
Xerces

XML parsing is the foundational building block for every other tool we’ll be looking at in this
book. You can’t use Xalan, the XSLT engine, without an XML parser because the XSLT stylesheets
are XML documents. The same is true for FOP and its input XSL:FO, Batik and SVG, and all the
other Apache XML tools. Even if you as a developer aren’t interacting with the XML parser
directly, you can be sure that each of the tools you describe makes use of an XML parser.

XML parsing technology is so important that the ASF has two XML parsing projects: Xerces and
Crimson. The reason for this is historical. When the ASF decided to create http://xml.apache.org,
both IBM and Sun had Java-based XML parsers that they wanted to donate to the project. The IBM
parser was called XML for Java (XML4J) and was available in source code from IBM’s AlphaWorks
Website. The Sun parser was originally called Project X. The code base for IBM’s XML4J parser
became the basis for Xerces, and the code base for Project X became the basis for Crimson. The
goal of the parsing project was to build a best-of-breed parser based on the ideas and experience of
XML4J and Project X. This did not happen right away; it wasn’t until late in 2000 that a second-
generation Xerces effort was begun.

Throughout this chapter and the rest of this book, we’ll use Xerces for Java 2 (hereafter Xerces) as
our parser. Xerces for Java 2 is replacing both Xerces for Java 1 and Crimson. At the time of this
writing, the plan is for a version of Xerces to be the reference implementation for XML parsing in
the Sun Java Developer’s Kit (JDK). Xerces is a fully featured XML parser that supports the impor-
tant XML standards:

❑ XML 1.0, Second Edition

❑ XML Namespaces

❑ SAX 2.0

❑ DOM Level 1

❑ DOM Level 2 (Core, Events, Range, and Traversal)

111

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 1

❑ Java APIs for XML Parsing 1.2

❑ XML Schema 1.0 (Schema and Structures)

The current release of Xerces (2.4.0) also has experimental support for:

❑ XML 1.1 Candidate Recommendation

❑ XML Namespaces 1.1 Candidate Recommendation

❑ DOM Level 3 (Core, Load/Save)

A word about experimental functionality: one of the goals of the Xerces project is to provide feedback to
the various standards bodies regarding specifications that are under development. This means the
Xerces developers are implementing support for those standards before the standards are complete. Work
in these areas is always experimental until the specification being implemented has been approved. If
you need functionality that is documented as experimental, you may have to change your code when the
final version of the specification is complete. If the functionality you need is implemented only in an
experimental package, be aware that the functionality may change or be removed entirely as the stan-
dards process continues. A good example is abstract support for grammars (both DTDs and XML
Schema), which was supposed to be part of DOM Level 3. However, the DOM Working Group decided
to cease work on this functionality, so it had to be removed from Xerces. This is a rare and extreme
occurrence, but you should be aware that it has happened. Most situations are less severe, such as
changes in the names and signatures of APIs.

Prerequisites
You must understand a few basics about XML and related standards in order to make good use of the
material in this chapter. Following is a quick review. If you need more information, XML in a Nutshell,
Second Edition by Eliotte Rusty Harold and W. Scott Means is a good source for the relevant background.
Let’s begin with the following simple XML file:

1: <?xml version="1.0" encoding="UTF-8"?>
2: <book xmlns="http://sauria.com/schemas/apache-xml-book/book"
3: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4: xsi:schemaLocation=
5: "http://sauria.com/schemas/apache-xml-book/book
6: http://www.sauria.com/schemas/apache-xml-book/book.xsd"
7: version="1.0">
8: <title>Professional XML Development with Apache Tools</title>
9: <author>Theodore W. Leung</author>

10: <isbn>0-7645-4355-5</isbn>
11: <month>December</month>
12: <year>2003</year>
13: <publisher>Wrox</publisher>
14: <address>Indianapolis, Indiana</address>
15: </book>

Like all XML files, this file begins with an XML declaration (line 1). The XML declaration says that this is
an XML file, the version of XML being used is 1.0, and the character encoding being used for this file is
UTF-8. Until recently, the version number was always 1.0, but the W3C XML Working Group is in the

2

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 2

process of defining XML 1.1. When they have finished their work, you will be able to supply 1.1 in addi-
tion to 1.0 for the version number. If there is no encoding declaration, then the document must be
encoded using UTF-8. If you forget to specify an encoding declaration or specify an incorrect encoding
declaration, your XML parser will report a fatal error. We’ll have more to say about fatal errors later in
the chapter.

Well-Formedness
The rest of the file consists of data that has been marked up with tags (such as <title> and <author>).
The first rule or prerequisite for an XML document is that it must be well-formed. (An XML parser is
required by the XML specification to report a fatal error if a document isn’t well-formed.) This means
every start tag (like <book>) must have an end tag (</book>). The start and end tag, along with the data
in between them, is called an element. Elements may not overlap; they must be nested within each other.
In other words, the start and end tag of an element must be inside the start and end tag of any element
that encloses it. The data between the start and end tag is also known as the content of the element; it
may contain elements, characters, or a mix of elements and characters. Note that the start tag of an ele-
ment may contain attributes. In our example, the book element contains an xsi:schemaLocation attribute
in lines 4-5. The value of an attribute must be enclosed in either single quotes (') or double quotes ("). The
type of the end quote must match the type of the beginning quote.

Namespaces
In lines 2-4 you see a number of namespace declarations. The first declaration in line 2 sets the default
namespace for this document to http://sauria.com/schemas/apache-xml-book/book. Namespaces are
used to prevent name clashes between elements from two different grammars. You can easily imagine
the element name title or author being used in another XML grammar, say one for music CDs. If you
want to combine elements from those two grammars, you will run into problems trying to determine
whether a title element is from the book grammar or the CD grammar.

Namespaces solve that problem by allowing you to associate each element in a grammar with a names-
pace. The namespace is specified by a URI, which is used to provide a unique name for the namespace.
You can’t expect to be able to retrieve anything from the namespace URI. When you’re using name-
spaces, it’s as if each element or attribute name is prefixed by the namespace URI. This is very cumber-
some, so the XML Namespaces specification provides two kinds of shorthand. The first shorthand is the
ability to specify the default namespace for a document, as in line 2. The other shorthand is the ability to
declare an abbreviation that can be used in the document instead of the namespace URI. This abbrevia-
tion is called the namespace prefix. In line 3, the document declares a namespace prefix xsi for the name-
space associated with http://www.w3.org/2001/XMLSchema-instance. You just place a colon and the
desired prefix after xmlns.

Line 4 shows how namespace prefixes are used. The attribute schemaLocation is prefixed by xsi, and the
two are separated by a colon. The combined name xsi:schemaLocation is called a qualified name
(QName). The prefix is xsi, and the schemaLocation portion is also referred to as the local part of the
QName. (It’s important to know what all these parts are called because the XML parser APIs let you
access each piece from your program.)

Default namespaces have a lot of gotchas. One tricky thing to remember is that if you use a default
namespace, it only works for elements—you must prefix any attributes that are supposed to be in the
default namespace. Another tricky thing about default namespaces is that you have to explicitly define a

3

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 3

default namespace. There is no way to get one "automatically". If you don’t define a default namespace,
and then you write an unprefixed element or attribute, that element or attribute is in no namespace at
all.

Namespace prefixes can be declared on any element in a document, not just the root element. This
includes changing the default namespace. If you declare a prefix that has been declared on an ancestor
element, then the new prefix declaration works for the element where it’s declared and all its child ele-
ments.

You may declare multiple prefixes for the same namespace URI. Doing so is perfectly allowable; how-
ever, remember that namespace equality is based on the namespace URI, not the namespace prefix.
Thus elements that look like they should be in the same namespace can actually be in different name-
spaces. It all depends on which URI the namespace prefixes have been bound to. Also note that certain
namespaces have commonly accepted uses, such as the xsi prefix used in this example. Here are some of
the more common prefixes:

Namespace Prefix Namespace URI Usage

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema Instance

xsd http://www.w3.org/2001/XMLSchema XML Schema

xsl http://www.w3.org/1999/XSL/Transform XSLT

fo http://www.w3.org/1999/XSL/Format XSL Formatting
Objects

xlink http://www.w3.org/1999/xlink XLink

svg http://www.w3.org/2000/svg Scalable Vector
Graphics

ds http://www.w3.org/2000/09/xmldsig# XML Signature

xenc http://www.w3.org/2001/04/xmlenc# XML Encryption

Validity
The second rule for XML documents is validity. It’s a little odd to say "rule" because XML documents
don’t have to be valid, but there are well defined rules that say what it means for a document to be valid.
Validity is the next step up from well-formedness. Validity lets you say things like this: Every book ele-
ment must have a title element followed by an author element, followed by an isbn element, and so on.
Validity says that the document is valid according to the rules of some grammar. (Remember diagram-
ming sentences in high-school English? It’s the same kind of thing we’re talking about here for valid
XML documents.)

Because a document can only be valid according to the rules of a grammar, you need a way to describe
the grammar the XML document must follow. At the moment, there are three major possibilities: DTDs,
the W3C’s XML Schema, and OASIS’s Relax-NG.

4

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 4

DTDs
The XML 1.0 specification describes a grammar using a document type declaration (DTD). The language
for writing a DTD is taken from SGML and doesn’t look anything like XML. DTDs can’t deal with
namespaces and don’t allow you to say anything about the data between a start and end tag. Suppose
you have an element that looks like this:

<quantity>5</quantity>

Perhaps you’d like to be able to say that the content of a <quantity> element is a non-negative integer.
Unfortunately, you can’t say this using DTDs.

XML Schema
Shortly after XML was released, the W3C started a Working Group to define a new language for describ-
ing XML grammars. Among the goals for this new schema language were the following:

❑ Describe the grammar/schema in XML.

❑ Support the use of XML Namespaces.

❑ Allow rich datatypes to constrain element and attribute content.

The result of the working group’s effort is known as XML Schema. The XML Schema specification is bro-
ken into two parts:

❑ XML Schema Part 1: Structures describes XML Schema’s facilities for specifying the rules of a
grammar for an XML document. It also describes the rules for using XML Schema in conjunc-
tion with namespaces.

❑ XML Schema Part 2: Datatypes covers XML Schema’s rich set of datatypes that enable you to
specify the types of data contained in elements and attributes. There are a lot of details to be
taken care of, which has made the specification very large.

If you’re unfamiliar with XML Schema, XML Schema Part 0: Primer is a good introduction.

Relax-NG
The third option for specifying the grammar for an XML document is Relax-NG. It was designed to ful-
fill essentially the same three goals that were used for XML Schema. The difference is that the resulting
specification is much simpler. Relax-NG is the result of a merger between James Clark’s TREX and
MURATA Makoto’s Relax. Unfortunately, there hasn’t been much industry support for Relax-NG, due to
the W3C’s endorsement of XML Schema. Andy Clark’s Neko XML tools provide basic support for Relax-
NG that can be used with Xerces. We’ll cover the Neko tools a bit later in the chapter.

Validity Example
Let’s go back to the example XML file. We’ve chosen to specify the grammar for the book.xml document
using XML Schema. The xsi:schemaLocation attribute in lines 4-5 works together with the default
namespace declaration in line 2 to tell the XML parser that the schema document for the namespace
http://sauria.com/schemas/apache-xml-book/book is located at http://www.sauria.com
/schemas/apache-xml-book/book.xsd. The schema is attached to the namespace, not the document.

5

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 5

There’s a separate mechanism for associating a schema with a document that has no namespace
(xsi:noNamespaceSchemaLocation). For completeness, here’s the XML Schema document that describes
book.xml.

