
Introduction

Everyone seems to be talking about Extensible Markup Language (XML)

these days. You know how mothers are — I can’t even visit my relatives

over the holidays without my mom broaching the topic of XML at

Thanksgiving dinner. Yes, XML has become quite a buzzword, but Extensible

Stylesheet Language Transformations (XSLT) is the power that takes all this

XML and turns it into something useful and flexible.

XSLT is a language used to transform XML documents into something new.

It can take one XML document and output that document’s information into

a completely different structure or turn XML into an HTML document for

viewing on the Web. XSLT isn’t a general-purpose programming language,

such as Java or Visual Basic; its focus is solely on transforming XML.

Before I get any farther along, I have to point out the “elephant in the room” —

XSLT’s long-winded name. Who came up with that name anyway? I think the

people responsible should be forced to say, “Extensible Stylesheet Language

Transformations,” aloud ten times and hope their tongues don’t fall off! XSLT’s

full name may be a mouthful, but this book carves up each piece of XSLT into

manageable, chewable morsels.

XSLT can be confusing if you don’t have a solid understanding of its syntax,

quirky abbreviations, and the esoteric terminology it sometimes uses. But XSLT
For Dummies can help you write XSLT stylesheets and, just as important, grasp

why and how transformations work. In addition, see www.dummies.com/
extras/xsltfd for code examples as well as a helpful editing tool of my own

creation which I call the X-Factor.

Above all, you can use XSLT For Dummies as your guide for quickly developing

the know-how of XSLT — without drowning in technical gobbledygook.

What I Assume About You
XSLT For Dummies starts from the bottom and works its way up: It doesn’t

assume that you have any previous knowledge of XSLT or XML. If you have

some know-how of HTML or programming, I think you can grasp some of the

concepts of XSLT quicker than a beginner, but I don’t expect you to know

HTML or anything about programming beforehand.

b3651-6 intro.F 2/22/02 9:47 AM Page 1

How This Book Is Organized
My aim is to help you find out how to become productive with XSLT quickly

so that you can transform XML documents into virtually any kind of output

imaginable. With that goal in mind, XSLT For Dummies is divided into five

parts, each of which builds upon the previous ones.

Part I: Getting Started with XSLT
Part I kicks off your journey. You start by finding out about the core concepts

of XSLT and how it fits in with HTML and all the other X technologies out

there, such as XML, XSL, and XPath. You get your feet wet by writing your

first XSLT stylesheet and transforming an XML document.

After you finish that, you can say XSLT to your buddies at work and actually

have a grasp of what you’re talking about when you throw around those X

terms.

Part II: Becoming an XSLT Transformer
This part takes you into the belly of the beast: stylesheets, template rules, and

XPath expressions. But don’t worry — you won’t lose your appetite. You begin

by looking at stylesheets and find out, in everyday terms, the often-confusing

subject of document trees and recursion. From there, you start pulling infor-

mation out of XML documents and outputting it into various forms.

By the time you’re done with this part, you’ll be able to say, “Extensible

Stylesheet Language Transformations,” without stumbling over any of the

twelve syllables.

Part III: Prime Time XSLT
In this part, you dive deeper into the thick of things. You find out how XSLT

handles programming concepts such as if/then statements, loops, and vari-

ables, and how to include them in stylesheets. Don’t worry if you’ve never

programmed before; these concepts become clear as you read through the

chapters. You also find out about how to take advantage of the more advanced

capabilities of XSLT and XPath to create more powerful transformations.

I predict that after you finish this part, at least once you’ll have unintentionally

ordered an XSLT sandwich on rye at your local deli.

2 XSLT For Dummies

b3651-6 intro.F 2/22/02 9:47 AM Page 2

Part IV: eXtreme XSLT
As you read through Part IV, you can begin to call yourself a bona fide XSLT

Transformer. You find out how to create effective XSLT stylesheets and

apply them under various conditions. You find out about how to combine

stylesheets and even add your own extensions. You also get the inside scoop

on debugging transformations.

A word of warning: By now, all this XSLT will be swimming around in your

head. You may find yourself mingling at a social event and leading with the

line: “Apply any good templates lately?”

