
Chapter 1

What’s UML About, Alfie?
In This Chapter
� Understanding the basics of UML

� Exploring the whys and whens of UML diagrams

So you’ve been hearing a lot about UML, and your friends and colleagues
are spending some of their time drawing pictures. And maybe you’re

ready to start using UML but you want to know what it’s all about first. Well,
it’s about a lot of things, such as better communication, higher productivity,
and also about drawing pretty pictures. This chapter introduces you to the
basics of UML and how it can help you.

Introducing UML
The first thing you need to know is what the initials UML stand for. Don’t
laugh — lots of people get it wrong, and nothing brands you as a neophyte
faster. It’s not the Universal Modeling Language, as it doesn’t intend to model
everything (for example, it’s not very good for modeling the stock market;
otherwise we’d be rich by now). It’s also not the Unified Marxist-Leninists, a
Nepalese Political party (though we hope you’ll never get that confused). It is
the University of Massachusetts Lowell — but not in this context. UML really
stands for the Unified Modeling Language.

Well, maybe that’s not the most important thing to know. Probably just as
important is that UML is a standardized modeling language consisting of
an integrated set of diagrams, developed to help system and software
developers accomplish the following tasks:

� Specification

� Visualization

� Architecture design

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 9

� Construction

� Simulation and Testing

� Documentation

UML was originally developed with the idea of promoting communication and
productivity among the developers of object-oriented systems, but the read-
ily apparent power of UML has caused it to make inroads into every type of
system and software development.

Appreciating the Power of UML
UML satisfies an important need in software and system development.
Modeling — especially modeling in a way that’s easily understood — allows
the developer to concentrate on the big picture. It helps you see and solve
the most important problems now, by preventing you from getting distracted
by swarms of details that are better to suppress until later. When you model,
you construct an abstraction of an existing real-world system (or of the system
you’re envisioning), that allows you to ask questions of the model and get
good answers — all this without the costs of developing the system first.

After you’re happy with your work, you can use your models to communicate
with others. You may use your models to request constructive criticism and
thus improve your work, to teach others, to direct team members’ work, or
to garner praise and acclamation for your great ideas and pictures. Properly
constructed diagrams and models are efficient communication techniques
that don’t suffer the ambiguity of spoken English, and don’t overpower the
viewer with overwhelming details.

Abstracting out the essential truth
The technique of making a model of your ideas or the world is a use of
abstraction. For example, a map is a model of the world — it is not the
world in miniature. It’s a conventional abstraction that takes a bit of training
or practice to recognize how it tracks reality, but you can use this abstraction
easily. Similarly, each UML diagram you draw has a relationship to your reality
(or your intended reality), and that relationship between model and reality
is learned and conventional. And the UML abstractions were developed as
conventions to be learned and used easily.

If you think of UML as a map of the world you see — or of a possible world you
want — you’re not far off. A closer analogy might be that of set of blueprints
that show enough details of a building (in a standardized representation with

10 Part I: UML and System Development

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 10

lots of specialized symbols and conventions) to convey a clear idea of
what the building is supposed to be.

The abstractions of models and diagrams are also useful because they suppress
or expose detail as needed. This application of information hiding allows you
to focus on the areas you need — and hide the areas you don’t. For example,
you don’t want to show trees and cars and people on your map, because
such a map would be cumbersome and not very useful. You have to suppress
some detail to use it.

You’ll find the word elide often in texts on UML — every field has its own
jargon. Rumor has it that elide is a favorite word of Grady Booch, one of
the three methodologists responsible for the original development of UML.
Elide literally means to omit, slur over, strike out, or eliminate. UML uses
it to describe the ability of modelers (or their tools) to suppress or hide
known information from a diagram to accomplish a goal (such as simplicity
or repurposing).

Chapter 2 tells you more about using these concepts of information hiding
and abstraction during development.

Selecting a point of view
UML modeling also supports multiple views of the same system. Just as you
can have a political map, a relief map, a road map, and a utility map of the
same area to use for different purposes — or different types of architectural
diagrams and blueprints to emphasize different aspects of what you’re
building — you can have many different types of UML diagrams, each of
which is a different view that shows different aspects of your system.

UML also allows you to construct a diagram for a specialized view by limiting
the diagram elements for a particular purpose at a particular time. For example,
you can develop a class diagram — the elements of which are relevant things
and their relationships to one another — to capture the analysis of the problem
that you have to solve, to capture the design of your solution, or to capture
the details of your implementation. Depending on your purpose, the relevant
things chosen to be diagram elements would vary. During analysis, the elements
that you include would be logical concepts from the problem and real world;
during design, they would include elements of the design and architectural
solution; and during implementation, they would primarily be software
classes.

