
XML Concepts

This book is targeted at programmers who need to
develop solutions using XML. Being a programmer

myself, I know that theory without practical examples and
applications can be tedious, and you probably want to get
straight to real-world examples. You’re in luck, because this
book is full of working examples — but not in this chapter.
Some theory is necessary so that you have a fundamental
understanding of XML. I’ll keep the theory of XML and related
technologies to a minimum as I progress through the chap-
ters, but we do need to cover some of the basics up front.

This chapter provides readers who are new to XML with an
overview and history of XML, its purposes, and comparisons
against previous and alternative integration technologies, and
ends with an overview of the next XML version, XML 1.1. The
rest of the chapters in this part of the book will use real-world
examples to describe XML basic formats, the structure of well-
formed XML documents, and XML validation against DTDs and
Schemas. The chapters on XSL Transformations and XSL
Formatting Objects will illustrate the transformation and for-
matting of XML data using XSLT via working examples. This
part of the book will be finished with examples of parsing XML
documents, as well as specific examples of XML parsing using
Simple API for XML (SAX) and Document Object Model (DOM).

What Is XML?
XML stands for Extensible Markup Language, and it is used to
describe documents and data in a standardized, text-based for-
mat that can be easily transported via standard Internet proto-
cols. XML, like HTML, is based on the granddaddy of all markup
languages, Standard Generalized Markup Language (SGML).

SGML is remarkable not just because it’s the inspiration and
basis for all modern markup languages, but also because of
the fact that SGML was created in 1974 as part of an IBM
document-sharing project, and officially became an

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XML?

What is XML not?

XML standards and
the World Wide Web
Consortium (W3C)

Elements and
attributes

Document structure

Data source
encoding

Document syntax

XML namespaces

XML data validation

Special characters
and entity references

XML 1.1

✦ ✦ ✦ ✦

c538292 ch01.qxd 8/18/03 8:43 AM Page 3

4 Part I ✦ Introducing XML

International Organization for Standardization (ISO) standard in 1986, long before
the Internet or anything like it was operational. The ISO standard documentation
for SGML (ISO 8879:1986) can be purchased online at http://www.iso.org.

The first popular adaptation of SGML was HTML, which was developed as part of a
project to provide a common language for sharing technical documents. The advent
of the Internet facilitated the document exchange method, but not the display of
the document. The markup language that was developed to standardize the display
format of the documents was called Hypertext Markup Language, or HTML, which
provides a standardized way of describing document layout and display, and is an
integral part of every Web browser and Website.

Although SGML was a good format for document sharing, and HTML was a good
language for describing the layout of the documents in a standardized way, there
was no standardized way to describe and share data that was stored in the docu-
ment. For example, an HTML page might have a body that contains a listing of
today’s closing prices of a share of every company in the Fortune 500. This data can
be displayed using HTML in a myriad of ways. Prices can be bold if they have
moved up or down by 10 percent, and prices that are up from yesterday’s closing
price can be displayed in green, with prices that are down displayed in red. The
information can be formatted in a table, and alternating rows of the table can be in
different colors.

However, once the data is taken from its original source and rendered as HTML in a
browser, the values of the data only have value as part of the markup language on
that page. They are no longer individual pieces of data, but are now simply pieces
of “content” wedged between elements and attributes that specify how to display
that content. For example, if a Web developer wanted to extract the top ten price
movers from the daily closing prices displayed on the Web page, there was no stan-
dardized way to locate the top ten values and isolate them from the others, and
relate the prices to the associated Fortune 500 Company.

Note that I say that there was no standardized way to do this; this did not stop
developers from trying. Many a Web developer in the mid- to late-1990s, including
myself, devised very elaborate and clever ways of scraping the data they needed
from between HTML tags, mostly by eyeballing the page and the HTML source
code, then coding routines in various languages to read, parse, and locate the
required values in the page. For example, a developer may read the HTML source
code of the stock price page and discover that the prices were located in the only
table on the HTML page. With this knowledge, code could be developed in the
developer’s choice of language to locate the table in the page, extract the values
nested in the table, calculate the top price movers for the day based on values in
the third column in the table, and relate the company name in the first column of
the table with the top ten values.

c538292 ch01.qxd 8/18/03 8:43 AM Page 4

5Chapter 1 ✦ XML Concepts

However, it’s fair to say that this approach represented a maintenance nightmare
for developers. For example, if the original Web page developers suddenly decided
to add a table before the stock price table on the page, or add an additional column
to the table, or nest one table in another, it was back to the drawing board for the
developer who was scraping the data from the HTML page, starting over to find the
values in the page, extract the values into meaningful data, and so on. Most devel-
opers who struggled with this inefficient method of data exchange on the Web were
looking for better ways to share data while still using the Web as a data delivery
mechanism.

But this is only one example of many to explain the need for a tag-based markup
language that could describe data more effectively than HTML. With the explosion
of the Web, the need for a universal format that could function as a lowest common
denominator for data exchange while still using the very popular and standardized
HTTP delivery methods of the Internet was growing.

In 1998 the World Wide Web Consortium (W3C) met this need by combining the
basic features that separate data from format in SGML with extension of the HTML
tag formats that were adapted for the Web and came up with the first Extensible
Markup Language (XML) Recommendation. The three pillars of XML are
Extensibility, Structure, and Validity.

Extensibility
XML does a great job of describing structured data as text, and the format is open
to extension. This means that any data that can be described as text and that can
be nested in XML tags will be generally accepted as XML. Extensions to the lan-
guage need only follow the basic XML syntax and can otherwise take XML wherever
the developer would like to go. The only limits are imposed on the data by the data
itself, via syntax rules and self-imposed format directives via data validation, which
I will get into in the next chapter.