Part V: The Part Of Tens
In this part, I guide you through some practical tips and information that can

make your life easier when you work with XSLT. I start out by demystifying

the ten most confusing things about XSLT. Then I detail what I consider to be

the ten best XSLT resources on the Web. I conclude by giving you the details

on ten XSLT processors that you can download online.

Conventions Used in This Book
Snippets of XSLT code are scattered throughout the book and are often used

to introduce you to a feature of the markup language. They appear in the

chapters like this:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>

<xsl:template match=”id”>
<h1><xsl:apply-templates/></h1>

</xsl:template>

</xsl:stylesheet>

If you type these stylesheets by hand, pay close attention and type the text

exactly as shown to ensure that the stylesheet transforms properly. Generally,

spaces don’t matter much, although depending on where they are, they could

change the look of the output from a transformation. However, case sensitivity

is important for any XML or XSLT element. I use lowercase text in all the exam-

ples, so I recommend getting used to typing lowercase to avoid confusion or

problems down the line.

If XSLT element names or instructions appear within the regular text, they

look like this.

3Introduction

b3651-6 intro.F 2/22/02 9:47 AM Page 3

Icons Used in This Book
Tips draw attention to key points that can save you time and effort.

Pay close attention to this icon; it highlights something that’s important to

your understanding of XSLT or how to use it.

Heed the Warning icon because it can save you from the pitfalls of XSLT pain

and agony.

Technical Stuff is the techno-mumbo-jumbo that’s interesting but probably

only for geeks. So, reading these sections can provide useful information, but

feel free to skip them.

4 XSLT For Dummies

b3651-6 intro.F 2/22/02 9:47 AM Page 4

Part I
Getting Started

with XSLT

c3651-6 Pt01.F 2/22/02 9:47 AM Page 5

In this part . . .
You watched the X-Files and then you saw X-Men on

the big screen, but these were only warm-ups for the

real deal — the X-Team. In this part, you find out all about

the X-Team members, including XML, XSL, XSLT, and

XPath, and how they work together. You also get your feet

wet by transforming your first XML document using XSLT.

c3651-6 Pt01.F 2/22/02 9:47 AM Page 6

Chapter 1

Introducing the X-Team
In This Chapter
� Finding out about XML, XSL, XSLT, and XPath

� Knowing the difference between XSL and XSLT

� Looking at the X-Team from an HTML perspective

As a sports fan, I enjoy watching all kinds of team sports, whether football,

basketball, baseball, or an Olympic team competition. I’ve noticed that

regardless of the sport, great teams have two things in common. First, they

have very talented individuals on them. Second, they function well as a team; I

find hardly anything more thrilling in sports than seeing a squad of talented

athletes working together cohesively. (Of course, it goes without saying that

the most exciting part of sports is the “I’m going to Disneyworld” commercials!)

Although this book focuses on eXtensible Stylesheet Language Transform-

ations, or XSLT, you’ll quickly discover that XSLT is an important component

of a closely related set of technologies that I affectionately call the X-Team.

This “Dream X-Team” consists of: XML, XSL, XSLT, and XPath. (For the techies

out there, that’s shorthand for eXtensible Markup Language, eXtensible

Stylesheet Language, XSL Transformations, and XML Path Language.) Each

of these technologies is powerful, but each gets its true strength through

interrelationships. So, although I concentrate much of the attention in this

book on XSLT, never think of it as something independent of its teammates.

As you start your XSLT journey, I begin by introducing you to the X-Team

members, each of which has a separate but intertwined responsibility.

XML: Storing Your Data
The original member of the X-Team is eXtensible Markup Language (XML),

the granddaddy of them all. All other X-Team members are designed to work

with or act upon XML. A relatively recent innovation, XML was conceived

d3651-6 Ch01.F 2/22/02 9:47 AM Page 7

primarily by Jon Bosak as a way to make working with information delivered

over the Web easier. Then in 1998, XML was standardized by the World Wide

Web Consortium (W3C), the international standards body for the Web.