1: <?xml version="1.0" encoding="UTF-8"?>
2: <xs:schema
3: targetNamespace="http://sauria.com/schemas/apache-xml-book/book"
4: xmlns:book="http://sauria.com/schemas/apache-xml-book/book"
5: xmlns:xs="http://www.w3.org/2001/XMLSchema"
6: elementFormDefault="qualified">
7: <xs:element name="address" type="xs:string"/>
8: <xs:element name="author" type="xs:string"/>
9: <xs:element name="book">

10: <xs:complexType>
11: <xs:sequence>
12: <xs:element ref="book:title"/>
13: <xs:element ref="book:author"/>
14: <xs:element ref="book:isbn"/>
15: <xs:element ref="book:month"/>
16: <xs:element ref="book:year"/>
17: <xs:element ref="book:publisher"/>
18: <xs:element ref="book:address"/>
19: </xs:sequence>
20: <xs:attribute name="version" type="xs:string" use="required"/>
21:
22: </xs:complexType>
23: </xs:element>
24: <xs:element name="isbn" type="xs:string"/>
25: <xs:element name="month" type="xs:string"/>
26: <xs:element name="publisher" type="xs:string"/>
27: <xs:element name="title" type="xs:string"/>
28: <xs:element name="year" type="xs:short"/>
29: </xs:schema>

Entities
The example document is a single file; in XML terminology, it’s a single entity. Entities correspond to
units of storage for XML documents or portions of XML documents, like the DTD. Not only is an XML
document a tree of elements, it can be a tree of entities as well. It’s important to keep this in mind
because entity expansion and retrieval of remote entities can be the source of unexpected performance
problems. Network fetches of DTDs or a common library of entity definitions can cause intermittent per-
formance problems. Using entities to represent large blocks of data can lead to documents that look rea-
sonable in size but that blow up when the entities are expanded. Keep these issues in mind if you’re
going to use entities in your documents.

XML Parser APIs
Now that we’ve finished the XML refresher, let’s take a quick trip through the two major parser APIs:
SAX and DOM. A third parser API, the STreaming API for XML (STAX), is currently making its way
through the Java Community Process (JCP).

6

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 6

A parser API makes the various parts of an XML document available to your application. You’ll be see-
ing the SAX and DOM APIs in most of the other Apache XML tools, so it’s worth a brief review to make
sure you’ll be comfortable during the rest of the book.

Let's look at a simple application to illustrate the use of the parser APIs. The application uses a parser
API to parse the XML book description and turn it into a JavaBean that represents a book. This book
object is a domain object in an application you’re building. The file Book.java contains the Java code for
the Book JavaBean. This is a straightforward JavaBean that contains the fields needed for a book, along
with getter and setter methods and a toString method:

1: /*
2: *
3: * Book.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: public class Book {
11: String title;
12: String author;
13: String isbn;
14: String month;
15: int year;
16: String publisher;
17: String address;
18:
19: public String getAddress() {
20: return address;
21: }
22:
23: public String getAuthor() {
24: return author;
25: }
26:
27: public String getIsbn() {
28: return isbn;
29: }
30:
31: public String getMonth() {
32: return month;
33: }
34:
35: public String getPublisher() {
36: return publisher;
37: }
38:
39: public String getTitle() {
40: return title;
41: }
42:
43: public int getYear() {

7

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 7

44: return year;
45: }
46:
47: public void setAddress(String string) {
48: address = string;
49: }
50:
51: public void setAuthor(String string) {
52: author = string;
53: }
54:
55: public void setIsbn(String string) {
56: isbn = string;
57: }
58:
59: public void setMonth(String string) {
60: month = string;
61: }
62:
63: public void setPublisher(String string) {
64: publisher = string;
65: }
66:
67: public void setTitle(String string) {
68: title = string;
69: }
70:
71: public void setYear(int i) {
72: year = i;
73: }
74:
75: public String toString() {
76: return title + " by " + author;
77: }
78: }

SAX
Now that you have a JavaBean for Books, you can turn to the task of parsing XML that uses the book
vocabulary. The SAX API is event driven. As Xerces parses an XML document, it calls methods on one or
more event-handler classes that you provide. The following listing, SAXMain.java, shows a typical
method of using SAX to parse a document. After importing all the necessary classes in lines 8-14, you
create a new XMLReader instance in line 19 by instantiating Xerces’ SAXParser class. You then instanti-
ate a BookHandler (line 20) and use it as the XMLReader’s ContentHandler and ErrorHandler event call-
backs. You can do this because BookHandler implements both the ContentHandler and ErrorHandler
interfaces. Once you’ve set up the callbacks, you’re ready to call the parser, which you do in line 24. The
BookHandler’s callback methods build an instance of Book that contains the information from the XML
document. You obtain this Book instance by calling the getBook method on the bookHandler instance,
and then you print a human-readable representation of the Book using toString.

8

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 8

1: /*
2: *
3: * SAXMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.SAXParser;
13: import org.xml.sax.SAXException;
14: import org.xml.sax.XMLReader;
15:
16: public class SAXMain {
17:
18: public static void main(String[] args) {
19: XMLReader r = new SAXParser();
20: BookHandler bookHandler = new BookHandler();
21: r.setContentHandler(bookHandler);
22: r.setErrorHandler(bookHandler);
23: try {
24: r.parse(args[0]);
25: System.out.println(bookHandler.getBook().toString());
26: } catch (SAXException se) {
27: System.out.println("SAX Error during parsing " +
28: se.getMessage());
29: se.printStackTrace();
30: } catch (IOException ioe) {
31: System.out.println("I/O Error during parsing " +
32: ioe.getMessage());
33: ioe.printStackTrace();
34: } catch (Exception e) {
35: System.out.println("Error during parsing " +
36: e.getMessage());
37: e.printStackTrace();
38: }
39: }
40: }

The real work in a SAX-based application is done by the event handlers, so let’s turn our attention to the
BookHandler class and see what’s going on. The following BookHandler class extends SAX’s
DefaultHandler class. There are two reasons. First, DefaultHandler implements all the SAX callback han-
dler interfaces, so you’re saving the effort of writing all the implements clauses. Second, because
DefaultHandler is a class, your code doesn’t have to implement every method in every callback inter-
face. Instead, you just supply an implementation for the methods you’re interested in, shortening the
class overall.

1: /*
2: *
3: * BookHandler.java
4: *

9

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 9

5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.util.Stack;
11:
12: import org.xml.sax.Attributes;
13: import org.xml.sax.SAXException;
14: import org.xml.sax.SAXParseException;
15: import org.xml.sax.helpers.DefaultHandler;
16:
17: public class BookHandler extends DefaultHandler {
18: private Stack elementStack = new Stack();
19: private Stack textStack = new Stack();
20: private StringBuffer currentText = null;
21: private Book book = null;
22:
23: public Book getBook() {
24: return book;
25: }
26:

We’ll start by looking at the methods you need from the ContentHandler interface. Almost all
ContentHandlers need to manage a stack of elements and a stack of text. The reason is simple. You need
to keep track of the level of nesting you’re in. This means you need a stack of elements to keep track of
where you are. You also need to keep track of any character data you’ve seen, and you need to do this by
the level where you saw the text; so, you need a second stack to keep track of the text. These stacks as
well as a StringBuffer for accumulating text and an instance of Book are declared in lines 18-21. The
accessor to the book instance appears in lines 23-25.

The ContentHandler callback methods use the two stacks to create a Book instance and call the appro-
priate setter methods on the Book. The methods you’re using from ContentHandler are startElement,
endElement, and characters. Each callback method is passed arguments containing the data associated
with the event. For example, the startElement method is passed the localPart namespace URI, and the
QName of the element being processed. It’s also passed the attributes for that element:

27: public void startElement(
28: String uri,
29: String localPart,
30: String qName,
31: Attributes attributes)
32: throws SAXException {
33: currentText = new StringBuffer();
34: textStack.push(currentText);
35: elementStack.push(localPart);
36: if (localPart.equals("book")) {
37: String version = attributes.getValue("", "version");
38: if (version != null && !version.equals("1.0"))
39: throw new SAXException("Incorrect book version");
40: book = new Book();
41: }
42: }

10

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 10

The startElement callback basically sets things up for new data to be collected each time it sees a new
element. It creates a new currentText StringBuffer for collecting this element’s text content and pushes it
onto the textStack. It also pushes the element’s name on the elementStack for placekeeping. This method
must also do some processing of the attributes attached to the element, because the attributes aren’t
available to the endElement callback. In this case, startElement verifies that you’re processing a version
of the book schema that you understand (1.0).

You can’t do most of the work until you’ve encountered the end tag for an element. At this point, you
will have seen any child elements and you’ve seen all the text content associated with the element. The
following endElement callback does the real heavy lifting. First, it pops the top off the textStack, which
contains the text content for the element it’s processing. Depending on the name of the element being
processed, endElement calls the appropriate setter on the Book instance to fill in the correct field. In the
case of the year, it converts the String into an integer before calling the setter method. After all this,
endElement pops the elementStack to make sure you keep your place.

43:
44: public void endElement(String uri, String localPart,
45: String qName)
46: throws SAXException {
47: String text = textStack.pop().toString();
48: if (localPart.equals("book")) {
49: } else if (localPart.equals("title")) {
50: book.setTitle(text);
51: } else if (localPart.equals("author")) {
52: book.setAuthor(text);
53: } else if (localPart.equals("isbn")) {
54: book.setIsbn(text);
55: } else if (localPart.equals("month")) {
56: book.setMonth(text);
57: } else if (localPart.equals("year")) {
58: int year;
59: try {
60: year = Integer.parseInt(text);
61: } catch (NumberFormatException e) {
62: throw new SAXException("year must be a number");
63: }
64: book.setYear(year);
65: } else if (localPart.equals("publisher")) {
66: book.setPublisher(text);
67: } else if (localPart.equals("address")) {
68: book.setAddress(text);
69: } else {
70: throw new SAXException("Unknown element for book");
71: }
72: elementStack.pop();
73: }
74:

The characters callback is called every time the parser encounters a piece of text content. SAX says that
characters may be called more than once inside a startElement/endElement pair, so the implementation
of characters appends the next text to the currentText StringBuffer. This ensures that you collect all the
text for an element:

11

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 11

75: public void characters(char[] ch, int start, int length)
76: throws SAXException {
77: currentText.append(ch, start, length);
78: }
79:

The remainder of BookHandler implements the three public methods of the ErrorHandler callback inter-
face, which controls how errors are reported by the application. In this case, you’re just printing an
extended error message to System.out. The warning, error, and fatalError methods use a shared private
method getLocationString to process the contents of a SAXParseException, which is where they obtain
position information about the location of the error:

80: public void warning(SAXParseException ex) throws SAXException {
81: System.err.println(
82: "[Warning] " + getLocationString(ex) + ": " +
83: ex.getMessage());
84: }
85:
86: public void error(SAXParseException ex) throws SAXException {
87: System.err.println(
88: "[Error] " + getLocationString(ex) + ": " +
89: ex.getMessage());
90: }
91:
92: public void fatalError(SAXParseException ex)
93: throws SAXException {
94: System.err.println(
95: "[Fatal Error] " + getLocationString(ex) + ": " +
96: ex.getMessage());
97: throw ex;
98: }
99:

100: /** Returns a string of the location. */
101: private String getLocationString(SAXParseException ex) {
102: StringBuffer str = new StringBuffer();
103:
104: String systemId = ex.getSystemId();
105: if (systemId != null) {
106: int index = systemId.lastIndexOf('/');
107: if (index != -1)
108: systemId = systemId.substring(index + 1);
109: str.append(systemId);
110: }
111: str.append(':');
112: str.append(ex.getLineNumber());
113: str.append(':');
114: str.append(ex.getColumnNumber());
115:
116: return str.toString();
117:
118: }
119:
120: }

12

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 12

DOM
Let’s look at how you can accomplish the same task using the DOM API. The DOM API is a tree-based
API. The parser provides the application with a tree-structured object graph, which the application can
then traverse to extract the data from the parsed XML document. This process is more convenient than
using SAX, but you pay a price in performance because the parser creates a DOM tree whether you’re
going to use it or not. If you’re using XML to represent data in an application, the DOM tends to be inef-
ficient because you have to get the data you need out of the DOM tree; after that you have no use for the
DOM tree, even though the parser spent time and memory to construct it. We’re going to reuse the class
Book (in Book.java) for this example.

