
1 Introduction

Computer software development has become very expensive in these United States,

and there are a number of issues that high cost has brought with it. I suppose the

most important of these is that the programming jobs are going overseas, along with

most of our other manufacturing jobs. We can claim that we still do high-technology

design, and the critical jobs of testing and integration. But these jobs, even if we did

them well (which we don’t always do), will also go overseas, along with the making

of our beloved Levi jeans.

There is also a silent acceptance within the computer science community that the

quality of American software is poor, to put it mildly. This is well known, even to

our major publishing houses. They note that we write fewer and fewer ‘‘readable’’

books that our young and not so young practitioners can use. We forget that the

academic preparation of young Americans is the foundation of their professional

lives. It is hoped that a long and serious apprenticeship lies ahead of them, until

they, too, become masters of their professional fields. A large portion of our pub-

lications and books is written just to publish, and not to teach the young profes-

sional. When I pick up foreign textbooks, I’m astonished at the pains their

authors took to make them readable and truly useful to the reader. Foreign books

are not written solely for one’s academic peers; they are written to teach the reader.

We Americans are the great innovators and inventors, of course, but such jobs

generally are restricted to a limited number of research houses, facilities, and

universities. The earning of our daily bread as software professionals is becoming

more and more difficult as the jobs are going away.

Yet, we are able to produce software of the highest quality, and at a lower cost,

here in this country than anywhere else in the world. At present, based on my

experience, the Federal Government pays between $350 and $800 per commented

line of code for ground systems (the command and control software for aerospace

and military applications). And for on-board flight systems—the software that

is used in missiles, satellites, aircraft, spacecraft, instruments, and smart-guided

weapons—the costs are much higher, ranging from $450 to $1,200 per line of com-

mented code. Such systems are the very reasons for our global military superiority.

In contrast to these staggering costs, my colleagues and I here at the Jet Propulsion

Laboratory have been able to reduce the cost of ground systems to about $10 per

The Cognitive Dynamics of Computer Science: Cost-Effective Large Scale Software Development,
by Szabolcs Michael de Gyurky
Copyright # 2006 by John Wiley & Sons, Inc.

1

commented line of code on our most recent systems. During the past 20 years, my

teams and I have produced high-quality software at a cost ranging from $10 to $50

per line of commented code—depending on the mathematical complexity of the

application, the availability of the technology in the marketplace, and the schedule

to which we had to work.

1.1 THE RETENTION OF SOFTWARE JOBS

As a computer software professional, I am greatly concerned about the retention of

software jobs within our borders. My colleagues are the very best in their fields,

both in applications and systems software, and are pure technical innovators as

well. They are highly paid and worth every penny they earn. I pay my programmers

from $45 to $85 per hour, according to their years and levels of experience and skill

qualifications (most of my computer scientists are contractors and consultants, as

opposed to employees). Yet, we complete our tasks within the schedules and on

the budgets we have committed ourselves to, producing a high-quality product at

a cost far lower than anywhere else I know of in industry or in government.

Clearly, as a team, we are neither better educated nor more experienced than the

rest of our colleagues throughout the country. So why is there such a difference in

cost? Were it not for the fact that we are losing our livelihoods, this would be a

moot point. But there are many ‘‘software guys’’ out there, including my collea-

gues, who are trying in vain to find jobs. They are worried and are asking me ques-

tions. We have professions for which we have invested large amounts of time and

money, and we need incomes to pay our mortgages and raise our families.

So how does a project build software at $10 per line of code, while others build

at $800 or more for the identical product? That is the essential question that this

book is going to answer, together with:

What does it take to build quality software at a reasonable cost?

What are the major factors that influence the cost, quality, and development

schedule in software design and implementation?

1.2 DEPTH OF EXPERIENCE

This book is a summary of my 32 years of experience in designing and building

computer software: 7 years in the U.S. Army building software, and 25 years at

the Jet Propulsion Laboratory. This period of accumulated experience also includes

the information I gathered as a software management consultant to some of the

finest and best U.S. corporations—indeed, the giants in our industry. The problems

of quality, cost, and schedule have proven to be the same, end to end, wherever

I was invited to help out. The phenomenon of schedule vs. cost vs. quality in com-

puter science holds true for Germany, France, Holland, Denmark, and the rest of the

European countries as well. I have no experience with Japan, China, or India

2 INTRODUCTION

directly, but there is no reason to believe that their computer scientists and software

professionals are any different from ours.

