
Visual Studio Tools
for Office

Visual Studio Tools for Office is the new kid on the block for harnessing the power and functional-
ity of Microsoft Office technology. And Microsoft is investing heavily in getting the word out. The
marketing push forms part of an overall strategy to secure the dominance of Office technology and
Microsoft Office products on the desktop while also providing a solid platform for developing
enterprise level applications based on Microsoft Office technology.

At its core, Visual Studio Tools for Office (VSTO, pronounced “visto”) is simply a platform that
allows Microsoft Office documents to execute code wrapped in a .NET assembly. It is certainly not
the only technology available for developing applications based on Microsoft Office. In fact, web
developers have been using classic ASP and regular COM Interop to build Office based software
for years. But VSTO has been designed to make development of such applications easier and more
reliable than the current approaches available today.

What’s New in VSTO?
VSTO has been completely reworked for .NET 2005. The rework includes tighter integration with
Excel as well as the promotion of native Excel and Word binaries to bona fide .NET objects. These
new objects expose more functionality than what is currently available through the aging
Microsoft Office Application Programming Interface (API). Also, these new .NET objects resolve
many of the memory management issues that plagued the previous Microsoft Office Component
Object Modeler (COM) components.

VSTO sports a new development model, a novel approach to building Office-based applications
that offers significant advantages when compared to previous models. The Classic ASP model that
predates VSTO was based on a platform where content and presentation were mangled together to
construct applications.

04_788139 ch01.qxp 3/29/06 3:02 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

One advantage is that there is more room to scale because business logic can be cleanly separated from
the presentation of data. Another advantage is that Office automation can occur on the web application
server in a thread-safe way without the need to write code to adjust the presentation of the data. A third
advantage is that the new model allows executing code to exploit the rich feature set of the .NET
Framework Class Library. The downside, and there always is one, is that these improvements come at
the expense of an increased learning curve, and the need to write code to target a new model.

To help drive the acceptance of VSTO, Microsoft is using the .NET framework as the vehicle to move the
new Office development platform into the midst of the .NET developer population. The marketing strat-
egy is geared toward enticing .NET developers into building applications based on Microsoft Office
technology. Hopefully, if .NET developers find it easy to write Office applications, then they will.

Unfortunately, the marketing picture may not always present the whole story. This book will peel back
the marketing hype baked into Visual Studio Tools for Office to show you what works well and what
does not. The book also intends to show you, in a very practical way, how to build and deliver industrial
strength applications based on Microsoft Office technology. The material in the next few sections will
compare and contrast VSTO with some current approaches for developing Microsoft Office based appli-
cations so you can decide whether or not VSTO is the right tool for the job.

VSTO Architecture
VSTO is not entirely new. The first .NET tool suite appeared with Visual Studio 2003. Before that, savvy
developers simply used COM Interop and Visual Basic for Applications (VBA) to etch out Office based
software. The effort required was considerable due in part to the limitations of the COM based VBA pro-
gramming model. The chosen few who succeeded in building Office applications took on the crown of
“Office Developers”.

Office developers used any means necessary — macros, hacks, Interop — to coax performance and sta-
bility out of these crude, unforgiving environments. Along the way, the approach to building Office
applications got a bad rap because hacks and macros cultivated an environment for malicious software
to flourish even today, embedded macros in applications still cause all sorts of security concerns.
Microsoft is hoping to turn a new page with Visual Studio Tools for Office. VSTO is safer and more
secure than previous technologies used to build Microsoft Office applications. In fact, VSTO can build
fully operational applications without macros.

VSTO.NET addresses the safety and security issues in a couple of ways. Firstly, the new document/view
architecture allows code to be separated from presentation. The code that runs behind the Office docu-
ment can have security restrictions applied to it so that it is guaranteed safe and its authenticity can be
verified before being run. Contrast this to the macro approach where embedded macros are permitted to
execute on the user system unbounded. The new VSTO approach provides developers with more free-
dom to build secure, scalable applications than what was possible before. In that sense, VSTO carves out
new ground, and it does so in a way that eliminates the need to write trick code.

Office 2003 sports a new surface for embedding objects into the document — the actions pane. The
actions pane reduces the effort that is required to host controls on the document surface. Controls can
now be hosted cleanly and efficiently on the document. This new approach leads to well-behaved appli-
cations and side-steps the need to implement hacks to achieve the impossible.