After importing all the necessary classes in lines 10-17, you declare a String constant whose value is the
namespace URI for the book schema (lines 19-21):

1: /*
2: *
3: * DOMMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.DOMParser;
13: import org.w3c.dom.Document;
14: import org.w3c.dom.Element;
15: import org.w3c.dom.Node;
16: import org.w3c.dom.NodeList;
17: import org.xml.sax.SAXException;
18:
19: public class DOMMain {
20: static final String bookNS =
21: "http://sauria.com/schemas/apache-xml-book/book";
22:

In line 24 you create a new DOMParser. Next you ask it to parse the document (line 27). At this point the
parser has produced the DOM tree, and you need to obtain it and traverse it to extract the data you need
to create a Book object (lines 27-29):

23: public static void main(String args[]) {
24: DOMParser p = new DOMParser();
25:
26: try {
27: p.parse(args[0]);
28: Document d = p.getDocument();
29: System.out.println(dom2Book(d).toString());
30:
31: } catch (SAXException se) {
32: System.out.println("Error during parsing " +
33: se.getMessage());
34: se.printStackTrace();

13

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 13

35: } catch (IOException ioe) {
36: System.out.println("I/O Error during parsing " +
37: ioe.getMessage());
38: ioe.printStackTrace();
39: }
40: }
41:

The dom2Book function creates the Book object:

42: private static Book dom2Book(Document d) throws SAXException {
43: NodeList nl = d.getElementsByTagNameNS(bookNS, "book");
44: Element bookElt = null;
45: Book book = null;
46: try {
47: if (nl.getLength() > 0) {
48: bookElt = (Element) nl.item(0);
49: book = new Book();
50: } else
51: throw new SAXException("No book element found");
52: } catch (ClassCastException cce) {
53: throw new SAXException("No book element found");
54: }
55:

In lines 43-54, you use the namespace-aware method getElementsByTagNameNS (as opposed to the
non-namespace-aware getElementsByTagName) to find the root book element in the XML file. You check
the resulting NodeList to make sure a book element was found before constructing a new Book instance.

Once you have the book element, you iterate through all the children of the book. These nodes in the
DOM tree correspond to the child elements of the book element in the XML document. As you encounter
each child element node, you need to get the text content for that element and call the appropriate Book
setter. In the DOM, getting the text content for an element node is a little laborious. If an element node
has text content, the element node has one or more children that are text nodes. The DOM provides a
method called normalize that collapses multiple text nodes into a single text node where possible (nor-
malize also removes empty text nodes where possible). Each time you process one of the children of the
book element, you call normalize to collect all the text nodes and store the text content in the String text.
Then you compare the tag name of the element you’re processing and call the appropriate setter method.
As with SAX, you have to convert the text to an integer for the Book’s year field:

56: for (Node child = bookElt.getFirstChild();
57: child != null;
58: child = child.getNextSibling()) {
59: if (child.getNodeType() != Node.ELEMENT_NODE)
60: continue;
61: Element e = (Element) child;
62: e.normalize();
63: String text = e.getFirstChild().getNodeValue();
64:
65: if (e.getTagName().equals("title")) {
66: book.setTitle(text);
67: } else if (e.getTagName().equals("author")) {

14

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 14

68: book.setAuthor(text);
69: } else if (e.getTagName().equals("isbn")) {
70: book.setIsbn(text);
71: } else if (e.getTagName().equals("month")) {
72: book.setMonth(text);
73: } else if (e.getTagName().equals("year")) {
74: int y = 0;
75: try {
76: y = Integer.parseInt(text);
77: } catch (NumberFormatException nfe) {
78: throw new SAXException("Year must be a number");
79: }
80: book.setYear(y);
81: } else if (e.getTagName().equals("publisher")) {
82: book.setPublisher(text);
83: } else if (e.getTagName().equals("address")) {
84: book.setAddress(text);
85: }
86: }
87: return book;
88: }
89: }

This concludes our review of the SAX and DOM APIs. Now we’re ready to go into the depths of Xerces.

Installing Xerces
Installing Xerces is relatively simple. The first thing you need to do is obtain a Xerces build. You can do
this by going to http://xml.apache.org/dist/xerces-j, where you’ll see a list of the current official Xerces
builds. (You can ignore the Xerces 1.X builds.)

The Xerces build for a particular version of Xerces is divided into three distributions. Let’s use Xerces
2.4.0 as an example. The binary distribution of Xerces 2.4.0 is in a file named Xerces-J-bin.2.4.0.xxx,
where xxx is either .zip or .tar.gz, depending on the kind of compressed archive format you need.
Typically, people on Windows use a .zip file, whereas people on MacOS X, Linux, and UNIX of various
sorts use a .tar.gz file. There are also .xxx.sig files, which are detached PGP signatures of the correspond-
ing .xxx file. So, Xerces-J-bin.2.4.zip.sig contains the signature file for the Xerces-J-bin2.4.zip distribution
file. You can use PGP and the signature file to verify that the contents of the distribution have not been
tampered with.

In addition to the binary distribution, you can download a source distribution, Xerces-J-src.2.4.zip, and a
tools distribution, Xerces-J-tools-2.4.0.zip. You’ll need the tools distribution in order to build the Xerces
documentation.

We’ll focus on installing the binary distribution. Once you’ve downloaded it, unpack it using a zip-file
utility or tar and gzip for the .tar.gz files. Doing so creates a directory called xerces-2.4.0 in either the cur-
rent directory or the directory you specified to your archiving utility. The key files in this directory are

15

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 15

❑ data—A directory containing sample XML files.

❑ docs—A directory containing all the documentation.

❑ Readme.html—The jump-off point for the Xerces documentation; open it with your Web
browser.

❑ samples—A directory containing the source code for the samples.

❑ xercesImpl.jar—A jar file containing the parser implementation.

❑ xercesSamples.jar—A jar file containing the sample applications.

❑ xml-apis.jar—A jar file containing the parsing APIs (SAX, DOM, and so on).

You must include xml-apis.jar and xercesImpl.jar in your Java classpath in order to use Xerces in your
application. There are a variety of ways to accomplish this, including setting the CLASSPATH environ-
ment variable in your DOS Command window or UNIX shell window. You can also set the CLASSPATH
variable for the application server you’re using.

Another installation option is to make Xerces the default XML parser for your JDK installation. This
option only works for JDK 1.3 and above.

JDK 1.3 introduced an Extension Mechanism for the JDK. It works like this. The JDK installation
includes a special extensions directory where you can place jar files that contain extensions to Java. If
JAVA_HOME is the directory where your JDK has been installed, then the extensions directory is
<JAVA_HOME>\jre\lib\ext using Windows file delimiters and <JAVA_HOME>/jre/lib/ext using
UNIX file delimiters.

If you’re using JDK 1.4 or above, you should use the Endorsed Standards Override Mechanism, not the
Extension Mechanism. The JDK 1.4 Endorsed Standards Override Mechanism works like the Extension
Mechanism, but it’s specifically designed to allow incremental updates of packages specified by the JCP.
The major operational difference between the Extension Mechanism and the Endorsed Standards
Override Mechanism is that the directory name is different. The Windows directory is named
<JAVA_HOME>\jre\lib\endorsed, and the UNIX directory is named <JAVA_HOME>/jre/lib/endorsed.

Development Techniques
Now that you have Xerces installed, let’s look at some techniques for getting the most out of Xerces and
XML. We’re going to start by looking at how to set the Xerces configuration through the use of features
and properties. We’ll look at the Deferred DOM, which uses lazy evaluation to improve the memory
usage of DOM trees in certain usage scenarios. There are two sections, each on how to deal with
Schemas/Grammars and Entities. These are followed by a section on serialization, which is the job of
producing XML as opposed to consuming it. We’ll finish up by examining how the Xerces Native
Interface (XNI) gives us access to capabilities that are not available through SAX or DOM.

Xerces Configuration
The first place we’ll stop is the Xerces configuration mechanism. There are a variety of configuration set-
tings for Xerces, so you’ll need to be able to turn these settings on and off.

16

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 16

Xerces uses the SAX features and properties mechanism to control all configuration settings. This is true
whether you’re using Xerces as a SAX parser or as a DOM parser. The class org.apache.xerces
.parsers.DOMParser provides the methods setFeature, getFeature, setProperty, and getProperty, which
are available on the class org.xml.sax.XMLReader. These methods all accept a String as the name of the
feature or property. The convention for this API is that the name is a URI that determines the feature or
property of interest. Features are boolean valued, and properties are object valued. The SAX specifica-
tion defines a standard set of feature and property names, and Xerces goes on to define its own. All the
Xerces feature/property URIs are in the http://apache.org/xml URI space under either features or prop-
erties. These URI’s function in the same ways as Namespace URI’s. They don’t refer to anything—they
are simply used to provide an extensible mechanism for defining unique names for features.

The configuration story is complicated when the JAXP (Java API for XML Parsing) APIs come into the
picture. The purpose of JAXP is to abstract the specifics of parser instantiation and configuration from
your application. In general, this is a desirable thing because it means your application doesn’t depend
on a particular XML parser. Unfortunately, in practice, this can mean you no longer have access to useful
functionality that hasn’t been standardized via the JCP. This is especially true in the case of parser con-
figuration. If you’re using the SAX API, you don’t have much to worry about, because you can pass the
Xerces features to the SAX setFeature and setProperty methods, and everything will be fine. The prob-
lem arises when you want to use the DOM APIs. Up until DOM Level 3, the DOM API didn’t provide a
mechanism for configuring options to a DOM parser, and even the mechanism described in DOM Level
3 isn’t sufficient for describing all the options Xerces allows. The JAXP API for DOM uses a factory class
called DOMBuilder to give you a parser that can parse an XML document and produce a DOM.
However, it doesn’t have the setFeature and set Property methods that you need to control Xerces-
specific features. For the foreseeable future, if you want to use some of the features we’ll be talking
about, you’ll have to use the Xerces DOMParser object to create a DOM API parser.

Validation-Related Features
A group of features relate to validation. The first of these is http://apache.org/xml/features
/validation/dynamic. When this feature is on, Xerces adopts a laissez faire method of processing XML
documents. If the document provides a DTD or schema, Xerces uses it to validate the document. If no
grammar is provided, Xerces doesn’t validate the document. Ordinarily, if Xerces is in validation mode,
the document must provide a grammar of some kind; in non-validating mode, Xerces doesn’t perform
validation even if a grammar is present.

