
Chapter 1: Security:
Using Login Controls

In This Chapter
� Understanding authentication and authorization

� Using the Security Administration tool

� Restricting access

� Handling logins and lost passwords

� Managing users and roles programmatically

Most of us feel uneasy about implementing Web site security, perhaps
because it’s hard to be 100% sure that you’ve got it right. Inadvertently

allowing the Internet’s bad guys to get in could be a Career Limiting Move
(CLM) or worse. Therefore, it’s comforting to put security in the hands of
people who’ve done it before. Enter Microsoft’s ASP.NET team. The team
realized that so many of us were reinventing the security wheel (sometimes
creating an oval wheel, out of whack) that it made sense to build member-
ship and login capabilities directly into ASP.NET 2.0.

Out of the box, we have all the tools we need to let people log in to the site,
view what we allow them to view, and recover their lost passwords. Our goal
in this chapter is to implement security while writing as little code as possi-
ble. We can do this by leveraging the standard authorization tools and func-
tions in ASP.NET.

As you work with membership terminology, note that roles refer to groups
or categories of users. In addition, the terms users and members are
interchangeable.

Understanding Authentication and Authorization
Authentication and authorization are easy to confuse. It might help to look
at how these concepts work in a restaurant. In our scenario, areas such as
the restaurant’s entrance, dining room, and kitchen represent Web pages
with different access levels.

Anyone off the street can open the restaurant door and stand in the entrance.
In that location, a visitor can look around while remaining completely

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 685

CO
PYRIG

HTED
 M

ATERIA
L

Implementing Forms Authentication686

anonymous because no one needs to know who he or she is. There’s no need
to grant any approval for him or her to be there.

Our restaurant visitor, John Oliver, passes through the entrance. He intends
to eat in the restaurant’s dining room and has a reservation. He presents
himself at the maitre d’s stand at the dining room door. Up until now, Mr.
Oliver has been anonymous and unchallenged. The “security” context
changes at this point. To claim his reserved table Mr. Oliver must lose his
anonymity. He identifies himself by telling the maitre d’ his name. In this
social context, Mr. Oliver’s word is sufficient proof for the maitre d’ to vali-
date the person in front of him as Mr. Oliver. The maitre d’ could have asked
for identification, but that would drive Mr. Oliver away. It is, after all, just a
restaurant. Mr. Oliver has been authenticated at the restaurant because the
restaurant employee knows the person with whom he’s dealing.

Next, the maitre d’ looks for Mr. Oliver’s name on the evening’s reservation
list, which is like a database. The name appears on the list, confirming that
the guest may sit at the table set aside for Mr. Oliver. You could say that Mr.
Oliver has been authorized to enter the dining room and sit at a table.

You can see that authentication and authorization are different issues.
Authentication establishes who you are; authorization establishes what you
can do.

Authentication can also establish a pecking order for different groups of
people. For example, although Mr. Oliver has been authenticated and author-
ized to enter the dining room, he has not been authorized to enter the VIP
room unless Mr. Oliver’s name appears on the VIP list. Nor can he enter the
kitchen unless he is a member of the staff.

Implementing Forms Authentication
We’re going to walk through the construction of a barebones Web site that uses
forms authentication, the normal mode for a password-protected Internet Web
site. Forms authentication requires the visitor to submit a valid username and
password to gain access to protected pages. If the credentials are valid, the
Web server issues a temporary cookie to the browser that acts as a token to
allow entry into other protect pages without forcing the user to type the cre-
dentials each time.

Before putting a shovel in the ground, it might help to understand the roles
of the Web pages in our sample application.

✦ default.aspx: This is the entrance to our Web site. As with the restau-
rant, anyone can browse here anonymously.

✦ login.aspx: This is the page where visitors present their credentials
for validation. In the restaurant example in the previous section, the

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 686

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 687

customer identifies himself to the maitre d’ to claim a reservation. Behind
the scenes, we verify the username and password — just as the maitre d’
checks his reservation list.

✦ reserved.aspx: Browsers can only view the contents of this page if
they have specific permission. In the restaurant scenario, this is the
reserved table. Before a customer gets to this place, the maitre d’ knows
you and specifically grants you access.

✦ register.aspx: This is where visitors to our site can request access to
private pages. They must provide information about themselves before
approval. The comparable step in the restaurant example is giving your
name and phone number when making a reservation.

✦ regular.aspx: We might allow anonymous browsers to view this page
under certain conditions. In a restaurant, this would be an unreserved
table in the dining room.

Creating the Web site
The example we are creating in this chapter uses Visual Web Developer
Express (VWDE) to create a file-based Web site. We use the Express edition
of SQL Server 2005 as the database engine. For maximum simplicity, we use
the Visual Basic (VB) language and all the code (both HTML and server-side)
goes into the .aspx. file. Let’s get started!

