
Chapter 1

Congratulations, Your Problem
Has Already Been Solved

In This Chapter
� Introducing design patterns

� Knowing how design patterns can help

� Extending object-oriented programming

� Taking a look at some specific design patterns

As a programmer, you know how easy it can be to get lost in the details
of what you’re doing. And when you lose the overview, you don’t plan

effectively, and you lose the bigger picture. When that happens, the code
you’re writing in the trenches ends up working fine for a while, but unless
you understand the bigger picture, that code really is a specialized solution
to a particular problem.

And the heck of it is that problems rarely stay solved after you’ve handled
them once. Developers typically regard their work as tackling individual
problems by writing code and solving those problems. But the truth is that in
any professional environment, developers almost always end up spending a
lot more time on maintenance and adapting code to new situations than writ-
ing entirely new code.

So if you consider it, it doesn’t make sense to think in terms of Band-Aid fixes
to remedy the problems you face because you’ll end up spending a great deal
of time putting out fires and trying to extend code written for a specific prob-
lem so that it can handle other cases as well. It makes more sense to get a
little overview on the process of code design and maintenance.

05_798541 ch01.qxp 3/27/06 2:21 PM Page 7

CO
PYRIG

HTED
 M

ATERIA
L

The idea behind this book is to familiarize you with a set of design patterns
to simplify the programming process automatically. The plan is to get you
some overview automatically, no additional effort required. A design pattern
is a tested solution to a standard programming problem. When you’re famil-
iar with the design patterns presented in this book, you can face a program-
ming issue and — Bam! — a solution will come to you more quickly. Instead
of banging your head against the wall in desperation, you’ll say, “What I
need here is the Factory pattern.” Or the Observer pattern. Or the Adapter
pattern.

That’s not to say, as some design books seem to suggest, that you should
spend a great deal of time dealing with abstractions and planning before tack-
ling a project. Adding unneeded layers of abstraction to the programming
process is not a burden any programmer needs.

The whole beauty here is simply that someone has already faced the problem
you’re facing and has come up with a solution that implements all kinds of
good design. And being familiar with design patterns can make the design
process all but automatic for you.

How do you turn into a software design expert, the envy of all, with hardly
any work on your part? Easy. You read this book and get familiar with the pat-
terns I cover in depth. You don’t have to memorize anything; you just get to
know those patterns. Then when you encounter a real-world issue that
matches one of those patterns, something deep inside you says, “Hey! That
looks like you need the Iterator pattern.” And all you have to do is look up
that pattern in this book and leaf through the examples to know what to do.
So without further ado, this chapter gets you started on your tour of these
handy, helpful design patterns.

Just Find the Pattern that Fits
The charm of knowing about design patterns is that it makes your solution
easily reusable, extendable, and maintainable. When you’re working on a pro-
gramming problem, the tendency is to program to the problem, not in terms
of reuse, extensibility, maintainability, or other good design issues. And that’s
where most programmers should be putting in more work because they end
up spending far more time on such issues than on solving the original prob-
lem in the long run.

8 Part I: Getting to Know Patterns

05_798541 ch01.qxp 3/27/06 2:21 PM Page 8

For example, you may want to create Java objects that can, say, parse XML
documents. And to do that, you create a proprietary parser class, and then
instantiate objects of that class to create XML parser objects as needed. So
far, so good, you think. But it turns out that there are dozens of XML parser
classes out there written in Java that people are attached to, and they might
want to use the special features of the XML parser class they’re used to. If
you’d used the Factory pattern, you would have written code that could use
any XML parser class to create parser objects (instead of hardcoding a pro-
prietary solution). And your code would be extendable, reusable, and easier
to maintain.

In other words, design patterns are solutions to programming problems that
automatically implement good design techniques. Someone has already faced
the issues you’re facing, solved them, and is willing to show you what the
best techniques are. All without a lot of memorization on your part; all you
have to do is recognize which design pattern fits which situation and lock it
into place.

Sweet.

Enter the Gang of Four Book
The set of 23 standard design patterns was published by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides in their seminal 1995 book
Design Patterns: Elements of Reusable Object-Oriented Software (Pearson
Education, Inc. Publishing as Pearson Addison Wesley). They’ve come to be
known in programming circles as the Gang of Four, or, more popularly, GoF.

A lot of water has passed under the bridge since the GoF book appeared,
and it turns out that some of the original 23 patterns were not used as
much as some of the others. You see them all in this book, but I empha-
size the patterns that are used the most — and that includes some new,
non-GoF patterns in Chapter 11 that have appeared since the GoF book
debuted.

It’s important to realize that there is more going on here than just memorizing
design patterns. There are also specific design insights about object-oriented
programming that are just as important, and I talk about them throughout the
book. OOP is a terrific advance in programming. But too many programmers

9Chapter 1: Congratulations, Your Problem Has Already Been Solved

05_798541 ch01.qxp 3/27/06 2:21 PM Page 9

blindly apply its design strategies without a lot of insight, and that can cause
as many problems as it fixes. A large part of understanding how to work with
design patterns involves understanding the OOP insights behind them —
encapsulating what changes most, for example, or knowing when to convert
from is-a inheritance to has-a composites (see Chapter 2 for more on what
these terms mean) — and I talk about those insights a lot.

Getting Started: The Mediator Pattern
Figure 1-1 provides an example design pattern, the Mediator pattern, that
shows what design patterns can do for you. Say that you’ve got a four-page
Web site that lets users browse a store and make purchases. As things stand,
the user can move from page to page. But there’s a problem — the code in
each page has to know when to jump to a new page as well as how to activate
the new page. You’ve got a lot of possible connections and a lot of duplicate
code in the various pages.