Most people think there are two modes for XML parsers—validating and non-validating—on the
assumption that non-validating mode just means not doing validation. The reality is more complicated.
According to the XML 1.0 specification (Section 5 has all the gory details), there is a range of things an
XML parser may or may not do when it’s operating in non-validating mode. The list of optional tasks
includes attribute value normalization, replacement of internal text entities, and attribute defaulting.
Xerces has a pair of features designed to make its behavior in non-validating mode slightly more pre-
dictable. You can prevent Xerces from reading an external DTD if it’s in non-validating mode, using the
http://apache.org/xml/features/nonvalidating/load-external-dtd* feature. This means the parsed doc-
ument will be affected only by definitions from an internal DTD subset (a DTD in the document). It’s
also possible to tell Xerces not to use the DTD to default attribute values or to compute their types. The
feature you use to do this is http://apache.org/xml/features/nonvalidating/load-dtd-grammar.

17

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 17

18

Chapter 1

Error-Reporting Features
The next set of features controls the kinds of errors that Xerces reports. The feature http://apache.org
/xml/features/warn-on-duplicate-entitydef generates a warning if an entity definition is duplicated.
When validation is turned on, http://apache.org/xml/features/validation/warn-on-duplicate-
attdef causes Xerces to generate a warning if an attribute declaration is repeated. Similarly,
http://apache.org/xml/features/validation/warn-on-undeclared-elemdef causes Xerces to generate
a warning if a content model references an element that has not been declared. All three of these
properties are provided to help generate more user-friendly error messages when validation fails.

DOM-Related Features and Properties
Three features or properties affect Xerces when you’re using the DOM API. To understand the first one,
we have to make a slight digression onto the topic of ignorable whitespace.

Ignorable whitespace is the whitespace characters that occur between the end of one element and the start
of another. This whitespace is used to format XML documents to make them more readable. Here is the
book example with the ignorable whitespace shown in gray:

1: <?xml version="1.0" encoding="UTF-8"?>¶
2: <book xmlns="http://sauria.com/schemas/apache-xml-book/book"
3: xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
4: xsi:schemaLocation=
5: "http://sauria.com/schemas/apache-xml-book/book
6: http://www.sauria.com/schemas/apache-xml-book/book.xsd"
7: version="1.0">¶
8: <title>XML Development with Apache Tools</title>¶
9: <author>Theodore W. Leung</author>¶

10: <isbn>0-7645-4355-5</isbn>¶
11: <month>December</month>¶
12: <year>2003</year>¶
13: <publisher>Wrox</publisher>¶
14: <address>Indianapolis, Indiana</address>¶
15: </book>

An XML parser can only determine that whitespace is ignorable when it’s validating. The SAX API
makes the notion of ignorable whitespace explicit by providing different callbacks for characters and
ignorableWhitespace. The DOM API doesn’t have any notion of this concept. A DOM parser must cre-
ate a DOM tree that represents the document that was parsed. The Xerces feature
http://apache.org/xml
/features/dom/include-ignorable-whitespace allows you control whether Xerces creates text nodes for
ignorable whitespace. If the feature is false, then Xerces won’t create text nodes for ignorable whites-
pace. This can save a sizable amount of memory for XML documents that have been pretty-printed or
highly indented.

Frequently we’re asked if it’s possible to supply a custom DOM implementation instead of the one pro-
vided with Xerces. Doing this is a fairly large amount of work. The starting point is the property
http://apache.org/xml/properties/dom/document-class-name, which allows you to set the name of
the class to be used as the factory class for all DOM objects. If you replace the built-in Xerces DOM with
your own DOM, then any Xerces-specific DOM features, such as deferred node expansion, are disabled,
because they are all implemented within the Xerces DOM.

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 18

Xerces uses the SAX ErrorHandler interface to handle errors while parsing using the DOM API. You can
register your own ErrorHandler and customize your error reporting, just as with SAX. However, you
may want to access the DOM node that was under construction when the error condition occurred. To
do this, you can use the http://apache.org/xml/properties/dom/current-element-node to read the
DOM node that was being constructed at the time the parser signaled an error.

Other Features and Properties
Xerces uses an input buffer that defaults to 2KB in size. The size of this buffer is controlled by the prop-
erty http://apache.org/xml/properties/input-buffer-size. If you know you’ll be dealing with files
within a certain size range, it can help performance to set the buffer size close to the size of the files
you’re working with. The buffer size should be a multiple of 1KB. The largest value you should set this
property to is 16KB.

Xerces normally operates in a mode that makes it more convenient for users of Windows operating sys-
tems to specify filenames. In this mode, Xerces allows URIs (Uniform Resource Identifiers) to include file
specifications that include backslashes (\) as separators, and allows the use of DOS drive letters and
Windows UNC filenames. Although this is convenient, it can lead to sloppiness, because document
authors may include these file specifications in XML documents and DTDs. The
http://apache.org/xml/features/standard-uri-conformant feature turns off this convenience mode and
requires that all URIs actually be URIs.

The XML 1.0 specification recommends that the character encoding of an XML file should be specified
using a character set name specified by the Internet Assigned Numbers Authority (IANA). However,
this isn’t required. The feature http://apache.org/xml/features/allow-java-encodings allows you to use
the Java names for character encodings to specify the character set encoding for a document. This feature
can be convenient for an all-Java system, but it’s completely non-interoperable with non-Java based
XML parsers.

Turning on the feature http://apache.org/xml/features/disallow-doctype-decl causes Xerces to throw
an exception when a DTD is provided with an XML document. It’s possible to launch a denial-of-service
attack against an XML parser by providing a DTD that contains a recursively expanding entity defini-
tion, and eventually the entity expansion overflows some buffer in the parser or causes the parser to
consume all available memory. This feature can be used to prevent this attack. Of course, DTD validation
can’t be used when this flag is turned on, and Xerces is operating in a mode that isn’t completely compli-
ant with the XML specification.

Unfortunately, there are other ways to launch denial-of-service attacks against XML parsers, so the
Xerces team has created a SecurityManager class that is part of the org.apache.xerces.util package. The
current security manager can be accessed via the http://apache.org/xml/properties/security-manager
property. It lets you replace the security manager with your own by setting the value of the property to
an instance of SecurityManager. At the time of this writing, SecurityManager provides two JavaBean
properties, entityExpansionLimit and maxOccurNodeLimit Setting entityExpansionLimit is another way
to prevent the entity expansion attack. The value of this property is the number of entity expansions the
parser should allow in a single document. The default value for entityExpansionLimit is 100,000. The
maxOccurNodeLimit property controls the maximum number of occur nodes that can be created for an
XML Schema maxOccurs. This is for the case where maxOccurs is a number, not unbounded. The default
value for this property is 3,000.

19

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 19

Deferred DOM
One of the primary difficulties with using the DOM API is performance. This issue manifests itself in a
number of ways. The DOM’s representation of an XML document is very detailed and involves a lot of
objects. This has a big impact on performance because of the time it takes to create all those objects, and
because of the amount of memory those objects use. Developers are often surprised to see how much
memory an XML document consumes when it’s represented as a DOM tree.

To reduce the overhead of using the DOM in an application, the Xerces developers implemented what is
called deferred node expansion. This is an application of lazy evaluation techniques to the creation of DOM
trees. When deferred node expansion is turned on, Xerces doesn’t create objects to represent the various
parts of an XML document. Instead, it builds a non-object oriented set of data structures that contain the
information needed to create the various types of DOM nodes required by the DOM specification. This
allows Xerces to complete parsing in a much shorter time than when deferred node expansion is turned
off. Because almost no objects are created, the memory used is a fraction of what would ordinarily be
used by a DOM tree.

The magic starts when your application calls the appropriate method to get the DOM Document node.
Deferred node expansion defers the creation of DOM node objects until your program needs them. The
way it does so is simple: If your program calls a DOM method that accesses a node in the DOM tree, the
deferred DOM implementation creates the DOM node you’re requesting and all of its children.
Obviously, the deferred DOM implementation won’t create a node if it already exists. A finite amount of
work is done on each access to an unexpanded node.

The deferred DOM is especially useful in situations where you’re not going to access every part of a doc-
ument. Because it only expands those nodes (and the fringe defined by their children) that you access,
Xerces doesn’t create all the objects the DOM specification says should be created. This is fine, because
you don’t need the nodes you didn’t access. The result is a savings of memory and processor time (spent
creating objects and allocating memory).

If your application is doing complete traversals of the entire DOM tree, then you’re better off not using
the deferred DOM, because you’ll pay the cost of creating the non-object-oriented data structures plus
the cost of creating the DOM objects as you access them. This results in using more memory and proces-
sor time than necessary.

The deferred DOM implementation is used by default. If you wish to turn it off, you can set the feature
http://apache.org/xml/features/dom/defer-node-expansion to false. If you’re using the JAXP
DocumentBuilder API to get a DOM parser, then the deferred DOM is turned off.

Schema Handling
Xerces provides a number of features that control various aspects of validation when you’re using XML
Schema. The most important feature turns on schema validation: http://apache.org/xml/features
/validation/schema. To use it, the SAX name-spaces property (http://xml.org/sax/features
/namespaces) must be on (it is by default). The Xerces validator won’t report schema validation errors
unless the regular SAX validation feature (http://xml.org/sax/features/validation) is turned on, so you
must make sure that both the schema validation feature and the SAX validation feature are set to true.

20

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 20

Here’s the SAXMain program, enhanced to perform schema validation:

1: /*
2: *
3: * SchemaValidateMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.SAXParser;
13: import org.xml.sax.EntityResolver;
14: import org.xml.sax.SAXException;
15: import org.xml.sax.SAXNotRecognizedException;
16: import org.xml.sax.SAXNotSupportedException;
17: import org.xml.sax.XMLReader;
18:
19: public class SchemaValidateMain {
20:
21: public static void main(String[] args) {
22: XMLReader r = new SAXParser();
23: try {
24: r.setFeature("http://xml.org/sax/features/validation",
25: true);
26: r.setFeature(
27: "http://apache.org/xml/features/validation/schema",
28: true);
29: } catch (SAXNotRecognizedException snre) {
30: snre.printStackTrace();
31: } catch (SAXNotSupportedException snre) {
32: snre.printStackTrace();
33: }
34: BookHandler bookHandler = new BookHandler();
35: r.setContentHandler(bookHandler);
36: r.setErrorHandler(bookHandler);
37: EntityResolver bookResolver = new BookResolver();
38: r.setEntityResolver(bookResolver);
39: try {
40: r.parse(args[0]);
41: System.out.println(bookHandler.getBook().toString());
42: } catch (SAXException se) {
43: System.out.println("SAX Error during parsing " +
44: se.getMessage());
45: se.printStackTrace();
46: } catch (IOException ioe) {
47: System.out.println("I/O Error during parsing " +
48: ioe.getMessage());
49: ioe.printStackTrace();
50: } catch (Exception e) {
51: System.out.println("Error during parsing " +
52: e.getMessage());

21

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 21

53: e.printStackTrace();
54: }
55: }
56: }

Additional Schema Checking
The feature http://apache.org/xml/features/validation/schema-full-checking turns on additional
checking for schema documents. This doesn’t affect documents using the schema but does more thor-
ough checking of the schema document itself, in particular particle unique attribute constraint checking
and particle derivation restriction checks. This feature is normally set to false because these checks are
resource intensive.

Schema-Normalized Values
Element content is also normalized when you validate with XML Schema (only attribute values were
normalized in XML 1.0). The reason is that simple types can be used as both element content and
attribute values, so element content must be treated the same as attribute values in order to obtain the
same semantics for simple types. In Xerces, the feature http://apache.org/xml/features/validation
/schema/normalized-value controls whether SAX and DOM see the Schema-normalized values of ele-
ments and attributes or the XML 1.0 infoset values of elements and attributes. If you’re validating with
XML Schema, this feature is normally turned on.

