


Don’t reinvent
the wheel.



Principle 1

ow that’s a good bit of advice, isn’t it? Few would dis-
Nagree with it, and yet we can easily fall into the trap of
disregarding this fundamental principle. Here are a few com-
mon reasons:

B We're just doing a small, simple system. The assumption
is that it isn’t worth the effort or the cost to build a “real”
enterprise system. If you really are just creating something
trivial, then sure, do whatever works. But what starts out
small and simple often grows into something more com-
plex that must handle greater demands. If your system
grows by tacking functionality onto an architecture that
was meant for something far simpler, it will fail.

® Our problem is unique. Are you sure that your problem
is different from anything anyone has ever solved before?
Do you really believe that you need to invent a completely

original solution? If so, that’s beyond the scope of this
book. Good luck!

® We do not have time to do research. So, you are in a big
hurry, and you do not want to spend the time to find out
what others have already done. But you do have time to
charge off and develop something new, and then test
it, and perhaps do it over again because the first attempt
didn’t work, and then test again, and develop again. Does
this make any sense?

B We want to invent something new. This book is about
building successful enterprise systems that will solve the
problems in your domain. If your goal is to become rich
and famous by devising new standards and inventing
new infrastructure software, then you do not want to read
this book. But I'll promise to read yours after you have
become famous.



Don't reinvent the wheel.

7

Someone Else Has Already Solved
Your Problem

It is most likely that substantial portions of your problem have
already been solved by others. Take advantage of their experi-
ence by reading their articles or using shareware they have
contributed. Hire them if you can.

This is not to say that someone else’s solution will always
work for you. Every problem is different in some way, and no
solution fits all. Identify what is unique about your problem
and isolate those portions. Define these unique portions so that
they are as small as possible. Then it will be worth your while
to make the rest of your problem fit one or more of the previ-
ous solutions so that you can concentrate on your small,
unique portion.

Understand What Your Added Value Is

You need to partition your problem into the portions that are
unique to your domain and everything else. Your solutions to
the unique portions of your problem represent your added
value.

The added value of your enterprise system is what solves the
particular problems of your domain. Everything else is mostly
infrastructure, such as network protocols, security, scalability,
and the like. Doing the added value right will make your sys-
tem successful. Therefore, it makes sense to spend the larger
amount of your time identifying, understanding, and creating
your added value, and far less time on infrastructure code that
others have already written.



Principle 1

Use Commercial Software
Whenever Practicable

Commercial software packages are great at providing generic
solutions to generic problems. You can configure most pack-
ages to solve a range of problems.

Use commercial software to build the nonunique portions of
your system. Often this is your system’s infrastructure. For
example, a commercial application server can take care of net-
work access, security, scalability, reliability, and so on. It is not
worth your time, effort, and expense to build infrastructure and
support code—good software vendors have already tested and
validated their solutions, especially if their packages have been
around for a while and have long lists of satisfied customers.

Make vs. buy? That was an important question for the CIP
middleware. Should we attempt to make a custom middle-
ware infrastructure, or should we buy a commercially avail-
able application server?

We decided to purchase licenses for the WebLogic appli-
cation server from BEA Systems to form the basis of CIP's
middleware infrastructure. Our added value consists of the
services we needed to develop to support the Mars rover
mission, and these services run within WebLogic. Our task
was not to invent and implement new middleware infra-
structure standards. After all, the users benefit from the
mission-related services that CIP provides, and the middle-
ware just has to remain invisible but reliable. (I'll have more
to say later about invisible middleware.)




Don't reinvent the wheel.

Be wary of the trap of thinking you cannot afford a commer-
cial solution. Carefully weigh the cost of purchasing software
(and its support and maintenance) versus the cost of recreating
it, especially if doing so takes resources away from working on
your added value. Keep in mind that not getting the infrastruc-
ture right is a good guarantee that your enterprise system will
fail—and failure can be very costly indeed.