Structure
The structure of XML is usually complex and hard for human eyes to follow, but it’s
important to remember that it’s not designed for us to read. XML parsers and other
types of tools that are designed to work with XML easily digest XML, even in its
most complex forms. Also, XML was designed to be an open data exchange format,
not a compact one — XML representations of data are usually much larger than
their original formats. In other words, XML was not designed to solve disk space or
bandwidth issues, even though text-based XML formats do compress very well
using regular data compression and transport tools.

c538292 ch01.qxd 8/18/03 8:43 AM Page 5

6 Part I ✦ Introducing XML

It’s also important to remember that XML data syntax, while extensible, is rigidly
enforced compared to HTML formats. I will get into the specifics of formatting rules
a little later in this chapter, and will show examples in the next chapter.

Validity
Aside from the mandatory syntax requirements that make up an XML document,
data represented by XML can optionally be validated for structure and content,
based on two separate data validation standards. The original XML data validation
standard is called Data Type Definition (DTD), and the more recent evolution of
XML data validation is the XML Schema standard. I will be covering data validation
using DTDs and Schemas a little later in this chapter, and showing working exam-
ples of data validation in the next chapter.

What Is XML Not?
With all the hype that continues to surround XML and derivative technologies such
as XSL and Web Services, it’s probably as important to review what XML is not as it
is to review what XML is.

While XML facilitates data integration by providing a transport with which to send
and receive data in a common format, XML is not data integration. It’s simply the
glue that holds data integration solutions together with a multi-platform “lowest
common denominator” for data transportation. XML cannot make queries against a
data source or read data into a repository by itself. Similarly, data cannot be format-
ted as XML without additional tools or programming languages that specifically
generate XML data from other types of data. Also, data cannot be parsed into desti-
nation data formats without a parser or other type of application that converts data
from XML to a compatible destination format.

It’s also important to point out that XML is not HTML. XML may look like HTML,
based on the similarities of the tags and the general format of the data, but that’s
where the similarity ends. While HTML is designed to describe display characteris-
tics of data on a Web page to browsers, XML is designed to represent data struc-
tures. XML data can be transformed into HTML using Extensible Style Sheet
Transformations (XSLT). XML can also be parsed and formatted as HTML in an
application. XML can also be part of an XML page using XML data islands. I’ll dis-
cuss XSLT transformations, XML parsing, and data islands in much more detail later
in the book.

c538292 ch01.qxd 8/18/03 8:43 AM Page 6

7Chapter 1 ✦ XML Concepts

XML Standards and the World Wide Web
Consortium

The World Wide Web Consortium (W3C) is where developers will find most of the
specifications for standards that are used in the XML world. W3C specifications are
referred to as “Recommendations” because the final stage in the W3C development
process may not necessarily produce a specification, depending on the nature of
the W3C Working Group that is producing the final product, but for all intents and
purposes, most of the final products are specifications.

W3C specifications on the Recommendation track progress through five stages:
Working Draft, Last Call Working Draft, Candidate Recommendation, Proposed
Recommendation, and Recommendation, which is the final stop for a specific ver-
sion of a specification such as XML.

W3C Working Groups produce Recommendations, and anyone can join the W3C
and a Working Group. More information on joining the W3C can be found at
http://www.w3.org/Consortium/Prospectus/Joining. Currently, W3C
Working Groups are working hard at producing the latest recommendations for
XML and related technologies such as XHTML, Xlink, XML Base, XML Encryption,
XML Key Management, XML Query, XML Schema, XML Signature, Xpath, Xpointer,
XSL, and XSLT.

XML Elements and Attributes
Because XML is designed to describe data and documents, the W3C XML
Recommendation, which can be found buried in the links at http://www.w3.org/
XML, is very strict about a small core of format requirements that make the differ-
ence between a text document containing a bunch of tags and an actual XML docu-
ment. XML documents that meet W3C XML document formatting recommendations
are described as being well-formed XML documents. Well-formed XML documents
can contain elements, attributes, and text.

Elements
Elements look like this and always have an opening and closing tag:

<element></element>

There are a few basic rules for XML document elements. Element names can con-
tain letters, numbers, hyphens, underscores, periods, and colons when namespaces
are used (more on namespaces later). Element names cannot contain spaces;

c538292 ch01.qxd 8/18/03 8:43 AM Page 7

8 Part I ✦ Introducing XML

underscores are usually used to replace spaces. Element names can start with a let-
ter, underscore, or colon, but cannot start with other non-alphabetic characters or
a number, or the letters xml.

Aside from the basic rules, it’s important to think about using hyphens or periods
in element names. They may be considered part of well-formed XML documents,
but other systems that will use the data in the element name such as relational
database systems often have trouble working with hyphens or periods in data iden-
tifiers, often mistaking them for something other than part of the name.

Attributes
Attributes contain values that are associated with an element and are always part
of an element’s opening tag:

<element attribute=”value”></element>

The basic rules and guidelines for elements apply to attributes as well, with a few
additions. The attribute name must follow an element name, then an equals sign (=),
then the attribute value, in single or double quotes. The attribute value can contain
quotes, and if it does, one type of quote must be used in the value, and another
around the value.

Text
Text is located between the opening and closing tags of an element, and usually rep-
resents the actual data associated with the elements and attributes that surround
the text:

<element attribute=”value”>text</element>

Text is not constrained by the same syntax rules of elements and attributes, so vir-
tually any text can be stored between XML document elements. Note that while the
value is limited to text, the format of the text can be specified as another type of
data by the elements and attributes in the XML document.

