XML and the Enterprise

XML is short for Extensible Markup Language (sometimes written as eXtensible Markup Language),
which enables information to be encoded with meaningful structure and in a way that both comput-
ers and humans can understand. It is excellent for information exchange, and is easily extended to
include user-specified and industry-specified tags. XML's recommendation —its specifications —is
set by the W3C (World Wide Web Consortium).

Because XML is formatting-free, it can be used in a variety of processes. It can replace or work
with other technologies, and it can be used instead of or to supplement scripts. It also works with
databases or on its own to store readable content.

In this chapter, you:

Q Learn the basics of XML.

Q Explore the structure of an XML document.
Q Discover what you can do with XML.
Q

Find out what you need to get started.

You are introduced to the winery and will examine the potential for modifying its data and using
XML enterprise-wide. This project is expanded upon throughout the book.

Problem

You are owner of a winery in the Finger Lakes area of New York. You've just purchased the winery
and are interested in automating much of the administrative detail and marketing data for your
newly hired staff to work with.

Chapter 1

Your winery’s data must be properly structured to enable internal use as well as the sharing of the wine
catalog externally. Interoperability with partners, online wine distributors, and tourism agencies is of
key importance.

The winery starts with some initial data on the wines that it produces, as well as data on competing wineries.
This data must be carefully reviewed and augmented so that by the end of the implementation — the end
of this book — the data structure is refined.

The winery has data requirements that run enterprise-wide. The winery needs to have information on its
own wines primarily available as a retrievable and accurate list. The inventory control system must be
capable of accessing the list and marking, via a Web form, what product is on hand each year. Marketing
must pull data from this same set of information to create handouts on the available wines. Up-to-date
information on all the winery products and order data should be accessible.

Design

As a text-based format, XML can stand in for text or scripts within programming and scripting files. It
also can be used as an authoring markup for producing content. In the case of the winery, there is the
potential for using XML information throughout, from storing winery data in a database to drawing
XML from the database to use on marketing sheets to outputting sortable information on customer ship-
ments. Before you begin using XML, though, take a quick look at its history.

A Brief History of XML

There are earlier variations of markup languages, but this historic review starts with SGML, the
Standard Generalized Markup Language.

SGML and XML’s Evolution

SGML was adopted as an international standard (ISO 8879) in 1986. Tools and processes for working
with SGML were developed, though not adopted as widely as was hoped.

A markup language like SGML is a text language that enables you to describe your content in a way that
is independent of hardware, software, formats, or operating system. Markup language documents are
designed to be interchangeable between tools and systems. SGML paved the way for its scaled-down
descendant, XML.

The SGML standard, and now the XML standard, enables companies to take information such as the
following;:

Melvin Winery "Muscadine Scupp" Wine,

Vintage 1998

Available in 750ml only.

Our complex purple Muscadine grape lends an assertive aroma and flavor, with a
semi-sweet velvety smooth finish.

XML and the Enterprise

and put markup information around the data so that it is more specifically identified. To mark up con-
tent, you simply surround each element with descriptive tags, most often with a beginning tag and an
end tag. Here’s the syntax:

<element>content</element>

where <element> represents the beginning of the markup. Here, element is a placeholder for whatever
your markup element’s name right be. Then </element> represents where the markup ends, after the
content.

For example, the markup of the preceding information looks like this:

<wine id="Muscadine_750ml">

<name>Muscadine</name>

<varietal>Scupp</varietal>

<vintage>1998</vintage>

<winery>Melvin</winery>

<bottlesize>750ml</bottlesize>

<description>Our complex purple Muscadine grape lends an assertive aroma and o)
flavor, with a semi-sweet velvety smooth finish.</description>

</wine>

If you are not familiar with the angle brackets, slashes, and other odd pieces of markup in this example,
do not worry; all will be explained in detail and soon.

Design of XML

In the mid-1990s, SGML's capability to make sets of markup elements was used to create HTML
(Hypertext Markup Language), which provided many with the capability to create markup and display
it using browser technologies. But HTML could only mark data as headings or lists or paragraphs or
other simple format-oriented content. It could not semantically describe what the content was.
Something more powerful was needed.