I do not intend this to be ‘‘just another book on software,’’ as some of my

colleagues in industry have remarked dryly, but a worthwhile book to read. The

intention is to pass on my accumulated experience in computer science, as well

as the relevant experience gained in the combat arms of the U.S. Army, which in

my case was the Airborne Infantry. Now, there will be those who will say, ‘‘What

can you learn about computer science and software in the infantry?’’ Nothing about

computer software, it is true, but everything about management, leadership, under-

standing people, discipline, planning, organization of work and people, as well as

seemingly trivial subjects like how to staff through and coordinate action items

efficiently. All of these are essential to our work in computer science and to the

development of computer software. This is especially true for large systems—

those above 250,000 lines of code with high factors of technical complexity com-

bined with a short schedule. The absence of these skills will increase the cost of the

product tenfold or more.

1.3 THE SCOPE OF THIS BOOK

The scope of Chapter 16, ‘‘The Autonomous Cognitive System,’’ is much too large for

the subject to be covered in one chapter and must be dealt with in great detail on its

own. It is an essential part of the overall scope of this book, however, because it inter-

prets the work of the great cognitive philosophers from the software architect’s point

of view. I began to approach the works of Kant, Hegel, and Schopenhauer as a way of

looking at computer science many years ago; I never had the time to write my inter-

pretation down until now. When designing and building large software-intensive sys-

tems year in and year out, back to back, one does not have the luxury to spend time

writing, except for the design-associated books specific to a particular project.

The main theme of this book is high-quality, low-cost software, built on sche-

dule; this theme will be re-emphasized throughout. It is a teaching point, and teach-

ing points are just that: They are there to keep the mind focused, specifically on

low-cost, high-quality products, on schedule. A minor theme is the inhibitors,

those issues that prevent us from building elegantly, fast, and cheaply. These issues

are also deeply rooted in the Kantian human thought system (the architecture) and

the human thought process (the information flow), the understanding of which will

enable a person to at least grasp the ‘‘why,’’ even if one can’t do anything about

it. Understanding and learning from mistakes—one’s own and the mistakes of

others—is the great teacher and leads to ever better products.

It became very clear to me over the years that the successful building of com-

puter software at a reasonable cost was dependent on several important factors:

� Leadership

� Management

� Communication

THE SCOPE OF THIS BOOK 3

� Organization

� Understanding software development standards, architectures, and

methodologies

A project lacking in any of these factors will see an increase in the cost of its

software products. This book will discuss each of the factors affecting cost, from a

practitioner’s point of view.

1.4 THE NATURE OF COMPUTER SCIENCE

Additionally, two very important issues need to be discussed that also bear directly

on computer science and the cost of computer software.

The first of these is raised by the following questions: Where do computer

science and computer software belong in engineering? Should software be the

dominant part in an engineering effort, such as an aircraft or spacecraft project,

or should it serve a supportive role? This issue of computer science and its place-

ment is causing a rub throughout the industry. It is an issue created by the mindset

and outlook on the part of individuals. It is a divisive issue, and the resultant con-

flicts cost the customer money.

The second critical issue is raised by the questions: What is computer science

really? Why did we rename it ‘‘information technology?’’ What is the complete

definition of computer software? What is the role of philosophy in computer

science?1 Is it an important role? Why?

All one needs to do is look at the important recent publications in our field. We

find that there seem to be no answers to our questions. Our profession used to be

called automatic data processing. That evolved into computer science, then into

information technology, and finally it has branched off into artificial intelligence

and neural networks. What this really means is that while we are pushing the

state of the art, we have no agreement as to a unifying science, like biology and

chemistry have. Engineers deal with tangible facts and theorems, yet we deal in

abstractions. Our profession is a combination of art, science, and engineering. So

what is it? Why is it so important that we find a unifying principle?

1.5 THE FUTURE OF COMPUTER SCIENCE

We in computer science are headed full-bore toward total autonomy. This means we

need to build a true robot, one that can be sent into space. This would be an auton-

omous system that, in an intelligent fashion and with an intelligence similar to our

human intelligence, could explore our solar system and go to places where we

humans cannot survive but from which we can benefit. As a starter, for the building

1 Schopenhaur, Arthur. Die Welt als Wille und Vorstellung (The World as Will and Imagination)

Gesamtausgabe (Complete Edition). Deutscher Taschenbuch Verlag GmbH & Co. KG, München 1998.