2

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 2

VSTO also hosts the Excel and Word objects inside the Microsoft Visual Studio designer. When you open
a new Excel project in Visual Studio 2005, the Excel spreadsheet appears in the Microsoft Visual Studio
designer. The Excel object is able to respond to design-time settings and is fully customizable. By hosting
Excel and Word on the document surface, debugging the application is a lot more manageable.

VSTO exposes bona fide .NET objects that seamlessly integrate with the .NET framework. These objects
expose more functionality and are cleaner to incorporate in managed software development efforts. The
approach also stems the tide of memory exhaustion issues and component instability that plagued the
previous generation of Office software.

VSTO offers n-tier architecture for Microsoft Office document development. The model is tiered into the
user interface, client interface, server components, and backend data.

User Interface
The user interface tier functions as the front-end of the document. It handles user input, validation, and
document navigation. This is all handled through the same Excel, Word, InfoPath, or Outlook interface
that users are accustomed to. By basing the user interface on popular, proven front-end, very little end-
user training is required for those already familiar with Microsoft Office functionality.

Client Interface
The client component is made up of a combination of the .NET assembly developed for the new VSTO-
based application and the VSTO.NET engine provided by Visual Studio Tools for Office System. The
engine floats on top of the Common Language Runtime infrastructure and allows the Microsoft Office
document to execute managed code inside the .NET assembly.

Server Component
Every VSTO-based application has direct access to VSTO’s new server component class. This server
component piece functions as a document processing layer that is able to create and manipulate
Microsoft Office documents without the need to automate Microsoft Office or Microsoft Excel on a web
server. In case you missed it, server-side processing of Microsoft Office documents have traditionally
been the weakest link in software applications that run in a web-server environment. The new server
component strengthens this link by allowing software applications based on Microsoft Office to scale
correctly while making prudent use of web-server resources.

The server component architecture incorporates the use of XML in its design and implementation. The
data that forms part of the Microsoft Office document being manipulated on the web-server is now stored
independently in XML data islands. This is a major departure from all previous Microsoft Office based
implementations where the application data was stored inside the Microsoft Office document itself.

The XML used to store the application data is based on the W3C XML open standard. Data storage is no
longer proprietary as in some previous technologies such as the Microsoft Office Web Components. The
business implication is that data sources can be as diverse as the corporate entity allows it to be. And,
data can now flow freely between Microsoft Office and third party applications built to take advantage
of open standards for data exchange such as web services and remoting platforms.

3

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 3

Figure 1-1

From Figure 1-1, you can see that the new architecture is flexible enough to leverage the VSTO engine
for new applications based on Visual Studio Tools for Office. In other cases, the architecture allows the
developer the flexibility to build applications that perform a legacy role; that is, documents may be
opened without firing code housed in the .NET assembly. The new architecture also allows VSTO based
applications to be written and run with embedded macros. Although this is discouraged, you should
understand that there are no architectural fences that prevent such an implementation.

The VSTO Package
VSTO offers Excel, Access, Word, InfoPath, and Outlook functionality. The functionality targets the win-
dows platform to include smart client and remoting scenarios. Although VSTO allows users to publish
functionality such as spreadsheets and pivot tables on the web, the tool suite isn’t specifically designed
for full–blown, interactive web applications. Part of the reason lies in the fact that VSTO is primarily
built for Windows-based applications.

Still, this book will explore the concept of server-side automation of Microsoft Office applications that
provide ways to build code that is scalable and well-behaved when compared with other methods of
building application software. Since more and more real world applications are blurring the line
between desktop and web platforms, the material presented in later chapters will shed some light on
these gray areas so that you can make informed choices when building new application software.

The Visual Studio Tools for Office suite also includes Visual Basic standard edition. The standard edition
allows developers to write code to target the Office system. Microsoft Access and SQL server developer
edition are also included. These products allow you to develop solutions based on Access and SQL
server for the Office system. Finally, Microsoft also offers a separate stand-alone VSTO version that
encompasses all the power and productivity of Visual Studio.

