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Basic Concepts of Nonlinear Dynamics
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An Overview of Nonlinear Phenomena

In Part I we aim to give a general outline of nonlinear dynamics, which is
an essential prerequisite to our more advanced studies including our goal
of understanding chaotic motions. This chapter provides a quick overview
of the nonlinear dynamics field, before we begin our more detailed presenta-
tion.

2.1 UNDAMPED, UNFORCED LINEAR OSCILLATOR

We start our overview by looking at the undamped, unforced linear oscillator
of Figure 2.1. The equation chosen for this first illustration has the stiffness
constant 47%, which makes the periodic time equal to unity. The solution of
such an equation is simply a sine wave, the constant amplitude and phase of
which are determined by the starting values of x and x. So, once started, we
have a constant sine wave that persists for all time, and there is no transient or
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Figure 2.1 Undamped, unforced behaviour of a linear oscillator
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16 NONLINEAR DYNAMICS AND CHAOS

decay of any kind. The periodic time, unity in the present example, is a constant
independent of the starting conditions, the amplitude of the motion, and the
time.

A typical plot of x against the time ¢ is shown, resulting from the starting
condition (x, xX) equal to (1, 0) at the time ¢ = 0. Along with the other, mainly
nonlinear, problems considered in this chapter, this solution was obtained
by numerical time integration using a fourth-order Runge-Kutta routine on
a desktop Hewlett-Packard computer with the step size indicated, here
Ar=0.02.

If we plot not x against ¢ but x against x, we have the phase portrait shown
on the left. Starting as before at (1, 0) we now have the closed ellipse shown, the
representative point moving continuously round and round this closed orbit as
the time goes to infinity. The power spectrum of this response, shown in the top
right-hand diagram, is simply a spike (or delta function) at the circular fre-
quency of 2x radians per second.

We must finally ask the question: what would happen if we changed the
starting condition by a small amount? The answer is illustrated in the lower
diagram, where we show both the fundamental reference motion starting at (1, 0)
and a perturbed motion starting at (1.02, 2). We see that we have two sine
waves running in step with just a small difference in amplitude and phase
resulting from the slightly different starting values of x and x. They continue
to run nicely in step for all time because the period of oscillation of the two
motions is the same (and equal to unity, as we have seen). So a starting
perturbation is preserved, and the fundamental motion is neutrally stable in a
dynamical sense.

In the left-hand phase space, the two motions appear as neatly nesting
ellipses. All possible motions of this linear oscillator are indeed represented
by a complete family of nesting ellipses, which represent the full phase portrait
of the system. The orbit passing through any particular starting point (x, X)
defines the subsequent unique motion of the oscillator.

This linear oscillator models in an approximate fashion many basic physical
systems, such as for example the free motions of a simple hanging pendulum.
The modelling is however unrealistic in two important ways. First, it ignores
the damping action of inevitable dissipative forces, such as air resistance in the
example of the laboratory pendulum. In the absence of impressed driving
forces, the motions of all real macroscopic mechanical systems will eventually
decay, as with a free experimental pendulum, so our present equation fails to
model this vital aspect. Secondly, all real systems will have some degree of
nonlinearity, which in itself modifies the behaviour in important ways. Large-
amplitude oscillations of an undamped pendulum are for example governed by
a nonlinear differential equation that we shall examine next: a linear approxi-
mation to the behaviour of a pendulum is only valid for small angles of
oscillation.

The two unrealistic approximations of linearized stiffness and zero damping
will be removed in turn, so we look next at the large-amplitude, nonlinear
motions of an undamped pendulum.
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2.2 UNDAMPED, UNFORCED NONLINEAR OSCILLATOR

The undamped, unforced nonlinear system of Figure 2.2 represents the exact
equation of motion of a simple pendulum undergoing arbitrarily large oscilla-
tions. This equation in terms of the angle x is easily derived using Newton’s law
of motion for the bob by resolving perpendicular to the light string to eliminate
the unknown tension: alternatively it can be derived by Lagrangian or Hamil-
tonian energy methods. The length of the pendulum, relative to the gravita-
tional constant, has been chosen to make the coefficient equal to 4n. So for
small oscillations we could /inearize the equation by approximating sin x to x,
and retrieve the linear oscillator of our earlier discussion, with periodic time
equal to unity.