XML was designed with a narrower scope than SGML so that lighter-weight processors and parsers
could be utilized to serve up content via the Internet (and other venues).

The W3C’s “XML 1.0 Recommendation” described the initial goals for XML. These design goals, as
listed on the W3C site, are:

Q XML shall be straightforwardly usable over the Internet.

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programs that process XML documents.

The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

XML documents should be human-legible and reasonably clear.

U 00U uou o

The XML design should be prepared quickly.

Chapter 1

Q The design of XML shall be formal and concise.
QO XML documents shall be easy to create.

Q Terseness in XML markup is of minimal importance.

XML was designed to fit where HTML was falling short (partly in extensibility and reusability) and
where SGML had been more difficult than the average user could manage.

Understanding XML Basics

The basic unit of markup is an element. Elements can contain text, graphics paths, table data, and even
other elements.

When you create an information model, you define an information hierarchy. The hierarchy describes
the way in which elements can be used and how they can fit together. Your content is contained within
this hierarchy and controlled somewhat by the elements used. As elements are nested hierarchically
inside other elements, they take on a relationship to the elements that contain them. This relationship
becomes useful in retrieving and sorting the data. Rules regarding the hierarchical nesting of elements
include the following;:

QO The main element that is hierarchically around all other elements is called the root element.

Q An element that has other elements hierarchically between its beginning and ending tags is the
parent element to all elements immediately inside it, which are its child elements. (Elements a
further level in would not be its child elements but its descendants.)

O Anelement can be a parent of other elements while being a child of one element. (Any parent of
its parent, and so forth, would be considered its ancestors.)

Q Child elements within the same parent are sibling elements. (There are no aunt, uncle, or cousin
designations for elements.)

In an XML instance (document) representing a chapter of a book, for example, you might design a hier-
archy in which a <chapter_title> child element always begins a <chapter>, where <chapter> is the
root element. Structurally set as a sibling to the <chapter_title> element you might have an <intro>
element followed by a <numbered_list> element. These siblings would be positioned beneath the
<chapter_title> element, ensuring that the title information always appears first. The following XML
markup example illustrates the structured hierarchy just described:

<chapter>

<chapter_title>Changing the Battery</chapter title>

<intro>In this chapter, we review the procedures for changing a battery.</intro>
<numbered_list>

<item>Open the rear panel of the device.</item>

<item>Using a screwdriver, pry the old batteries out.</item>

<item>Insert the new batteries, using a hammer as needed to fit.</item>
</numbered_list>

[the rest of the document would be here]

</chapter>

XML and the Enterprise

In this example, <chapter> is parent to <chapter_title>, <intro>, and <numbered_list>. All the
child elements of <chapter> are siblings. The <chapter> element is not a parent to any of the <item>
elements; their parent is <numbered_1list>. Position-wise it is more their “grandparent,” but that isn’t
an official designation in XML, so you would refer to the <item> elements as “descendants” of the
<chapter> element.

Because there is a hierarchy — relationship — between the chapter and its title, and between the intro
and the chapter, those pieces of content could be retrieved and managed as a whole later on by using
tools that can manipulate the markup. Then if a search tool found the chapter title and provided it in the
search results, the person accessing the results could easily see that it was part of a chapter. You could
even have an interface that showed the introductory paragraph, from the <intro> element, in search
results before searchers retrieved the entire chapter.

Some elements appear as empty elements rather than as beginning and ending tags. These elements
have no text content, but serve some purpose within the markup. For example,

is considered an empty element because the ending slash is inside the tag rather than in a separate end
tag. An image is a fairly common example of an empty tag because there is generally a path to the image
without any text content, only the tag and attribute data (as in this case).

Attributes are examined more later, but briefly an attribute is extra information about the element and is
placed inside the beginning tag or in the empty tag. Attributes have a name, followed by a value in quo-
tation marks. You will see more examples in the XML markup to come.

