
Session Checklist
✔ SQL servers in the development process
✔ MySQL versus the competition

T o use MySQL effectively, you need to learn the syntax of a new language and grow
comfortable with a new set of tools. However, before learning the specifics, you should
understand the class of products to which MySQL belongs: database servers. Some of

the early sessions of this book describe many of the theories that govern the majority of
database servers. For starters, you should understand where database servers (also known as
SQL Servers or Relational Database Management Systems [RDBMS]) fit into the application
development process.

SQL Servers in the Development Process
When it comes time to develop an application, chances are you’re going to need more than
one tool. Whether your application is going to be viewed over the Web in a browser, in a
Microsoft Windows environment, or in the MacOS, there’s a good chance that multiple
development packages will be needed to complete the application.

Developing Web applications
If you’re interested in using MySQL, you’re probably planning on building a dynamic Web
site. MySQL can be used in other environments, but it is used most frequently for the Web.
Creating a dynamic Web site takes at least three distinct pieces of software: the SQL server,

S E S S I O N

Why MySQL?

1

d3634-6 Ch01.F 3/1/02 9:14 AM Page 5

Friday Evening6

the programming/scripting language, and the Web server. An SQL server (in your case MySQL)
is a vital piece of the process, but other pieces are equally necessary to get applications up
and running. Figure 1-1 gives a diagram of the tools typically used in Web development.

Figure 1-1 Tools in the Web development process

In Figure 1-1, you can see the three distinct pieces (the SQL server, the programming/
scripting language, and the Web server). Each has its own responsibilities.

The SQL server
Before describing the responsibilities assigned to the SQL server, you should know what SQL
stands for: Structured Query Language. SQL is a standard implemented by many companies
in many products. In the course of your career, you may have come across products like
Microsoft’s Access, FoxPro, and SQL Server 7. These are all implementations of the Structured
Query Language. Companies like Oracle, Sybase, Informix, and IBM all make billions of dollars

SQL Server
(MySQL, Oracle, MS,

 SQL)

Web Server
(Apache, IIS)

Web Browser
(Internet Explorer,

Netscape)

Scripting Language
(PHP, ColdFusion,

 ASP, JSP)

The
Internet

d3634-6 Ch01.F 3/1/02 9:14 AM Page 6

Session 1 — Why MySQL? 7

making products that implement this standard. You’ll spend a good portion of this book
learning the specifics of SQL, but for the sake of this session, all you need to know is what
an SQL server’s role is in the development process.

What an SQL server can do
An SQL server essentially has two jobs: to store data efficiently and to retrieve that data
quickly. The SQL server is where your data — your valuable, crucial, business-dependent
data — will live. You have the ability to insert, delete, and alter this information in any
way you see fit.

Additionally, and perhaps most importantly, you can query this data — pull information
out of the SQL server — in about any way you can imagine.

Further, an SQL server can provide statistical information on the data you have stored. If
the idea of getting statistical information on your data is a bit vague right now, don’t worry.
It will become clear as you progress with this weekend-long course. For now, think of this
simple example: In MySQL you’ve stored names and addresses of everyone affiliated with your
business. If a time comes when you want to know exactly how many of these people live in
a specific state or region of the country, your SQL server is able to quickly and easily return
this information.

What an SQL server cannot do
Figure 1-1 illustrates that an SQL server does not interact directly with the Internet or with
browsers. In Web-based applications, there are two related but distinct pieces of software
that compliment the SQL server: the Web server and the middleware.

When you come down to it, the Web server has a pretty simple job. It is supposed to sit
on the Internet and listen for requests made for a specific IP address or domain name. When
you type an address into your browser, the Web server responds directly to your request. An
SQL server cannot respond to requests that are sent via HTTP (the Hypertext Transfer
Protocol), which is the language spoken by browsers and Web servers.

The two most popular Web servers are Microsoft’s Internet Information Server (IIS) and
the Apache Web server. You can use either Web server when creating dynamic Web sites with
MySQL. However, chances are that if you are using MySQL, you’re using the Apache Web server.
Both of these products are open source and are frequently paired in Web applications. (I talk
more about open source later in this session.)

As you can see in Figure 1-1, piece of software sits between the Web server and the SQL
server, which is the scripting language, also known as middleware. The whole point in creat-
ing dynamic Web applications is so your Web site can react differently to different users. For
example, the user should be able to add information to the site. The user should also have
the ability to view information based on his or her particular needs.

d3634-6 Ch01.F 3/1/02 9:14 AM Page 7

Friday Evening8

Being dynamic requires your site to act differently based on different pieces of informa-
tion, whether that information is coming from the user or the database. Here’s a quick
example:

� A viewer of your online real estate listing wishes to see only houses under $200,000
that are within a certain ZIP code. Based on this information supplied by the user,
your Web pages show only the listings that fit these criteria.