Reporting Default Values
In XML Schema, elements and attributes are similar in another way: They can both have default values.
The question then arises, how should default values be reported to the application? Should the parser
assume the application knows what the default value is, or should the parser provide the default
value to the application? The only downside to the parser providing the default value is that if the
application knows what the default value is, the parser is doing unnecessary work. The Xerces feature
http://apache.org/xml/features/validation/schema/element-default allows you to choose whether the
parser reports the default value. The default setting for this feature is to report default values. Default val-
ues are reported via the characters callback, just like any other character data.

Accessing PSVI
Some applications want to access the Post Schema Validation Infoset (PSVI) in order to obtain type infor-
mation about elements and attributes. The Xerces API for accomplishing this has not yet solidified, but it
exists in an experimental form in the org.apache.xerces.xni.psvi package. If your application isn’t access-
ing the PSVI, then you should set the feature http://apache.org/xml/features/validation/schema
/augment-psvi to false so you don’t have to pay the cost of creating the PSVI augmentations.

Overriding schemaLocation Hints
The XML Schema specification says that the xsi:schemaLocation and xsi:noNamespaceSchemaLocation
attributes are hints to the validation engine and that they may be ignored. There are at least two good
reasons your application might want to ignore these hints. First, you shouldn’t believe a document that
purports to tell your application what schema it should use to validate the document. When you wrote
your application, you had a particular version of an XML Schema in mind. The incoming document is
supposed to conform to that schema. But a number of problems can crop up if you believe the incoming
document when it claims to know what schema to use. The author of the incoming document may have

22

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 22

used a different or buggy version of the schema you’re using. Worse, the author of the incoming
document may intentionally specify a different version of the schema in an attempt to subvert your
application.

The second reason you may choose to ignore these hints is that you might want to provide a local copy
of the schema so the validator doesn’t have to perform a network fetch of the schema document every
time it has to validate a document. If you’re in a server environment processing thousands or even mil-
lions of documents per day, the last thing you want is for the Xerces validator to be doing an HTTP
request to a machine somewhere on the Internet for each document it has to validate. Not only is this
terrible for performance, but it makes your application susceptible to a failure of the machine hosting the
schema. Fortunately, Xerces has a pair of properties you can use to override the schemaLocation hints.
The first property is http://apache.org/xml/properties/schema/external-schemaLocation; it overrides
the xsi:schemaLocation attribute. The value of the property is a string that has the same format as the
xsi:schemaLocation attribute: a set of pairs of namespace URIs and schema document URIs. The other
property is http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation; it han-
dles the xsi:noNamespaceSchemaLocation case. Its value has the same format as
xsi:noNamespaceSchemaLocation, a single URI with the location of the schema document.

Grammar Caching
If you’re processing a large number of XML documents that use a single DTD, a single XML schema,
or a small number of XML schemas, you should use the grammar-caching functionality built in to
Xerces. You can use the http://apache.org/xml/properties/schema/external-schemaLocation or
http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation properties to force
Xerces to read XML schemas from a local copy, which improves the efficiency of your application.
However, these properties work at an entity level (in a later section, you’ll discover that you could use
entity-handling techniques to accomplish what these two properties do).

Even if you’re reading the grammar from a local file, Xerces still has to read the grammar file and turn it
into data structures that can be used to validate an XML document, a process somewhat akin to compila-
tion. This process is very costly. If your application uses a single grammar or a small fixed number of
grammars, you would like to avoid the overhead of processing the grammar multiple times. That’s the
purpose of the Xerces grammar-caching functionality.

Xerces provide two styles of grammar caching: passive caching and active caching. Passive caching requires
little work on the part of your application. You set a property, and Xerces starts caching grammars.
When Xerces encounters a grammar that it hasn’t seen before, it processes the grammar and then caches
the grammar data structures for reuse. The next time Xerces encounters a reference to this grammar, it
uses the cached data structures.

Here’s a version of the book-processing program that uses passive grammar caching:

1: /*
2: *
3: * PassiveSchemaCache.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;

23

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 23

9: import java.io.IOException;
10:
11: import org.apache.xerces.parsers.SAXParser;
12: import org.xml.sax.SAXException;
13: import org.xml.sax.SAXNotRecognizedException;
14: import org.xml.sax.SAXNotSupportedException;
15: import org.xml.sax.XMLReader;
16:
17: public class PassiveSchemaCache {
18:
19: public static void main(String[] args) {
20: System.setProperty(
21: "org.apache.xerces.xni.parser.Configuration",
22: "org.apache.xerces.parsers.XMLGrammarCachingConfiguration");

Lines 20-22 contain the code that turns on passive grammar caching. All you have to do is set the Java
property org.apache.xerces.xni.parser.Configuration to a configuration that understands grammar
caching. One such configuration is org.apache.xerces.parsers.XMLGrammarCachingConfiguration. After
that, the code is essentially the same as what you are used to seeing. This shows how easy it is to use
passive grammar caching. Add three lines and you’re done.

23:
24: XMLReader r = new SAXParser();
25: try {
26: r.setFeature("http://xml.org/sax/features/validation",
27: true);
28: r.setFeature(
29: "http://apache.org/xml/features/validation/schema",
30: true);
31: } catch (SAXNotRecognizedException snre) {
32: snre.printStackTrace();
33: } catch (SAXNotSupportedException snre) {
34: snre.printStackTrace();
35: }
36: BookHandler bookHandler = new BookHandler();
37: r.setContentHandler(bookHandler);
38: r.setErrorHandler(bookHandler);
39:
40: for (int i = 0; i < 5; i++)
41: try {
42: r.parse(args[0]);
43: System.out.println(bookHandler.getBook().toString());
44: } catch (SAXException se) {
45: System.out.println("SAX Error during parsing " +
46: se.getMessage());
47: se.printStackTrace();
48: } catch (IOException ioe) {
49: System.out.println("I/O Error during parsing " +
50: ioe.getMessage());
51: ioe.printStackTrace();
52: } catch (Exception e) {
53: System.out.println("Error during parsing " +
54: e.getMessage());
55: e.printStackTrace();

24

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 24

56: }
57: }
58:
59: }

Although passive caching is easy to use, it has one major drawback: You can’t specify which grammars
Xerces can cache. When you’re using passive caching, Xerces happily caches any grammar it finds in any
document. If you’re processing a high volume of documents, let’s say purchase orders, then you proba-
bly are using only one grammar, and you probably don’t want the author of those purchase order docu-
ments to be the one who determines which grammar file is used (and possibly cached).

The solution to this problem is to use active grammar caching. Active grammar caching requires you to
do more work in your application, but in general it’s worth it because you get complete control over
which grammars can be cached, as well as control over exactly which grammar files are used to populate
the grammar caches.

When you’re using active caching, you need to follow two steps. First, you create a grammar cache (an
instance of org.apache.xerces.util.XMLGrammarPoolImpl) and load it by pre-parsing all the grammar
files you want to cache. Then you call Xerces and make sure it’s using the cache you just created.

Here’s a program that makes use of active caching:

1: /*
2: *
3: * ActiveSchemaCache.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9: import java.io.IOException;

10:
11: import org.apache.xerces.impl.Constants;
12: import org.apache.xerces.parsers.SAXParser;
13: import org.apache.xerces.parsers.StandardParserConfiguration;
14: import org.apache.xerces.parsers.XMLGrammarPreparser;
15: import org.apache.xerces.util.SymbolTable;
16: import org.apache.xerces.util.XMLGrammarPoolImpl;
17: import org.apache.xerces.xni.XNIException;
18: import org.apache.xerces.xni.grammars.Grammar;
19: import org.apache.xerces.xni.grammars.XMLGrammarDescription;
20: import org.apache.xerces.xni.parser.XMLConfigurationException;
21: import org.apache.xerces.xni.parser.XMLInputSource;
22: import org.apache.xerces.xni.parser.XMLParserConfiguration;
23: import org.xml.sax.SAXException;
24: import org.xml.sax.XMLReader;
25:
26:
27: public class ActiveSchemaCache {
28: static final String SYMBOL_TABLE =
29: Constants.XERCES_PROPERTY_PREFIX +
30: Constants.SYMBOL_TABLE_PROPERTY;
31:

25

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 25

32: static final String GRAMMAR_POOL =
33: Constants.XERCES_PROPERTY_PREFIX +
34: Constants.XMLGRAMMAR_POOL_PROPERTY;
35:
36: SymbolTable sym = null;
37: XMLGrammarPoolImpl grammarPool = null;
38: XMLReader reader = null;
39:
40: public void loadCache() {
41: grammarPool = new XMLGrammarPoolImpl();
42: XMLGrammarPreparser preparser = new XMLGrammarPreparser();
43: preparser.registerPreparser(XMLGrammarDescription.XML_SCHEMA,
44: null);
45: preparser.setProperty(GRAMMAR_POOL, grammarPool);
46: preparser.setFeature(
47: "http://xml.org/sax/features/validation",
48: true);
49: preparser.setFeature(
50: "http://apache.org/xml/features/validation/schema",
51: true);
52: // parse the grammar...
53:
54: try {
55: Grammar g =
56: preparser.preparseGrammar(
57: XMLGrammarDescription.XML_SCHEMA,
58: new XMLInputSource(null, "book.xsd", null));
59: } catch (XNIException xe) {
60: xe.printStackTrace();
61: } catch (IOException ioe) {
62: ioe.printStackTrace();
63: }
64:
65: }
66:

The loadCache method takes care of creating the data structures needed to cache grammars. The cache
itself is an instance of org.apache.xerces.util.XMLGrammarPoolImpl, created in line 41. The object that
knows the workflow of how to preprocess a grammar file is an instance of XMLGrammarPreparser, so in
line 42 you create an instance of XMLGrammarPreparser.

XMLGrammarPreparsers need to know which kind of grammar they will be dealing with. They have a
method called registerPreparser that allows them to associate a string (representing URIs for particular
grammars) with an object that knows how to preprocess a specific type of grammar. This means a single
XMLGrammarPreparser can preprocess multiple types of grammars (for example, both DTDs and XML
schemas). In this example, you’re only interested in allowing XML schemas to be cached, so you register
XML schemas with the preparser (lines 43-44). If you’re registering either XML schemas or DTDs with a
preparser, then you can pass null as the second argument to registerPreparser. Otherwise, you have to
provide an instance of org,apache.xerces.xni.grammarsXMLGrammarLoader, which can process the
grammar you’re registering.

26

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 26

Now you’re ready to associate a grammar pool with the preparser. This is done using the preparser’s
setProperty method and supplying the appropriate values (line 45). XMLGrammarPreparser provides a
feature/property API like the regular SAX and DOM parsers in Xerces. The difference is that when you
set a feature or property on an instance of XMLGrammarPreparser, you’re actually setting the feature or
property on all XMLGrammarLoader instances that have been registered with the preparser. So the next
two setFeature calls (in lines 46-51) tell all registered XMLGrammarLoaders to validate their inputs and
to do so using XML Schema if possible. Note that implementers of XMLGrammarLoader aren’t required
to implement any features or properties (just as with SAX features and properties).

Once all the configuration steps are complete, all that is left to do is to call the preparseGrammar method
for all the grammars you want loaded into the cache. Note that you need to use the XMLInputSource
class from org.apache.xni.parser to specify how to get the grammar file. This all happens in lines 54-63.