A use case diagram normally concentrates on showing the purposes of the
system (use cases) and the users (actors). We call a use case diagram that
has its individual use cases elided (hidden) a context diagram, because it
shows the system in its environment (context) of surrounding systems
and actors.

11Chapter 1: What’s UML About, Alfie?

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 11

Choosing the Appropriate UML Diagram
UML has many diagrams — more, in fact, than you’ll probably need to know.
There are at least 13 official diagrams (actually the sum varies every time we
count it) and several semiofficial diagrams. Confusion can emerge because
UML usually allows you to place elements from one diagram on another if
the situation warrants. And the same diagram form, when used for a different
purpose, could be considered a different diagram.

In Figure 1-1, we’ve constructed a UML class diagram that sums up all the
major types of UML diagrams (along with their relationships), using the
principle of generalization, which entails organizing items by similarities
to keep the diagram compact. (See Chapter 2 for more information on
generalization.)

In Figure 1-1, the triangular arrows point from one diagram type to a more
general (or more abstract) diagram type. The lower diagram type is a kind-
of or sort-of the higher diagram type. Thus a Class Diagram is a kind of
Structural Diagram, which is a kind of Diagram. The diagram also uses a
dashed arrow to indicate a dependency — some diagrams reuse the features
of others and depend on their definition. For example, the Interaction
Overview Diagram depends on (or is derived from) the Activity Diagram
for much of its notation. To get a line on how you might use UML diagrams,
check out the summary in Table 1-1.

Structural
Diagram

Diagram

Object Diagram Class Diagram Component
Diagram

Package
Diagram

Deployment
Diagram

Composite
Structure
Diagram

Behavioral
Diagram

Activity
Diagram

Use-Case
Diagram

State-Machine
Diagram

Interaction-
Overview
Diagram

Sequence
Diagram

Timing
Diagram

Interaction
Diagram

Communication
Diagram

Protocol State
Machines

Figure 1-1:
A class

diagram
of UML

diagrams.

12 Part I: UML and System Development

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 12

Slicing and dicing UML diagrams
There are many ways of organizing the UML diagrams to help you understand
how you may best use them. The diagram in Figure 1-1 uses the technique of
organization by generalization (moving up a hierarchy of abstraction) and
specialization (moving down the same hierarchy in the direction of concrete
detail). (See Chapter 6 for more on generalization and specialization.) In
Figure 1-1, each diagram is a subtype of (or special kind of) the diagram it
points to. So — moving in the direction of increasing abstraction — you can
consider a communication diagram from two distinct angles:

� It’s a type of interaction diagram, which is a type of behavioral diagram,
which is a type of diagram.

� It’s derived from a composite structure diagram, which is a kind of
structural diagram, which is a type of diagram.

After you get some practice at creating and shaping UML diagrams, it’s
almost second nature to determine which of these perspectives best fits
your purpose.

This general arrangement of diagrams that we used in our Figure 1-1 is
essentially the same as the UML standard uses to explain and catalog UML
diagrams — separating the diagrams into structural diagrams and behavioral
diagrams. This is a useful broad categorization of the diagrams, and is
reflected in the categorizations in Table 1-1:

� Structural diagrams: You use structural diagrams to show the building
blocks of your system — features that don’t change with time. These
diagrams answer the question, What’s there?

� Behavioral diagrams: You use behavioral diagrams to show how your
system responds to requests or otherwise evolves over time.

� Interaction diagrams: An interaction diagram is actually a type of
behavioral diagram. You use interaction diagrams to depict the
exchange of messages within a collaboration (a group of cooperating
objects) en route to accomplishing its goal.

Table 1-1 UML 2 Diagrams and Some of Their Uses
Category Type of Purpose Where to Find

Diagram More Information

Structural Class diagram Use to show real-world entities, Chapter 7
diagram elements of analysis and design,

or implementation classes and
their relationships

(continued)

13Chapter 1: What’s UML About, Alfie?

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 13

Table 1-1 (continued)
Category Type of Purpose Where to Find

Diagram More Information

Structural Object diagram Use to show a specific or Chapter 7
diagram illustrative example of objects

and their links. Often used to
indicate the conditions for an
event, such as a test or an
operation call

Structural Composite Use to show the how something Chapter 5
diagram structure is made. Especially useful in

diagram complex structures-of-structures
or component-based design

Structural Deployment Use to show the run-time Chapter 19
diagram diagram architecture of the system, the

hardware platforms, software
artifacts (deliverable or running
software items), and software
environments (like operating
systems and virtual machines)

Structural Component Use to show organization and Chapter 19
diagram diagram relationships among the

system deliverables

Structural Package Use to organize model elements Chapter 7
diagram diagram and show dependencies

among them

Behavioral Activity diagram Use to the show data flow and/ Chapter 18
diagram or the control flow of a behavior.