Server component

XML data storeWord document

VSTO Engine

4

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 4

About Microsoft Office PIAs
Primary Interop Assemblies (PIA) are .NET wrappers built around existing COM components that allow
.NET code to communicate with the COM component. Microsoft strongly recommends that Primary
Interop Assemblies are to be used instead of your own auto-generated assemblies. The literature indi-
cates that PIAs can make certain optimizations that may be beneficial to the application. While this may
be true in some cases, it certainly is not always true. In fact, the dominant reason for using PIAs is that it
helps combat an insidious assembly version issue in applications built with Microsoft .NET.

Microsoft .NET run-time cannot communicate directly with COM components. When communication
with COM components is required, the .NET Common Language Runtime (CLR) requires an adapter or
proxy to sit between the .NET assembly and the COM component. This adapter translates .NET requests
into COM requests making the automation possible. It’s important to understand that the proxy or
Runtime Callable Wrapper (RCW) does not re-implement functionality in the COM component. It sim-
ply makes the type information inside the COM object available to the calling assembly so communica-
tion or marshalling can take place.

Visual Studio is automatically configured to generate RCWs when a reference to a legacy COM compo-
nent is detected in the Integrated Development Environment (IDE). For small projects that remain in-
house, these extra RCWs do not provide a cause for alarm. However, if this software must be deployed
to customers, you need to package all the RCWs along with the application for it to function correctly.

Consider a scenario where one vendor makes their RCW available to a customer who already has a
wrapper available for a home grown assembly of the same name. The final result will be run-time errors
for the mismatched types since the assemblies used to create the wrappers are different but both of the
wrappers have the same name.

To put this in perspective, consider a practical example. If company A creates an RCW for a Microsoft
Outlook application for third party software called Outlooklib that is used by company C, the
Outlooklib RCW must be deployed to company C. However, company C may be running another
application from company B who also has an RCW for Microsoft Outlook called Outlooklib. This cre-
ates an ugly situation where company C’s software starts to misbehave since it may be using the wrong
RCW for Microsoft Outlook automation. Bugs of this caliber can be extremely difficult to resolve to say
the least.

To prevent such chaos, Microsoft recommends that only one RCW be used per Microsoft Office product.
This RCW or Interop assembly would be the primary source of type information for the automation call
hence the term Primary Interop Assembly. In the theoretical example provided, company C’s software
would not misbehave since the RCW provided by company A and company B would be the same; that
is, both company A and company B would be using a Microsoft Outlook PIA. Finally, note that this is a
recommendation only. PIAs cannot possibly be enforced in the real world.

VSTO is implemented as an add-in to Visual Studio. The VSTO engine runs in-pro-
cess in the Visual Studio address space. The VSTO engine depends on Office PIA’s
in order to communicate with Microsoft Office objects.

5

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 5

System Requirements
VSTO offers several benefits, but there is a cost associated with reaping the rewards of this new architec-
ture. VSTO.NET requires the Professional version of Office 2003 Service Pack 1 on the development
machine. In the absence of this requirement, the VSTO projects will not work. The requirement also
makes it impossible to bind a .NET assembly to third party Excel or Office interfaces. However,
Microsoft insists that applications built today based on VSTO.NET will be forward compatible with
Office version 12 due out sometime in 2006. The guarantee is based in part on the fact that the data stor-
age model is XML.

The installation packages must be installed in a specific order because there are tight dependencies
between these packages. Install Microsoft Office 2003 Professional Edition first. Microsoft Office 2003
Professional Edition is an absolute requirement; VSTO 2005 cannot work with any other Office edition.
Follow this install with any updates or service packs that are available. You may download and install
the latest updates and service packs for Microsoft Office 2003 by visiting the Microsoft Office website.
Then, install Visual Studio.NET 2005 followed by Visual Studio Tools for Office. Finally, install MSDN
library so that help documentation is available. Unless you require customized features, you can simply
install the products with the default settings.

The total install package can range in size from 1 to 3 gigabytes of space requirements depending on the
options you choose to install. If you are challenged for space on your hard drive, you may elect to use
the online help documentation instead. It is automatically configured to retrieve help documentation
from the F1 short-cut key. After installing the help documentation, you should use the “check for
updates” feature of the Microsoft Visual Studio 2005 installation to check for updates and patches.
Normally, the entire process may take a couple of hours.

You also need to have the .NET framework installed on the end-user system. While the framework offers
significant advantages over legacy COM based frameworks, the requirement is a serious hindrance
today. Eventually, as more end-users adopt the framework, the hindrance will fade away.

