
Chapter 1

Ajax 101
In This Chapter
� Introducing how Ajax works

� Seeing Ajax at work in live searches, chat, shopping carts, and more

We aren’t getting enough orders on our Web site,” storms the CEO.
“People just don’t like clicking all those buttons and waiting for a new

page all the time. It’s too distracting.”

“How about a simpler solution?” you ask. “What if people could stay on the
same page and just drag the items they want to buy to a shopping cart? No
page refreshes, no fuss, no muss.”

“You mean people wouldn’t have to navigate from page to page to add items
to a shopping cart and then check out? Customers could do everything on a
single Web page?”

“Yep,” you say. “And that page would automatically let our software on the
server know what items the customer had purchased — all without having to
reload the Web page.”

“I love it!” the CEO says. “What’s it called?”

“Ajax,” you say.

Welcome to the world of Ajax, the technology that lets Web software act like
desktop software. One of the biggest problems with traditional Web applica-
tions is that they have that “Web” feel — you have to keep clicking buttons to
move from page to page, and watch the screen flicker as your browser loads
a new Web page.

Ajax is here to take care of that issue, because it enables you grab data from
the server without reloading new pages into the browser.

05_785970 ch01.qxp 1/20/06 12:16 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

How Does Ajax Work?
With Ajax, Web applications finally start feeling like desktop applications to
your users. That’s because Ajax enables your Web applications to work
behind the scenes, getting data as they need it, and displaying that data as
you want. And as more and more people get fast Internet connections, work-
ing behind the scenes to access data is going to become all the rage. Soon,
it’ll be impossible to distinguish dedicated desktop software from software
that’s actually on the Internet, far from the user’s machine. To help you
understand how Ajax works, the following sections look at Ajax from a user’s
and a programmer’s perspective.

A user’s perspective
To show you how Ajax makes Web applications more like desktop applica-
tions, I’ll use a simple Web search as an example. When you open a typical
search engine, you see a text box where you type a search term. So say you
type Ajax XML because you’re trying to figure out what XML has to do with
Ajax. Then, you click a Search the Web button to start the search. After that,
the browser flickers, and a new page is loaded with your search results.

That’s okay as far as it goes — but now take a look at an Ajax-enabled version
of Yahoo! search. To see for yourself, go to http://openrico.org/rico/
yahooSearch.page. When you enter your search term(s) and click Search
Yahoo!, the page doesn’t refresh; instead, the search results just appear in the
box, as shown in Figure 1-1.

Figure 1-1:
An Ajax-
enabled
Yahoo!
search.

10 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 10

That’s the Ajax difference. In the first case, you got a new page with search
results, but to see more than ten results, a user has to keep loading pages. In
the second case, everything happens on the same page. No page reloads, no
fuss, no muss.

You can find plenty of Ajax on the http://openrico.org Web site. If you’re
inclined to, browse around and discover all the good stuff there.

A developer’s perspective
In the article “Ajax: A New Approach to Web Applications” (www.adaptive
path.com/publications/essays/archives/000385.php), Jesse James
Garrett, who was the first to call this technology Ajax, made important
insights about how it could change the Web. He noted that although innova-
tive new projects are typically online, Web programmers still feel that the
rich capabilities of desktop software were out of their reach. But Ajax is clos-
ing the gap.

So how does Ajax do its stuff? The name Ajax is short for Asynchronous
JavaScript and XML, and it’s made up of several components:

� Browser-based presentation using HTML and Cascading Style Sheets
(CSS)

� Data stored in XML format and fetched from the server

� Behind-the-scenes data fetches using XMLHttpRequest objects in the
browser

� JavaScript to make everything happen

JavaScript is the scripting language that nearly all browsers support, which
will let you fetch data behind the scenes, and XML is the popular language
that lets you store data in an easy format. Here’s an overview of how Ajax
works:

1. In the browser, you write code in JavaScript that can fetch data from the
server as needed.

2. When more data is needed from the server, the JavaScript uses a special
item supported by browsers, the XMLHttpRequest object, to send a
request to the server behind the scenes — without causing a page
refresh.

The JavaScript in the browser doesn’t have to stop everything to wait
for that data to come back from the server. It can wait for the data in the
background and spring into action when the data does appear (that’s
called asynchronous data retrieval).

11Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 11

3. The data that comes back from the server can be XML (more on XML in
Chapters 2 and 8), or just plain text if you prefer. The JavaScript code in
the browser can read that data and put it to work immediately.

That’s how Ajax works — it uses JavaScript in the browser and the
XMLHttpRequest object to communicate with the server without page
refreshes, and handles the XML (or other text) data sent back from the
server. In Chapter 3, I explain how all these components work together in
more detail.

This also points out what you’ll need to develop Web pages with Ajax. You’ll
add JavaScript code to your Web page to fetch data from the server (I cover
JavaScript in Chapter 2), and you’ll need to store data and possibly write
server-side code to interact with the browser behind the scenes. In other
words, you’re going to need access to an online server where you can store
the data that you will fetch using Ajax. Besides just storing data on the
server, you might want to put code on the server that your JavaScript can
interact with. For example, a popular server-side language is PHP, and many
of the examples in this book show how you can connect to PHP scripts on
Web servers by using Ajax. (Chapter 10 is a PHP primer, getting you up to
speed on that language if you’re interested.) So you’re going to need a Web
server to store your data on, and if you want to run server-side programs as
well, your server has to support server-side coding for the language you want
to work with (such as PHP).