Exploring the Winery Markup Example

Take a closer look at the winery markup shown earlier:

<wine id="Muscadine_ 750ml">

<name>Muscadine</name>

<varietal>Scupp</varietal>

<vintage>1998</vintage>

<winery>Melvin</winery>

<bottlesize>750ml</bottlesize>

<description>Our complex purple Muscadine grape lends an assertive aroma and
flavor, with a semi-sweet velvety smooth finish.</description>

</wine>

The markup is the angle-bracketed items (tags) placed around the content. The first line is the beginning
tag of the root element <wine>:

<wine id="Muscadine_750ml">

For now, just ignore the id="Muscadine_750ml" metadata. The next line identifies the name of the
wine:

<name>Muscadine</name>

Chapter 1

The <name> beginning tag shows where the content begins, and the </name> end tag closes the element.

The varietal markup further identifies the wine and might be used later in sorting and selecting the
wines for display:

<varietal>Scupp</varietal>
The vintage is critical data because wines are often selected based on their age:
<vintage>1998</vintage>

Assuming data from your winery and other wineries will be included in some master list by a partner or
tourism agency, the winery name is included in the markup:

<winery>Melvin</winery>

This also enables sharing with directory publishers. Within the winery itself, this information most likely
serves little purpose.

Listing the bottle size(s) available could be helpful in data sorting or business inventory management:
<bottlesize>750ml</bottlesize>
The <description> tag provides a marketing snippet describing the wine:

<description>Our complex purple Muscadine grape lends an assertive aroma and o)
flavor, with a semi-sweet velvety smooth finish.</description>

This might help those who use this data to select the wine. It may be used directly in marketing pieces,
or displayed in a web browser to reach those reading online. Potentially this could be combined with
some keyword information to provide better searches and to better help searchers locate the best wine
for them.

Finally, the end tag for the wine element that appeared as the very first line of the example closes out the
document:

</wine>

That’s enough XML markup information to get you going, and you'll better recognize the XML code to
come. Now let’s take a look at the winery example XML in more detail.

Determining an Information Model for the Winery XML

As you're learning, element markup in XML documents provides descriptive information about the con-
tent. It enables you to formalize your information models and create rules specific to the your content.

When you create an information model for your data, you identify all the pieces that compose the struc-
ture of your documents, and any hierarchical relationships between the pieces of content. In the preced-
ing example, the markup identifies the content as parts of the <wine> element.

XML and the Enterprise

XML Elements

XML enables you to name and define each element you need and to assign additional pieces of metadata—
attributes —to these elements. You can name these elements whatever you like. This highly descriptive
markup then can be used to retrieve, reuse, and deliver content.

Here is an example of an XML document using element names defined for accounting
data.

<accounting>

<invoice>

<inv_number>8559</inv_number>

<inv_recipient>

<company_name>Mad Melvin Inc.</company_name>
<contact_name>Melvin Brock</contact_name>
<address1>100 Brockway Hill, Suite l</addressl>
<city>Kenmore</city>

<state>NY</state>

<zip>14223</zip>

</inv_recipient>

<amount>199.00</amount>
<due_date>2006/11/02</due_date>

</invoice>

</accounting>

Accounting data is quite different from the winery catalog data and may give you some idea of the end-
less possibilities for element naming and hierarchical arrangement. In this example, the <invoice> ele-
ment is the only child of the <accounting> element, and is the parent of the <inv_number>,
<inv_recipient>, <amount>, and <due_date> elements. The <inv_recipient> is parent to the ele-
ments <company_name>, <contact_name>, <addressl>, <city>, <state>, and <zip>. All of the child
elements of <invoice> and <inv_recipient> are descendants of the <accounting> element. These
tags make it easy to call out all invoice amounts or due dates, or the recipient’s address information.

When determining the best information model for your content, consider what information you have,
how you want to use it, and what additional information must be added to your data set. Then create
element markup and XML documents that meet your needs.

Do not strive to create a perfect structure because that may never be attained. You may not create a
structure completely wrong or completely right; just aim for a structure that is logical and will do what
you need it to do. Down the road, you may find it necessary to adjust the structure, and that’s fine and
planned for within the extensible design of XML.