1. In Visual Web Developer Express, from the File menu, click New
Web Site.

2. In the New Web Site dialog box, under Templates, select ASP.NET
Web Site.

3. In the Location boxes, select File System and enter c:\resto as the
location for the site.

4. In the Language box, select Visual Basic.

5. Click OK.

As shown in Figure 1-1, VWDE creates a site that includes three files:
Default.aspx, Default.aspx.vb, web.config and a folder, App_Data.

Figure 1-1:
Solution
Explorer
after
creating
a new
Web site.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 687

Implementing Forms Authentication688

6. Delete Default.aspx.

The default page uses the code-behind model rather than the one-page
model that we’re using. You build the pages from scratch in the next
section.

Adding pages to the resto Web site
Because the chapter is about security rather than design, I won’t deal with
creative aspects of pages here. Let’s just add some plain ASP.NET pages to
the site so we have something to configure. To do so:

1. In Solution Explorer, select the root of the site and right-click it to
bring up the context menu.

2. Click Add New Item.

The Add New Item dialog box opens, as shown in Figure 1-2.

1. From the Visual Studio Installed Templates select Web Form.

2. In the Name box, enter the name of the start page, default.aspx.

3. In the Language box, select Visual Basic.

4. Uncheck the check boxes for Place Code In Separate File and Select
Master Page.

5. Click Add.

The new ASP.NET page appears in Solution Explorer.

Figure 1-2:
The Add
New Item
dialog box.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 688

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 689

6. Repeat the preceding steps to add the following pages: login.aspx,
reserved.aspx, register.aspx, and regular.aspx.

When you’re finished, Solution Explorer should look like Figure 1-3.

That takes care of creating the raw pages. We add functionality to the pages
in subsequent procedures. Before getting to that, however, we have to fix the
site’s directory structure. We need a directory for the exclusive use of logged
in members. Although it’s possible to secure individual pages in the root
folder, ASP.NET’s membership features are easiest to apply to whole directo-
ries rather than pages. To create the directory, follow these steps:

1. In Solution Explorer, select the root of the site and right-click it to
bring up the context menu.

2. Select the New Folder item.

3. Name the new folder members.

4. Drag reserved.aspx from the root folder of the Web site and move it
into the members folder.

We encounter the members folder again when we set permissions. First, we
have to set up ASP.NET’s membership features.

Implementing membership features
Our Web site needs a database to store user information and credentials.
When a person logs in, we look up the name and credentials before deciding
what pages that person can visit.

You need SQL Server 2005 Express on your workstation for these proce-
dures. (If you haven’t installed a copy, now’s a good time to do so.)

ASP.NET provides all you need for basic authentication and user management —
with little or no code — thanks to the Web Site Administration tool. The

Figure 1-3:
Solution
Explorer
after adding
files.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 689

Implementing Forms Authentication690

hardest part is knowing where to click; the way to get a handle on that is to
configure membership for our site. You should still have the resto project
open. To configure membership for our site, follow these steps:

1. In the IDE (that’s the VWDE development environment), from the
Website menu, click ASP.NET Configuration.

The ASP.NET development server starts up and navigates to the Web
Application Administration startup page, as shown in Figure 1-4.

2. Click the Security tab.

The page may take a few seconds to appear the first time.

3. Click the link marked Use The Security Setup Wizard to configure
security step by step.

4. On the Welcome page, click Next.

5. On the Select Access Method page, select the radio button for From
The Internet and then click Next.

6. On the Advanced provider settings page, click Next.

7. On the Define Roles page, make sure the check box is cleared and
then click Finish.

The Web Site Administration Tool displays the Security tab. We deal with
roles in section “Assigning users to roles,” later in this chapter.

Figure 1-4:
Security tab
of the Web
Site Admin-
istration
Tool.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 690

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 691

Notice that we didn’t complete all the wizard steps. That’s not a problem
because you can restart the wizard at any time to explore its capabilities.
There are also other paths to the same functions, such as creating a user.

Before moving on, let’s investigate what the wizard has done for us. In your
IDE, open Solution Explorer and click the Refresh button. Expand all the
nodes and look under the App_Data folder — you should see a database file
called ASPNETDB.MDF, as shown in Figure 1-5.

So far we haven’t written any code — but we’ve managed to create a data-
base that includes numerous tables and stored procedures. You can investi-
gate the database using the Database Explorer. Just go to View➪Database
Explorer. Expand the nodes, as shown in Figure 1-6. (We add data in the sec-
tion, “Creating users,” later in this chapter.)

Figure 1-6:
Database
Explorer
shows the
membership
tables.

Figure 1-5:
A database
file,
ASPNETDB.
MDF, added
to the site.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 691

Implementing Forms Authentication692

Creating users
Our database is now ready for us to add some users, so let’s add two user
accounts. Once again, we turn to the Web Site Administration tool. To add
users, follow these steps:

1. Navigate to the Security tab (Website➪ASP.NET Configuration and
select the Security tab).

2. In the table at the bottom of the page, locate the Users column and
click the Create User hyperlink.

The Create User page appears.