Zweiter Band (Volume Two), page 149: ‘‘Every science has its special philosophy...’’

4 INTRODUCTION

of such a system, we need an architecture. We need a model that is rational, functional,

and logical, and one that can be built. This poses a serious problem because it

involves a paradigm shift in the way we think about our profession and how we

work in it. Paradigm shifts are dangerous events, as we all know. Galileo was nearly

burned for his ideas, and Bruno was. There is an inborn anger in some of us human

beings when we are confronted with a phenomenon we don’t understand. We either

learn, or we are left behind.

I feel that here in the United States we have a few great issues at stake. One is

retaining our lead in computer science, and in software programming jobs. Another

is pushing the state of the art ‘‘through the looking glass.’’ This must be accom-

plished, regardless of the opposition.

1.6 THE ESSENCE OF PHILOSOPHY

Why is the work of the great cognitive philosophers so important for the develop-

ment of high-quality software at a reasonable cost? It is because they were the ones

who researched how we humans perceive, think, decide, and act, and why we do

what we do. A thorough understanding of philosophy is therefore necessary to do

what we do efficiently and thoroughly.

The essence of philosophy comprises many factors:

� How we think

� How we organize our thoughts and our work

� How we contemplate

� How we pay attention and listen

� How we decide

� How we form value judgments

� How we communicate with others

Yet, above all, the essence of philosophy concerns itself with how we treat each

other. To me, therefore, it is the greatest of all the sciences. Small wonder that many

of the great philosophers were mathematicians and physicists. This discipline, phi-

losophy, upon which all the sciences rest, is given scant attention in the curriculum

of our universities and by those of us who earn our living in engineering and the

other sciences.

The greatest teachers (and I have had the good fortune of having had quite a

few) always used stories from their personal experiences to illuminate teaching

points. As students, we were more attentive because the learning process was so

much more interesting when it was related to historical events. The teaching of

geometry and mathematics becomes exciting when related to Harpalus (a great

Greek engineer and philosopher) and how he bridged the Hellespont for Xerxes

and the Persian Army. Teaching and instruction become more memorable

than watching and listening to someone writing equations on the blackboard.

How did he build that 1.6-mile-long pontoon bridge between Abydus and

THE ESSENCE OF PHILOSOPHY 5

Sestus?2 Why did he build it there? What was the outcome for Greece and

Persia?3 As a matter of interest, Harpalus can be justly referred to as someone

we call today ‘‘a defense contractor,’’ as were Archimedes and Histiaeus of

Miletus4 in their day. The Jet Propulsion Laboratory started as a U.S. Army

Ordnance Laboratory, during the Second World War. Thus, before NASA was

established, JPL, too, started out as a defense contractor.

There is one more very important aspect to using personal experiences in

illuminating (or ‘‘adding substance’’ to) an object in a philosophical sense. As

you will see in the architecture of the human thought system and the human thought

process (Figure 1), the role of ‘‘experience’’ is one of the dominant roles in Kantian

philosophy. How we apply our acquired knowledge, learned in the classroom, and

solve problems depend largely on the level of our personal experiences (Figure 8).

We acquire personal experiences by living life, and learning personally, or by

having someone tell us of their personal experiences in life. Thus, the personal

stories I recount in this book are to add substance to an ‘‘object’’ of a design,

idea, or concept,5 not simply to fill space.

Science and history taught together make learning complex subjects far easier.

This is a method that is also used in the Army to reinforce a teaching point and to

provide the student with a reference to the application of a skill, especially in sub-

jects like engineering and tactics. It so happens that Combat Engineering was among

the many skills I acquired through schooling in the U.S. Army. I specialized in bridge

design and construction, pontoon bridges and timber trestles being my favorites.

I use stories from personal experience also to illuminate issues of management,

leadership, and the architectural design process. I have a habit of doing this in my

seminars and classes in order to reinforce the teaching point I am making. After all,

the role of experience is one of the dominant themes of the Three Critiques of

Immanuel Kant.