To ensure that your data is as complete as it needs to be, you need to analyze the situation not only
before you begin but also periodically afterward. Whenever you find it necessary, you can modify your
element set by removing elements, adding elements, renaming elements, or adjusting the hierarchy.
Points for analysis are covered throughout this book.

XML Declaration

An XML document may begin with an XML declaration, which is a line that lets processors, tools, and
users know that the file is XML and not some other markup language. Declarations are optional and
need not be used. Here’s what it looks like:

<?xml version="1.0"?>

Chapter 1

If a declaration is used, it must be at the top of the XML file, above the root element’s beginning tag, like
this:

<?xml version="1.0"?>

<accounting>

<invoice>

<inv_number>8559</inv_number>
<inv_recipient>

<company_name>Mad Melvin Inc.</company_name>
<contact_name>Melvin Brock</contact_name>
<address1>100 Brockway Hill, Suite 1l</addressl>
<city>Kenmore</city>

<state>NY</state>

<zip>14223</zip>

</inv_recipient>

<amount>199.00</amount>
<due_date>2006/11/02</due_date>

</invoice>

</accounting>

If you are producing XML instances that are small chunks of reusable data, you probably won't use dec-
larations because they might end up elsewhere in the file as chunks are combined, and an XML declara-
tion anywhere but first in the file will throw an error. If you have XML that will stand alone, and that
might be handled by automated processes that verify if the files are XML, then you may want to include
the XML declaration to ensure proper recognition of the files as XML documents.

Attributes and Information Modeling

XML elements can contain more than just their name inside their angle brackets. Elements can have
attributes, which are additional bits of information that go with the element. The attributes appear inside
the element’s beginning tag.

For instance, the <chapter> element from an example earlier in the chapter can have an attribute of
author. This means that the author’s name, although not part of the document content, can be retained
within the XML markup. The author’s university affiliation could also be included. Attributes in the
structure can be either required or optional. While there might always be an author named in the
markup, some authors may not be affiliated with a university. In those cases, the name attribute would
have a value (a name), but no university attribute would be added. These attributes will then enable you
to locate information by searching the data for specific authors or universities. Here’s an XML markup
using the author attribute:

<chapter author="wWilliam Penn">
The end tag is still </chapter>. No attribute data is included in it.

Elements with multiple attributes have spaces between the attributes. Here’s a <chapter> element with
both author and university attributes:

<chapter author="William Penn" university="Duquesne">
Elements and their corresponding attributes are markup that enable you to create content with the struc-

ture you need. You can design elements and attributes the way you need them to be, creating dynamic
content for delivery to multiple formats via various media, based on the preferences of your users.

XML and the Enterprise

Create an XML Document

Open Notepad or another text editor, and enter the following data:

<?xml version="1.0"?>

<wine id="Muscadine_750ml" type="dessert">

<name>Muscadine</name>

<varietal>Scupp</varietal>

<vintage>1998</vintage>

<bottlesize>750ml</bottlesize>

<description>Our complex purple <keyword>Muscadine</keyword> grape lends an
<keyword>assertive</keyword> aroma and flavor, with a semi-sweet velvety o
<keyword>smooth</keyword> finish.</description>

</wine>

Remember, the book’s pages aren’t always wide enough for an entire code line. The D symbol indicates
that you should not press Enter yet, but continue typing the following line(s). Press Enter at the end of
the first line thereafter that does not have the D symbol.

For now, follow the example precisely. Chapter 3 explores the rules you must follow to create an XML
document, after which you will know the basic syntax and can create your own XML documents from
scratch. Following the rules results in your document being well-formed XML so that a parser —or
browser —can use it.

Save your file as muscadine . xml. Your document will look much like the one shown in Figure 1-1.