Empty elements
Last but not least, elements with no attributes or text can also be represented in an
XML document like this:

<element/>

This format is usually added to XML documents to accommodate a predefined data
structure. I’ll be covering ways to specify an XML data structure a little later in this
chapter.

c538292 ch01.qxd 8/18/03 8:43 AM Page 8

9Chapter 1 ✦ XML Concepts

XML Document Structure
Although elements, attributes, and text are very important for XML documents,
these design objects alone do not make up a well-formed XML document without
being arranged under certain structural and syntax rules. Let’s examine the struc-
ture of the very simple well-formed XML 1.0 document in Listing 1-1.

Listing 1-1: A Very Simple XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

</rootelement>

Most XML documents start with an <?xml?> element at the top of the page. This is
called an XML document declaration. An XML document declaration is an optional
element that is useful to determine the version of XML and the encoding type of the
source data. It is not a required element for an XML document to be well formed in
the W3C XML 1.0 specification. This is the most common XML document declara-
tion:

<?xml version=”1.0” encoding=”UTF-8”?>

There are two attributes contained in this XML declaration that are commonly seen
but not often explained. The XML version is used to determine what version of the
W3C XML recommendation that the document adheres to. XML parsers use this
information to apply version-specific syntax rules to the XML document.

Data Source Encoding
Data source encoding is one of the most important features for XML documents.
Most developers based in the United States or other English-speaking countries are
familiar with ASCII text only, and have not commonly tested the capacity of ASCII’s
128-member character set. However, with the advent of the Internet, HTML and

c538292 ch01.qxd 8/18/03 8:43 AM Page 9

10 Part I ✦ Introducing XML

especially XML developers have been forced to examine the limitations of ASCII,
and have worked with Unicode in HTML documents, even if they didn’t know that
they were (HTML code generators usually add the Unicode directives to HTML
pages).

Because the XML Recommendation was developed by the W3C, an international
organization which has offices at the Massachusetts Institute of Technology (MIT)
in the United States, the European Research Consortium for Informatics and
Mathematics (ERCIM) in France, and Keio University in Japan, Unicode was chosen
as the standard text format to accommodate the world’s languages, instead of just
English. Most developers are used to seeing UTF-8 or sometimes UTF-16 in the
encoding attribute of an XML document, but this is just the tip of the iceberg.

UTF stands for Universal Character Set Transformation Format, and the number 8 or
16 refers to the number of bits that the character is stored in. Each 8- or 16-bit con-
tainer represents the value of the character in bits as well as the identity of each
character and its numeric value. UTF-8 is the most common form of XML encoding;
in fact, an XML document that does not specify an encoding type must adhere to
either UTF-8 or UTF-16 to be considered a well-formed XML 1.0 document. Using
UTF-8, UTF-16, and the newer UTF-32, XML editors, generators and parsers can
identify and work with all major world languages and alphabets, including non-Latin
alphabets such as Middle Eastern and Asian alphabets, scripts, and languages. This
includes punctuation, non-Arabic numbers, math symbols, accents, and so on.

Unicode is managed and developed by a non-profit group called the Unicode
Consortium. For more information on encoding and a listing of encoding types for
XML, the Unicode consortium and the W3C has published a joint report, available
at the Unicode Consortium site:
http://www.unicode.org/unicode/reports/tr20.

Aside from UTF declarations for XML document encoding, any ISO registered
charset name that is registered by the Internet Assigned Numbers Authority (IANA)
is an acceptable substitute. For example, an XML 1.0 document encoded in
Macedonian would look like this in the XML declaration:

<?xml version=”1.0” encoding=”JUS_I.B1.003-mac”?>

A list of currently registered names can be found at
http://www.iana.org/assignments/character-sets.

Element and Attribute Structure
Under the optional XML declarations, every XML document contains a single-value
root element, represented in this case by the rootelement element:

<rootelement>

c538292 ch01.qxd 8/18/03 8:43 AM Page 10

11Chapter 1 ✦ XML Concepts

Other elements and text values can be nested under the root element, but the root
element must be first in the list and unique in the document. This can be compared
to a computer hard drive, which contains one root directory, with files and/or sub-
directories under the root directory.

Next in the sample XML document are the nested elements, attributes, and text, as
illustrated by the nested firstelement under the root element in our example:

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>

The firstelement has an attribute called position with a value of 1. The
position attribute provides additional data related to firstelement. In this case
it indicates that the original sorting position of the first element in the XML document
is 1. If the XML document data is altered and the order of the elements is rearranged
as part of that alteration, the position element may be useful for reordering the ele-
ment, or could be changed when the document is altered to reflect a new position of
the element in the XML document, regardless of the element name. In general,
attributes are great for adding more information and descriptions to the values of ele-
ments, and the text associated with elements, as shown in the previous example.

Nested under the firstelement element is the level1 element, which contains
an attribute, called children. The element name is used to describe the nesting
level in the XML document, and the value of the children attribute is used to
describe how many more levels of nesting are contained under the level1 ele-
ment, in this case, no more nested levels (0). The phrase This is level 1 of
the nested elements represents a text data value that is part of the level1 ele-
ment. Text data contains values associated with a tag.

The second element under the root element is called secondelement and is a
variation of the firstelement element. Let’s compare the firstelement and
secondelement elements to get a better sense of the structure of the document:

<secondelement position=”2”>
<level1 children=”1”>

<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

Like the firstelement, the secondelement has an attribute called position,
this time with a value of 2. Nested under the secondelement element is another
level1 element. The existence of this element illustrates the fact that well-formed
XML documents can have more than one instance of the same element name. The
only exception to this is the root element, which must be unique.

c538292 ch01.qxd 8/18/03 8:43 AM Page 11

12 Part I ✦ Introducing XML

Also, like the firstelement element, the level1 element also has an attribute
called children. The level1 element is again used to describe the nesting level in
the XML document, and the attribute is used to describe how many more levels of
nesting are contained under the level1 element. In this case, the children
attribute indicates that there is one more nesting level (1) inside the level1 ele-
ment. The phrase This is level 2 of the nested elements inside the
level2 element represents text data for the level2 element.