Captures workflow among
cooperating objects

Behavioral Use case Use to show the services that Chapter 8
diagram diagram actors can request from a system

Behavioral State machine Use to show the life cycle of a Chapter 18
diagram diagram / particular object, or the

Protocol state sequences an object goes
machine diagram through or that an interface

must support

Interaction Overview Use to show many different inter- Chapter 13
diagram diagram action scenarios (sequences of

behavior) for the same collab-
oration (a set of elements working
together to accomplish a goal)

14 Part I: UML and System Development

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 14

Category Type of Purpose Where to Find
Diagram More Information

Interaction Sequence Use to focus on message Chapter 13
diagram diagram exchange between a group of

objects and the order of the
messages

Interaction Communication Use to focus on the messages Chapter 14
diagram diagram between a group of objects and

the underlying relationship
of the objects

Interaction Timing diagram Use to show changes and their Rarely used, so
diagram relationship to clock times in we refer you to

real-time or embedded the UML
systems work specification

Because UML is very flexible, you’re likely to see various other ways of
categorizing the diagrams. The following three categories are popular:

� Static diagrams: These show the static features of the system. This
category is similar to that of structural diagrams.

� Dynamic diagrams: These show how your system evolves over time.
This category covers the UML state-machine diagrams and timing
diagrams.

� Functional diagrams: These show the details of behaviors and
algorithms — how your system accomplishes the behaviors requested
of it. This category includes use-case, interaction, and activity diagrams.

You can employ UML diagrams to show different information at different times
or for different purposes. There are many modeling frameworks, such as
Zachman or DODAF (Department of Defense’s Architecture Framework) that
help system developers organize and communicate different aspects of their
system. A simple framework for organizing your ideas that is widely useful is
the following approach to answering the standard questions about the system:

� Who uses the system? Show the actors (the users of the system) on
their use case diagrams (showing the purposes of the system).

� What is the system made of? Draw class diagrams to show the logical
structure and component diagrams to show the physical structure.

� Where are the components located in the system? Indicate your plans for
where your components will live and run on your deployment diagrams.

� When do important events happen in the system? Show what causes
your objects to react and do their work with state diagrams and
interaction diagrams.

15Chapter 1: What’s UML About, Alfie?

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 15

� Why is this system doing the things it does? Identify the goals of the
users of your system and capture them in use cases, the UML construct
just for this purpose.

� How is this system going to work? Show the parts on composite
structure diagrams and use communication diagrams to show the inter-
actions at a level sufficient for detailed design and implementation.

Automating with Model-Driven
Architecture (MDA)
Model-driven architecture (MDA) is new way to develop highly automated
systems. As UML tools become more powerful, they make automation a real
possibility much earlier in the process of generating a system. The roles of
designer and implementer start to converge. UML provides you with the keys
to steer your systems and software development toward new horizons utiliz-
ing model-driven architectures.

In the past, after the designer decides what the system would look like —
trading off the design approach qualities such as performance, reliability,
stability, user-friendliness — the designer would hand the models off to the
developer to implement. Much of that implementation is difficult, and often
repetitious. As one part of an MDA approach to a project, UML articulates the
designer’s choices in a way that can be directly input into system generation.
The mechanical application of infrastructure, database, user interface, and
middleware interfaces (such as COM, CORBA, .NET) can now be automated.

Because UML 2 works for high-level generalization or for showing brass-tacks
detail, you can use it to help generate high-quality, nearly complete imple-
mentations (code, database, user-interface, and so on) from the models.

In MDA, the Development Team is responsible for analysis, requirements,
architecture, and design, producing several models leading up to a complete,
but Platform-Independent Model (PIM). Then UML and MDA tools can gener-
ate a Platform-Specific Model (PSM) based on the architecture chosen and
(after some tweaking) produce the complete application.

This approach promises to free the development team from specific middleware
or platform vendors. When a new architecture paradigm appears — and it
will — the team can adopt it without going back to Square One for a complete
redevelopment effort. The combination of UML and MDA also promises to
free development teams from much of the coding work. Although the required
UML models are much more specific than most organizations are used to,
their use will change the way developers make systems.

With the advent of MDA and its allied technologies, UML becomes a sort of
executable blueprint — the descriptions, instructions, and the code for your
system in one package. Remember it all begins with UML.