In cases such as this, middleware is essential. In this example, the user enters informa-
tion into form elements on an HTML page and submits the form. Figure 1-2 shows what this
Web page may look like.

Figure 1-2 HTML page that gathers user preferences

The Web server receives the information sent by the browser, which includes the form
information. That information needs to be molded into a form that the database server can
respond to. Eventually, you need to make a request from the SQL server, but it must be in
the format the SQL server is expecting.

This is where your middleware comes in. It can look at the incoming information and
perform programmatic tasks on it as necessary. For example, if the user failed to enter loca-
tion information, such as a ZIP code, the middleware you are using tests for the existence of
at least one ZIP. If there isn’t a ZIP, the middleware may present the form again with an
added message alerting the user of his or her failure to complete the data. (See Figure 1-3
for an example of what this page may look like.)

Similarly, even if the user did fill out all of the form data, there is still a chance that no
listing meets the user’s criteria. In this case, you want to alert the user and offer him or her
a chance to broaden the search parameters (additional ZIPs, higher price range, and so on).
(See Figure 1-4 for an example of what this page may look like.)

d3634-6 Ch01.F 3/1/02 9:14 AM Page 8

Session 1 — Why MySQL? 9

Figure 1-3 HTML page requesting additional user data

Figure 1-4 HTML page requesting different parameters

d3634-6 Ch01.F 3/1/02 9:14 AM Page 9

Friday Evening10

If the user fills out all of the information correctly and there are matching listings, those
listings should be sent to the user’s browser. (See Figure 1-5 for an example of what this
page may look like.)

Figure 1-5 HTML page presenting property listings

Listing 1-1 shows how the middleware for a page that displays listings may work.

Listing 1-1 Sample logic for middleware application

if there are no ZIPs or Prices in the HTML forms
re-display HTML page and notify user of missing data
then quit the script
(Figure 1-3)

else if all information has been provided
request listing from the SQL server, using information

supplied by user

d3634-6 Ch01.F 3/1/02 9:14 AM Page 10

Session 1 — Why MySQL? 11

if the SQL server indicates there are no matching results
tell user about the lack of results and re-display form
(Figure 1-4)

else if there are results returned by the SQL server
while there are listings

print listing information
(Figure 1-5)

end if

This listing should make the point clear: All the decision logic is done in your middle-
ware. If you have any familiarity with any type of programming, the listing should seem
familiar. There are if branches and loops (the building blocks of programming.

You are going to be imbedding your database requests in middleware. The SQL server
responds only to requests that come from the middleware.

There are many types of middleware available for Web applications. ColdFusion
and Microsoft’s ASP are two common choices. However, the most common
companions to MySQL are PHP and Perl. Sessions 15 and 16 discuss using
PHP with MySQL, and Sessions 17 and 18 discuss using Perl with MySQL.

Developing desktop applications
If you are coming to MySQL from a background in Microsoft Access, Paradox, or FileMaker
Pro, you may feel that the architecture shown in Figure 1-1 and discussed in the previous
pages differs substantially from how you’re accustomed to working. After all, you probably
think that Access, Paradox, FileMaker, or FoxPro require only one software package to get
the job done.

Actually, this is not the case. These applications are packaged in a way that makes it seem
that only one piece of software is at work. In all of these packages, a core database engine
that is quite separate from the tools is used to build forms and tables for the users of the
application. In the case of Access and Paradox, the default database server is known as the
Jet engine. In fact, the Jet engine can be reached in many different ways: through Paradox
or Access, from a development environment like Visual Basic or Delphi, or over the Web. You
just have to let the Web server know where to find the Jet engine for that database.

With Access, you have the option of using something other than the Jet
engine. In fact, you can configure a Windows machine so that MySQL serves
and stores the information that is viewable through Access forms and
Windows. Session 23 shows how you can connect MySQL to Microsoft Access.

Cross-Ref

Cross-Ref

d3634-6 Ch01.F 3/1/02 9:14 AM Page 11

Friday Evening12

Figure 1-6 shows how database servers fit into any applications development process.
Notice that a single database server can offer data to many different clients simultaneously.

Figure 1-6 Database servers in desktop applications development environment

MySQL versus the Competition
You have many choices when it comes to RDBMSs. From Access to Oracle, there are products
of many shapes and sizes that can fit your needs.

Before you commit to MySQL, you should know where it excels and where its competitors
provide superior alternatives. In order to understand some of the specific advantages and
deficiencies of MySQL, you need to understand some of the concepts covered later in this
book. For now, I keep this information at a fairly general level.

The advantages of MySQL
Here are some of MySQL’s finer points. Each of the attributes discussed below can be used to
describe other products, but put together, these features make MySQL an interesting and
unique piece of software.

It’s fast
MySQL is undeniably quick. It is a true multi-threaded database server that excels at
retrieving information. MySQL was originally designed for the purpose of querying
information at an amazingly fast pace.