Last but not least, to finish the XML document, the rootelement tag is closed:

</rootelement>

XML Document Syntax
Another important aspect of a well-formed XML document is the document syntax.
XML represents data and not content or layout like other markup languages such as
HTML. Data has very strict structure and format rules. XML also has very strict
rules about the syntax used to represent that data. Developers who are used to
coding with the somewhat forgiving syntax of HTML will have some adjustments to
make when dealing with XML syntax.

For starters, XML element names must start and end with the same case. This is not
well-formed XML:

<level2>This is level 2 of the nested elements</Level2>

The tag name started with <level2> must be closed with </level2>, not
</Level2>, to be considered well-formed XML.

Quotes must be used on all attribute names. Something like this will not be consid-
ered well-formed XML:

<secondelement position=2>

Attributes must be formatted with single or double quotes to be considered well-
formed XML:

<secondelement position=”2”>

Comments should always follow the SGML comment tag format:

<!--Comment tags should always follow this format when in XML
documents-->

Element tags must always be closed. HTML and other forms of markup are some-
what forgiving, and can often be left open or improperly nested without affecting the
content or display of a page. XML parsers and other tools that read and manipulate
XML documents are far less forgiving about structure and syntax than browsers.

c538292 ch01.qxd 8/18/03 8:43 AM Page 12

13Chapter 1 ✦ XML Concepts

XML Namespaces
Namespaces are a method for separating and identifying duplicate XML element
names in an XML document. Namespaces can also be used as identifiers to describe
data types and other information. Namespace declarations can be compared to
defining a short variable name for a long variable (such as pi=3.14159....) in pro-
gramming languages. In XML, the variable assignment is defined by an attribute
declaration. The variable name is the attribute name, and the variable value is the
attribute value. In order to identify namespace declarations versus other types of
attribute declarations, a reserved xmlns: prefix is used when declaring a names-
pace name and value. The attribute name after the xmlns: prefix identifies the
name for the defined namespace. The value of the attribute provides the unique
identifier for the namespace. Once the namespace is declared, the namespace name
can be used as a prefix in element names.

Listing 1-2 shows the very simple XML document I reviewed in Listing 1-1, this time
with some namespaces to differentiate between nested elements.

Listing 1-2: A Very Simple XML Document with Namespaces

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement
xmlns:fe=”http://www.benztech.com/schemas/verybasic”
position=”1”>
<fe:level1 children=”0”>This is level 1 of the nested
elements</fe:level1>

</firstelement>
<secondelement
xmlns:se=”http://www.benztech.com/schemas/verybasic”
position=”2”>
<se:level1 children=”1”>

<se:level2>This is level 2 of the nested
elements</se:level2>

</se:level1>
</secondelement>

</rootelement>

In this example, I am using two namespaces as identifiers to differentiate two
level1 elements in the same document. The xmlns: attribute declares the name-
space for an XML document or a portion of an XML document. The attribute can be
placed in the root element of the document, or in any other nested element.

In our example, the namespace name for the firstelement element is fe, and the
namespace name for the secondelement is se. Both use the same URL as the value
for the namespace. Often the URL in the namespace resolves to a Web page that

c538292 ch01.qxd 8/18/03 8:43 AM Page 13

14 Part I ✦ Introducing XML

provides documentation about the namespace, such as information about the data
encoding types identified in the namespace. However, in this case, we are just using
the namespace to defined prefixed for unique identification of duplicate element
names. The URL does resolve to an actual document, but is just used as a place-
holder for the namespace name declarations.

Although the namespace declaration value does not need to be a URL or resolve
to an actual URL destination, it is a good idea to use a URL anyway, and to choose
a URL that could resolve to an actual destination, just in case developers want to
add documentation for the namespace to the URL in the future.

When to use namespaces
Namespaces are optional components of basic XML documents. However, name-
space declarations are recommended if your XML documents have any current or
future potential of being shared with other XML documents that may share the
same element names. Also, newer XML-based technologies such as XML Schemas,
SOAP, and WSDL make heavy use of XML namespaces to identify data encoding
types and important elements of their structure. I’ll be showing many more exam-
ples of namespaces being used in context to identify elements for XML document
data encoding, identification, and description as the examples progress through
the book.

XML Data Validation
As I’ve shown you so far in this chapter, there are very strict rules for the basic
structure and syntax of well-formed XML documents. There are also several formats
within the boundaries of well-formed XML syntax that provide standardized ways of
representing specific types of data.

For example, NewsML offers a standard format for packaging news information in
XML. NewsML defines what the element name should be that contains the title,
publication date, headline, article text, and other parts of a news item. NewsML
also defines how these elements should be arranged, and which elements are
optional. NewsML documents are well-formed XML, and they also conform to
NewsML specifications.

The validity of an XML document is determined by a Document Type Definition
(DTD) or an XML Schema. There are several formats for data validation to choose
from. A good listing for XML validation formats can be found at http://www.
oasis-open.org/cover/schemas.html. However, the most common and offi-
cially W3C sanctioned formats are the Document Type Definition (DTD) and the
W3C Schema, which I will focus on in this chapter.

Tip

c538292 ch01.qxd 8/18/03 8:43 AM Page 14

15Chapter 1 ✦ XML Concepts

XML documents are compared to rules that are specified in a DTD or schema. A
well-formed XML document that meets all of the requirements of one or more speci-
fications is called a valid XML Document.