3. Fill in the user’s name, password, e-mail address, security question,
and security answer, as shown in Figure 1-7.

You can make up your own data, but you’ll find it easier to follow along
later with these values:

• Username: JohnOliver

• Password: OliverJoh!

• E-mail: jo@nowhere.com

• Security Question: Your dog’s name?

• Security Answer: Goldie

ASP.NET requires that your passwords include a combination of upper-
and lowercase letters and at least one non-alphanumeric character, such
as a punctuation symbol.

4. Click Create User.

The confirmation message appears.

5. Click Continue.

Figure 1-7:
The Create
User page
in the Web
Site Admin-
istration
Tool.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 692

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 693

6. Repeat the preceding steps and create another user with the following
values:

• Username: JillAnon

• Password: AnonJill!

• E-mail: ja@nowhere.com

• Security Question: How high is Up?

• Security Answer: Very

Creating access rules for the pages
Recall that our goal is to allow anyone to browse the default page but permit
only specific users to view pages in the members subdirectory. To do this, we
have to create some access rules.

Allowing anonymous users access to the root
The first task is to ensure that everyone can reach the pages in the root of the
Web, including the home page, default.aspx. To do so, follow these steps:

1. Navigate to the Security tab (Website➪ASP.NET Configuration and
select the Security tab).

2. In the table at the bottom of the page, locate the Access Rules column
and click the Create Access Rules hyperlink.

The Add New Access Rule page appears.

3. In the left column, select the root folder (resto).

Fixing connection woes
ASP.NET’s Web Site Administration Tool does
a lot of work behind the scenes. When it cre-
ates the membership database, it also builds
a database connection string. You can view
the string by opening the Database Explorer,
selecting ASPNETDB.MDF, and opening the
Properties page (that’s the F4 key in the default
environment).

For example, on my machine the connection
string looks like this:

“Data
Source=.\SQLEXPRESS;AttachD
bFilename=C:\resto\App_Data
\ASPNETDB.MDF;

Integrated Security=True;
User Instance=True”

If you’re having trouble connecting to a data-
base that you’ve created yourself, you might
get going again by adapting ASP.NET’s mem-
bership settings. Also, keep in mind that the IDE
recognizes databases more readily when you
put the file in the special App_Data folder.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 693

Implementing Forms Authentication694

4. In the right column, under Rule Applies To, select the Anonymous
Users radio button.

5. In the right column, under Permission, select the Allow radio button.

The resulting access rule should look like Figure 1-8.

Denying access for all users
Our next step is to secure the members subdirectory by keeping everyone
out. This exclusion includes anonymous users and users who are logged in.
To secure the members subdirectory:

1. In the Web Site Administration Tool, navigate to the Security tab
(Website➪ASP.NET Configuration and select the Security tab).

2. Click Create access rules.

The Add New Access Rule page appears.

3. In the left column, expand the root folder (resto) and select the sub-
directory called members.

4. In the right column, under Rule Applies To, select the All Users radio
button.

We’re creating a rule that applies to everyone.

5. In the right column, under Permission, select the Deny radio button.

The resulting access rule should look like Figure 1-9.

Figure 1-9:
Denying
access to
all users.

Figure 1-8:
Allowing
access to
anonymous
users in
the root.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 694

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 695

6. Click OK. The Security page reappears.

As of now, nobody can see pages in the members folder. We have to add one
more rule to make the folder usable by that one special user, John Oliver.

Allowing access to one user — John Oliver
Of the two users we created previously, only John Oliver is allowed to
access the members folder, including the reserved.aspx page. The follow-
ing steps provide access to him after he logs in:

1. Navigate to the Security tab (Website➪ASP.NET Configuration and
select the Security tab).

2. Click Create Access Rules.

3. Select the subdirectory called members.

4. Select the User radio button.

5. Click the Search for Users link.

The Search for Users page lists the users you added previously. Figure 1-10
shows part of the page with the usernames.

6. Check the check box for JohnOliver and click OK.

The browser returns to the Add New Access Rule page with the user-
name JohnOliver in the text box, as shown in Figure 1-11.

Figure 1-11:
Allowing
access to
John Oliver.

Figure 1-10:
Partial view
of Search
for Users
page.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 695

Implementing Forms Authentication696

7. In the Permission area, select the Allow radio button.

8. Click OK.

Reviewing the access rules
You now have two rules in effect for the members subdirectory — deny all and
allow John Oliver. You can (and should) review the rules to confirm that they’ll
produce the desired result. To review the access rules, follow these steps:

1. Navigate to the ASP.NET Configuration Security tab.

2. Click Manage Access Rules.

The Manage Access Rules page opens, as shown in Figure 1-12.

