
Chapter 1

Introducing Application Servers
In This Chapter
� Understanding the role of application servers

� Meeting the J2EE family of technologies

� Outlining the major features of WebLogic

In the most general sense, a server is a program that provides information
to a client that requests that information. Sometimes a server is a computer

used to centralize resources so that they can be shared by a number of differ-
ent users. For instance, file servers centralize file storage, database servers
centralize data storage, and web servers centralize the distribution of web con-
tent. In a similar vein, an application server centralizes key programming tasks.
Doing so has many advantages, as you will discover.

In this chapter, you find out about application servers, in particular BEA’s
WebLogic Server. In a recent Gartner study, BEA WebLogic Server had 34 per-
cent of the application server market share — the largest market share of any
single vendor. BEA Systems is at the forefront of market developments and
support of new standards.

WebLogic is not the only application server on the market. WebLogic’s
main competitors are IBM’s WebSphere and JBoss, an open-source applica-
tion server released under the LGPL license. In addition to these two Java-
based application servers, WebLogic faces non-Java competition, mainly from
the growing Microsoft .NET family of products.

Application Server Basics
Enterprise JavaBeans (EJB) is a technology for developing, assembling,
deploying, and managing distributed applications in an enterprise environ-
ment. This basically means that EJB provides a Java framework for executing
objects residing on different machines over a distributed network. This is a
powerful capability: It enables a user to harness the power of different
machines transparently, in a single application.

d524720 Ch01.qxd 5/20/03 8:37 AM Page 9

A machine hosting and executing an EJB object is called an EJB application
server. WebLogic, as an EJB application server, also acts as a container for
EJBs. A container provides a management system for EJB objects. An efficient
container removes the need for users and developers (to a certain extent) to
be concerned about exactly how an object will be used. Put another way, an
EJB application server provides APIs and interfaces, and an EJB is like a plug-
in that provides business logic for a specific application. As a developer, you’re
writing modules (EJBs) that are dropped into the application server, which
then loads and runs the EJBs when needed.

Servers work closely with clients. A client requests information from a server
or requests that a server do something. The server, acting on the request,
sends the requested information to the client or does what it is asked to do.

BEA WebLogic Server, as an EJB application server, interacts with clients in a
similar manner. The machine that requests WebLogic to run an EJB program
is the client. This client program can be a stand-alone Java program or another
server. (Often web servers are the clients for the services of EJBs.) EJBs allow
a busy web server to focus on what it was designed to do: serve web pages.
The web server calls upon EJBs, which reside on an application server, to
perform business-specific tasks, such as retrieving data from a database.

This division of labor is the key reason to use an application server. Dividing
the task between the client and the application server results in three imme-
diate advantages:

� Reliability

� Scalability

� Modularity

Achieving reliability through redundancy
You can run an application on your desktop machine only as long as your
machine is operational. In other words, if your machine “hangs” (becomes
locked) or the power goes off, you can’t continue to work. Application servers,
on the other hand, can offer a more reliable way of running an application
through a concept called redundancy. This simply means that you add multi-
ple servers, instruct them to act together as if they were a single server, and
then allow clients to access them. If one of the servers becomes unavailable,
the other servers pick up the slack and respond to the needs of the clients.

You can also work on an ailing server without disturbing the other servers.
You are free to reboot the crashed application server without affecting the
stability of the remaining application servers. Using multiple application
servers in this way can increase the reliability of your application.

10 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 10

Making applications scalable
As more and more clients make requests of an application server, more and
more demands are placed on that server. As the overall demands become
greater, the capability of the server to quickly fulfill each individual request
decreases. One solution to this problem is to add more horsepower to the
machine used to run the application server — perhaps more memory, a
faster hard drive, or even a faster CPU. A better solution, however, is to add
another server, clustering it with the existing server. Now the deluge of client
requests can be serviced by two machines acting as one. Need more power?
Add a third, fourth, or fifth machine. This is the essence of scalability.

As requests for services come in from the clients, the cluster automatically
dispatches these requests to the least busy of the application servers. This
allows you to increase the capacity of your application by simply adding
additional application servers rather than going through the costly process
of upgrading a production server. As a bonus, the additional servers also
increase the reliability of your system.