XML documents do not validate themselves. XML validation takes place when a
document is parsed. Most of today’s parsers have validation built-in to the core
functionality, and usually support W3C Schema and DTD validation, and may sup-
port other types of validation, depending on the parser. In addition, defining a vari-
able or calling a different class in the parser can often disable validation by
ignoring DTD and/or Schema directives in the XML document. Parsers or parser
classes that don’t support validation are called nonvalidating parsers, and parsers
or classes that support validation are called validating parsers.

For example, the NewsML specification is defined and managed by the International
Press Telecommunications Council (IPTC). The IPTC has published a DTD that can
be used by news providers to validate NewsML news items (Reuters and other
news providers have NewsML-compatible news feeds). If a member of the press
wants to produce NewsML formatted news items, they can download the DTD from
the IPTC Website at http://www.iptc.org. Once the DTD is downloaded, XML
developers can validate their NewsML output against the DTD using a validating
parser.

Listing 1-3 shows the same simple XML document in Listing 1-1, but this time there
is a DTD and a Schema reference in the document.

Listing 1-3: A Very Simple XML Document with a Schema and
DTD Reference

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE rootelement SYSTEM “verysimplexml.dtd”>
<rootelement xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xsi:noNamespaceSchemaLocation=”verysimplexml.xsd”>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

</rootelement>

Note

c538292 ch01.qxd 8/18/03 8:43 AM Page 15

16 Part I ✦ Introducing XML

It is not common to see both DTD and Schema references in a single document that
verify the same structural rules, but it’s a good example of the fact that you can
combine Schema and DTD references in a single document. References to a DTD
and a schema can occur when an XML document is made up of two or more source
documents. The DTD and schema references maintain all of the structure rules that
were present in the original document. Dual references can also be used when ille-
gal XML characters are represented in an XML document by entity references. I’ll
describe entity references in more detail later in this chapter.

The following section of this chapter is intended to give you an introductory
overview of DTDs and W3C Schemas. For more detail on XML document validation
with real-world examples, please see Chapter 3.

Validating XML documents with DTDs
Document Type Definition (DTD) is the original way to validate XML document
structure and enforce specific formatting of select text, and probably still the most
prevalent. Although the posting of the XML declaration at the top of the DTD would
lead one to believe that this is an XML document, DTDs are in fact non-well-formed
XML documents. This is because they follow DTD syntax rules rather than XML
document syntax. In Listing 1-3, the reference is to the DTD located in the first ele-
ment under the XML document declaration:

<!DOCTYPE rootelement SYSTEM “verysimplexml.dtd”>

Listing 1-4 shows the verysimplexml.dtd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-4: Contents of the verysimplexml.dtd File

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT rootelement (firstelement, secondelement)>
<!ELEMENT firstelement (level1)>
<!ATTLIST firstelement

position CDATA #REQUIRED
>
<!ELEMENT level1 (#PCDATA | level2)*>
<!ATTLIST level1

children (0 | 1) #REQUIRED
>
<!ATTLIST secondelement

position CDATA #REQUIRED
>
<!ELEMENT level2 (#PCDATA)>
<!ELEMENT secondelement (level1)>

Cross-
Reference

c538292 ch01.qxd 8/18/03 8:43 AM Page 16

17Chapter 1 ✦ XML Concepts

Let’s go through this DTD line by line to get to know DTD structure. The first line is
an XML document declaration, which tells parsers the version of XML and the
encoding type for the document. The next line specifies that valid XML documents
must contain a firstelement and the secondelement, which have to be present
under the rootelement, and have to be in the order listed:

<!ELEMENT rootelement (firstelement, secondelement)>

Next, the DTD describes the firstelement. The firstelement must have a
level1 element nested directly under the firstelement.:

<!ELEMENT firstelement (level1)>

Next, the DTD specifies an attribute for the firstelement. The ATTLIST declara-
tion tells us that valid XML documents need a position attribute for each instance
of the firstelement (#REQUIRED), and that it is regular character data (CDATA):

<!ATTLIST firstelement
position CDATA #REQUIRED

>

The next element declaration tells us that the level1 element can contain one of
two things. The | is equivalent to an or in a DTD. The level1 element can contain
another nested element called level2, or a value of parsed character data
(PCDATA):

<!ELEMENT level1 (#PCDATA | level2)*>

The next ATTLIST declaration tells us that level1 can have one of two values, 0 or
1:

<!ATTLIST level1
children (0 | 1) #REQUIRED

>

The ATTLIST declaration for secondlement tells us that valid XML documents
need a position attribute for each instance of the secondelement (#REQUIRED),
and that it is regular character data (CDATA):

<!ATTLIST secondelement
position CDATA #REQUIRED

>

Following the nesting deeper into the document, a declaration for the level2 ele-
ment is defined. The level2 element declaration simply states that the element
must contain a value of parsed character data (PCDATA):

<!ELEMENT level2 (#PCDATA)>

c538292 ch01.qxd 8/18/03 8:43 AM Page 17

18 Part I ✦ Introducing XML

Last but not least, the secondelement is defined, along with a mandatory level1
element nested underneath it:

<!ELEMENT secondelement (level1)>

As you can see from the last few lines of this DTD, the element and attribute decla-
rations do not have to be in the same order as the element and attributes that they
represent. It is up to the parser to reassemble the DTD into something that defines
the relationship of all the elements and enforces all the rules contained in each line
of the DTD.