Though .NET languages are fairly numerous today, VSTO only supports C# and Visual Basic — formerly
known as Visual Basic.NET. You may use either language to build applications based on Microsoft Office
technology. Visual Studio Tools for Office does not currently support assemblies built from a combination
of Visual Basic and C#. To be fair, this limitation is actually imposed by the Common Language Runtime.
However, for those not familiar with the underpinnings of the Common Language Runtime (CLR) this
lack of flexibility will be blamed on VSTO.

Of the two programming languages, Visual Basic is better for building VSTO applications. There are sev-
eral reasons for this due in part to the history of the Microsoft Excel and Word components.

C# has no support for optional parameters in method calls. However, the objects that form the core part
of the Office system are built on COM and tuned for VBA code. These API’s expect optional parameters.
Because of the lack of support in C#, special place holders must be passed in for each call. Using these
placeholders for each method call can be tedious and demanding. For instance, the document’s open
method accepts 15 optional parameters. Consider a Visual Basic example.

The framework must be installed first in order to create the Global Assembly Cache.
Visual Studio Tools for Office uses that Global Assembly Cache to house the
Primary Interop Assemblies.

6

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 6

Me.CheckSpelling()

Now consider a C# example.

this.CheckSpelling(ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing, ref missing);

The PIA’s that are installed during VSTO setup enforce a pass by reference semantic on the caller for
Microsoft Word development. For C#, the ref keyword must be included to satisfy the requirement or a
compilation error will be generated. There is no workaround other than to add the ref keyword. The
arguments also must be variable references. Literals or strings cannot be passed in because these do not
satisfy the compiler requirement.

C# does not allow multiple arguments to properties. However, the Excel object model supports such
expressions. This is not a problem for Visual Basic because the support has been continued for historic
reasons. Range manipulation in particular makes heavy use of multiple arguments to properties. In such
instances, you can use the optional methods provided by the Excel PIA in C#.

Visual Basic
ThisApplication.Range(“A1”)

C#
ThisApplication.get_Range(“A1”);

Although the PIA’s have been updated to add substitute properties for C# developers, these properties
often do not show up in the intellisense engine of Microsoft Visual Studio.NET 2005. Without solid docu-
mentation, C# developers are left holding the short end of the stick.

If you care for a vigorous exercise in typing, you may choose to develop VSTO-based applications using
C#. However, if you don’t particularly care for the exercise or are running on a lean productivity budget,
Visual Basic is the most appropriate choice. This book will present code in both languages for the benefit
of all.

Alternatives to the VSTO Office Systems
As mentioned before, VSTO is not the only approach to harnessing the power of Microsoft Office tech-
nology in next generation application software, but it offers significant advantages over other
approaches as we shall see. In fact, some of these existing approaches have only been tolerated because
there was no suitable alternative available to justify the expense of adopting a new approach to building
Office applications. Today, with VSTO, the expense of adopting a new approach can be justified in terms
improved security, scalability, and reliability.

VBA
Visual Basic for Applications (VBA) was the de facto standard for building applications based on
Microsoft Office technology. VBA made it easy to build Office technology because the user interface
could be designed and built easily. Underneath the hood, VBA connected directly to the Office API
infrastructure. Developers could quickly build and release Office based application software using VBA.

7

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 7

However, one major drawback was that security was an afterthought in the VBA approach. VBA macros
can run embedded inside a document, often underneath the security blanket of the application.
Executing code cannot usually determine the origin of the macros. For instance, the macro can be
embedded by the program or it may be embedded by malicious code.

VBA falls underneath the umbrella of unmanaged code. Unmanaged code extracts a performance
penalty when interacting with managed code. VBA also cannot lessen this performance hit by routing
calls through a Run-time Callable Wrapper, so the performance penalty is dead weight.

VBA is also a procedural programming language. It cannot take advantage of some of the niceties such
as inheritance, interfaces, and polymorphism. These terms aren’t just buzzwords, they enable the cre-
ation of large, scalable application software.

VBA exposes arcane approaches to error handling. VSTO uses the mature exception handling mecha-
nism in .NET. The transition from clunky error handling constructs in VBA to a polished exception han-
dling surface in .NET enables applications to scale properly and remain well-behaved in abnormal
circumstances. For instance, exceptions that are thrown in a remoting call contain the full context of the
exception. A VBA implementation would typically involve reading an error code when some exception
occurred.