The solution of this nonlinear differential equation can be obtained after
some algebra in terms of elliptic integrals: alternatively the equation can be
easily integrated numerically on a digital computer as we have done here.
Depending on the starting conditions of (x, X) we now find a steady undamped
oscillation corresponding to the motion of our idealized undamped pendulum.
A given motion from a given start thus exhibits no transient or decay, just a
steady waveform of constant amplitude and constant period. The waveform is
not however sinusoidal, and could in fact be decomposed by Fourier analysis
into a fundamental harmonic plus odd higher harmonics: this gives rise to the
power spectrum shown with a large spike at a certain circular frequency wg and
smaller spikes at 3, 5, 7,...times this value.

The central waveform shows the steady oscillation starting at (3.054, 0)
corresponding to the pendulum starting from rest with x =0 at a value of
x = 3.054 x 180/n = 175°. To visualize this physically we must suppose that
the heavy pendulum bob is supported not by a string, which could become
slack, but by a light rigid rod pivoted to the fixed support. Because this
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Figure 2.2 Undamped, unforced behaviour of a nonlinear oscillator
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rigid-link pendulum would be in (unstable) equilibrium at x = 180°, the motion
begins very slowly and the waveform is very flat and quite noticeably non-
sinusoidal. The corresponding x(x) phase picture is shown to the left-hand
side: the closed trajectory is quite clearly not elliptical, and has a high cur-
vature on the x axis corresponding to the proximity of an unstable equilibrium
state.

Now the periodic time of a given motion is constant as we have just seen, but
the period of different motions increases with the amplitude. It is clear for
example that a start very close to x = 180° will give a motion with a very large
period, since at the end of each big swing the pendulum will almost come to rest
in the inverted position: indeed the periodic time goes to infinity as the ampli-
tude approaches 7. Notice that the periodic time of our displayed waveform is
about 3, compared with the periodic time of unity for the small-amplitude
linearized motions.

This variation of period with amplitude gives rise to a new phenomenon
when we consider a perturbed motion. The lower diagram shows the funda-
mental motion just considered together with a perturbed motion starting from
slightly different initial conditions. Because these new conditions give rise to a
motion with a slightly different amplitude, the perturbed waveform has a
slightly different period. So we have a beat phenomenon and the two motions
drift in and out of phase with one another. This means that, although the two
waveforms will eventually resynchronize, there is an initial divergence from
adjacent starts. This makes the fundamental oscillatory motion unstable in
the strict sense of Liapunov. In the left-hand phase diagram however, in
which the time discrepancies of the two motions are not visible, the two closed
orbits are seen to lie everywhere close to one another: in recognition of this fact
the fundamental motion is said to be orbitally stable.

For the motions under consideration, the phase portrait of the present
undamped nonlinear oscillator consists of nesting closed orbits. For small
oscillations these are roughly elliptical corresponding to the nearly sinusoidal
waveform, but they become increasingly distorted with increasing curvature
near the x axis for the larger non-sinusoidal motions.

The steady undamped oscillations of our first two examples are not typical of
real undriven systems. Clearly the smallest trace of dissipation will give damped
waveforms, and the nest of closed orbits in the phase space will become inward
spirals. The fact that the topological nature (closure) of the phase orbits can be
destroyed by even infinitesimal damping is recognized by declaring the patho-
logical undamped systems to be structurally unstable.

For the rest of this chapter we shall be concerned with typical damped
systems, and we start by looking at the behaviour of a damped linear system.

2.3 DAMPED, UNFORCED LINEAR OSCILLATOR

We consider then the differential equation of Figure 2.3, which is written in a
rather standard form, with { representing the damping factor, namely the ratio
of the actual damping to the critical damping at which oscillatory behaviour
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Figure 2.3 Damped, unforced behaviour of a linear oscillator

ceases. We can think of this equation as representing the motion of a mass
constrained by a linear elastic spring in parallel with a dashpot full of oil, which
is assumed to provide a force opposing the instantaneous velocity.

An analytical solution of this linear differential equation is readily written
down: for light damping with { < 1 we have an exponentially damped sine
wave, while for heavy damping with { > 1 we have a non-oscillatory exponen-
tial decay.

A typical lightly damped waveform is shown in the middle picture, starting at
x =1, X = 0. The decaying wave has a constant period, defined for example by
successive crossings of the time axis, which is nevertheless slightly dependent on
the value of {. With the light damping shown, the period is essentially un-
changed from the period, 27, of the corresponding undamped system obtained
by setting { = 0. For light damping the power spectrum will be roughly a single
spike decaying to zero along with the wave amplitude.