Validating XML documents with Schemas
The W3C Schema is the officially sanctioned Schema definition. Unlike DTDs, the for-
mat of W3C Schemas follows the rules of well-formed XML documents. The Schema
also allows for much more granular control over the data that is being described.
Because of the XML format and the detailed format controls, Schemas tend to be
very complex and often much longer than the XML documents that they are describ-
ing. Paradoxically, Schemas are often much more easy for developers to read and fol-
low, due to the less cryptic nature of the references in Schemas versus DTDs.

References to schemas are defined by creating an instance of the XMLSchema-
instance namespace. Here is the Schema declaration in the XML document in
Listing 1-3:

<rootelement xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xsi:noNamespaceSchemaLocation=”verysimplexml.xsd”>

In this case, the namespace declaration reference to http://www.w3.org/2001/
XMLSchema-instance resolves to an actual document at that location, which is a
brief description of the way that the W3C Schema should be referenced. The
noNamespaceSchemaLocation value tells us that there is no predefined names-
pace for the Schema. This means that all of the elements in the XML document
should be validated against the schema specified. The location of the Schema I am
using is verysimplexml.xsd. Because there is no path defined, the file containing the
schema should be located in the same directory as the XML file to be validated by
the Schema.

You can also define the schema location, and map it to a specific namespace by
using the schemaLocation attribute declaration instead of noNamespace
SchemaLocation. If you do so, you have to declare a namespace that matches the
schemaLocation attribute value. The declaration must be made before you refer-
ence the schema in a schemaLocation attribute assignment. Here’s an example of
a schemaLocation assignment in a root element of an XML document:

<rootelement
xmlns:fe=”http://www.benztech.com/schemas/verybasic”
xsi:schemaLocation=”http://www.benztech.com/schemas/verybasic
“>

c538292 ch01.qxd 8/18/03 8:43 AM Page 18

19Chapter 1 ✦ XML Concepts

Listing 1-5 shows the verysimplexml.xsd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-5: Contents of the verysimplexml.xsd File

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:element name=”firstelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:boolean”
use=”required”/>

</xs:complexType>
</xs:element>
<xs:element name=”level1”>

<xs:complexType mixed=”true”>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:element ref=”level2”/>
</xs:choice>
<xs:attribute name=”children” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:NMTOKEN”>

<xs:enumeration value=”0”/>
<xs:enumeration value=”1”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name=”level2” type=”xs:string”/>
<xs:element name=”rootelement”>

<xs:complexType>
<xs:sequence>

<xs:element ref=”firstelement”/>
<xs:element ref=”secondelement”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”secondelement”>

<xs:complexType>
<xs:sequence>

<xs:element ref=”level1”/>
</xs:sequence>
<xs:attribute name=”position” type=”xs:byte”
use=”required”/>

</xs:complexType>
</xs:element>

</xs:schema>

c538292 ch01.qxd 8/18/03 8:43 AM Page 19

20 Part I ✦ Introducing XML

I’ll go through this code line by line to introduce readers to the W3C Schema XSD
format. After the declaration, the next line refers to the xs namespace for XML
Schemas. The reference URL, http://www.w3.org/2001/XMLSchema, actually
resolves to the W3C Website and provides documentation for Schemas, as well as
reference materials for data types and Schema namespace formatting.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

The first element definition describes the firstelement as a complex data type,
that the element contains one nested element called level1, and an attribute
called position, and that the attribute is required.

<xs:element name=”firstelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:boolean”
use=”required”/>

</xs:complexType>
</xs:element>

The next element describes the level1 element, that it is an optional element
(minOccurs=”0”), and that the level1 element can occur an unlimited number of
times in the document (maxOccurs=”unbounded”). Nested in the level1 element
is a reference to the level2 element, just as it is in the document. Next, the chil-
dren attribute is specified as required, and defined as a simple Schema data type
called NMTOKEN value for the base attribute, which is, for the purposes of this
schema, a string. The children string must be one of two predefined values, “0”
and “1”, as defined by the enumeration values nested inside of the restriction ele-
ment.

<xs:element name=”level1”>
<xs:complexType mixed=”true”>

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”level2”/>

</xs:choice>
<xs:attribute name=”children” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:NMTOKEN”>

<xs:enumeration value=”0”/>
<xs:enumeration value=”1”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>

c538292 ch01.qxd 8/18/03 8:43 AM Page 20

21Chapter 1 ✦ XML Concepts

Because the level2 element has no attributes or nested elements, it can be
described in one line and referred to as a nested element in the level1 element via
the ref= reference:

<xs:element name=”level2” type=”xs:string”/>
<xs:element ref=”level2”/>

As with the DTD example, the element and attribute declarations in a W3C Schema
do not have to be in the same order as the element and attributes that they repre-
sent in an XML document. Like the DTD, it is up to the parser to reassemble the
Schema into something that defines the relationship of all the elements and
enforces all the rules contained in each line of the Schema, regardless of the order.
The next element in this Schema example is the rootelement. The rootelement
must have a firstelement and a secondelement nested under it to be consid-
ered a valid XML document when using this Schema. The previous definitions for
the firstelement, secondelement, and all the nested elements underneath
them are defined earlier in the Schema.

<xs:element name=”rootelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”firstelement”/>
<xs:element ref=”secondelement”/>

</xs:sequence>
</xs:complexType>

</xs:element>

The schema defines the secondelement, which must contain a nested level1 ele-
ment, and have an attribute named position, this time a byte value.

<xs:element name=”secondelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:byte”
use=”required”/>

</xs:complexType>
</xs:element>

Finally, the closing of the schema tag indicates the end of the schema.