3. Expand the resto node and click the members subdirectory.

The existing permissions for the subdirectory appear.

It might not be obvious on first viewing, but an analysis of Figure 1-12 shows
that we have a problem. John Oliver is denied entry — even though his per-
mission is listed as Allow.

The rule at the top of the list takes precedence over the rules below it. Like-
wise, the second rule in the list overrides conflicting instructions further
down.

Here you can see that Deny All is king of the castle and overshadowing Allow
JohnOliver. It may be hard to see in the figure, but the bottom two rules are
dimmed (grayed out) because they are inherited from the parent directory.

To fix the hierarchy, move John Oliver’s Allow permission higher than the
Deny All entry. Here’s how:

1. On the Manage Access Rules page, in the Users and Roles column,
click the username JohnOliver.

The Move Up button becomes active.

Figure 1-12:
The
Manage
Access
Rules page.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 696

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 697

2. Click Move Up.

The Allow rule for username JohnOliver moves to the top of the table
and overrides the rules below it. Figure 1-13 shows the correct order for
the access rules.

3. Click Done.

We revisit access rules in the section “Assigning users to roles,” later in this
chapter, to add a role. However, it’s time to put the rules to use and demon-
strate how they affect ASP.NET pages.

Using the Login control
When Microsoft’s ASP.NET team set out the goals for the 2.0 version, they
wanted to reduce the amount of code that developers have to write by 70
percent. The Login control contributes to the code reduction by providing
tons of code-free functionality with its default settings.

By the way, have you noticed that we haven’t written any code yet in this
chapter?

Adding the Login control to the page
To allow John Oliver to browse to reserved.aspx in the members subdirec-
tory, you have to provide him with the ASP.NET Login control as a way to
present his credentials for authentication.

1. In Solution Explorer, open login.aspx in Design view.

2. From the Login tab of the toolbox, drag the Login control (the one
with an icon showing a padlock and a person) and drop it on the
design surface.

Figure 1-14 shows the control and its Smart Tasks menu.

Figure 1-13:
Putting
access rules
in order.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 697

Implementing Forms Authentication698

Figure 1-14:
The Login
control.

Script your login
When you test forms authentication, it’s highly
likely that you’ll access pages many times
with different usernames and passwords. The
Login control is a great convenience at
design time — but at runtime, you still have to
enter the credentials. Copying and pasting the
username and password works okay, but even
that becomes tedious after a few logins.

You can semi-automate the logins with a little
client-side script. I threw together a JavaScript
routine to paste into login.aspx during
development. When you select a username
from the drop-down list, the script pushes that
username and its password into the appropri-
ate fields in the Login control. The sooner you
implement this arrangement, the more time
you’ll save.

In Source view, put the following in the
<head> of login.aspx:

<script type=”text/javascript”>
function autologin()
{
var username =

document.getElementById(“Lo
gin1_UserName”);

var pwd =
document.getElementById(“Lo
gin1_Password”);

var cntrl =
document.getElementById(“Se
lect1”);

username.value=cntrl.options[cntrl.se
lectedIndex].text;

pwd.value=cntrl.options[cntrl.selecte
dIndex].value;

}
</script>

Right after the <body> tag, insert a drop-down
list with the sample usernames and passwords:

<select id=”Select1”
onchange=”autologin()”>

<option value=””></option>
<option

value=”OliverJoh!”>JohnOliv
er</option>

<option
value=”AnonJill!”>JillAnon<
/option>

</select>

You might need to adjust the IDs passed to the
getElementById() function to match the
control IDs that ASP.NET generates on the ren-
dered page. The values here assume that your
Login control’s name is Login1.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 698

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 699

The Login control has dozens of properties, including many to customize
the text that appears. For example, the FailureText property value is a
polite string, “Your login attempt was not successful. Please try
again.” You can change the text to wording more appropriate for your site,
such as “Nope, that’s not it!”

Testing the Login control
So far we’ve generated a user database, added two users to it, added a folder
and some ASP.NET pages to our site, configured the permissions, and imple-
mented the login function. Finally, we can test the security by trying to access
the restricted page — using three different personas.

The first persona is the anonymous user. We allow this user to browse to
pages in the root of the Web site but deny access to the members subdirec-
tory. To test this persona:

1. In Solution Explorer, in the members folder, right-click reserved.aspx.

2. From the context menu, click View in Browser.

The browser opens, but instead of the reserved.aspx page, you see
login.aspx.

This proves that the anonymous user was not allowed to see the page. In fact,
ASP.NET’s default behavior automatically redirected the browser to the login
page. Notice the URL in the browser, repeated in the next line:

http://localhost:3235/resto/login.aspx?
ReturnUrl=%2fresto%2fmembers%2freserved.aspx

The portion after ReturnUrl= is the page the anonymous user tried to
reach. The %2f parts are escape codes for the forward slash, so the URL
translates to:

/resto/members/reserved.aspx

If the login is successful, reserved.aspx is the user’s intended destination.