VBA does provide certain advantages that VSTO cannot provide. For instance, VBA allows code to be
executed in worksheet functions. VSTO is unable to perform this task. The VBA Office model is more
mature than VSTO. Maturity offers certain benefits such as better documentation, developer familiarity
and end-user acceptance that tend to make development in VBA a more natural choice than VSTO.
VSTO has not yet achieved that comfort level because it is the new kid on the block.

Another important advantage of VBA is that VBA is available on virtually every machine running
Microsoft Office 97 or later. VSTO requires installation of some key infrastructure pieces, such as the
.NET Framework.

Office Web Components
The Office web components (OWC) may be used both on the desktop and on the web. They exactly mir-
ror the fit and finish of Microsoft Excel. However, this functionality comes at a price. The components
are more strictly licensed than VSTO and are only intended to be used in intranet web application sce-
narios. A suitable book to help you negotiate the pitfalls of Office development for the web is my recent
book The Microsoft Office Web Components Black Book with .NET.

The OWC is based on unmanaged code so the .NET framework is not a requirement. It may be down-
loaded for free and installed on demand. The OWC is light enough to fit inside a browser as an ActiveX
control. The components provide the full power and functionality of Microsoft Excel. Other Microsoft
Office functionality is not provided.

Excel COM Interop Libraries
COM Interop packages are inherently difficult to program and require deep knowledge of COM imple-
mentation. These COM libraries do not always play well together and present all sorts of issues when
scalability increases. The COM libraries are limited in the functionality they expose when compared to
VSTO and are notably weak in exposing the event model of Excel and Word.

8

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 8

One serious issue with Excel COM automation is that it possesses serious problems in concurrent envi-
ronments. In fact, instability in these environments most often leads to application failure, memory
exhaustion issues, and very unpleasant end-user experiences.

Third Party Products
A number of independent software vendors make products that target Excel and Word. The common
theme of these third party application software addresses the short fall of what is available to the cus-
tomer through Microsoft channels. Usually, these products are not free, contain licensing restrictions,
and have shaky support that limits the use and effectiveness of these products in industry.

On the other hand, some third party products such as SoftArtisan’s Excel writer are very stable and
mature, have a wide customer base, and perform well under load. If you are considering adopting an
Office technology, it is important to become familiar with the choices that are available. Build some test
applications based on these products and expose them to a variety of real world conditions such as load
and stress to see how well they perform before deciding on one product over another.

Disadvantages of VSTO
As with any sizeable piece of real world software, there are advantages and disadvantages. The following
sections describe in detail the major drawbacks of VSTO. This is not a complete list. But it represents the
thorniest issues that decision makers must understand before making a final decision on adopting a new
technology.

.NET Framework Required
One major drawback to VSTO is that it requires the .NET framework to execute. In most corporate
environments, end-users simply cannot install application software, much less run-time frameworks.
This requirement alone puts VSTO-based applications at a serious disadvantage. In fact, it practically
rules out off-the-shelf applications based on VSTO.

Independent Software Vendors are more likely to build application software based on one of the alternatives
presented previously simply because these applications are light and are guaranteed to work on Microsoft
Windows systems. Even with the framework packaged along with the software, end-users may be skeptical
about installing it due to the size of the .NET framework.

Security
VSTO does not implement security natively. Instead, it out-sources its security interests to the .NET
framework. As usual, out-sourcing presents a number of obstacles. For the average developer, this is
more than a passing inconvenience because some detailed knowledge about the security aspects of the
.NET framework is required. This represents another hurdle in the learning process. Code Access
Security and its related subtopics that help define .NET security are sufficiently complicated to discour-
age even some seasoned developers from adopting VSTO as an Office development technology.

The need for security cannot be overstated. The idea is always to prevent malicious applications from
subverting the integrity of the user system. Security policies in effect may also protect the user system
from misbehaving applications. Web applications and smart clients in particular should be guaranteed

9

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 9

to execute in a controlled manner since the user cannot always guarantee that the application is friendly.
If you intend to secure your VSTO applications, it is worth your while to invest some time and effort in
understanding .NET security. If you must build real world software based on VSTO, you will need to
learn about .NET security.