Since its beginnings, the Web has used HyperText Markup Language (HTML)

to display content. HTML documents are stored on Web servers and then

sent on demand to a Web browser, such as Microsoft Internet Explorer or

Netscape Navigator. The browser then displays the HTML as a Web page.

Figure 1-1 illustrates this process.

HTML comes up short
HTML has become so wildly popular largely because it’s very easy to learn

and work with; heck, even my 7-year-old can create a Web page using

Microsoft FrontPage, and my 9-year-old can write HTML by hand. The markup

language was originally designed purely as a way to format and lay out infor-

mation. However, because people have wanted to use the Web for nearly

every task under the sun, HTML has been forced to do far more than was

ever intended.

Consider a familiar scenario: A company wants to put information stored in a

database onto its Web site. A sampling of its data might look something like

Table 1-1.

Table 1-1 Sample Customer Database
ID Name City State Zip

100 Ray Kinsella Anderson IN 46011

101 Rick Blaine Manchester NH 02522

Web Server Web Browser

HTML
pageFigure 1-1:

Displaying
information

over
the Web.

8 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 8

To present this information on the Web, these database records must be con-

verted into HTML text and formatted properly as a table so that they can be

viewed in a Web browser.

<table border=”1”>
<tr>
<th>ID</th>
<th>Name</th>
<th>City</th>
<th>St</th>
<th>Zip</th>

</tr>
<tr>
<td>100</td>
<td>Ray Kinsella</td>
<td>Anderson</td>
<td>IN</td>
<td>46011</td>

</tr>
<tr>
<td>101</td>
<td>Rick Blaine</td>
<td>Manchester</td>
<td>NH</td>
<td>02522</td>

</tr>
</table>

Look closely at the above code to see how HTML falls short. I turn meaningful

clusters of information into a format that looks good in a browser but isn’t

useful for much else. In a database, related fields such as ID, Name, and

Address make up a customer record, but after they have been converted

to HTML, they’re just row and column formatting instructions and their

contents — thus, the concept of a customer is gone.

Such a solution would be acceptable if you only want to display information in

a Web browser, but many people are discovering needs that go far beyond that.

For example, searching for information within an HTML document is very lim-

ited. How would I be able to retrieve from my HTML file the names of all of my

customers from Indiana who spend over $1,000 annually? That kind of query is

far beyond the scope of HTML. And, even if I were to develop some convoluted

way to get this information through JavaScript, I’d have to throw all that away

if I ever wanted to move my information to another non-HTML environment,

such as a Java application, Windows program, or even a cellular phone.

Think of HTML as a sort of information blender: Add a dash of data and a pinch

of formatting instructions into the pitcher, turn the power on high, and out

comes a pureed mixture of the two. Like creating a milkshake by mixing ice

9Chapter 1: Introducing the X-Team

d3651-6 Ch01.F 2/22/02 9:47 AM Page 9

cream, chocolate syrup, vanilla, and milk in a blender, imagine the impossibility

of trying to extract the vanilla from the milkshake after it’s been blended. This

no-win backward mobility is the futile attempt to mine useful information from

HTML documents.

In other words: Yes, the shake tastes great, but don’t try to use the raw mate-

rials again for a different purpose.

XML to the rescue
Developed as a response to the information-blender effect of HTML, XML is

simply a practical way to work with structured information on the Web. The

motivation of its inventors was to assemble structured data into something

that was similar to HTML — so that data could be easily readable by people

like you and me — but different enough from HTML so that it’s freely expand-

able to effectively describe the data that it contains.

Whether you realize it or not, almost all the information used on the Web has

a natural structure or organization to it and thus can be expressed using

XML. Some everyday examples include:

� The contents of a letter

<letter>
<date>March 31, 2002</date>
<salutation>Dear Sir:</salutation>
<text>Thanks for your recent article on Swiss Cheese

chips.
However, I don’t think you gave enough credit to the

farmer
who invented the Swiss Cheese chip - Charley

Cowley.</text>
<closing>Warm Regards,</closing>
<signature>Mrs. Charlie Cowley</signature>