1.7 WHY AUTONOMY?

Why do we need a totally autonomous system, one that can act and decide on its

own, without human intervention? The first thing that comes to my mind is the

2 Herodotus. The Peloponesian Wars, Book VII, Chapter II. The Modern Library of the World’s Best

Books, Random House Inc. New York, 1942.
3 J. F. C. Fuller. A Military History of the Western World, Volume I, Chapter I. Funk & Wagnalls Company,

New York, 1954.
4 Histiaetus and Thales actually built a 26-mile pontoon bridge over the Bosporus for Darius I ‘‘The

Great.’’ It collapsed with tragic consequences to those on it. For details, read The Peloponesian Wars.
5 Since Chapter 16 of this book culminates in my first thesis for an autonomous system, the reader must

understand the correct technical definition of the terms idea and concept as these dynamic processes relate

to the human thought process. The definitions of how these are formed are found in Die Welt als Wille Und

Vorstellung. Arthur Schopenhauer. Drittes Buch. Seite 316. Deutsche Taschenbuch Verlag GmbH & Co.

KG. Muenchen, Germany, 1998. (The World as Will and Imagination. Arthur Schopenhauer. Book Three.

Page 316. German Pocket Books, Publishers. Munich, Germany, 1998.)

6 INTRODUCTION

F
ig

u
re

1
.

A
n

in
it

ia
l

im
p

re
ss

io
n

o
f

th
e

fu
n

ct
io

n
al

o
rg

an
iz

at
io

n
o

f
th

e
h

u
m

an
th

o
u

g
h

t
sy

st
em

.

7

exploration of deep space. All of space is hostile to human life, in fact, to all of

biological life. Mars, Venus, and Jupiter, for instance, are all hostile environments,

yet we must explore them because of the categorical imperative: ‘‘I will, because

I can.’’ It would be infinitely easier to go to Mars if we had a crew of autonomous

systems go ahead of the human crew. The autonomous systems would construct a

fully life-supporting facility on Mars, test it, and provide the test data to the crew

of the manned spacecraft prior to launch. There are also hazardous places on

Earth, such as radioactive contamination sites like Chernobyl, the Hanford Reserva-

tion, and Oak Ridge that need cleaning up. Autonomous systems could perform the

more dangerous jobs. Finally, there are the handling and disposition of biological and

chemical agents, and the handling of unknown viruses and bacteria. All these tasks

require autonomous systems that can learn, analyze, and decide on a logical course

of action, with the human being still the suggesting superior, but not the controller.

One of the questions a colleague and friend asked me was, ‘‘What will we do if

we build it, and it turns out that it doesn’t like us?’’ Good question! I never thought

that possibility through, and certainly I have made many mistakes in the past, not

contemplating unforeseen possibilities. For example, as a young U.S. Army Special

Forces demolitionist in 1962, I used to train with atomic demolitions ammunition.

I had to disassemble and reassemble all of the uranium components with only a lead

apron, lead gloves, and a pair of goggles to protect me. What all that did to me

physically, I have no idea; I was only 24 at the time, and nobody told me about

long-term effects.

So yes, we can build an autonomous system. How we control it is a question we

have to resolve a priori.

1.8 AN ARCHITECTURE FOR AUTONOMY

The final chapter of this book is the chapter on autonomous systems. From the

architect’s point of view it describes the system architecture at a level that we

refer to in computer science as a Level I architecture. Every system, by force of

imperative, must have the architect’s vision of how the system will look from an

initially subjective point of view.

The greatest problem posed to today’s professionals who are contemplating

building a truly autonomous system is the architectural design. The reason is that

current thinking in computer science is cast into the concrete of hierarchical-

sequential logic. In the context that AI and neural networks are attempting

to solve the problems posed by autonomy, this approach is unfortunately a ‘‘cul-

de-sac,’’ or dead end. Human beings who fall into the ‘‘normal’’ category have a

completely dynamic, nonhierarchical, nonsequential, and nonlinear thought and

reasoning process. Our ‘‘thought system’’ (our functional architecture), our ‘‘exter-

nal sensory input,’’ and our ‘‘thought process’’ (data handling) are so dynamic that

they cannot be expressed by using simple traditional methods. The traditional

approaches to illustrating the architectures of functional relationships are hierar-

chical and linear; these use the ubiquitous block diagrams and boxes.