Improving modularity
Modularity has long been one of the chief design goals of computer program-
ming. Modular program design breaks the program into smaller units, or mod-
ules, that are developed separately. Often these modules can be reused across
several applications. Object oriented programming (OOP) was created to facil-
itate the creation of modular programs, among other design goals.

One of the most fundamental ways of making a program modular is to
separate presentation logic — the part of the program that interacts with the
user — from business logic — the part of the program that makes decisions
and performs calculations. Presentation logic should be housed in the web
server, because the web server is responsible for transmitting the HTML that
will be presented to the user. Business logic should be housed in the applica-
tion server so that it can be reused by any web pages that may need it. The
same business logic is often needed across many web pages. For example,
the business logic to update inventory would be reused on any page that
affects inventory.

An application server enables this separation. Business logic is placed in
EJBs. The application server executes the EJBs, and the results are sent to
the presentation program running on the web server.

11Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 11

J2EE, Java’s Approach to
Application Servers

Java 2 Platform, Enterprise Edition (J2EE) contains additions to the Java envi-
ronment that Sun Microsystems created to facilitate such enterprise con-
cepts as application servers. Sun has defined a specific way in which to build
application servers for Java. One advantage to this approach is that content
you develop for WebLogic Server can be used also with other J2EE applica-
tion servers. In other words, you can migrate the content to another J2EE
application server, if needed.

J2EE is not just one technology, but rather a collection of technologies. Sun
defines standards embodied as J2EE, which other vendors implement. For
example, WebLogic implements the following J2EE components:

� JavaServer Pages (JSP)

� Enterprise JavaBeans (EJB)

� Java Transaction Service (JTS)

� Java Message Service (JMS)

� Java Naming and Directory Interface (JNDI)

In other chapters, you find out more about these components of J2EE. In this
section, I briefly review the function of each of these to give you an overview
of how they fit together.

JavaServer Pages
JavaServer Pages (JSP) allow you to embed Java code directly into HTML-like
documents. JSP has access to nearly all the core features of the Java pro-
gramming language, except you’re returning only streams back to the user’s
browser. This allows you to construct complex applications using only JSP.
However, just because you can construct complex JSP-based applications
does not mean that you should. JSP is best restricted to presentation logic,
with more complex business logic delegated to EJBs.

Enterprise JavaBeans
Enterprise JavaBeans (EJB) technology allows code to be executed on a
remote system. This remote system is the application server. EJB is com-
monly used to isolate business logic from presentation logic, which usually

12 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 12

consists of JSP. EJB coordinates access with the database and shields higher
levels, such as JSP, from the need to directly access the database. In this way,
if you were to change database servers or the format of your database, all
code related to data access would be in one location.

Java Transaction Service
Java Transaction Service (JTS) is a transaction manager that allows requests
to be segmented into transactions. These transactions succeed or fail as a
whole. This prevents partial transactions from persisting if only a part of the
transaction is successful.

Java Message Service
The Java Message Service (JMS) API was developed to allow Java applications
to be message driven. A message-compatible EJB can receive and generate
messages. These messages can contain any data needed by the program.
Messaging is asynchronous, so considerable time can elapse before a response
message is received, if at all. JMS also allows messages to be saved to a mes-
sage store, such as a file or a database.

Java Naming and Directory Interface
Java Naming and Directory Interface (JNDI) is a standard extension to the Java
platform that provides naming and directory information to Java programs.
This allows EJB and other resources to have names that can be looked up by
their client programs. JNDI is a high-level standard and can use any number
of underlying name and directory services.

Enterprise applications
Enterprise applications tie many of the previously mentioned components
together into one application. An enterprise application is most commonly
made up of a web application and any EJB that may be used by that web appli-
cation. The entire enterprise application is packaged as a single archive file,
which can be easily deployed to a server such as WebLogic. This allows for
easy packaging, distribution, and deployment of your enterprise applications.

13Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 13

Major Features of WebLogic Server
As mentioned, WebLogic is the most popular application server available for
Java. WebLogic has gained this popularity due, in part, to a full set of fea-
tures. In this section, you are introduced to some of these features. In other
chapters, they are described in much greater detail.