</xs:schema>

c538292 ch01.qxd 8/18/03 8:43 AM Page 21

22 Part I ✦ Introducing XML

Special Characters and Entity References
The W3C XML Recommendation also supports supplements to the default encod-
ing. Special characters in a well-formed XML document can be referenced via a
declared entity, Unicode, or hex character reference. Entity references must start
with an ampersand (&), Unicode character references start with an ampersand and
a pound sign (&#), and hexadecimal character references start with an ampersand,
pound sign, and an x (&#x). All entity, Unicode, and hexadecimal references end
with a semicolon (;).

Listing 1-6 shows a simple XML document that uses Entity, Unicode, and Hex refer-
ences to generate a copyright symbol ((c)) and a registered trademark symbol
((r)) in an XML document.

Listing 1-6: Entity, Unicode, and Hex Character References in
an XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE rootelement SYSTEM “specialcharacters.dtd”>
<rootelement>

<entityreferences>© ®</entityreferences>
<unicodereferences>© ®</unicodereferences>
<hexreferences>© ®</hexreferences>

</rootelement>

The values in the unicodereferences and hexreferences elements are the
Unicode and hex values that represent the symbols. Both follow the character refer-
ence rules outlined earlier. The addition of a DTD is necessary for the entity refer-
ences in the entityreferences element. The values for the entity references
must be defined outside of the XML document. Listing 1-7 shows the specialcharac-
ters.dtd file, including the entity definitions for © and ®. This very basic
DTD defines the structure of the document, and also defines two entity references
and their values. I’ve created a Hex and a Unicode reference to illustrate that entity
references in XML documents can refer to either format. The first ENTITY tag in the
DTD defines the copy reference as the hex character reference %A9. The value fol-
lows XML rules for formatting a hex character reference, which makes the hex value
“©”. The second ENTITY tag refers to the Unicode character 174, formatted
as “®” according to XML document Unicode character reference rules.

c538292 ch01.qxd 8/18/03 8:43 AM Page 22

23Chapter 1 ✦ XML Concepts

Listing 1-7: The specialcharacters.dtd File with Entity
Definitions for © and ®

<?xml version=”1.0” encoding=”UTF-8”?>
<!ENTITY copy “©”>
<!ENTITY reg “®”>
<!ELEMENT rootelement (entityreferences, unicodereferences,
hexreferences)>
<!ELEMENT entityreferences (#PCDATA)>
<!ELEMENT hexreferences (#PCDATA)>
<!ELEMENT unicodereferences (#PCDATA)>

Listing 1-8 shows the output from the XML document, with the resolved character
references. This is what the document looks like when the character and entity ref-
erences are rendered by a Microsoft Internet Explorer 6 browser.

Listing 1-8: MSIE Rendered Character and Entity References
Using the specialcharacters.dtd File

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE rootelement (View Source for full doctype...)>
<rootelement>
<entityreferences>(c) (r)</entityreferences>
<unicodereferences>(c) (r)</unicodereferences>
<hexreferences>(c) (r)</hexreferences>

</rootelement>

Using entity references as variables
Entity references can also be used as variables and combined with other entity ref-
erences in a DTD, which is a handy way of standardizing certain declarations and
other unalterable components of an XML document. For example, an entity refer-
ence called copyline can be created in a DTD like this:

<!ENTITY copy “©”>
<!ENTITY copyline “© Benz Technologies, Inc, all rights
reserved;”>

c538292 ch01.qxd 8/18/03 8:43 AM Page 23

24 Part I ✦ Introducing XML

When a reference to the ©line; entity is made in an XML document, the out-
put would look like this:

(c) Benz Technologies, Inc, all rights reserved

Using this technique ensures that XML document validation imposes a standard for-
mat for certain important pieces of text in an XML document, as well as the struc-
ture of the document.

Reserved character references
All of the character reference formats defined earlier include an ampersand. So how
do you represent an ampersand in XML documents? To accommodate ampersands
and four other special characters that are part of the XML core syntax special
reserved character references are defined. Less than and greater than symbols
(which are used to define XML elements), and quotes (which are used to define
attribute values) are supported via special predefined character substitutions with-
out any Entity, Unicode, or Hex references needed. An ampersand (&) is used at the
beginning and a semicolon (;) is placed at the end of the reference. Table 1-1 shows
the reserved character entity and its reference.

Table 1-1
Reserved Character Entities and References

Entity Reference Special Character

& ampersand (&)

&apos apostrophe or single quote (‘)

> greater-than (>)

< less-than (<)

" double quote (“)

XML 1.1
XML 1.1 represents an incremental development of the W3C XML recommendation.
The new recommendation is actually split into two significant recommendations,
XML 1.1 and XML Namespaces 1.1. Most of the new features are “behind the
scenes” enhancements, which will have little or no effect on most XML applications.
For example, the new way of handling line-endings in XML 1.1 documents will prob-
ably affect developers who are coding XML 1.1 parsers or XML 1.1 development

c538292 ch01.qxd 8/18/03 8:43 AM Page 24

25Chapter 1 ✦ XML Concepts

tools. They will probably not, however, significantly affect developers who are using
XML 1.1 parsers or development tools to develop XML applications.

XML 1.1 new features
New character sets accommodation for evolving Unicode specifications form the
base of new features for XML 1.1. Since the first W3C XML document recommenda-
tion was released in 1998, Unicode has expanded to accommodate much more of
the alphabets and characters of the world. This was addressed to some extent in
the second edition of the XML Recommendation in 2000, but the newer recommen-
dation goes beyond the second edition to redefine what a well-formed document is,
based on new Unicode standards.