What Can You Do with Ajax?
The technology for Ajax has been around since 1998, and a handful of appli-
cations (such as Microsoft’s Outlook Web Access) have already put it to use.
But Ajax didn’t really catch on until early 2005, when a couple of high-profile
Web applications (such as Google Suggest and Google Maps, both reviewed
later in this chapter) put it to work, and Jesse James Garrett wrote his article
coining the term Ajax and so putting everything under one roof.

Since then, Ajax has exploded as people have realized that Web software can
finally start acting like desktop software. What can you do with Ajax? That’s
what the rest of this chapter is about.

Searching in real time with live searches
One of the truly cool things you can do with Ajax is live searching, where you
get search results instantly, as you enter the term you’re searching for. For
example, take a look at http://www.google.com/webhp?complete=1
&hl=en, the page which appears in Figure 1-2. As you enter a term to search

12 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 12

for, Ajax contacts Google behind the scenes, and you see a drop-down menu
that displays common search terms from Google that might match what
you’re typing. If you want to select one of those terms, just click it in the
menu. That’s all there is to it.

You can also write an Ajax application that connects to Google in this way
behind the scenes. Chapter 4 has all the details.

Getting the answer with autocomplete
Closely allied to live search applications are autocomplete applications,
which try to guess the word you’re entering by getting a list of similar words
from the server and displaying them. You can see an example at www.paper
mountain.org/demos/live, which appears in Figure 1-3.

As you enter a word, this example looks up words that might match in a dic-
tionary on the server and displays them, as you see in Figure 1-3. If you see
the right one, just click it to enter it in the text field, saving you some typing.

Figure 1-2:
A Google

live search.

13Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 13

Chatting with friends
Because Ajax excels at updating Web pages without refreshing the displayed
page, it’s a great choice for Web-based chat programs, where many users can
chat together at the same time. Take a look at www.plasticshore.com/
projects/chat, for example, which you can see in Figure 1-4. Here, you just
enter your text and click the Submit button to send that text to the server. All
the while, you can see everyone else currently chatting — no page refresh
needed.

Figure 1-3:
An

autocomplet
e example.

14 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 14

There are plenty of Ajax-based chat rooms around. Take a look at
http://treehouse.ofb.net/chat/?lang=en for another example.

Dragging and dropping with Ajax
At the beginning of this chapter, I mention a drag-and-drop shopping cart
example. As shown in Figure 1-5, when the user drags the television to the
shopping cart in the lower-right, the server is notified that the user bought a
television. Then the server sends back the text that appears in the upper left,
“You just bought a nice television.” You find out how to create this shopping
cart in Chapter 6.

Figure 1-4:
An Ajax-

based chat
application.

15Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 15

Gaming with Ajax
Here’s a cute one — a magic diary that answers you back using Ajax tech-
niques, as shown in Figure 1-6. You can find it at http://pandorabots.com/
pandora/talk?botid=c96f911b3e35f9e1. When you type something,
such as “Hello,” the server is notified and sends back an appropriate
response that then appears in the diary, such as “Hi there!”

Or how about a game of chess, via Ajax? Take a look at www.jesperolsen.
net/PChess, where you can move the pieces around (and the software on
the server can, too) thanks to Ajax.

Figure 1-5:
Drag-and-

drop
shopping.

16 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 16

Getting instant login feedback
Another Internet task that can involve many annoying page refreshes is log-
ging in to a site. If you type the wrong login name, for example, you get a new
page explaining the problem, have to log in on another page, and so on. How
about getting instant feedback on your login attempt, courtesy of Ajax?
That’s possible, too. Take a look at www.jamesdam.com/ajax_login/
login.html, which appears in Figure 1-7. I’ve entered an incorrect username
and password, and the application says so immediately. You’ll see how to
write a login application like this in Chapter 4.

Figure 1-6:
An

interactive
Ajax-

enabled
diary.

17Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 17

Ajax-enabled pop-up menus
You can grab data from the server as soon as the user needs it using Ajax. For
example, take a look at the application in Figure 1-8, which I explain how to
build in Chapter 9. The pop-up menus appear when you move the mouse and
display text retrieved from the server using Ajax techniques. By accessing
the server, Ajax allows you to set up an interactive menu system that
responds to the menu choices the user has already made.

Figure 1-8:
Ajax-

enabled
pop-up
menus.

Figure 1-7:
Ajax makes
correcting

login
mistakes

easier.

18 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 18

Modifying Web pages on the fly
Ajax excels at updating Web pages on the fly without page refreshes, and
you can find hundreds of Ajax applications doing exactly that. For example,
take a look at the Ajax rolodex at http://openrico.org/rico/demos.
page?demo=ricoAjaxInnerHTML.html, shown in Figure 1-9. When you
click someone’s name, a “card” appears with their full data.

You can see another example at http://digg.com/spy. This news Web site
uses Ajax techniques to update itself periodically by adding new article titles
to the list on the page.

Updating the HTML in a Web page by fetching data is a very popular Ajax
technique, and you see a lot of it in Chapters 3 and 4.

Google Maps and Ajax
One of the most famous Ajax application is Google Maps, at http://maps.
google.com, which you can see at work in Figure 1-10, zooming in on South
Market Street in Boston.

Figure 1-9:
An Ajax
rolodex.

19Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 19

See that marker icon near the center of the map? The location for that marker
is passed to the browser from the server using Ajax techniques, and the Ajax
code in the browser positions the marker accordingly. Ajax at work again!

When Is Ajax a Good Choice?
The examples I show in the preceding section are just the beginning —
dozens more, including those you can write yourself, appear in later chap-
ters. Got a Web application that asks the user to move from page to page and
therefore needs to be improved? That’s a job for Ajax.

Figure 1-10:
Using

Google
maps.

20 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 20