Windows
Application

written in C++

Relational
Database

Web Server and
Scripting
Language

Windows
Application written

in Visual Basic

Unix
Application

written in Perl

d3634-6 Ch01.F 3/1/02 9:14 AM Page 12

Session 1 — Why MySQL? 13

This design introduced some disadvantages that made MySQL a poor choice for some
people. A database is used for two basic actions: inserting/modifying data and querying
(requesting information) from existing data. The creators of MySQL opted for an architec-
ture that sacrificed some speed in the insert/modifying process to gain speed during
queries. So if you were developing a database application in 1999 and you foresaw your
application dealing with a lot of inserting and modifying of data, MySQL would have been
a poor choice. However, MySQL now offers many configuration options that give you the
choice of extreme speed in queries at times when heavy inserts are not expected, or you can
opt for options that work better while inserting/modifying data.

For a time, the major criticism of MySQL was that it did not support
transactions. If at this point you don’t know what a transaction is, don’t
worry — they are explained in detail later in the book. If you do know what
a transaction is, you’ll be happy to know that MySQL supports this feature.

Just how fast is MySQL compared to the competition? It’s very, very difficult to say.
Benchmarking of database servers is very tricky business. The only real way to gauge
comparative speed is to do a straight-up comparison with another product using the
same hardware and the same code. So without giving numbers, which are easily disputable,
I’ll say what is generally believed: MySQL is fast, and you’ll just have to believe that.

It’s relatively easy to use
If you work in a Fortune 1000 business, there’s an excellent chance that at many places in
your organization, some developers are using a recent version of Oracle. You can be sure
that the person in charge of the database went through extensive training and/or went to
school to learn how to properly maintain this large and very complex database system.

MySQL doesn’t offer much of the power of Oracle, but if you don’t need all of the features
Oracle offers (and most don’t), you’ll find it far, far easier to get your database and related
applications up and running with MySQL. In fact, I believe that this book and the online
manual may be all that you need to be a very competent user and administrator of MySQL.

It’s widely used
MySQL is growing in popularity. If you’re looking to develop a MySQL-powered Web site,
you’ll have little difficulty finding an ISP that supports MySQL. Additionally, when you
run into problems, you will be able to go to one of the many MySQL support forums to
get expert troubleshooting advice.

It’s open source
MySQL is an open-source product released under the GPL (GNU Public License). At this
point, many independent developers work on the code without any monetary compensation
because they get great satisfaction from their efforts. In addition, at least two companies
(MySQL AB and NuSphere) offer commercial support for MySQL.

With open-source software, the base code is available to any who wants to see and alter
it. So if you happen to be a sophisticated C programmer, you are welcome to add your own
enhancements.

Note

d3634-6 Ch01.F 3/1/02 9:14 AM Page 13

Friday Evening14

If you go the open-source route with MySQL, you will find many products that comple-
ment your MySQL database server. If you remember back to Figure 1-1, a Web server and
scripting language are used to create dynamic sites. In the open-source space, Apache is a
well-known and well-respected Web server. As far as scripting languages go, Perl and PHP
are two very popular open-source languages that are often used with MySQL.

When combined, these open-source developer tools make for a powerful development
environment. This is especially true of Web-based applications.

The disadvantages of MySQL
Are you starting a bank — you know, a Savings & Loan? Or are you trying to create a site
with the functionality of, say, Schwab.com? If so, MySQL is the wrong tool. MySQL does not
implement features found in many other products. (If you are familiar with RDBMSs, these
other products include triggers, stored procedures, and views).

For now, I think it’s useful to think of MySQL’s missing features in this way: If you are
developing a database that will have many different front ends (maybe one written for the
Web, one written in Visual Basic or C, and another for Unix), then MySQL isn’t a great
choice. In situations like these, when your database must react to many different environ-
ments, the database administrator needs more control over the data than MySQL offers. In a
case like this, you should look at some of the competitive products like Oracle, Sybase, or in
the open-source space, PostgreSQL.

REVIEW

This session introduced you to the category of products known as database servers. It
showed how database servers fit into the applications development process for both Web-
based and non-Web-based applications. The session then reviewed MySQL’s strengths and
weaknesses and gave examples of where MySQL is an appropriate choice and where it is a
less-than-ideal alternative.

QUIZ YOURSELF

1. In addition to database servers, what two products are needed to create Web-based
applications? (See “Developing Web applications.”)

2. Which piece of development software would be responsible for alerting a user that a
database contained no relevant information? (See “What an SQL server cannot do.”)

3. Name three reasons for selecting MySQL. (See “The advantages of MySQL.”)
4. In what sort of environment is MySQL a poor choice? (See “The disadvantages of

MySQL.”)
5. Name three open-source products that are typically used with MySQL in delivering

Web-based applications. (See “It’s open source.”)

d3634-6 Ch01.F 3/1/02 9:14 AM Page 14