Defining XML 1.1 documents
The version number in the optional XML declaration defines XML 1.1 documents,
like this:

<?xml version=”1.1”>

Any document that does not specifically state the XML document version as 1.1 is
treated as an XML 1.0 document. XML 1.1 documents are backward compatible with
XML 1.0 documents. There is an exception: Some new Unicode characters that XML
1.1 processors recognize as part of well-formed element, attribute, and namespace
names are not accepted by XML 1.0 document syntax rules. These characters could
already be used in XML 1.0 text and attribute values. XML 1.1 officially adds these
characters and character sets into structural items of XML documents — element
names, attribute names, and namespaces.

XML 1.1 character sets
A more inclusive philosophy is the basis of XML 1.1. This is a reaction to the evolu-
tion of Unicode specifications, which has outpaced XML recommendation updates.
Instead of the XML 1.0 approach of defining which characters cannot be included
within XML documents and considering markup with undefined characters as not
well formed, XML 1.1 instead defines which characters can specifically not be
included in well-formed XML documents and considers any undefined characters as
part of well-formed XML. This makes it easier to accommodate developing Unicode
specifications. This rule applies to all XML markup, including elements, attributes,
and namespaces. XML 1.0 documents will be limited to the character set defined in
Unicode 2.0, and XML 1.1 documents theoretically should handle any Unicode from
2.0 to the current 3.2 and beyond.

New characters and the new philosophy will be supported by the requirement of
normalization in XML 1.1 document parsed entities. This means that XML 1.1 pro-
cessors that generate data will have to conform to the W3C Character Model for the

c538292 ch01.qxd 8/18/03 8:43 AM Page 25

26 Part I ✦ Introducing XML

World Wide Web 1.0 (CHARMOD), currently at the “Working Draft” stage of the W3C
Recommendation process, and XML 1.1. Next, the character data should be
resolved into one of five formats: Cdata, CharData, content, name, or nmtoken.
Parsers will have to verify normalization based on the same character model.

XML 1.1 line-end characters
Another feature of XML 1.1 is the capability to handle line-end characters generated
in IBM mainframe file formats, which has been a long-standing issue between XML
documents generated and shared across ASCII and EBCDIC-based platforms. XML
1.1 parsers are required to recognize and accept EBCDIC line-end characters (#x85)
and the Unicode line separator (#x2028). These values should be converted to one
of the XML 1.0 ASCII line-end characters- — linefeed (decimal 10, #xA), or carriage
return (decimal 13, #xD).

The place that most XML developers may see and/or use the XML 1.1 line-end and
character set rules will be when including hard-coded values in character or entity
references. For example, if you want to hard-code a carriage return in an XML 1.0
document, the following hex character reference can be used:

<?xml version=”1.0” encoding=”UTF-8”?>
<LineEndExample>An example of a hard codednew
line</LineEndExample>

The results look like this when parsed:

<?xml version=”1.0” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded
new line</LineEndExample>

In XML 1.1, you could also hard-code an EBCDIC value to be used on IBM mainframe
systems. When parsed on non-IBM mainframe systems, the line end should be
replaced with an XML 1.0 ASCII value.

<?xml version=”1.1” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded…IBM new
line</LineEndExample>

These results look like this when parsed:

<?xml version=”1.1” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded
IBM new line</LineEndExample>

Namespaces for XML 1.1The essential difference between the XML Namespaces 1.0
and 1.1 recommendations is the ability to “undeclare” a previously defined name-
space declaration and its associated prefix. As with XML 1.1 updates, this is a

c538292 ch01.qxd 8/18/03 8:43 AM Page 26

27Chapter 1 ✦ XML Concepts

change that will mostly affect XML parser and development tool developers, rather
than the average XML application developer.

Being able to “undeclare” a namespace provides a more flexible and efficient way of
managing and reusing namespaces and their prefixes. Namespaces are applicable to
any nested elements above the namespace declaration. Being able to remove a pre-
fix and/or re-declare it in another part of a large XML document has benefits in
parser performance. It also provides an out for a document that may have the same
namespace prefix defined to different namespaces.

Namespaces for XML 1.1 is a separate document at the W3C but is closely linked to
the XML 1.1 Recommendation. XML 1.0 documents use XML Namespace 1.0 rules,
and XML 1.1 documents use XML Namespace 1.1 recommendation rules.

XML 1.1 references
More information on XML 1.1 can be found at http://www.w3.org/TR/2002/
CR-xml11-20021015/, the namespaces for XML 1.1 working draft can be found at
http://www.w3.org/TR/2002/WD-xml-names11-20020905/, and the CHAR-
MOD working draft can be found at http://www.w3.org/TR/charmod. Also, all
of the links are located on the W3C XML core Working Group page at http://www.
w3.org/XML/Activity#core-wg.

Summary
In this chapter, I’ve kept the examples to a minimum to illustrate the basics of tech-
nologies that make up the XML world. The concepts introduced here will be
extended with real-world examples throughout the rest of the book.

I’ve also introduced you to the real changes in the XML 1.1 Recommendation. These
changes will affect parsers and generators and those who develop them the most.
XML 1.1 parsers will probably contain normalizing and non-normalizing parser
classes for conversions of line endings and character sets, just as most XML 1.0
parsers contain validating and non-validating parser classes.

✦ An introduction to XML

✦ XML structure

✦ Working with well-formed XML documents

✦ Validating XML documents

✦ Character and entity references

✦ Changes in XML 1.1 and XML Namespaces 1.1

c538292 ch01.qxd 8/18/03 8:43 AM Page 27

28 Part I ✦ Introducing XML

In the next few chapters, I’ll dive much deeper into XML documents, and the com-
ponents that make up well-formed XML documents, by showing some real-world
examples of documents, how they are generated, how they can be combined, and
how namespaces can track element parts of combined documents.

✦ ✦ ✦

c538292 ch01.qxd 8/18/03 8:43 AM Page 28