16 Part I: UML and System Development

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 16

Identifying Who Needs UML
Broadly speaking, UML users fall into three broad categories:

� Modelers: Modelers try to describe the world as they see it — either the
world as is, whether it’s a system, a domain, an application, or a world
they imagine to come. If you want to document a particular aspect of
some system, then you’re acting as a modeler — and UML is for you.

� Designers: Designers try to explore possible solutions, to compare, to
trade off different aspects, or to communicate approaches to garner
(constructive) criticism. If you want to investigate a possible tactic or
solution, then you’re acting as a designer — and UML is for you.

� Implementers: Implementers construct solutions using UML as part
of (or as the entire) implementation approach. Many UML tools can
now generate definitions for classes or databases, as well as application
code, user interfaces, or middleware calls. If you’re attempting to get
your tool to understand your definitions, then you’re an Implementer —
and (you guessed it) UML is for you.

To understand how you can benefit from UML, it will help to know how and
why it was developed. It’s based on successful and working techniques
proposed by groups of Software Technology Vendors before the Object
Management Group, and voted upon by the members.

Dispelling Misconceptions about UML
Many developers have several misconceptions about UML. Perhaps you do
too, but after reading this book, you’ll have the misconceptions dispelled:

� UML is not proprietary. Perhaps UML was originally conceived by
Rational Software, but now it’s owned by OMG, and is open to all. Many
companies and individuals worked hard to produce UML 2. Good and
useful information on UML is available from many sources (especially
this book).

� UML is not a process or method. UML encourages the use of modern
object-oriented techniques and iterative life cycles. It is compatible with
both predictive and agile control approaches. However, despite the simi-
larity of names, there is no requirement to use any particular “Unified
Process” — and (depending on your needs) you may find such stuff
inappropriate anyway. Most organizations need extensive tailoring of
existing methods before they can produce suitable approaches for their
culture and problems.

� UML is not difficult. UML is big, but you don’t need to use or under-
stand it all. You are able to select the appropriate diagrams for you

17Chapter 1: What’s UML About, Alfie?

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 17

needs and the level of detail based on you target audience. You’ll need
some training and this book (of course), but UML is easy to use in
practice.

� UML is not time-consuming. Properly used, UML cuts total development
time and expenses as it decreases communication costs and increases
understanding, productivity, and quality.

18 Part I: UML and System Development

The evolution of UML
In the B.U. days (that’s Before UML), all was
chaos, because object-oriented developers did
not understand each other’s speech. There
were over 50 different object-oriented graphi-
cal notations available (I actually counted),
some of them even useful, some even had tool
support. This confusion, interfered with adop-
tion of object-oriented techniques, as compa-
nies and individuals were reluctant to invest in
training or tools in such a confusing field.

Still the competition of ideas and symbols did
cause things to improve. Some techniques were
clearly more suited to the types of software
problems that people were having. Method-
ologists started to adopt their competitors’
useful notation. Eventually some market leaders
stood out.

In October 1994, Jim Rumbaugh of the Object
Modeling Technique (OMT) and Grady Booch of
the Booch Method started to work together on
unifying their approach. Within a year, Ivar
Jacobson (of the Objectory Method), joined the
team. Together, these three leading method-
ologists joined forces at Rational Software,
became known as the Three Amigos, and were
the leading forces behind the original UML. Jim
Rumbaugh was the contributor behind much of
the analysis power of UML and most of its nota-
tional form. Grady Booch was the force behind
the design detail capabilities of UML. Ivar
Jacobson led the effort to make UML suitable
for business modeling and tying system devel-
opment to use cases.

The Three Amigos were faced with the enor-
mous job of bringing order and consensus to the
Babel of notation and needed input from the
other leading methodologist about what works
and what doesn’t. They enlisted the help of the
Object Management Group (OMG), a consor-
tium of over 800 companies dedicated to devel-
oping vendor-independent specifications for the
software industry. OMG opened the develop-
ment of UML to competitive proposals. After
much debate, politics, and bargaining, a con-
sensus on a set of notation selected from the
best of the working notation used successfully
in the field, was adopted by OMG in November
1997.

Since 1997, the UML Revision Task Force (RTF)
of OMG — on which one of your authors (okay,
it was Michael) served — has updated UML
several times. Each revision tweaked the UML
standard to improve internal consistency, to
incorporate lessons learned from the UML
users and tool vendors, or to make it compati-
ble with ongoing standards efforts. However, it
became clear by 2000 that new development
environments (such as Java), development
approaches (such as component-based devel-
opment), and tool capabilities (such more com-
plete code generation) were difficult to incor-
porate into UML without a more systematic
change to UML. This effort leads us to UML 2,
which was approved in 2003.

04 526146 Ch01.qxd 6/17/03 8:59 AM Page 18