How do you make use of a loaded cache? It turns out to be fairly simple, but it means a more circuitous
route to creating a parser. The XMLParserConfiguration interface has a setProperty method that accepts
a property named http://apache.org/xml/properties/internal/grammar-pool, whose value is a gram-
mar pool the parser configuration should use. The constructors for the various Xerces parser classes can
take an XMLParserConfiguration as an argument. So, you need to get hold of a parser configuration, set
the grammar pool property of that configuration to the grammar pool that loadCache created, and then
create a SAX or DOM parser based on that configuration. Pretty straightforward, right?

The first thing you need is an XMLParserConfiguration. You can use the Xerces supplied
org.apache.xerces.parsers.StandardParserConfiguration because you aren’t doing anything else fancy:

67: public synchronized Book useCache(String uri) {
68: Book book = null;
69: XMLParserConfiguration parserConfiguration =
70: new StandardParserConfiguration();

Next you need to set the grammar pool property on the parserConfiguration to be the grammarPool cre-
ated by loadCache:

71:
72: String grammarPoolProperty =
73: "http://apache.org/xml/properties/internal/grammar-pool";
74: try {
75: parserConfiguration.setProperty(grammarPoolProperty,
76: grammarPool);

In this example you’re using a SAX parser to process documents. The constructor for the Xerces SAX
parser takes an XMLParserConfiguration as an argument, so you just pass the parserConfiguration as
the argument, and now you have a SAXParser that’s using the grammar cache!

77: parserConfiguration.setFeature(
78: "http://xml.org/sax/features/validation",
79: true);
80: parserConfiguration.setFeature(
81: "http://apache.org/xml/features/validation/schema",
82: true);
83: } catch (XMLConfigurationException xce) {
84: xce.printStackTrace();

27

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 27

85: }
86:
87: try {
88: if (reader == null)
89: reader = new SAXParser(parserConfiguration);

Something else is going on here: each instance of ActiveCache has a single SAXParser instance associ-
ated with it. You create an instance of SAXParser only if one doesn’t already exist. This cuts down on the
overhead of setting up and tearing down parser instances all the time.

One other detail. When you reuse a Xerces parser instance, you need to call the reset method in between
usages. Doing so ensures that the parser is ready to parse another document:

90: BookHandler bookHandler = new BookHandler();
91: reader.setContentHandler(bookHandler);
92: reader.setErrorHandler(bookHandler);
93: reader.parse(uri);
94: book = bookHandler.getBook();
95: ((org.apache.xerces.parsers.SAXParser) reader).reset();
96: } catch (IOException ioe) {
97: ioe.printStackTrace();
98: } catch (SAXException se) {
99: se.printStackTrace();

100: }
101: return book;
102: }
103:
104: public static void main(String[] args) {
105: ActiveSchemaCache c = new ActiveSchemaCache();
106: c.loadCache();
107: for (int i = 0; i < 5; i++) {
108: Book b = c.useCache("book.xml");
109: System.out.println(b.toString());
110: }
111:
112: }
113: }

The Xerces grammar-caching implementation uses hashing to determine whether two grammars are the
same. If the two grammars are XML schemas, then they are hashed according to their targetNamespace.
If the targetNamespaces are the same, the grammars are considered to be the same. For DTDs, it’s more
complicated. There are three conditions:

❑ If their publicId or expanded SystemIds exist, they must be identical.

❑ If one DTD defines a root element, it must either be the same as the root element of the second
DTD, or it must be a global element in the second DTD.

❑ If neither DTD defines a root element, they must share a global element between the two of
them.

28

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 28

If you’re using the grammar-caching mechanism to cache DTDs, be aware that it can only cache external
DTD subsets (DTDs in an external file). In addition, any definitions in an internal DTD subset (DTD
within the document) will be ignored.

Entity Handling
Earlier in the chapter we mentioned that we’d be looking at a mechanism that can do the same job as the
Xerces properties for xsi:schemaLocation and xsi:noNamespaceSchemaLocation. That mechanism is the
SAX entity resolver mechanism. Although it isn’t Xerces specific, it’s very useful, because all external
files are accessed as entities in XML. The entity resolver mechanism lets you install a callback that is run
at the point where the XML parser tries to resolve an entity from an ID into a physical storage unit
(whether that unit is on disk, in memory, or off on the network somewhere). You can use the entity
resolver mechanism to force all references to a particular entity to be resolved to a local copy instead of a
network copy, which simultaneously provides a performance improvement and gives you control over
the actual definition of the entities.

Let’s look at how to extend the example program to use an entity resolver:

1: /*
2: *
3: * EntityResolverMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.SAXParser;
13: import org.xml.sax.EntityResolver;
14: import org.xml.sax.SAXException;
15: import org.xml.sax.SAXNotRecognizedException;
16: import org.xml.sax.SAXNotSupportedException;
17: import org.xml.sax.XMLReader;
18:
19: public class EntityResolverMain {
20:
21: public static void main(String[] args) {
22: XMLReader r = new SAXParser();
23: try {
24: r.setFeature("http://xml.org/sax/features/validation",
25: true);
26: r.setFeature(
27: "http://apache.org/xml/features/validation/schema",
28: true);
29: } catch (SAXNotRecognizedException e1) {
30: e1.printStackTrace();
31: } catch (SAXNotSupportedException e1) {
32: e1.printStackTrace();
33: }
34: BookHandler bookHandler = new BookHandler();

29

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 29

35: r.setContentHandler(bookHandler);
36: r.setErrorHandler(bookHandler);
37: EntityResolver bookResolver = new BookResolver();
38: r.setEntityResolver(bookResolver);

The EntityResolver interface originated in SAX, but it’s also used by the Xerces DOM parser and by the
JAXP DocumentBuilder. All you need to do to make it work is create an instance of a class that imple-
ments the org.xml.sax.EntityResolver interface and then pass that object to the setEntityResolver method
on XMLReader, SAXParser, DOMParser, or DocumentBuilder.

39: try {
40: r.parse(args[0]);
41: System.out.println(bookHandler.getBook().toString());
42: } catch (SAXException se) {
43: System.out.println("SAX Error during parsing " +
44: se.getMessage());
45: se.printStackTrace();
46: } catch (IOException ioe) {
47: System.out.println("I/O Error during parsing " +
48: ioe.getMessage());
49: ioe.printStackTrace();
50: } catch (Exception e) {
51: System.out.println("Error during parsing " +
52: e.getMessage());
53: e.printStackTrace();
54: }
55: }
56: }

The real work happens in a class that implements the EntityResolver interface. This is a simple interface
with only one method, resolveEntity. This method tries to take an entity that is identified by a Public ID,
System ID, or both, and provide an InputSource the parser can use to grab the contents of the entity:

1: /*
2: *
3: * BookResolver.java
4: *
5: * This file is part of the "Apache XML Tools" Book
6: *
7: */
8: package com.sauria.apachexml.ch2;
9:

10: import java.io.FileReader;
11: import java.io.IOException;
12:
13: import org.xml.sax.EntityResolver;
14: import org.xml.sax.InputSource;
15: import org.xml.sax.SAXException;
16:
17: public class BookResolver implements EntityResolver {
18: String schemaURI =
19: "http://www.sauria.com/schemas/apache-xml-book/book.xsd";
20:

30

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 30

21: public InputSource resolveEntity(String publicId,
22: String systemId)
23: throws SAXException, IOException {
24: if (systemId.equals(schemaURI)) {
25: FileReader r = new FileReader("book.xsd");
26: return new InputSource(r);
27: } else
28: return null;
29: }
30:
31: }

The general flow of a resolveEntity method is to look at the publicId and/or systemId arguments and
decide what you want to do. Once you’ve made your decision, your code then accesses the physical stor-
age (in this case, a file) and wraps it up in an InputSource for the rest of the parser to use. In this exam-
ple, you’re looking for the systemId of the book schema (which is the URI supplied in the
xsi:schemaLocation hint). If the entity being resolved is the book schema, then you read the schema from
a local copy, wrap the resulting FileReader in an InputSource, and hand it back.

You could do a variety of things in your resolveEntity method. Instead of storing entities in the local file
system, you could store them in a database and use JDBC to retrieve them. You could store them in a
content management system or an LDAP directory, as well. If you were reading a lot of large text entities
over and over again, you could build a cache inside your entity resolver so the entities were read only
once and after that were read from the cache.

Remember, though, at this level you’re dealing with caching the physical storage structures, not logical
structures they might contain. Even if you use the EntityResolver mechanism in preference to Xerces’
xsi:schemaLocation overrides, you still aren’t getting as much bang for your buck as if you use the gram-
mar-caching mechanism. At entity-resolver time, you’re caching the physical storage and saving physi-
cal retrieval costs. At grammar-caching time, you’re saving the cost of converting from a physical to a
logical representation. If you’re going to do logical caching of grammars, it doesn’t make much sense to
do physical caching of the grammar files. There are plenty of non-grammar uses of entities, and these are
all fair game for speedups via the entity resolver mechanism.

Entity References
In most cases, entities should be invisible to your application—it doesn’t matter whether the content in a
particular section of an XML document came from the main document entity, an internal entity, or an
entity stored in a separate file. Sometimes your application does want to know, particularly if your
application is something like an XML editor, which is trying to preserve the input document as much as
possible.

SAX provides the org.xml.sax.ext.LexicalHandler extension interface, which you can use to get callbacks
about events you don’t get via the ContentHandler callbacks. Among these callbacks are startEntity and
endEntity, which are called at the start and end of any entity (internal or external) in the document.
Ordinarily, startEntity and endEntity only report general entities and parameter entities (SAX says a
parser doesn’t have to report parameter entities, but Xerces does). Sometimes you’d like to know other
details about the exact physical representation of a document, such as whether one of the built-in entities
(&, >, <, ", or ') was used, or whether a character reference (&#XXXX) was used.

31

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 31

Xerces provides two features that cause startEntity and endEntity to report the beginning and end of
these two classes of entity references. The feature http://apache.org/xml/features/scanner/notify-
builtin-refs causes startEntity and endEntity to report the start and end of one of the built-in entities, and
the feature http://apache.org/xml/features/scanner/notify-char-refs makes startEntity and endEntity
report the start and end of a character reference.

The DOM has its own challenges when dealing with entities. Consider this XML file:

1: <?xml version="1.0" ?>
2: <!DOCTYPE a [
3: <!ENTITY boilerplate "insert this here">
4:]>
5: <a>
6: in b
7: <c>
8: text in c but &boilerplate;
9: <d/>

10: </c>
11:

When a DOM API parser constructs a DOM tree, it creates an Entity node under the DocumentType
node. The resulting DOM tree looks like this, with the DocumentType, Entity, and Text nodes shaded in
gray. The Entity node has a child, which is a text node containing the expansion text for the entity. So far,
so good.

32

Chapter 1

Text
[If]

Element
b

Text
[If]

Element
c

Text
[If]

Element
a

Text
in b

Document

Entity

Text
insert this here

Document
Type

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 32

33

Xerces

Element
c

Text
[If]text in c but

Entity
Reference

Text
[If]

Element
d

Text
insert this here

Text
[If]

If you look closely at the diagram, you see that the part of the DOM tree for element c has been omitted.
Here’s the rest of it, starting at the Element node for c.

Xerces created an EntityReference node as a child of the Element node (and in the correct order among
its siblings). That EntityReference node then has a child Text node that includes the text expanded
from the entity. This is useful if you want to know that a particular node was an entity reference in
the original document. However, it turns out to be inconvenient if you don’t care whether some text
originated as an entity, because your code has to check for the possibility of EntityReference nodes
as it traverses the tree. If you don’t care about the origin of the text, then you can set the feature
http://apache.org/xml/features/dom/create-entity-ref-nodes to false, and Xerces won’t insert the
EntityReference nodes. Instead, it will put the Text node where the EntityReference node would have
appeared, thus simplifying your application code.