‘o muscadine.xml - Notepad ===
File Edit Format View Help

<Pxml wersion="1.0"7>

<wine id="Muscadine_750ml1" type="dessert's»
sname=Muscadine</name:=
<varietal=Scupp</varietals
<wintage>1998«</vintage:>
<hottlesize=750ml</bottlesizex
<description=0ur complex purple
zkevwordsMuscadine</kevword> grape lends an
<keywordrassertive</keywords> aroma and flavor,
with a semi-sweet velvety
<kevwordssmooth</kevword> finish. </description>
</ wines

Figure 1-1

If your text editor adds . txt extension instead of an .xml extension, rename the file with an .xml
extension before proceeding.

Now open your file in an XML-savvy web browser such as Microsoft Internet Explorer. You should see
your elements in a tree view, with the hierarchical nesting clearly shown in each level. Your document
should look similar to the one shown in Figure 1-2.

This is the first step in ensuring that your XML document is usable. If you cannot view it in a browser, it
may have errors in the markup.

Chapter 1

&7 C:\Documents and Settings\Kay Ethier'My Documents\NEW_XMLBOOK_WILEY\Chapters_Writing'examples\... =J@/E)

File Edit View Favorites Tools Help "

) ?) Iﬂ ﬂ .;‘J /.-) Search ‘f\'{Favorites 6-44 v g _] ® = ﬁ :‘F

: Address CriDacuments and Settingsikay EthistiMy DocumentsiNEW _XMLBOOK _WILEY\Chaptars_\Writinglexamplasimuscadine . xmi] . Go

3

<?aml version="1.0" 7=
- zwine id="Muscadine_750ml" type="dessert">
znamerMuscadine</name:x
<varietal>Scupp=</varietal>
<wintages1998</vintages
<bottlesize=250ml</bottlesizes
- =descriptionz=
Our complex purple
<keyword=Muscadine</keyword=
grape lends an
<keyword=assertive</keyword=
aroma and flavor, with a semi-sweet velvety
<keywords=smooth< keywords
finish.
«/description=
< /wines

ﬂj Done _J Iy Camputer

Figure 1-2

On your screen, you can see small minus signs next to the wine and description markup’s beginning
tags. All elements that have descendants appear with these minus signs next to them. You can click on
these minus signs to hide the descendants. Once the descendents are hidden, the minus sign appears as
a plus sign, which you can click to show the descendants and return the sign to a minus.

You may want your XML to be displayed a certain way. Most certainly, you will want it to look better
than the tree view — unless it is being used by processes rather than being displayed.

XML can be formatted so that it looks good in a browser, using fonts, colors, and images instead of just
showing in a tree view like the Internet Explorer view of Figure 1-2. You can make XML look good by using
style sheets, such as the Cascading Style Sheets (CSS) used frequently for HTML. There is also an XML for-
matting and transformation language — XSLT (the Extensible Stylesheet Language Transformation —
which you can use to produce XML or turn XML into another type of text-based document (you'll learn
more about this later in the book).

Problems That XML Addresses

To better understand how XML can help your business projects, take a look at some of the ways it’s used:

10

XML and the Enterprise

Reusing content to multiple outputs or devices
For text in multiple languages, as a way of tracking or managing translation among languages
Enforcing structured authoring processes

Enforcing data consistency standards

U 00U o

Sharing nonproprietary data

Reusing Content (Multiple Outputs, Multiple Media)

If one of your goals is structured authoring, with or without added requirements for reusing your con-
tent or revision management, then XML authoring is a logical choice. XML authoring tools can help
authors ensure that content rules are followed. XML documents can interact with databases, or even act
as a database or repository for content chunks, so that structured content can be sorted, processed,
extracted, and even automatically linked in for reuse in separate documents.

Content management software vendors are leading companies into XML by providing systems that
enable you to accomplish what you want—and need —to do with your content. Content in the XML
format is more easily managed than content in a basic text format or a word processing format because
the XML is not bogged down with proprietary coding or formatting. Additionally, the XML information
is identified by the elements used around the content. Content management systems enable those who
want to create structured content to interface with more than one XML authoring tool, simplifying cor-
porate purchases by avoiding protracted arguments over the “one tool” that must be used. With inter-
faces capable of interacting with multiple authoring tools, authors can create and share content without
conversion, transformation, or other magic.