For the next attempt to access the members subdirectory, we call on a known
user, JillAnon. Testing the login for our known user looks like this:

1. Browse to reserved.aspx in the members folder.

The browser redirects to the login page.

2. In the User Name box, type JillAnon.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 699

Implementing Forms Authentication700

3. In the Password box, type AnonJill! (case-sensitive).

4. Click Log In.

The user failed to access reserved.aspx. The login page reappears.

Actually the login only appears to have failed. In the section “Using the
LoginName control,” later in this chapter, we show that JillAnon did in fact
log in — and can navigate to other pages. ASP.NET’s default behavior is to
bounce browsers to the login page when they’re denied access to a page.
That can be changed (as detailed in the next section).

Now to test whether the only user who has access to reserved.aspx can
get there. Here goes:

1. Browse to reserved.aspx in the members folder.

The browser redirects to the login page.

2. In the User Name box, type JohnOliver.

3. In the Password box, type OliverJoh! (case-sensitive).

4. Click Log In.

The browser navigates to . . . a blank page!

The page is blank because we didn’t put anything in it — but look at the
address in the browser: It landed on reserved.aspx. You can make the
target page more obvious by opening reserved.aspx in Design view and
adding identifying text. Browse to the page again and you’ll see something
like Figure 1-15.

Using the LoginName control
When we tested the login by JillAnon in the previous section, it appeared
to have failed. There was nothing obvious to indicate success. You can fix
that by adding the LoginName control to a page. If the user is logged in, it
displays the name. Here’s the fix:

Figure 1-15:
Browsing to
reserved.
aspx.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 700

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 701

1. Open default.aspx in Design view.

2. From the Login tab of the toolbox, drag the LoginName control to the
design surface.

3. Browse to login.aspx.

If you browse directly to default.aspx, you do so as the anonymous
user and won’t see a name.

4. Log in as JillAnon with the password AnonJill! (case-sensitive).

The default page appears with the username, as shown in Figure 1-16.

The LoginName control is handy for personalizing Web pages. People tend
to forget themselves when browsing exciting Web pages; this way you can
show them who they are at all times while they’re logged in.

Using the LoginStatus control
The LoginStatus control shows more than whether a user is logged in or
out. It detects the user’s status and, based on that, creates links to log out
or log in.

1. Open regular.aspx in Design view.

2. From the Login tab of the toolbox, drag the LoginStatus control to
the design surface.

3. Browse to regular.aspx as an anonymous user.

The page shows a Login hyperlink.

4. Click Login.

The browser navigates to login.aspx.

5. Log in as JillAnon with the password AnonJill! (case-sensitive).

You return to regular.aspx, but this time the hyperlink reads Logout.

Figure 1-16:
The
LoginName
control
displays the
username.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 701

Implementing Forms Authentication702

6. Click Logout.

Behind the scenes, ASP.NET cancels your authentication (that is, logs
you out); the LoginStatus control reflects this change by displaying the
Login hyperlink.

Be sure to provide a way for the user to log out from your secure pages.
Often, when people navigate away from secure pages, they think (mistak-
enly) that they’ve logged out. If they leave the browser open during a break,
a ne’er-do-well could browse back to the secure page while the authentica-
tion is valid. Using the Logout link forces the user to re-authenticate.

Using the LoginView control
LoginView is a templated control that lets you show completely different con-
tent to a user who has logged in and one who has logged out. Templated con-
trols let you go wild with your own customizations. That’s because you add
your own content rather than just manipulating the properties that Microsoft
provides. The templates, AnonymousTemplate and LoggedInTemplate, act as
containers for all kinds of markup, including ASP.NET controls. Here’s a short
demonstration:

1. Open regular.aspx in Design view.

2. From the Login tab of the toolbox, drag the LoginView control to the
design surface.

The control defaults to the AnonymousTemplate.

3. Drag an ASP.NET Label control from the toolbox, drop it inside the
LoginView control’s outline, and set the label’s text to “You are not
worthy.”

4. Select the LoginView, open its Smart Tasks menu, and select LoggedIn
Template from the drop-down list, as shown in Figure 1-17.

5. Drag an ASP.NET Hyperlink control onto the LoginView.

Figure 1-17:
Choosing a
view in the
LoginView
control.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 702

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 703

6. Set the hyperlink’s Text property to Members and the NavigateUrl
property to ~/members/reserved.aspx.

7. Browse to regular.aspx as an anonymous user.

The page displays the contents of the label.

8. Log in at login.aspx and then browse to regular.aspx.

The page displays the hyperlink.

As you’ve seen here, you can fill the templates with entirely different content —
such as error messages for logged-in users.