8 INTRODUCTION

It is in this arena of thought that the great classical German cognitive philoso-

phers (e.g., Immanuel Kant, Arthur Schopenhauer, and Georg Wilhelm Friedrich

Hegel) have laid the groundwork for us. When the collective ‘‘genius’’ of these

three men is combined with the current state-of-the-art in the technology of com-

puter science, we are looking at total autonomy as being within our grasp. Whether

it is for the good of mankind or not is an entirely different question.

This still leaves the problem of how we are to express, illustrate, and articulate

the architecture of an autonomous system. We must be careful at this point not

to confuse software and hardware, and their equivalent in the human body and

the human brain. The human brain is the equivalent of the computer hardware,

but we are interested in the software that resides in the brain, the human cognitive

system!

We would be using the human cognitive system as the model, but it must be done

in such a manner that will be understood by those who will be building it. At this

point the tools, processes, and methodology required to express the architecture

become critically important, because if it is faulty or too complex, the engineering

team will get lost in the details.

So, what is the alternative to the hierarchical and linear approach, to block dia-

grams and boxes? I personally have used spheres and circles in illustrating my

designs during the past 30 years. I have expressed software architectures in this

way because the systems I have designed and managed the development of were

one-of-a-kind, unique, and mostly large systems built on constrained schedules

with capped budgets. I have had a difficult time expressing these systems using

the hierarchical approach and did not do so unless forced by my management.

More often than not, they did not understand the context diagrams and architectural

expressions anyway. The surprising thing was that my GDSS Design Team under-

stood the concept, instantly, when I presented it to them in January 1986. As time

went on, and my successes were followed by more successes, I was allowed

to follow my methodology. I use Leibnitz ‘‘circles’’ and Euler ‘‘spheres’’6 to

express the relationships between the functional attributes of the ‘‘human thought

system’’ and the ‘‘human thought process.’’ I also use them as a general approach

toward the articulation and illustration of the functional relationship between com-

puter software segments or subsystems.

1.9 OTHER NOTES

I would also like to bring the matter of the footnotes to your attention. Where I use

references to foreign publications, it is only because that is the language I have read

6 Beitraege zur Berichtung bisheriger Missverstaendnisse der Philosophen. Johann Michael Mauke, Jena,

1790. Theil von Abhandlung Nr. IV: Ueber das Verhaeltniss der Theorie des Vorstellungvermoegens zur

Kritik der reinen Vernunft, S. 277–294. Gerhard Karls, Universitaet Tuebingen, Germany.

Contributions to the Commentary on the Misunderstandings of the Philosophers. Johann Michael

Mauke, Jena Germany, 1790. Part of Essay No. IV, about the relationship of the IMAGINATION (with all of its

attributes) to the Critique of Pure Reason.

OTHER NOTES 9

them in. This is particularly true of the works of Kant, Schopenhauer, and Hegel.

They are my main references and have had the greatest influence on my approach of

how I manage and how I develop software. I translate the titles of the books for your

benefit, but I cannot go back and reread the works in English for the benefit of this

book; that would take years, and I’d never get finished.

My use of the German language in the original and in footnotes has its origins in

my early college days. I started to use German books and publications for the clar-

ification of technical and science problems that I didn’t fully understand in my Eng-

lish textbooks, in particular, chemistry and engineering. This use of material in its

original language became a habit and has remained with me throughout my profes-

sional career. I certainly would not have found the linkage between the classical

philosophers and computer science had I not read their works in the original and

developed an enthusiasm for them as a means of relaxation. While going about

my business of designing software architectures and then managing their develop-

ment, I suddenly realized that an autonomous system was doable and achievable in

the near future.

As mentioned earlier, I use stories from personal experiences to illuminate issues

of all the subjects covered in this book. I have acquired the habit of doing this from

the teachers and instructors who were most effective in teaching me. I do this in my

seminars and in my lectures to reinforce a teaching point I am making. There are

many colleagues and acquaintances who cannot use personal experiences related to

the constructs in computer science. These are friends who simply do not have the

benefit of experience in the fields addressed here, or have only limited experience,

having spent most of their career in the classroom teaching. They understand my

style, however, and enjoy my references to practical and real situations.

Finally, the chapter on autonomy will be followed up with a volume purely dedi-

cated to that subject, developed to a Level I architecture, enabling those who are

interested and understand the systems concept to start the process of requirements

and detailed design.

10 INTRODUCTION