For example, a structured document can be saved to XML by the authoring tool, providing as a finished
product an XML file with a complex hierarchy of data. Using a scripting language or stylesheet, chunks
of the XML content can be pulled from one document and used to produce other documents.
Additionally, data can be sorted and retrieved to create custom web pages, database content, or hand-
held device files. When changes are made to each linked content chunk, all of the documents that con-
tain that chunk can be automatically updated.

Once your information is in XML and accessible, stylesheets and XSLT can be used to push your infor-
mation to the web, PDEF, cellular phones, iPod (PodCasts), and to some handheld devices. Publishing is
not just for print anymore.

Managing Translated Content

Companies that publish in multiple languages often work with translation agencies. In many cases,
word processor files are provided to the translation house, which translates each word into the target
language(s) and formats the files for distribution. Service costs include translation and formatting (word
processing) services. As an alternative, XML that can be translated without the need for additional for-
matting, which can amount to significant savings.

Because XML documents can include metadata — descriptive information about the document and the
individual chunks that compose it—saving revision and language information within attributes or ele-
ments becomes straightforward. When sending an XML document for translation, metadata can be
added by the client or the translation agency to indicate which pieces of the document require transla-
tion. In long documents, considerable savings can be realized by translating only new information in the
document, rather than translating entire documents over and over.

11

Chapter 1

Au

En

thoring with Enforced Structure and Automated Formatting

Authors working on the same document or document set can introduce inconsistencies due to different
working styles. Even the same author sometimes makes different decisions about formatting. Additionally,
multiple authors can choose to organize their content in slightly different fashions. Implementing a
structured authoring environment based on XML provides an extra level of control —and hands-off
formatting — that style guides and authoring “suggestions” cannot come close to duplicating.

Structured authoring guides authors to follow the content model of the structure being used. This type
of enforcement eliminates the need for authors to make decisions about layout, format, and the order of
things. Structured authoring enables you to formalize and enforce authoring, branding, and style guide-
lines, ensuring that the documents created are structurally correct and properly formatted.

In short, authors can write content with guidance and without concern for formatting.

forcing Consistency of Data

XML documents are consistently organized. Elements are named, defined, and tagged, and as a result,
can be processed by other software applications that can read XML content. XML documents make con-
tent more easily retrievable and reusable.

XML documents can contain metadata designed to identify when an element was created, and by
whom, thus improving your ability to ensure that you are providing the most up-to-date, accurate infor-
mation available. When you spot an inaccuracy, you can fix it.

If, for example, an XML document outlines the menu items to be displayed in a software tool, the devel-
opers can consistently update the listing without fear of missing a location within the code. Similarly,
strings of data used in error messages and other parts of the software interface can be controlled from a
central point or be found easily by tracking within certain element structures.

Changes you later make to the source will be reflected immediately and automatically in all other areas
of the product or product line that utilize that piece of information. In a perfect process, this information
would also find its way to marketing.

The winery project includes many details for the wines listed. To ensure that this data is consistent and
complete throughout, a data structure is created that checks the XML. Missing bits of data can be flagged
in authoring or editing tools that understand or display XML. Data that is out of place or added can also
be flagged, making error checking and correcting easier. This type of identification enables you to easily
fix the data and begin using it again.

There are many tools on the market that allow the authoring or editing of XML. Tools used by the
authors are mentioned briefly in the remaining chapters.

Sharing Information

12

To facilitate the exchange of information, some industries have adopted common structures that formal-
ize the structure of their information. By sharing common structures, industries’ players are able to use a
common vocabulary, which makes it easier, faster, and less expensive to exchange information with part-
ners or clients.

XML and the Enterprise

Several industries were early adopters of structured authoring and shared structure; they have been
reaping benefits for years already. Because these industry organizations shared data, and have invested
heavily in structured content processes, they can insist that partners, affiliates, and customers integrate
with their systems.