</letter>

� Dialogue from a movie

<dialogue>
<rick>I’m saying it because it’s true. Inside of us, we

both know you belong with Victor. You’re part of
his work, the thing that keeps him going. If that
plane leaves the ground and you’re not with him,
you’ll regret it. Maybe not today. Maybe not
tomorrow, but soon and for the rest of your
life.</rick>

<ilsa>But what about us?</ilsa>
<rick>We’ll always have Paris. We didn’t have, we, we

lost it until you came to Casablanca. We got it
back last night.</rick>

10 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 10

<ilsa>When I said I would never leave you.</ilsa>
<rick> And you never will. But I’ve got a job to do,

too. Where I’m going, you can’t follow. What I’ve
got to do, you can’t be any part of. Ilsa, I’m no
good at being noble, but it doesn’t take much to
see that the problems of three little people
don’t amount to a hill of beans in this crazy
world. Someday you’ll understand that. Now,
now... Here’s looking at you kid.</rick>

</dialogue>

� Those customer records of Ray and Rick

<customers>
<customer>
<id>100</id>
<name>Ray Kinsella</name>
<city>Anderson</city>
<state>IN</state>
<zip>46011</zip>

</customer>
<customer>
<id>101</id>
<name>Rick Blaine</name>
<city>Manchester</city>
<state>NH</state>
<zip>02522</zip>

</customer>
</customers>

� A Web page

<html>
<head>
<title>My Home Page</title>

</head>
<body>
<h1>Heading</h1>

</body>
</html>

From these examples, you can see that XML describes information in a very

logical and straightforward manner. Put descriptive tags before and after

the text values and you’ve just about got an XML document. XML isn’t rocket

science!

HTML is standardized with a fixed set of formatting tags or elements to define

different parts of a document. An <h1> element identifies a Level 1 Header,

and denotes bolded text. In contrast, the only thing standardized about

XML is its syntax rules, not its actual tags; this is what makes XML so flexible.

For example, a bank can define a set of XML tags to describe its financial

data:

11Chapter 1: Introducing the X-Team

d3651-6 Ch01.F 2/22/02 9:47 AM Page 11

<account id=”10001010”>
<type>Checking</type>
<rating level=”-5”/>
<customer preferred=”no way, hosea”>
<firstname>John</firstname>
<lastname>Charles</lastname>
<address>123 Main Street</address>
<city>Fremont</city>
<state>CA</state>
<zip>94425</zip>

</customer>
</account>

Or, a pizza store chain can come up with its own set of XML elements that

describes their pizzas.

<pizza>
<size value=”Mega”/>
<crust type=”Thick and Chewy”/>
<toppings>Olives, Sausage, Pepperoni, Lima Beans</toppings>
<cookingtime>30</cookingtime>

</pizza>

A set of defined XML tags used for a particular purpose is an XML vocabulary.

However, as great as it is at organizing information, XML by its very nature is

a raw material. XML is of little use by itself and needs help from its X-Team

teammates to actually make its information usable in the real world.

XSL: Presenting XML Data
Time to pass the baton to the second member of the X-Team: Extensible

Stylesheet Language (XSL). XSL is charged with styling or laying out XML

documents into a form that makes sense to its intended audience. As shown

in Figure 1-2, you use XSL to define a set of formatting rules that are referred

to when an XML document is processed.

For example, if I want to format the letter from the preceding “XML to the

rescue” section, I use XSL to create a few rules, such as

� When a <date> element is found, italicize the date’s text.

� When a <salutation> element is found, indent salutation’s text.

� When a <closing> element is found, add an extra line after it.

12 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 12

XSL rules like these are contained in an XSL Stylesheet, which is just a plain

text file filled with formatting instructions that look like the following example.

<fo:page-sequence master-name=”easy”>
<fo:flow flow-name=”xsl-region-body”>

<fo:block font-family=”Serif”>Serif
font</fo:block>

</fo:flow>
</fo:page-sequence>

Note that this XSL is written in something that resembles XML. That is more

than mere coincidence because, ironically, XSL is actually written in XML and

is itself an XML vocabulary.