Performance
Much of the hype around VSTO includes claims that VSTO out-performs VBA and COM approaches.
That argument is without merit! While performance is not a serious cause for concern, the performance
of a VSTO application does lag behind VBA and COM approaches. There are several factors that influ-
ence VSTO performance, and it is important to put these factors in perspective if you intend to draw any
meaningful conclusion

The .NET start up cost is inherently expensive. Applications written with .NET must incur the overhead
of Just-In-Time (JIT) compilation. JIT compilation is a necessary evil and cannot be avoided. However,
steps may be taken to reduce the performance expense of JIT compilation.

One approach is to use the NGEN.exe application that ships with the .NET framework. This utility forces
a JIT compilation of all the methods in the assembly. Since the methods are Jitted, JIT compilation is no
longer necessary when the application first starts up. There are several disadvantages to using NGEN.
For one, NGEN files can get out-of-sync. Another issue is that the JIT code is no longer optimized for the
underlying platform, since it is done offline. A third issue is that NGEN offers no performance gains in
server application code.

Another performance factor influencing VSTO-based applications has to do with the expense of calling
through the thick layers of automation skin that wrap the Microsoft Office COM objects. VBA, built and
optimized to interact with Microsoft Office, has a shorter distance to travel than .NET.

Finally, hosting the Excel and Word objects in the Visual Studio IDE is expensive in terms of resources.
VSTO applications have a larger memory footprint than VBA applications. This resource expense bleeds
into the application run-time in noticeable ways.

In essence, if you are considering adopting VSTO as a development platform for Microsoft Office tech-
nology, it is worth your while both in time and resources to become familiar with the advantages, disad-
vantages, and idiosyncrasies of this relatively new technology. Otherwise, the investment may not be
worth it.

VSTO Automation
Strictly speaking, automation refers to the process of controlling one object with another. In that regard,
VSTO is an automation controller whose primary function is to automate the objects that form part of
the Microsoft Office System.

While VSTO is mainly concerned with automating Office objects, it is not necessarily limited to just
those objects. Automation can occur with any object as long as it exposes the required automation inter-
face. For instance, it is quite feasible for a VSTO based application to consume components developed by
third party vendors. However, VSTO automation is particularly well-suited to objects that belong under

10

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 10

the umbrella term of Office products. Usually, these objects contain internal optimizations that make
them particularly well-disposed to VSTO automation. Unfortunately, products such as Microsoft
Outlook Express are not part of the Microsoft Office System and contain no internal support for VSTO.

Products such as Microsoft Access and InfoPath are supported in VSTO as Add-ins. Add-ins can take
advantage of special internal pathways that offer some gains in performance over regular COM
approaches. However, add-ins are not first-class VSTO citizens.

Automation problems have been addressed in VSTO but there are still steps that need to be taken to
ensure that an automation environment is well-behaved. The dominant reason for these extra steps has
to do with the fact that the underlying Microsoft Office legacy code is still based on a COM platform.
Since these memory models and resource allocations differ dramatically from managed environments,
you need to make sure that resource de-allocation has occurred. Later chapters will show exactly how to
build these checks and balances into your code approaches.

Office XML Schemas
When developing applications for the internet, Microsoft Excel or Office is not needed on the web appli-
cation server. The reason for this magic lies in the divorced document/view architecture. This separa-
tion, amicable as divorces go, actually allows processing code to operate on the data contained in the
document while leaving the view untouched. It is this clever separation that provides opportunities for
scaling out applications based on VSTO.

To further enhance application development, Microsoft has released the XML reference schema for
Office applications. This release makes the Office XML available to developers. The implication here is
that developers are now free to create customized XML documents that are guaranteed compatible with
Microsoft Office applications.

In case you missed it, this is a very huge step forward coming from Redmond. Don’t get it confused with
generosity though, it is a calculated move to ensure the dominance of Microsoft Office products and the
stifling of external competition from open-source initiatives nipping at the Office products heels.

The Microsoft Office XML schema is available for Word, Excel, and Infopath as WordprocessingML,
SpreadsheetML, and FormTemplateML, respectively. There is obvious merit to this initiative. It means that
client software can now read and write data in a platform independent way taking full use of the advan-
tages and platform affinity of the XML standard. Microsoft hopes that this initiative will have broad adop-
tion releasing developers from the tedium of customized storage access for Office integration.

Installation and deployment
Before installing VSTO, ensure that you have first installed the .NET framework, followed by Visual
Studio.NET in that specific order. The following sections show how to install the tools suite on your system.