Using the PasswordRecovery control
IT departments know too well that forgotten passwords are among the most
common support tasks that users need (especially after vacations). To save
you the hassle of manually resetting forgotten passwords, ASP.NET offers the
self-service PasswordRecovery control. It sends the password to the e-mail
address used at registration, and it works — as long as the person knows his
or her username.

Configuring the SMTP settings
The PasswordRecovery control requires access to a Simple Mail Transport
Protocol (SMTP) server to actually send the e-mail containing the password.
Most network operators place restrictions on the use of their SMTP server
to deter spammers. Most mail servers require authentication before sending
e-mail. Some Internet service providers (ISPs) block individual users from
accessing the commonly used ports for SMTP.

It’s quite likely that you’ll have to check with a system administrator if you
want the exact SMTP settings. For that reason, we can only give you general
instructions on configuring a Web site to use the PasswordRecovery control.

We start with the Web Site Administration tool:

1. Navigate to the Application tab (Website➪ASP.NET Configuration and
select the Application tab).

2. Click Configure SMTP e-mail settings.

3. Fill in the settings for your SMTP server.

You can refer to the following example data:

• Server Name: smtp.mydomain.com

• smtp.mydomain.com: 25

• E-mail: admin@mydomain.com

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 703

Implementing Forms Authentication704

• Sender’s username: pwdrequest@mydomain.com

• Sender’s password: pwd@#$@%!

4. Click Save.

If you don’t get the SMTP e-mail settings to work after a few tries, check with
your ISP before proceeding. Hitting the mail server with scads of incorrect
data could get your e-mail privileges suspended — because you might be
mistaken for a hacker.

Adding the PasswordRecovery control to a page
The second phase in setting up password recovery is adding the
PasswordRecovery control to a Web page. Here’s the drill, using
the default configuration:

1. Open default.aspx in Design view.

2. From the Login tab of the toolbox, drag the PasswordRecovery con-
trol to the design surface.

Testing the password recovery feature
To test the functionality of the password recovery feature, follow these steps:

1. Browse to default.aspx as an anonymous user (that is, not logged in).

Figure 1-18 shows the default appearance.

2. Type a registered username (for example, JillAnon) and then click
Submit.

The Identity Confirmation page appears with the challenge question, as
shown in Figure 1-19.

Figure 1-18:
The
Password-
Recovery
control.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 704

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 705

3. Answer the challenge question (JillAnon’s answer is Very) and click
Submit.

Behind the scenes, ASP.NET sends the password to the e-mail address in
the database.

If the SMTP settings and permissions aren’t correct, you’ll probably see a
timeout error message on the Web page.

We used the default settings for the PasswordRecovery control, but you can
customize the question text, error messages, success messages, and the URL
of the page to display after a password recovery.

Use the MailDefinition property to define the e-mail message including
the e-mail’s subject, content, format (plain text or HTML), priority, and
sender name. If you’re sending the message as HTML, you can include image
files such as a background graphic or your site’s logo. Add the images in the
EmbeddedObjects collection editor (MailDefinition➪EmbeddedObjects).

Using the ChangePassword control
The PasswordRecovery control sends the password in unencrypted format,
so users should change their password as soon as possible. (Many of us feel
that we forget passwords because administrators force us to change them
too often, but that’s a rant for another time.)

The ChangePassword control simplifies the process while enforcing rules
(default or custom) about password complexity. Like the other login con-
trols, you can configure the appearance, text, and redirect page. To add a
ChangePassword control:

Figure 1-19:
Answer the
challenge
question.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 705

Implementing Forms Authentication706

1. Add a new ASP.NET page called chgpwd.aspx to the root of your
project.

2. From the Login tab of the toolbox, drag a ChangePassword control to
the design surface.

3. In the properties page for the ChangePassword control, set the
DisplayUserName property to true.

4. Browse to the page and fill in the text boxes using a registered user-
name (for example, JillAnon) and password (AnonJill!), as shown
in Figure 1-20.

5. Click Submit.

The ChangePassword function confirms the change.

Wrap the ChangePassword control inside a LoggedInView template of the
LoginView control so users who aren’t logged in won’t see the control.

Assigning users to roles
Previously in the chapter, you created two test users. You gave username
JohnOliver permission to browse to reserved.aspx in the restricted
members subdirectory. Chances are, a group of users would have access to
that resource rather than just one individual user, so it’s far more efficient to
manage them as a group. Enter ASP.NET roles. By creating a role (such as
EliteMember), you can assign usernames to the role. If you want to give
members of the EliteMember role access to a new portion of the site,
you set the permissions for the role once — and all the elitists can enter
immediately.

Figure 1-20:
The Change
Password
control.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 706

Book VIII
Chapter 1

Security: Using
Login Controls

Implementing Forms Authentication 707

You use the Web Site Administration tool to manage roles and add user-
names. In our scenario, we create a role, add users to it, and give the role
rights to the members subdirectory. Here’s how we do it:

1. Navigate to the Security tab (Website➪ASP.NET Configuration and
select the Security tab).

2. In the Roles column, click Enable roles.

The Create Or Manage Roles link is enabled.