If your head is spinning around, hang on. XSL is used to format XML, which in

turn is used as the language for defining XSL. The circular logic can be confus-

ing, but fortunately, you don’t need to worry about the particulars of how that

all works — just know that it does. Actually, the fact that XSL uses XML to

describe its instructions makes it far easier to learn than trying to grasp yet

another language syntax.

When XSL was conceived by the W3C, the original intention of XSL was

simply to provide a way to format XML data. However, after people began to

use XML in the real world, it was discovered that something more was

needed besides assigning font colors and margin indentions to the content.

True, developers needed to be able to style XML in a way that was easily

readable, but they also discovered a need to change an XML document from

one XML structure to another, as well as to have the ability to easily convert

XML
Document

XSL
Processor

XSL
Stylesheet

XSL
Output

Figure 1-2:
Using XSL

to apply
formatting

to XML
documents.

13Chapter 1: Introducing the X-Team

d3651-6 Ch01.F 2/22/02 9:47 AM Page 13

XML into HTML and other output options. Taking up this charge, the W3C

expanded the scope of XSL to support transforming, and in doing so, gave

birth to XSL Transformations (XSLT).

XSLT: Transforming Your XML Data
The third member of the X-Team is XSL Transformations (XSLT). XSLT is

analogous to that high-priced rookie on a professional sports team that

unseats the veteran player: XSL was supposed to be the killer technology to

enable XML to achieve widespread adoption, but XSLT’s ability to convert

XML data into any wanted output has proven so compelling that it essentially

swallowed up XSL. In fact, when people today talk about XSL, they’re almost

always referring to XSLT.

XSL is actually composed of two independent parts: XSLT for transforming

XML from one structure to another; and XSL Formatting Objects and

Formatting Properties for formatting XML documents.

The key reason for all this enthusiasm in support of XSLT is that XML docu-

ments often need to serve multiple audiences. The XML needs to be format-

ted so that it can be viewed in a Web browser, and the same XML may need to

be tweaked to conform to a new trading partner’s own XML structure. See

Figure 1-3 for an illustration of this relationship.

XML
Document

XSLT
Processor

XSL
Stylesheet

XML1

XML2

HTMLFigure 1-3:
XSLT

transforms
XML into a

variety of
outputs.

14 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 14

To illustrate, suppose that I want to change the XML definition of a customer

from the original format of

<customer>
<id>101</id>
<name>Rick Blaine</name>
<city>Manchester</city>
<state>NH</state>
<zip>02522</zip>
</customer>

into this:

<customer id=”101”>
<fullname>Rick Blaine</fullname>
<address city=”Manchester” state=”NH”
zipcode=”02522”/>
</customer>

Before XSLT came along, I’d have to dust off my programming software, bury

myself in a cave for a day, and write a program to do this migration process.

However, with XSLT, I can transform the data from one XML format to another

nearly instantly, with no true programming required.

XSLT is not a programming language as such. In fact, when written out, it

doesn’t even look anything like C++, Java, or Visual Basic. Like its XSL parent,

XSLT rules and templates are defined by using XML.

Most programming languages transform data structures through blood, sweat,

and tears. In contrast, XSLT does this work in what can best be described as

transforming by example — you provide an example of what kind of information

you’d like to see, and XSLT does the rest. For example, the following XSLT

snippet changes the name element to fullname in the output document.

<xsl:template match=”name”>
<fullname>
<xsl:apply-templates/>
</fullname>

</xsl:template>

(I get into the specifics of how XSLT template rules work in Chapter 4.)

However, as powerful as XSLT is, it needs help to do its transformational

magic from our last X-Team member: XPath. XPath specializes in picking out

the specific nuggets of information from one XML document in order for XSLT

to fit it neatly into another one.

15Chapter 1: Introducing the X-Team

d3651-6 Ch01.F 2/22/02 9:47 AM Page 15

XPath: Seeking Out Your Data
XPath is the spy or seeker of the X-Team who is charged with going into an

XML document and picking out the requested information for XSLT. Without

the ability to precisely locate information in an XML document, the ability to

transform or do anything special with XML is minimal.

Any XSLT transformation must be set up to answer two questions:

� Input: What information from the original XML document do you want?

� Output: How would you like that information structured in the output

document?