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 33

Serialization
Most of the classes included with Xerces focus on taking XML documents, extracting information out of
them, and passing that information on to your application via an API. Xerces also includes some classes
that help you with the reverse process—taking data you already have and turning it into XML. This pro-
cess is called serialization (not to be confused with Java serialization). The Xerces serialization API can
take a SAX event stream or a DOM tree and produce an XML 1.0 or 1.1 document. One major improve-
ment in XML 1.1 is that many more Unicode characters can appear in an XML 1.1 document; however,
this makes it necessary to have a separate serializer for XML 1.1. There are also serializers that can take
an XML document and serialize it using rules for HTML, XHTML, or even text files.

The org.apache.xml.serialize package includes five different serializers. All of them implement the inter-
faces org.apache.xml.serialize.Serializer and org.apache.xml.serialize.DOMSerializer as well as the
ContentHandler, DocumentHandler, and DTDHandler classes from org.xml.sax and the DeclHandler
and LexicalHandler classes from org.xml.sax.ext. The five serializers are as follows:

❑ XMLSerializer is used for XML 1.0 documents and, of course, obeys all the rules for XML 1.0.

❑ XML11Serializer outputs all the new Unicode characters allowed by XML 1.1. If the XML that
you’re outputting happens to be HTML, then you should use either the HTMLSerializer or the
XHTMLSerializer.

❑ HTMLSerializer is used to output a document as HTML. It knows which HTML tags can get by
without an end tag.

❑ XHTMLSerializer is used to output a document as XHTML, It serializes the document accord-
ing to the XHTML rules.

❑ TextSerializer outputs the element names and the character data of elements. It doesn’t output
the DOCTYPE, DTD, or attributes.

Here are some of the differences in formatting when outputting HTML:

❑ The HTMLSerializer defaults to an ISO-8859-1 output encoding.

❑ An empty attribute value is output as an attribute name with no value at all (not even the equals
sign). Also, attributes that are supposed to be URIs, as well as the content of the SCRIPT and
STYLE tags, aren’t escaped (embedded ", ', <, >, and & are left alone).

❑ The content of A and TD tags isn’t line-broken.

❑ Most importantly, the HTMLSerializer knows that not all tags are closed in HTML.
HTMLSerializer’s list of the tags that do not require closing is as follows: AREA, BASE, BASE-
FONT, BR, COL, COLGROUP, DD, DT, FRAME, HEAD, HR, HTML, IMG, INPUT, ISINDEX, LI,
LINK, META, OPTION, P, PARAM, TBODY, TD, TFOOT, TH, THEAD, and TR.

The XHTML serializer outputs HTML according to the rules for XHTML. These rules are:

❑ Element/attribute names are lowercase because case matters in XHTML.

❑ An attribute’s value is always written if the value is the empty string.

❑ Empty elements must have a slash (/) in an empty tag (for example,
).

❑ The content of the SCRIPT and STYLE elements is serialized as CDATA.

34

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 34

Using the serializer classes is fairly straightforward. The serialization classes live in the package
org.apache.xml.serialize. All the serializers are constructed with two arguments: The first argument is an
OutputStream or Writer that is the destination for the output, and the second argument is an
OutputFormat object that controls the details of how the serializer formats its input. OutputFormats are
constructed with three arguments: a serialization method, which is a string constant taken from
org.apache.xml.serialize.Method; a string containing the desired output character encoding; and a
boolean that tells whether to indent the output. You can also construct an OutputFormat using a DOM
Document object.

Before we get into the details of OutputFormat, let’s look at how to use the serializers in a program.
We’ll look at a SAX-based version first:

1: /*
2: *
3: * SAXSerializerMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.SAXParser;
13: import org.apache.xml.serialize.Method;
14: import org.apache.xml.serialize.OutputFormat;
15: import org.apache.xml.serialize.XMLSerializer;
16: import org.xml.sax.SAXException;
17: import org.xml.sax.SAXNotRecognizedException;
18: import org.xml.sax.SAXNotSupportedException;
19: import org.xml.sax.XMLReader;
20:
21: public class SAXSerializerMain {
22:
23: public static void main(String[] args) {
24: XMLReader r = new SAXParser();
25: OutputFormat format =
26: new OutputFormat(Method.XML,"UTF-8",true);
27: format.setPreserveSpace(true);
28: XMLSerializer serializer =
29: new XMLSerializer(System.out, format);
30: r.setContentHandler(serializer);
31: r.setDTDHandler(serializer);
32: try {
33: r.setProperty(
34: "http://xml.org/sax/properties/declaration-handler",
35: serializer);
36: r.setProperty(
37: "http://xml.org/sax/properties/lexical-handler",
38: serializer);
39: } catch (SAXNotRecognizedException snre) {
40: snre.printStackTrace();
41: } catch (SAXNotSupportedException snse) {

35

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 35

42: snse.printStackTrace();
43: }
44: try {
45: r.parse(args[0]);
46: } catch (IOException ioe) {
47: ioe.printStackTrace();
48: } catch (SAXException se) {
49: se.printStackTrace();
50: }
51: }
52: }

Note that you set up the serializer (in this case, an XMLSerializer) and then plug it into the XMLReader
as the callback handler for ContentHandler, DTDHandler, DeclHandler, and LexicalHandler.

A SAX version of the serializers might not seem interesting at first glance. Remember that SAX allows
you to build a pipeline-style conglomeration of XML processing components that implement the
org.xml.sax.XMLFilter interface. The SAX version of the serializers can be the last stage in one of these
pipelines. You can also write applications that accept the various SAX handlers as callbacks and that
then call the callbacks as a way of interfacing to other SAX components. Combining this approach with
the serializer classes is way to use SAX to generate XML from non-XML data, such as comma-delimited
or tab-delimited files.

The DOM version is a little more straightforward:

1: /*
2: *
3: * DOMSerializerMain.java
4: *
5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11:
12: import org.apache.xerces.parsers.DOMParser;
13: import org.apache.xml.serialize.Method;
14: import org.apache.xml.serialize.OutputFormat;
15: import org.apache.xml.serialize.XMLSerializer;
16: import org.w3c.dom.Document;
17: import org.xml.sax.SAXException;
18:
19: public class DOMSerializerMain {
20:
21: public static void main(String[] args) {
22: DOMParser p = new DOMParser();
23:
24: try {
25: p.parse(args[0]);
26: } catch (SAXException se) {
27: se.printStackTrace();
28: } catch (IOException ioe) {

36

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 36

29: ioe.printStackTrace();
30: }
31: Document d = p.getDocument();
32: OutputFormat format =
33: new OutputFormat(Method.XML,"UTF-8",true);
34: format.setPreserveSpace(true);
35: XMLSerializer serializer =
36: new XMLSerializer(System.out, format);
37: try {
38: serializer.serialize(d);
39: } catch (IOException ioe) {
40: ioe.printStackTrace();
41: }
42: }
43: }

Here you construct the OutputFormat and serializer and then pass the DOM Document object to the
serializer’s serialize method.

OutputFormat options
Now that you’ve seen examples of how to use the serializers, let’s look at OutputFormat in more detail.
A number of properties control how a serializer behaves. We’ll describe some of the more important
ones below in JavaBean style, so the property encoding has a getEncoding method and a setEncoding
method.

Property Description

String encoding The IANA name for the output character encoding.

String[] cDataElements An array of element names whose contents should be output
as CDATA.

int indent The number of spaces to indent.

boolean indenting True if the output should be indented.

String lineSeparator A string used to separate lines.

int lineWidth Lines longer than lineWidth characters are too long and are
wrapped/indented as needed.

String[] nonEscapingElements An array of element names whose contents should not be out-
put escaped (no character references are used).

boolean omitComments True if comments should not be output.

boolean omitDocumentType True if the DOCTYPE declaration should not be output.

boolean omitXMLDeclaration True if the XML declaration should not be output.

boolean preserveEmptyAttributes If false, then in HTML mode, empty attribute are output as
the attribute name only, with no equal sign or empty quotes.

boolean preserveSpace True if the serializer should preserve space that already exists
in the input.

37

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 37

The following set of methods deals with the DOCTYPE declaration:

Method Description

String getDoctypePublic() Gets the public ID of the current DOCTYPE.

String getDoctypeSystem() Gets the system ID of the current DOCTYPE.

void setDocType(String publicId, String systemID) Sets the public ID and system ID of the cur-
rent DOCTYPE.

38

Chapter 1

One least caveat on the use of the serializers: serializers aren’t thread safe, so
you have to be careful if you’re going to use them in a multithreaded
environment.

At the time of this writing, the W3C DOM Working Group is working on the DOM Level 3 Load/Save
specification, which includes a mechanism for saving a DOM tree back to XML. This work has not been
finalized and applies only to DOM trees. It’s definitely worth learning the Xerces serializers API, because
they also work with SAX. It’s also worthwhile because the current (experimental) implementation of
DOM Level 3 serialization in Xerces is based on the org.apache.xml.serialize classes.

XNI
The first version of Xerces used a SAX-like API internally. This API allowed you to build both a SAX API
and a DOM API on top of a single parser engine. For Xerces version 2, this API was extended to make it
easier to build parsers out of modular components. This extended and refactored API is known as the
Xerces Native Interface (XNI). XNI is based on the idea of providing a streaming information set. The
XML Infoset specification describes an abstract model of all the information items present in an XML
document, including elements, attributes, characters, and so on. XNI takes the streaming/callback
model used by SAX and expands the callback classes and methods so that as much of the information
set as possible is available to applications that use XNI. As an example, XNI retains the encoding infor-
mation for external entities and passes it along to the application. It also captures the information in the
XML declaration and makes it available. XNI lets you build XML processors as a pipeline of components
connected by the streaming information set.

SAX was designed primarily as a read-only API. XNI provides a read-write model. This allows the
streaming information set to be augmented as it passes from component to component. One important
application is in validating XML schema, which causes the XML infoset to be augmented with informa-
tion—such as datatypes—obtained during validation. The read/write nature of XNI is accomplished by
adding an additional argument to each callback method. This argument is an instance of org.apache
.xerces.xni.Augmentations, which is a data structure like a hash table that allows data to be stored and
retrieved via String keys.

Most developers never look at the XNI interfaces, because they can do everything they want via the
SAX, DOM, or JAXP APIs. But for those looking to exploit the full power of Xerces, digging into the
details of XNI is necessary. We’ll provide a basic overview of the pieces of XNI and how they fit together,
and show an example based on accessing the PSVI.

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 38

XNI Basics
An XNI-based parser contains two pipelines that do all the work: the document pipeline and
the DTD pipeline. The pipelines consist of instances of XMLComponent that are chained together
via interfaces that represent the streaming information set. Unlike SAX, which has a single pipeline,
XNI divides the pipeline in two: one pipeline for the content of the document and a separate
pipeline for dealing with the information DTD. The pipeline interfaces live in org.apache.xerces.xni:

Interface Purpose

XMLDocumentHandler The major interface in the document content pipeline.
This should be familiar to anyone familiar with SAX.

XMLDocumentFragmentHandler The document content pipeline can handle document
fragments as well. To do this, you need to connect
stages using XMLDocumentFragmentHandler instead
of XMLDocumentHandler.

XMLDTDHandler The major interface in the DTD pipeline. It handles
everything except parsing the content model part of
element declarations.

XMLDTDContentModelHandler Provided for applications that want to parse the con-
tent model part of element declarations.