Airlines, for example, must integrate content provided by airplane parts manufacturers with their own
documentation. While the parts manufacturers document the pieces of the airplane, the airlines create
new information for pilot-training guides, user manuals, and the like, yet can integrate information
about maintenance of parts easily by following a common structure. Airline parts manufacturers using a
structured authoring approach can share their XML (or SGML) with their airline partners to ensure that
both parties are using the same element names, metadata, and revision data.

Following is a sample of the type of information your winery could have about a partner company. This
XML has more detail, including keywords marked up with a <keyword> element, than the simple exam-
ples shown earlier in this chapter.

<catalog>
<section subject="Wines">
<winery id="Melvin">
<name>Mad Melvin's Muscadine Wines</name>
<region>New York</region>
<country>United States</country>
<wine id="Nags_Head_Carlos_WHT_750ml">
<name>Nags Head Carlos WHT</name>
<varietal>Scupp</varietal>
<vintage>1994</vintage>
<bottlesize>750ml</bottlesize>
<description>Aged in Carolina Willow Oak, this velvety
<keyword>red</keyword> wine is highly complex, with a flavor of red O
<keyword>cherries</keyword>, <keyword>apricots</keyword>
and <keyword>grapefruit</keyword>.</description>
</wine>
<wine id="Muscadine_750ml" type="dessert">
<name>Muscadine</name>
<varietal>Scupp</varietal>
<vintage>1998</vintage>
<bottlesize>750ml</bottlesize>
<description>0Our complex purple <keyword>Muscadine</keyword> grape)
lends an <keyword>assertive</keyword> aroma and flavor, withg
a semi-sweet velvety <keyword>smooth</keyword> finish.</description>
</wine>
</winery>
</section>
</catalog>

The preceding markup is certainly helpful, although perhaps not as detailed as is needed for enterprise-
wide use. However, because the structure provides basic information about each wine and includes the
winery designation, it may be possible to access a partner’s catalog, share your own winery catalog, and
even combine the two catalogs. Assume that the winery data also must be shared with the tourism orga-
nizations that spread the word about wineries in the Finger Lakes region.

For this project, assume that the preceding markup is standard for the data your winery has made available.

13

Chapter 1

To share this information properly, your company and any partner companies not only need the same
XML document, but they would also ideally have the same structure or similar structures to allow shar-
ing of information with little loss of dissimilar data or unused extra data.

To design a solution for combining the catalogs, you first review what you have and what your partner
has, and then determine a plan for merging your data.

Here’s a selection of the XML content of your partner’s XML catalog of wine:

<?xml version="1.0" encoding="UTF-8"7?>

<catalog>

<section subject="Wines">

<distributor id=""
<distributor
<distributor
<distributor
<distributor
<distributor
<distributor

name=""/>

id="Aeg" name="Aegean Imports, INC."/>
id="Cla" name="Classic"/>

id="Cou" name="Country Vintner"/>
id="Emi" name="Eminent Domains"/>
id="Emp" name="Empire"/>

id="Fran" name="Franklin Selection"/>

<region name="Western Cape"/>

<winery id="">

<region>Burgundy</region>
<country>France </country>

</winery>

<winery id="ALong">
<region>Chablis</region>
<country>France</country>

</winery>

<wine id="Cabernet_Sauvignon_1992_750ml">
<name>Cabernet Sauvignon</name>
<varietal>Cabernet Sauvignon</varietal>
<vintage>1992</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Chardonnay_ 1994_750ml">
<name>Chardonnay</name>
<varietal>Chardonnay</varietal>
<vintage>1994</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Sauvignon_Blanc_1994_750ml">
<name>Sauvignon Blanc</name>
<varietal>Sauvignon Blanc</varietal>
<vintage>1994</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Zinfandel 15L">
<name>Zinfandel</name>
<winery>CorbetCanyon</winery>

14

XML and the Enterprise

<distributor>Emp</distributor>
<bottlesize>1.5L</bottlesize>

</wine>

<wine 1d="The_Cabernet_1996_750ml">
<name>The Cabernet</name>
<varietal>Cabernet Sauvignon</varietal>
<vintage>1996</vintage>
<winery>Cosentino</winery>
<distributor>Emp</distributor>
<bottlesize>750ml</bottlesize>

</wine>

</section>
</catalog>

Take a closer look at the data available to you in this XML. The first line is, of course, the XML declaration:
<?xml version="1.0" encoding="UTF-8"?>

The second line begins the company’s catalog:
<catalog>

The end tag for the catalog element comes at the end of all the listings.