Throughout this text, I refer to BEA’s WebLogic Server product simply as
WebLogic. BEA, however, uses the term WebLogic to refer to a family of prod-
ucts, including WebLogic Portal, WebLogic Integration, WebLogic Workshop,
and WebLogic Express. The popularity of the core WebLogic Server product,
however, has led to the shortening of the name to simply WebLogic in many
circles.

Platform support
WebLogic can run on many platforms, including Windows and many flavors of
UNIX. WebLogic is available also for many large mainframe computer systems,
providing WebLogic with greater processing power and scalability. The exten-
sive platform support of WebLogic allows you to mix and match technologies.
For example, you might run WebLogic on a mainframe computer system, back-
ing it up with a cluster of less expensive machines that run the same applica-
tions. Further, you can test your application on less expensive machines and
run your production system on more expensive, higher-bandwidth hardware.

Web applications
Although WebLogic is most commonly thought of as an application server, it
can also handle many web server functions. This means WebLogic could be
used as an all-in-one solution. JavaServer Pages (JSP) is one of the most
common forms of server-side Java programming. WebLogic includes the
capability to execute JSP. You can to create web applications in WebLogic
that make use of technologies such as JSP and custom tag libraries. Web
applications are covered in Chapter 5.

EJB support
Perhaps the most basic feature of a Java-based application server is support
for Enterprise JavaBeans (EJB). WebLogic includes extensive support for the
five types of EJB:

14 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 14

� Stateless bean

� Stateful bean

� Message bean

� Container-managed persistence (CMP) entity bean

� Bean-managed persistence (BMP) entity bean

Additionally, WebLogic makes other important services available to these
beans, such as database connection pooling and naming services. EJB sup-
port is discussed in Chapters 6 and 7.

Database connectivity
Databases are often the heart of any serious application. Because of this,
WebLogic includes extensive support for relational databases. One of the most
important features is database connection pooling. This allows WebLogic —
instead of individual EJBs — to manage connections to the database.

Database connections are an expensive resource. Processor cycles and
extensive network communication are required to open and close these
connections, and this can slow down other operations. By using a database
connection pool, WebLogic can reuse its pool of open database connections,
freeing the application from the overhead of constantly creating and destroy-
ing database connections. Database connectivity is discussed more fully in
Chapter 12.

Web services
Web services are a new technology that provides a more uniform way of
accessing the components of an application. Web services allow your appli-
cation to receive XML messages from other applications and respond to
those requests using XML. This means other applications can make use of
your application using only the HTTP protocol.

XML messages are sent and received using the Simple Object Access Protocol
(SOAP), a W3C standard that specifies how web services should be accessed
by their client programs. By supporting a standard protocol such as SOAP,
many different systems can access the web services that you make available
through WebLogic Server. Web services are discussed in Chapter 9. Acces-
sing web services is discussed in Chapter 10.

15Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 15

One of the new features of WebLogic (as of Version 7) is WebLogic Workshop,
which enables someone who is not familiar with J2EE to construct web ser-
vices. WebLogic Workshop provides a number of tools and frameworks to
make designing web services easier. WebLogic Workshop is discussed in
Chapter 11.

Clustering
Clustering is the capability to chain together many individual application
servers. These application servers are clones of each other, performing the
same task. The clustering capabilities of WebLogic enable these servers to
handle requests even though some of the application servers may fail. This
greatly increases the reliability of your application.

Clustering also allows your web application to become very scalable.
Because you now have many application servers handling requests from
clients, you can handle a greater number of incoming requests. Clustering is
discussed in more detail in Chapter 16.

Security
Security is a major concern in any application — and when your application
is accessible through the Internet, the need for security increases. WebLogic
can help you with three specific areas of security:

� Securing your data transmissions. Data transmissions are secured using
SSL/HTTPS. This prevents a hacker from accessing data packets as they
are transmitted between the browser and the web server.

� Controlling access by users. You may want to restrict some users from
accessing the overall system and restrict other users from accessing
only certain parts of the system. WebLogic provides features that allow
you to define users and control exactly what they have access to.

� Verifying administrators. WebLogic’s Administration Console enables
you to easily configure your server remotely. Unfortunately, this also
means that a hacker can configure your system remotely. WebLogic pro-
vides security to all configuration programs to limit access by unautho-
rized users. Security is discussed in Chapter 18.

16 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 16