1. From the install media containing Visual Studio Tools for Office Microsoft System, run the setup
application in the root folder, as shown in Figure 1-2.

2. Choose the installation option to install VSTO.

11

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 11

3. Examine the installation log for possible setup problems that occurred during the installation
process.

4. Open the Visual Studio Integrated Development Environment.

5. Examine the project types window pane in the left window to make certain that the VSTO tem-
plates are available.

Figure 1-2

Visual Studio Tools for Office depends on the Microsoft Office Primary Interop Assemblies (PIA). During
a typical installation, the Office PIA’s are automatically installed. However, if you have chosen a custom
installation, you may need to manually install the Microsoft Office PIA’s.

Follow these few steps to install the necessary PIA’s on your system.

1. Run the setup file for the Primary Interop Assembly package.

2. Select the programmability support that you require, as shown in Figure 1-3. The Language
Tools node contains the currently supported languages that may be used to build Office applica-
tions. The Dotfuscator Community Edition and Remote Debugging selections are optional. The
.NET Framework SDK provides tools for working with the .NET framework. Although it is
optional, you should install it.

3. Click OK to install the PIA.

12

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 12

Figure 1-3

Creating VSTO Projects
Once Visual Studio Tools for Office is installed correctly, you may create a new project based on VSTO.
Follow these few steps to install the necessary PIA’s on your system.

1. Open Visual Studio 2005.

2. From the File menu, create a new project. The action launches the Microsoft Visual Studio
Project wizard.

3. In the project types window pane, choose Office from the language tree. Notice that Visual
Studio has tailored your environment to your language preference. For instance, if your lan-
guage preference is C#, as in Figure 1-4, the first language will be Visual C#. Otherwise it will be
Visual Basic.

13

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 13

Figure 1-4

4. In the right window pane labeled Templates, select Excel workbook. You may choose to accept
the default name at the bottom of the window – ExcelWorkbook1, or you may add a more
meaningful name. In any event, the project will be assigned the name from the Name property
text box in the wizard and the project will be created in the Visual Studio Project folder. Notice
the checkbox off to the right. It allows you to keep projects in their own directory.

5. Click OK to generate a new project. Behind the scenes, VSTO first verifies that the minimum
system requirements are at least present. Then, the internal plumbing is laid for the new project.
If there is no misstep in the process, the wizard generates a project template and opens to a
Microsoft Excel spreadsheet nested inside the Integrated Development Environment, as shown
in Figure 1-5. If you had selected a word template, the application would open to a Microsoft
Word document hosted inside the Integrated Development Environment.

Notice that the templates section contains the possible templates that are available in VSTO. It does not
mean that these templates are configured on your system. For instance, if you do not have Microsoft
Outlook professional edition installed, the template will still be available. However, it will fail to open.
The purpose of the template is two-fold. It allows .NET code to automate the Excel object and it allows
.NET code to be linked to the Microsoft Office document.

On the next page of the wizard, you may choose to create a new document or to copy an existing docu-
ment, as shown in Figure 1-6. Click OK to complete the wizard. Notice that the name of the document in
Figure 1-5 is used to title the solution in Figure 1-6. Also, the default name is used for the Excel work-
book . The property window on the far right now contains a single workbook project made up of proper-
ties, references, and a workbook containing three Excel worksheets. From this point, you are ready to
develop.

14

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 14

Figure 1-5

Figure 1-6

15

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 15

VSTO Installation Issues
In some instances, VSTO installations may be problematic. This section contains some tips for figuring
out how to repair broken installations.

When you run VSTO for the first time, a security dialog box appears informing you to explicitly enable
access to the Microsoft Office Visual Basic for Applications project. While this isn’t an installation prob-
lem per se, selecting Cancel will cause VSTO projects to fail. Simply click OK to dismiss the dialog.
Access to the Microsoft Office VBA project system is required for VSTO to run correctly. If you choose
Cancel, you will need to re-open the project again so that the option can be corrected.

In certain instances, the Microsoft Office Primary Interop Assemblies may fail to install correctly. The
remedy is to manually re-install the PIA’s from the installation media. Locate the PiaInstall.htm file
on the installation media. This file opens in a web browser and provides instructions for PIA installation,
as shown in Figure 1-7. The PiaInstall.htm file resides a few folders deep in the install media. Figure 1-7
shows a typical install path F:\vs\setup.