3. Click Create Or Manage Roles.

The Create New Role page appears.

4. Type a new role name (for example, EliteMember) and click Add Role.

The new role appears in the list.

5. Next to the role name, click Manage.

The Search for Users page appears.

6. Search for all users by entering an asterisk (*) in the text box, and
then click Find User.

The list of usernames appears.

7. Under the User Is In Role column, select the check box for each user
and then click Back.

The selected users are added to the EliteMember role.

The users are now in a role (group), but the role doesn’t have permission to
enter the members area. That’s the task of the next section.

Giving permissions to a role
After you add users to a role, you can manage them as a collection. In this
case, we want to give special permissions to the EliteMember role.

1. Navigate to the Security tab by clicking Website➪ASP.NET
Configuration and selecting the Security tab.

2. In the Access Rules column, click Create access rules.

The Add New Access Rule page opens.

3. Select the members subdirectory.

4. Select the Role radio button and from the drop-down list, select
EliteMember.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 707

Implementing Forms Authentication708

5. Select the Allow permission.

Figure 1-21 shows the resulting settings.

6. Click OK.

Giving the role access to the members folder was easy, but we’re not finished
yet. You can’t be sure that members of the EliteMember group actually have
access until you analyze the hierarchy of access rules. Figure 1-22 shows
that username JohnOliver is allowed in because his Allow is above every-
thing else. However, the EliteMember role’s Allow is trumped by the Deny
all above it.

A couple of fixes are required at this point: JohnOliver is now a member of
EliteMember, so his special permission is unnecessary; the EliteMember
role needs to move above the Deny all. To do this fix, follow these steps:

1. Navigate to the Security tab by clicking Website➪ASP.NET
Configuration and selecting the Security tab.

2. Click Manage access rules.

Figure 1-22:
Incorrect
order of
access
rules.

Figure 1-21:
Adding an
access rule
for a role.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 708

Book VIII
Chapter 1

Security: Using
Login Controls

Peering into the Application Programming Interface (API) 709

3. Select the members subdirectory.

4. Click Delete next to the JohnOliver username and confirm the deletion.

5. Click the EliteMember role and then click Move Up.

The EliteMember role is now at the top of the rules list, as shown in
Figure 1-23.

6. Click Done.

You can confirm the access rules by logging in as JillAnon and navigating
to reserved.aspx in the members folder. You can see that reserved.aspx
is no longer reserved just for JohnOliver.

Without writing a single line of code, we’ve implemented a very functional
membership system. The Web Site Administration tool manages the data-
base and shielded us from the syntax and quirks of web.config files. The
ASP.NET login controls ship with default settings that work with little or no
configuration.

Peering into the Application Programming
Interface (API)

It won’t come as a surprise to know that there are APIs for everything we’ve
done so far in this chapter. Microsoft’s tools and controls offer a developer-
friendly front-end to the extensive Membership, MembershipUser, and
Roles classes found in the System.Web.Security namespace. The upshot
is that you can work with the classes in code. This section shows how to use
some of the capabilities in your own programs.

Using the Membership and MembershipUser classes
The Membership and MembershipUser classes offer functions for creating,
deleting, updating, and validating a user. You can use these classes to search

Figure 1-23:
Correct
order of
access
rules.

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 709

Peering into the Application Programming Interface (API)710

for a user, create a list of users, and get the number of logged in users. Some
of the examples in this section assume that you’re using the membership
database with the usernames that we created in the “Creating users” section
near the beginning of the chapter.

Adding members programmatically
In the Resto site that we built in the “Creating the Web site” section, the user
information includes the username, password, e-mail address, password
challenge, and the answer to the challenge. The following VB code re-creates
that as it adds a user programmatically. The last parameter of the
CreateUser() function is a status report.

Dim mbrCurrentMember As System.Web.Security.MembershipUser
Dim status As System.Web.Security.MembershipCreateStatus
Try

mbrCurrentMember =
System.Web.Security.Membership.CreateUser _

(“JackieReeve”, _
“ReeveJack!”, _
“rj@nowhere.com”, _
“Your favourite band”, _
“Beatles”, _
True, _
status)

Catch exc As Exception
Label2.Text = “Problem: “ & exc.Message

End Try
Label2.Text = status.ToString()

The first time you run the preceding code, it adds the member and reports
Success. Run it again without deleting the member. The return code is
DuplicateUserName, indicating a failure because the username exists.