XSLT relies on XPath to answer the first question, as shown in Figure 1-4.

XSLT looks at an XML document element by element, so XPath expressions

are used to tell what your XSLT stylesheet should look for as it goes through

the XML document. Looking closer at the preceding XSLT example, the XPath

expression name tells XSLT what information to look for, which in this case is

to look for all name elements.

<xsl:template match=”name”>
<fullname>
<xsl:apply-templates/>
</fullname>

</xsl:template>

This XPath expression is intuitive and easy to understand, but for more hearty

needs, the syntax can be quite arcane and challenging. (I discuss XPath in

detail in Chapter 5.)

Interestingly, much of the effort required to develop XSLT stylesheets is

related to the input side of the equation, so throughout this book, I spend a

sizeable amount of time on how to use XPath.

Source
XML

Document

Target
Output

Document

XPath

Parts of an
XSLT Stylesheet

What info do
you want from

the source
Document?

XSLT
Template

Rules
How would
you like the

new document
structured?

What format?

Figure 1-4:
XSLT uses

XPath to
retrieve

data from
XML

documents.

16 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 16

The X-Team through HTML Eyes
You may be approaching the X-Team after having already worked with HTML.

If so, when you look at XML and XSLT, it’s natural to view these new technolo-

gies through HTML eyes. Having a knowledge of HTML definitely gives you a

head start in learning XML syntax; noting the similarities and differences

between them is important.

Although I compare HTML and XML in this section, remember that XSL and

XSLT stylesheets are both written using XML, so the same rules apply to them

as to XML.

XML looks a lot like HTML . . .
If you can read HTML, you quickly see that XML looks an awful lot like HTML

in terms of its syntax. For example, a document title in HTML is defined as

<title>My Document Title</title>

Like HTML, the element is the primary building block of XML. Therefore, a

book title in XML might be defined to look something like this:

<book>War and Peace</book>

Additionally, XML follows HTML in using name-value pairs inside elements to

provide additional descriptive information about an element.

<invoice id=”110”>
<company>Polar Salsa Corporation</company>

</invoice>

In this XML snippet, the id attribute provides additional information related

to the invoice element.

But XML isn’t the same as HTML . . .
HTML and XML have a definite likeness, but you should watch out for some

significant variations in syntax rules. The three most important are as follows.

XML is well-formed
HTML has always been lenient in some of its syntax requirements, not always

forcing you to have closing tags on some of the elements, such as the para-

graph (<p>) element. For example, both of the following lines are valid HTML:

17Chapter 1: Introducing the X-Team

d3651-6 Ch01.F 2/22/02 9:47 AM Page 17

<p>Hello. My name is Inigo Montoya. You killed my father.
Prepare to die.

and

<p>Hello. My name is Inigo Montoya. You killed my father.
Prepare to die.</p>

In contrast, XML is much more rigid: All XML documents must be well-formed,

meaning that every begin tag needs to have a matching end tag:

<president>Andrew Jackson</president>

XML allows shortcuts
Although XML requires any element to have a start and end tag pair, it does

allow you to combine the two tags if the element is empty, meaning that no

text is provided between the start and end tags. For example, the following

two lines are equivalent.

<device id=”3838-2020”></device>

and

<device id=”3838-2020”/>

XML is case sensitive
HTML is case insensitive, so long as you spell out the tag syntax correctly,

the document is processed appropriately. Each of the following are valid

HTML statements.

<body bgcolor=”#FFFFFF”></body>
<BODY BGCOLOR=”#FFFFFF”></BODY>
<Body Bgcolor=”#FFFFFF”></Body>

On the other hand, XML is case sensitive, so the following statements aren’t

considered equal.

<quote>Get used to disappointment.</quote>
<QUOTE>Get used to disappointment.</QUOTE>

To avoid confusion, you should consistently use either all lower- or upper-

case characters for the XML, XSL, and XSLT documents that you create.

However, I recommend consistently using lowercase characters because this

is the convention that nearly everyone follows.

18 Part I: Getting Started with XSLT

d3651-6 Ch01.F 2/22/02 9:47 AM Page 18