The corresponding phase portrait on the left is now a spiral, heading inwards
towards the asymptotically stable equilibrium state at the origin (0, 0). The full
linear phase portrait, termed a focus, is a set of intertwining, non-crossing
spirals. Every motion here represents a transient to the asymptotically stable
equilibrium state of rest at the origin, which for obvious reasons is called a point
attractor. The whole phase portrait is now structurally stable since for finite
damping the spiralling form cannot be topologically changed by any infini-
tesimal changes to the system.

The pictures for heavier supercritical damping shown below give the wave-
form and phase trajectories for six alternative starts. The system moves back to
its stable state of rest in a direct non-oscillatory fashion, and the whole phase
portrait is called a node. Once again, we have a structurally stable point
attractor at (0, 0) capturing all motions of the system.
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Since all motions decay to rest, fundamental and perturbed motions coalesce
as time goes to infinity, and starting perturbations are lost.

2.4 DAMPED, UNFORCED NONLINEAR OSCILLATOR

To conclude our examination of unforced (undriven) systems, we look now at a
damped nonlinear problem, typified by the pendulum of Figure 2.4. This is the
large-amplitude pendulum of our earlier discussion, now with the modelling of
air drag by a realistic velocity-squared law: notice that the damping force
proportional to x? has to be entered into the differential equation of motion
as X|x| to ensure that it is always opposing the velocity. Having put on this
quadratic damping, we should perhaps emphasize that the form of damping is
largely irrelevant to the following discussion, the salient points being just as
well illustrated by the use of linear damping: the computed traces relate how-
ever to the quadratic damping.

Clearly we once again have transients to the asymptotically stable hanging
equilibrium state representing a point attractor in the phase space.

The central waveform damps and becomes increasingly sinusoidal as x
becomes small, while the power spectrum is a decaying set of spikes as
shown. The phase portrait is a spiral, becoming increasingly elliptical as the
trajectories approach the central attractor. A little linear damping would be
needed to make this portrait structurally stable near the origin.

As with the undamped pendulum suffering large-amplitude oscillations,
adjacent starts still exhibit a temporary beating character with an associated
initial divergence due to the variation of the period with amplitude. But initial
perturbations are eventually lost as all motions coalesce in the unique hanging
state.
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Figure 2.4 Damped, unforced behaviour of a nonlinear oscillator
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This local phase portrait is a set of intertwining spirals with all motions
captured by the central attractor. The full phase portrait of a pendulum includ-
ing high-velocity motions passing through the inverted state is most nicely seen
in a cylindrical phase space, and will be presented later (Figure 3.15).

2.5 FORCED LINEAR OSCILLATOR

We have so far looked only at autonomous unforced systems with zero on the
right-hand side of the equation, but we turn now to sinusoidally driven non-
autonomous oscillators. Damping, we have seen, is an essential ingredient of
good modelling, so we shall start by looking at the damped, forced linear
oscillator of Figure 2.5. This would be an adequate mathematical model of a
pin-ended steel beam driven to small-amplitude lateral oscillations by an elec-
tromagnet carrying a sinusoidal alternating current. Here physical damping
would arise from air resistance and internal material dissipation. The numerical
coefficients have been chosen to provide a sharp frequency contrast between
the transient and the steady-state solution, and the damping ratio of the
unforced left-hand side is 0.1 (see equation 3.11).

This is a classical resonance problem of engineering texts, and the well-
known analytical solution is easily written down. It is the algebraic sum of
the so-called particular integral (PI) and the complementary function (CF). The
CF is just the solution obtained by setting the left-hand side of the equation to
zero: that is to say it is the exponentially damped sinusoidal solution of the
unforced autonomous system. It has the usual two arbitrary constants of
amplitude and phase obtained by applying the starting conditions to the
whole solution. With the present choice of constants the CF is a high-frequency
sine wave with quite a heavy rate of damping.
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Figure 2.5 Damped, forced behaviour of a linear oscillator
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The PI is a particular (known) solution of the whole equation, being in fact a
steady undamped sine wave with the same frequency as the forcing term with
which it has a fixed phase difference. The amplitude of the PI depends crucially
on the ratio of the forcing frequency to the natural frequency of the autono-
mous left-hand side, being large when this ratio is close to one so that we have a
condition of resonance. The conventional engineering resonance response
curves simply plot the magnitude of the PI against this frequency ratio, giving
for light damping a sharp peak at unity.