Although not particularly descriptive, <section> elements break the catalog information down by
product, so that the wine-related data appears here and other nonwine products might be included at
another point in the XML:

<section subject="Wines">

Distributor data may help you reach distributors, and you may be pleasantly surprised to see that your
partner company shared this data in its XML catalog:

<distributor id="" name=""/>

<distributor id="Aeg" name="Aegean Imports, INC."/>
<distributor id="Cla" name="Classic"/>

<distributor id="Cou" name="Country Vintner"/>
<distributor id="Emi" name="Eminent Domains"/>
<distributor id="Emp" name="Empire"/>

<distributor id="Fran" name="Franklin Selection"/>

The <region> element is a sibling to the distributor data, and names the region; structurally, this is not
well tied to the distributors or other data to come:

<region name="Western Cape"/>

Multiple wineries are listed within the source, each with child element data designating the region and
country. These <winery> elements are also siblings to the <distributor> elements.

<winery id="">
<region>Burgundy</region>
<country>France </country>
</winery>

15

Chapter 1

16

<winery id="ALong">
<region>Chablis</region>
<country>France</country>
</winery>

After the winery data are the details of each wine, which include relational data back to the winery and
distributor data:

<wine id="Cabernet_Sauvignon_1992_750ml">
<name>Cabernet Sauvignon</name>
<varietal>Cabernet Sauvignon</varietal>
<vintage>1992</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Chardonnay_1994_750ml">
<name>Chardonnay</name>
<varietal>Chardonnay</varietal>
<vintage>1994</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Sauvignon_Blanc_1994_750ml">
<name>Sauvignon Blanc</name>
<varietal>Sauvignon Blanc</varietal>
<vintage>1994</vintage>
<winery>Caskone</winery>
<distributor>Aeg</distributor>
<bottlesize>750ml</bottlesize>

</wine>

<wine id="Zinfandel_ 15L">
<name>Zinfandel</name>
<winery>CorbetCanyon</winery>
<distributor>Emp</distributor>
<bottlesize>1.5L</bottlesize>

</wine>

<wine i1d="The_Cabernet_1996_750ml">
<name>The Cabernet</name>
<varietal>Cabernet Sauvignon</varietal>
<vintage>1996</vintage>
<winery>Cosentino</winery>
<distributor>Emp</distributor>
<bottlesize>750ml</bottlesize>

</wine>

Some of the wines have more details included in the data than other wines have.
For the most part, your data structure matches that of your partner’s catalog. Aside from including nota-

tions on distributors, the other markup uses the same element and attribute names as your snippets. It will
be fairly easy to consolidate the like data so that your winery and this partner can share information.

XML and the Enterprise

At the end of the XML document is the closing information for the section (which included all wine
product data) and the entire catalog:

</section>
</catalog>

There is only one section in this file, so at this point the company has only structured its wine product
data and not any peripheral offerings (apparel, foods, tours, and the like).

Solution

Starting with what you know of your winery content, expand the data beyond the basic information
about the wines and add data necessary for enterprise use plus partner distribution. You change the
XML content model in the next chapter.

Later, you will create a web interface to display the existing data and provide a form-based entry system
for your wine data, which will enable you to fill in missing content and revise existing data easily.

Summary

XML is a format-free way to share information. Marking up content with XML enables you to identify
what makes up your documents, and to identify each component potentially for reuse, sorting, or for-
matting. It is becoming more widespread for enterprise use as the tools and technologies expand.

You've been introduced to a number of concepts in this chapter, including;:

Q The basics of XML
0 How to begin an information model
QO How XML can resolve content and consistency problems

Q Why XML is so helpful in sharing information

In Chapter 2, you learn the rules of XML markup and explore the concept of well-formed XML.

17