You can use a mediator here to encapsulate all the navigation code out of the
separate pages and place it into a mediator object instead. From then on,
each page just has to report any change of state to the mediator, and the
mediator knows what page to send the user to, as shown in Figure 1-2.

Welcome Store

Purchase Goodbye

Figure 1-1:
In this

illustration
of the basic

navigation
of a typical

online store,
the Mediator

pattern
mediates
between
objects.

10 Part I: Getting to Know Patterns

05_798541 ch01.qxp 3/27/06 2:21 PM Page 10

You can build the mediator to deal with the internals of each page so the vari-
ous pages don’t have to know the intimate details of the other pages (such as
which methods to call). And when it’s time to modify the navigation code
that takes users from page to page, that code is all collected in one place, so
it’s easier to modify.

Adapting to the Adapter Pattern
Here’s another design pattern, the Adapter pattern. Say that for a long time
you’ve been supplied with a stream of objects and fit them into code that can
handle those objects, as shown in Figure 1-3.

I‘m an old object I take old objects

Figure 1-3:
Everything

seems to be
working

here.

Welcome Store

Purchase Goodbye

Mediator

Figure 1-2:
The

mediator
directs Web

site traffic.

11Chapter 1: Congratulations, Your Problem Has Already Been Solved

05_798541 ch01.qxp 3/27/06 2:21 PM Page 11

But now say there’s been an upgrade. The code isn’t expecting those old
objects anymore, only new objects, and the old objects aren’t going to fit
into the new code, as shown in Figure 1-4.

If you can’t change how the old objects are generated in this case, the
Adapter pattern has a solution — create an adapter object that exposes
the interface expected by the old object and the new code, and use the
adapter to let the old object fit into the new code, as shown in Figure 1-5.

Problem solved. Who says design patterns are hard?

Standing In for Other Objects
with the Proxy Pattern

Here’s another pattern, the Proxy design pattern. Say that you’ve got
some local code that’s used to dealing with a local object as shown in
Figure 1-6:

I‘m an old object I am an old
to new Adapter

I only take
new objects

Figure 1-5:
Old objects

work with
new objects

via an
adapter.

I‘m an old object I only take
new objects

Figure 1-4:
This isn’t
going to

work.

12 Part I: Getting to Know Patterns

05_798541 ch01.qxp 3/27/06 2:21 PM Page 12

But now say that you want to deal with some remote object, somewhere else
in the world. How can you make the local code think it’s dealing with a local
object still when in fact it’s working with that remote object?

With a proxy. A proxy is a stand-in for another object that makes the local
code think it’s dealing with a local object. Behind the scenes, the proxy con-
nects to the remote object, all the while making the local code believe it’s
working with a local object, as you can see in Figure 1-7.

You see the Proxy pattern at work in Chapter 9 in an example that lets you
connect to a remote object over the Internet anywhere in the world, with
just a few lines of code.

Taking a Look at the Observer Pattern
You’re most likely familiar with a number of the patterns in this book, such as
the Observer pattern. This pattern, like many others, is already implemented
in Java.

Local code

Remote objectProxy

Figure 1-7:
Trick your

local code
and remote
object into

working
together.

Local code

Local object

Figure 1-6:
Code and an

object,
working

together in
the same
neighbor-

hood.

13Chapter 1: Congratulations, Your Problem Has Already Been Solved

05_798541 ch01.qxp 3/27/06 2:21 PM Page 13

The Observer design pattern is about passing notifications around to update
a set of objects when some important event has occurred. You can add new
observer objects at runtime and remove them as needed. When an event
occurs, all registered observers are notified. Figure 1-8 shows how it works;
an observer can register itself with the subject.

And another observer, Observer 2, can register itself as well, as shown in
Figure 1-9.

Now the subject is keeping track of two observers. When an event occurs,
the subject notifies both observers. (See Figure 1-10.)

Subject Observer 1

Observer 2
notification

notification

Figure 1-10:
When

events
occur in the

subject,
registered
observers

are notified.

Subject Observer 1

Observer 2
register

Figure 1-9:
More

than one
observer

can register
with a

subject.

Subject Observer 1
register

Figure 1-8:
The

Observer
pattern lets

observers
register with

subjects.

14 Part I: Getting to Know Patterns

05_798541 ch01.qxp 3/27/06 2:21 PM Page 14

Does this sound familiar in Java? If Java event listeners came to mind, you’d
be right. Event listeners can register with objects like push buttons or win-
dows to be informed of any events that occur.

That’s just one example of the kind of design pattern you’ve probably already
seen implemented in Java. When such examples come up, I include Java
example code showing how a particular design pattern is already built into
Java. The example code might ring a few bells.

This book is written to be easy to use and understand. You’re not going to
see chalkboard diagrams of complex abstractions that you have to plow
through. The chapters in this book are aimed at programmers, to be useful
for programmers; even if you don’t read all of them, you’re going to benefit.
The design insights and patterns covered here are becoming standard
throughout the programming world, and they are helpful on an everyday
level. Hopefully, the next time you face a tough coding issue, you’ll suddenly
find yourself saying: Aha! this is a job for the Facade pattern.

15Chapter 1: Congratulations, Your Problem Has Already Been Solved

05_798541 ch01.qxp 3/27/06 2:21 PM Page 15

16 Part I: Getting to Know Patterns

05_798541 ch01.qxp 3/27/06 2:21 PM Page 16