Figure 1-7

The Office PIAs are not COM components, so you cannot manually register them at a command prompt
using the Windows regsvr32 executable. However, they do incorporate COM Callable Wrappers
(CCW) that allow you to call them using a COM interface. To do this, you must register the CCW inter-
faces using the regasm utility that ships with the .NET framework.

16

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 16

In some versions, the application may install without errors but fail to create Excel projects. To remedy
this annoyance, make sure the following key is accessible in the windows registry. If it is not present,
back up the registry and perform the following steps.

1. Navigate to the following registry hive.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio \8.0\Setup\VSTO]

2. Add the following key

String Value
Name - ProductDir
Data - C:\Program Files\Microsoft Visual Studio 8\Visual Studio Tools for
Office

The Path in the Data field must point to your actual Visual Studio Tools for Office folder. Use Internet
Explore to find the path to your Visual Studio Tools for Office folder. For more help editing the windows
registry, please consult the Microsoft Windows help system.

A list of known issues is summarized in VSknownIssues.rtm. This file may be found on the installation
media. Be sure to check the Visual Studio setup log for any installation failures. Issues that arise must be
addressed in order for VSTO to function correctly.

Before re-installing Visual Studio.NET to repair broken installations, run the Vstor.exe application
manually. This application can be found on the installation media of Visual Studio. The application fixes
a number of pesky issues inherent in the installation process.

Summary
While it is certainly romantic to think that VSTO was born out of innovative technology, in reality VSTO
was born out of a need to stem the tide of open source competitors like OpenOffice and the like whose
open source product offerings steadily erode the bottom line of Microsoft Office profitability. Even so,
VSTO does bring a lot to the table where Office development is concerned.

VSTO adds productivity because applications based on the Microsoft Office System can tap into the vast
reservoir of the .NET framework. Though it is still possible to accomplish all this with VBA and COM
Interop, VSTO makes these tasks a lot easier. For instance, incorporating web-services into VSTO appli-
cations is a snap. The end result of these and other features really make it possible to develop applica-
tions that span corporate boundaries in a safe and secure way. VSTO is focused on increasing developer
productivity.

The most recent update to VSTO ships with Visual Studio 2005. As of this writing,
there are no patches or upgrades for the tool suite. However, you should always
ensure that Microsoft Office is current and up to date by using the Windows Update
site. You can find more information about Microsoft Office updates by visiting the
Microsoft Office website or MSDN.

17

Visual Studio Tools for Office

04_788139 ch01.qxp 3/29/06 3:02 PM Page 17

The language support for Visual Studio is also in its infancy; that is, only Visual Basic and C# are sup-
ported with Visual Basic being the language of choice for historical reasons. However, both these lan-
guages are powerful enough to build commercial-grade software. The intellisense engine in both C# and
Visual Basic offer full support for VSTO.

We also covered the unpolished side of VSTO to include performance concerns. While this is certainly
not a popular route and is less likely to be traveled in other resources, it is very necessary if you are to
form an educated opinion of Visual Studio Tools for Office. You may recall that some of these perfor-
mance problems have nothing to do with VSTO at all. In fact, much of the startup costs have to do with
the .NET JIT compilation process. However, .NET and VSTO are titled tangled so that VSTO perfor-
mance perception is influenced negatively through guilt by association.

Much of the power and flexibility of VSTO comes from the new architecture model. If you have ever
spent time developing server-side applications, you will recall that these applications failed to scale well
because, as load increased, the COM components started to misbehave. Part of the reason for this
malfeasance has to do with the inter-twining of logic and presentation code. The new model offers a new
approach so that data can be manipulated without the need to touch the code that presents the data. The
implication here is that Excel is no longer needed on the web-server for document processing. And that,
by itself, is one compelling reason to make the switch to VSTO.

Whether or not you have developed software for the Microsoft Office System, VSTO is a very appealing
choice. Developer productivity is increased and more functionality is available through the .NET inter-
face. VSTO is also well-designed and implemented. The end result is a very well-behaved piece of
machinery that delivers Microsoft Office technology in an effective way while reducing investments in
time and effort. VSTO has a long way to go, but its first few steps are well-guided and deserve applause.

18

Chapter 1

04_788139 ch01.qxp 3/29/06 3:02 PM Page 18