We should emphasize here, however, that from the qualitative dynamics
point of view it is irrelevant whether the system is ‘at resonance’ or not. With
the particular coefficients chosen, our illustration is well away from the reson-
ant condition, but the discussion of the system’s behaviour is essentially unre-
lated to this fact.

Since the analytical solution is just the algebraic sum of the CF and the PI, it
is clear that the former damped sine wave represents a decaying transient,
which leaves the PI as the unique final steady state: this is the reason for the
engineer’s consuming interest in the amplitude of the PI. A waveform starting
at (2, 0) is shown in the central figure and we see clearly the high-frequency
transient leading rapidly to the steady sinusoidal state described by the PI.

Now a forced system such as this has a three-dimensional phase space
defined by the coordinates (x, X, ), the essence of phase spaces being that
they are full of non-crossing trajectories. It is sometimes convenient, however,
just to plot the phase projection (x, x) and accept the fact that trajectories will
appear to cross in this projection. The phase projection corresponding to the
drawn waveform is thus shown to the left-hand side. The high-frequency
transient appears as decaying circles, and the final steady state as a very long,
thin ellipse pointing along the x axis.

It is also helpful in the phase projection to make a dot, or small circle,
whenever the forcing cycle is about to commence, at ¢ equal to multiples of
the forcing period, here 2n. This is the so-called Poincaré section and
is represented by points A and B in the present time integration. Since the final
steady state is here an oscillation with the same period as the forcing, the
final steady-state mapping will be the constant repetition of a fixed point,
here quite close to B. Mapping from section to section is defined in Figure 5.1.

The lower pictures show, superimposed, the effect of a completely different
start. As dictated by the analytical solution, the different transients resulting
from different integration constants in the CF lead merely to the same unique
periodic attractor corresponding to the PI. As we have seen, this attractor is
sinusoidal with the period of the forcing, but with a constant phase shift. The
power spectrum will be predominantly two spikes at the forcing frequency and
at the natural autonomous frequency, the latter decaying as the transient is lost.

2.6 FORCED NONLINEAR OSCILLATOR: PERIODIC ATTRACTORS

Just as a stiffness nonlinearity introduced new phenomena into the response of
an unforced oscillator, so a nonlinearity generates new features in a driven
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system. So we look now at the damped, forced nonlinear oscillator illustrated
in Figure 2.6. This is the sinusoidally (here cosinusoidally) forced Duffing
equation with a linear and a cubic stiffness. This could be used to model the
moderately large bending deflections of an electromagnetically driven steel
beam held pinned to fixed supports as shown. These fixed supports induce a
membrane tension at finite deflections, which gives a hardening nonlinear
stiffness modelled for moderately large deflections by the cubic term.

For such a driven nonlinear oscillator, closed-form analytical solutions are
not available and recourse must inevitably be made to numerical time integra-
tions. Just as with the preceding linear system, transients are observed, but after
these have decayed we now find that there are two alternative stable steady
states denoted here by A and B. The first plot of x against ¢ shows these two
steady oscillatory states, the starting points to eliminate transients having been
found by previous trial computations. We see that the large-amplitude motion
A and the small-amplitude motion B both have the same period as the forcing
term and are therefore fundamental harmonics as opposed to subharmonics:
they are noticeably out of phase with one another. The corresponding steady-
state phase projections are shown in the left-hand phase diagram, each closed
orbit having one Poincaré mapping denoted by a circle because the motions
have the period of the forcing: these mapping points show where the system is
whenever the time is a multiple of 2.

These two steady-state solutions, A and B, can be seen on the resonance
response diagram at the top right. This is a plot of the response amplitude
against the ratio of the forcing frequency to the natural frequency of the
autonomous system: this ratio is 1.6 for the parameters here adopted. Now in
a linear resonance problem we have a vertical resonant peak, but the positive
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cubic stiffness of our Duffing’s equation curves the peak to the right, giving a
domain of frequency ratio with three steady states. The steady state of inter-
mediate amplitude is unstable and so is not observed in a normal time integra-
tion, leaving us with the two alternative stable solutions A and B.

