the current price is the best guess about the future price—what
later became known as the “martingale” interpretation of efficient mar-
kets (Samuelson 1965).

Another paper often cited for an observation similar to Working’s
economic interpretation of random walks is [Roberts (1959)] Harry 
V. Roberts, “Stock Market ‘Patterns’ and Financial Analysis: Method-
ological Suggestions,” Journal of Finance 14, No. 1 (March 1959), 
pp. 1–10; reprinted in The Random Character of Stock Market 
Prices, edited by Paul H. Cootner (London: Risk Publications, 2000),
pp. 7–17. By 1961, the random walk hypothesis was clearly ingrained
into the fabric of investment theory. For example, Alexander (1961)
could write:

If, however, there are really trends in earnings, so that an increase
in earnings this year implies a higher probability of an increase
next year than do stable or declining earnings, the stock price
right now should reflect these prospects by a higher price and a
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higher price-to-earnings ratio. . . . If one were to start out with
the assumption that a stock or commodity speculation is a “fair
game” with equal expectation of gain or loss or, more accurately,
with an expectation of zero gain, one would be well on the way to
picturing the behavior of speculative prices as a random walk.
(pp. 238, 239)
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