Deleting members programmatically
Deleting a user account requires less effort than adding one. The
DeleteUser() function takes the username and a Boolean to indicate
whether to wipe out all the data related to the user. The method returns
True if the user was deleted. Here’s a VB example:

Dim blnRetValue As Boolean
Try

blnRetValue = System.Web.Security.Membership.DeleteUser _
(“JackieReeve”, _
True)

Catch exc As Exception

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 710

Book VIII
Chapter 1

Security: Using
Login Controls

Peering into the Application Programming Interface (API) 711

Label2.Text = “Problem: “ & exc.Message
End Try
Label2.Text = “User deleted?: “ & blnRetValue.ToString()

Updating members programmatically
To change the stored values for a user, call the Membership’s UpdateUser()
method. It takes a MembershipUser object as its value. You can use the
GetUser() function to return a MembershipUser object, change the values,
and push the data back to the database. Here’s a VB example:

Dim mbrCurrentMember As System.Web.Security.MembershipUser
mbrCurrentMember = Membership.GetUser(“JackieReeve”)
If Not IsNothing(mbrCurrentMember) Then

mbrCurrentMember.E-mail = “jackie@nowhere.com”
Try

Membership.UpdateUser(mbrCurrentMember)
Label2.Text = “User updated: “ & _

mbrCurrentMember.UserName & “, “ & _
mbrCurrentMember.E-mail

Catch exc As Exception
Label2.Text = “Problem: “ & exc.Message

End Try
Else

Label2.Text = “Problem: Not found”
End If

Displaying all members programmatically
You can fetch a list of all members — and all their properties — by using the
Membership’s GetAllUsers() function. The following Visual Basic code
dumps all the data into a DataGrid control that auto-generates the columns:

DataGrid1.DataSource = Membership.GetAllUsers()
DataGrid1.DataBind()

Using the Roles class
The Roles class lets you manage roles (that is, groups of users such as those
who are all doing the same type of work or have identical privileges). You
can use the functions to add and remove users from roles, find users in a
given role, determine whether a user is in a role, and create lists of roles. All
the capabilities you find in the graphical Web Site Administration tool are
available to your code. (This section assumes that you’re using the member-
ship database with the usernames from the “Creating users” section earlier
in this chapter.)

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 711

Peering into the Application Programming Interface (API)712

Adding a role programmatically
You can pass the name of a role to the CreateRole() method to create a
role. The code below does just that but calls the RoleExists() function to
check whether the role is already in use. Here’s a VB example:

Dim strRoleName As String
strRoleName = “Poobahs”
If Not Roles.RoleExists(strRoleName) Then

Try
Roles.CreateRole(strRoleName)
Label2.Text = “Added Role”

Catch exc As Exception
Label2.Text = “Problem: “ & exc.Message

End Try
Else

Label2.Text = “Role exists. Not added again”
End If

Deleting a role programmatically
If you know its name, you can delete a role by passing the name to the
DeleteRole() function. The following code in Visual Basic does a quick
check to make sure the role exists before it tries to remove it.

Dim strRoleName As String
strRoleName = “Poobahs”
If Roles.RoleExists(strRoleName) Then

Try
Roles.DeleteRole(strRoleName)
Label2.Text = “Deleted Role”

Catch exc As Exception
Label2.Text = “Problem: “ & exc.Message

End Try
Else

Label2.Text = “Role doesn’t exist.”
End If

Adding users to a role programmatically
The RemoveUsersFromRole() method handles the task of adding members
to a role. The method takes an array of usernames and the name of the
role. It’s a good idea to check for the existence of the role by using the
RoleExists() function. Here’s a VB example:

Dim arrUsers() As String = {“JackieReeve”, “JohnOliver”}
Dim strRoleName As String
strRoleName = “Poobahs”

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 712

Book VIII
Chapter 1

Security: Using
Login Controls

Peering into the Application Programming Interface (API) 713

If Roles.RoleExists(strRoleName) Then
Try

Roles.RemoveUsersFromRole(arrUsers, strRoleName)
Label2.Text = “User(s) Removed.”

Catch exc As Exception
Label2.Text = “Problem: “ & exc.Message

End Try
Else

Label2.Text = “Role “ & strRoleName & “ doesn’t exist.”
End If

Listing all roles
Fetching the list of roles is as simple as calling the GetAllRoles() function.
It returns a string array that can serve as the data for many ASP.NET data
controls. The following VB example gets the list of roles and then passes the
name of the first role (via the zero index of the array) to the GetUsersIn
Role() function. That function then returns the names of all users assigned
to the role it specifies.

Dim arrRoles() As String
Dim arrMembers() As String
arrRoles = Roles.GetAllRoles()
DataGrid1.DataSource = arrRoles
DataGrid1.DataBind()
arrMembers = Roles.GetUsersInRole(arrRoles(0))
DataGrid2.DataSource = arrMembers
DataGrid2.DataBind()

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 713

Book VIII: Advanced ASP.NET Programming714

49_785989 bk08ch01.qxp 6/2/06 8:42 PM Page 714