Now which of these two coexisting periodic attractors is picked up in a given
time integration depends on the starting conditions, and two transient motions
are illustrated in the lower diagrams. Starting with (x, X) equal to (10, 0) gives a
transient leading to attractor A while starting at (11, 0) gives a transient leading
to attractor B. Notice that due to the phase chosen, the larger-amplitude start
leads to the smaller-amplitude solution. The more obvious converse could
equally apply, the final motion adopted being as much governed by phase as
by amplitude.

Clearly in the space of the starting values of (x, x) at t = 0 there will be basins
of attraction such that motions originating in the basin of A lead after the decay
of transients to solution A, while motions starting in the catchment region of B
lead to the periodic attractor B. Between the basins of attraction (catchment
regions) will be a separatrix curve, and it is clear that our two rather close starts
straddle this separator. The basins of attraction tend to have a complex spiral
form, which accounts for the sensitivity to both phase and amplitude previously
mentioned.

This multiplicity of alternative stable attracting solutions (often more than
the present two) dependent on the starting conditions, which is not encountered
in the linear resonance problem with its unique periodic attractor, is typical of
nonlinear driven oscillators.

We come at last to our final equation of this chapter giving rise, as the reader
might expect, to a chaotic solution governed by a strange attractor.

2.7 FORCED NONLINEAR OSCILLATOR: CHAOTIC ATTRACTOR

The system of Figure 1.7, discussed briefly in Chapter 1, is a version of the
driven Duffing equation studied extensively by Ueda, and we see that it differs
from our previous damped, forced nonlinear oscillator in having no linear
stiffness. This would in fact arise physically if we had a beam loaded to precisely
its (Euler) buckling load: at buckling the linear stiffness has dropped to zero
due to the destabilizing action of the axial compressive load, and the nonlinear
stiffness can be modelled locally by the cubic term.

Once again analytical solutions are impossible, and digital computations
show that after transients have decayed the system settles down to a condition
of steady-state chaos. In contrast to the point and cyclic attractors that we have
so far examined, this convergence to chaos is said to be governed by a chaotic
attractor. These chaotic or strange attractors can coexist with other periodic
steady states, with appropriate basins of attraction, etc., but for the coefficients
chosen here there is in fact just a unique chaotic attractor that captures all
motions of the system. The middle trace shows a rather brief but fairly obvious
transient from (0, 0) lasting visibly for only about five forcing cycles of period
27. The steady-state chaos covering the remaining 45 forcing cycles has a fairly
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regular though non-periodic appearance, and we notice that the positive x
peaks synchronize approximately with the start of a forcing cycle for which ¢
is a multiple of 2x.

The steadiness of this final chaotic state is reflected in a stationary power
spectrum and a typical spectrum of chaos is shown in the upper right picture.
This is due to Ueda, and is for a slightly different set of coefficients, with 0.1
and 12 replacing the 0.05 and 7.5 of our equation. We see spikes at the forcing
frequency and odd multiples of this frequency (typical of a non-sinusoidal
periodic wave with the period of the forcing) plus, however, regions of ‘white
noise’ extended broadband peaks.

The bottom trace shows a more dramatic transient, generated by starting at
large amplitude at an inconvenient phase. The high frequency is a natural
consequence of the large x, because the effective stiffness increases as x2.
However, even after this start, the recognizable pattern of the steady-state
chaos soon emerges.

We recollect that the phase space of this driven oscillator is three-dimen-
sional, spanned by (x, X, ?), and the Poincaré mapping is generated by the
successive intersections of a trajectory with the ¢ = 2in sections, where i = 0,
1,2,.... The steady-state chaotic mapping is shown in the last picture. Here the
dots build up to form a complete shape with a fractal structure, similar to that
of a Cantor set (Figure 11.9). All the points lic in the positive x regime,
corresponding to our earlier observation that in the final state the positive x
peaks synchronize with the beginning of the forcing cycle.

Transients would appear as rather scattered dots outside this attractor, but
as we have seen the mapping points are very quickly attracted into this set. The
Poincaré section, often itself referred to as the attractor of the chaotic motion,
is really just a cross-section of the full attracting structure, which is a fixed
geometric form in the full three-dimensional phase space to which all trajector-
ies are finally attracted. It is the continuous stretching and folding of the sheets
of this attractor that produces the turbulent mixing motions characteristic of
chaotic dynamics, as we shall see in Chapter 6.