XMLString A structure used to pass text around within XNI. You
must copy the text out of an XMLString if you want
use it after the XNI method has executed. XMLStrings
should be treated as read-only.

XNIException An Exception class for use with the XNI layer.

Augmentations A data structure like a hash table, for storing augmen-
tations to the stream information set. The set of aug-
mentations is an argument to almost every XNI
method in the content and DTD pipelines.

QName An abstraction of XML QNames.

XMLAttributes An abstraction for the set of attributes associated with
an element.

XMLLocator A data structure used to hold and report the location
in the XML document where processing is occurring /
has failed.

XMLResourceIdentifier A data structure representing the public ID, system
ID, and namespace of an XML resource (XML Schema,
DTD, or general entity).

NamespaceContext An abstraction representing the stack of namespace
contexts (like variable scopes) within an XML
document.

39

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 39

XMLString, XNIException, Augmentations, QName, XMLAttributes, XMLLocator,
XMLResourceIdentifier, and NamespaceContext are all used by one of the four major interfaces
(XMLDocumentHandler, XMLDocumentFragmentHandler, XMLDTDHandler, and
XMLDTDContentModelHandler).

If you look at the XMLComponent interface, you’ll see that it really just defines methods for setting con-
figuration settings on a component. Not surprisingly, it uses a feature and property interface reminiscent
of SAX. The biggest addition is a pair of methods that return an array of the features/properties sup-
ported by the component. What may surprise you is that the interface doesn’t say anything about the
callback interfaces for the pipeline. This is intentional, because not all components are in all pipelines—
that’s part of the rationale for breaking up the pipeline interfaces, so that components can implement the
smallest set of functionality they require.

To implement a real component that can be a part of a pipeline, you need more interfaces. These inter-
faces are found in org.apache.xerces.xni.parser. The callback interfaces define what it means to be a
recipient or sink for streaming information set events. Components that act as sinks sit at the end of the
pipeline. That means you need interfaces for components at the start of the pipeline and for components
in the middle. Components at the start of the pipeline are sources of streaming information set events, so
they need to be connected to an event sink. The interface for these components has a pair of methods
that let you get and set the sink to which the source is connected. There are three of these source inter-
faces, one for each of the major pipeline interfaces (XMLDocumentFragmentHandler is considered
minor because document fragments appear so infrequently):

❑ XMLDocumentSource for XMLDocumentHandler

❑ XMLDTDSource for XMLDTDHandler

❑ XMLDTDContentModelSource for XMLDTDContentModelHandler

Now, defining interfaces for components in the middle is easy. These components must implement both
the source and sink (handler) interfaces for the pipeline. That gives XMLDocumentFilter, which imple-
ments XMLDocumentSource and XMLDocumentHandler. XMLDTDFilter and
XMLDTDContentModelFilter are defined in a similar way.

At this point it’s a little clearer what an XNI pipeline is. Using the DocumentHandler as an example, a
pipeline is an instance of XMLDocumentSource connected to some number of instances of
XMLDocumentFilter that are chained together. The last XMLDocumentFilter is connected to an instance
of XMLDocumentHandler, which provides the final output of the pipeline. The instance of
XMLDocumentSource takes the XML document as input. The next question you should be thinking
about is how the pipeline is constructed, connected, and started up.

XNI Pipeline Interfaces
XNI provides interfaces you can use to take care of these matters. You aren’t by any means required
to do this—you could do it with custom code, but you’ll probably find that you end up duplicating
the functionality provided by XNI. The interfaces for managing XMLComponents are also found
in org.apache.xerces.xni.parser. Let’s call a pipeline of XMLComponents a configuration. The
interface for managing a configuration is called XMLParserConfiguration. This interface extends
XMLComponentManager, which provides a simple API for querying whether a set of components

40

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 40

supports a particular feature or property. XMLParserConfiguration adds APIs that let you do several cat-
egories of tasks:

❑ Configuration—This API provides methods to tell configuration clients the set of supported
features and properties. It also adds methods for changing the values of features and properties.

❑ Sink management—There are methods that allow configuration clients to register sinks for the
three major pipeline interfaces in the configuration. Clients can also ask for the currently regis-
tered sink on a per-interface basis.

❑ Helper services—XMLParserConfiguration assumes that configuration-wide services and data
are used by the XMLComponents in the configuration. Examples of these services include error
reporting as defined by the XMLErrorHandler interface and entity resolution as defined by the
XMLEntityResolver interface.

❑ Parsing kickoff—XMLParserConfiguration provides methods for starting the process of pars-
ing XML from an XMLInputSource.

Let’s look back at the diagram of Xerces. On top of the XMLParserConfiguration sits a Xerces parser
class. This class is a sink for XMLDocumentHandler, XMLDTDHandler, and
XMLDTDContentModelHandler. It registers itself as the sink for the various parts of the pipeline. The
implementation of the various callback methods takes care of translating between the XNI callback and
the parser API being implemented. For a SAX parser, the translation is pretty straightforward, consisting
mostly of converting QNames and XMLStrings into Java Strings. A DOM parser is little more difficult
because the callbacks need to build up the nodes of the DOM tree in addition to translating the XNI
types.

Remember that we said the diagram was simplified. The Xerces SAXParser and DOMParser are actually
implemented as a hierarchy of subclasses, with functionality layered between the various levels of the
class hierarchy. The reason for doing this is to allow developers to produce their own variants of
SAXParser and DOMParser with as little work as necessary.

There’s only one part of the diagram we haven’t discussed. At bottom right is a section labeled support
components. We’ve already talked a little about helper components when we discussed
XMLParserConfiguration. In that discussion, we were looking at components that were likely to be used
by any parser configuration we could think have. Other support components are used only by a particu-
lar parser configuration. These are used internally by the parser configuration but are known by some
number of the XMLComponents in the pipelines. Examples of these kinds of components include sym-
bol tables and components dedicated to managing the use of namespaces throughout the configuration.
These support components are provided to the pipeline components as properties, so they are assigned
URI strings that mark them as being for internal use and then set using the configuration-wide property-
setting mechanism.

Xerces2 XNI Components
XNI as we’ve discussed it is really a framework. The interfaces describe how the pieces of the framework
interact. You can think of Xerces2 as a very useful reference implementation of the XNI framework. If
you’re going to build an application using XNI, you may find it useful to reuse some of the components
from the Xerces2 reference implementation. These components have the advantage of being heavily
tested and debugged, so you can concentrate on implementing just the functionality you need. Here are
some of the most useful components from Xerces2.

41

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 41

Document Scanner
The document scanner knows how to take an XML document and fire the callbacks for elements (and
attributes), characters, and anything else you might encounter in an XML document. This is the
workhorse component for any XNI application that is going to work with an XML document.
Applications that just work with the DTD or schema may end up not using this class. The document
scanner is implemented by the class org,apache.xerces.impl.XMLDocumentScannerImpl and uses the
URI http://apache.org/xml/properties/internal/document-scanner as its property ID. To use it, you
also need the DTD scanner, entity manager, error reporter, and symbol table.

DTD Scanner
If you’re processing DTDs, either directly or indirectly, you need the DTD scanner. It knows the syntax
of DTDs and fires XMLDTDHandler and XMLDTDContentModelHandler events as it processes the
DTD. The DTD scanner is implemented by the class org.apache.xerces.impl.XMLDTDScannerImpl and
uses the URI http://apache.org/xml/properties/internal/dtd-scanner as its property ID. To use it, you
also need the entity manager, error reporter, and symbol table.

DTD Validator
Scanning DTDs is different from validating with them. After the DTD pipeline has scanned the DTD and
assembled the necessary definitions, the document content pipeline needs to use those definitions to val-
idate the document. That’s where the DTD validator comes in. It takes the definitions created by the
DTD pipeline and uses them to validate the document. The validator is inserted into the pipeline as a fil-
ter, after the document scanner. The DTD validator is implemented by the class org.apache.xerces.
impl.dtd.XMLDTDValidator and uses the URI http://apache.org/xml/properties/internal
/validator/dtd as its property ID. To use it, you also need the entity manager, error reporter, and
symbol table.

Namespace Binder
The process of mapping namespace prefixes to namespace URIs is called namespace binding. It needs to
occur after DTD validation has occurred because the DTD may have provided default values for one
or more namespace attributes in the document. These namespace bindings are needed for schema
validation, so the namespace binder is inserted as a filter after the DTD validator and before the
schema validator. The namespace binder is implemented by the class org.apache.xerces.
impl.XMLNamespaceBinder and uses the URI http://apache.org/xml/properties/internal
/namespace-binder as its property ID. To use it, you also need the error reporter and the symbol table.

Schema Validator
The schema validator validates the document against an XML schema. It’s inserted into the pipeline as a
filter after the namespace binder. As it processes the document, it may augment the streaming informa-
tion set with default and normalized simple type values. It may also add items to the PSVI via the
augmentations. The schema validator is implemented by the class org.apache.xerces.impl.xs.
XMLSchemaValidator and uses the URI http://apache.org/xml/properties/internal/validator
/schema as its property ID. To use it, you also need the error reporter and the symbol table.

42

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 42

Error Reporter
The parser configuration needs a single mechanism that all components can use to report errors. The
Xerces2 error reporter provides a single point for all components to report errors. It also provides some
support for localizing the error messages and calling the XNI XMLErrorHandler callback. Localization
works as follows. Each component is given a domain designated by a URI. The component then imple-
ments the org.apache.xerces.util.MessageFormatter interface to generate and localize its own error mes-
sages. This component is used by almost all the other Xerces2 components, so you need to have one of
them in your configuration if you use any of them. The error reporter is implemented by the class
org.apache.xerces.impl.XMLErrorReporter and uses the URI http://apache.org/xml/properties
/internal/error-reporter as its property ID.

Entity Manager
Xerces2 provides an entity manager that handles the starting and stopping of entities within an XML
document. This gives its clients (primarily the document scanner and DTD scanner) the illusion that
there is a single entity, not multiple entities. The entity manager is implemented by the class
org.apache.xerces.impl.EntityManager and uses the URI http://apache.org/xml/properties
/internal/entity-manager as its property id. To use it, you also need the error reporter and the symbol
table.

Symbol Table
XML parsers look at a lot of text when processing documents. Much of that text (element and attribute
names, namespaces prefixes, and so on) is repeated in XML documents. Xerces2 tries to take advantage
of that fact by providing a custom symbol table for strings in order to improve performance. The symbol
table always returns the same java.lang.String reference for a given string value. This means components
can compare strings by comparing these references, not by comparing the string values. So, not only
does the symbol table save space, it helps replace expensive calls to String#equals() with calls to ==. This
component is used by all the rest of the Xerces2 components, so your configuration needs one of them if
you use any Xerces2 components. The symbol table is implemented by the class org.apache.xerces.
util.SymbolTable and uses the URI http://apache.org/xml/properties/internal/symbol-table as its
property ID.

Using the Samples
The Xerces distribution includes a number of sample programs, some of which can be very useful when
you’re developing programs using Xerces—especially when you’ve embedded Xerces into your applica-
tion. Suppose you’re trying to debug an application and the problem appears to be inside Xerces itself.
You may be seeing exceptions thrown or getting answers you think are incorrect. One debugging
method that can save a lot of time is to capture the XML that’s being input to Xerces, save it a file, and
drag out one of the samples to help you see what’s going on.

Before you use any of the samples, you need to get to a command-line prompt on your operating sys-
tem. Make sure that xml-apis.jar, xercesImpl.jar, and xercesSamples.jar are all on your classpath.

43

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 43

If you’re working with SAX, the first place to go is to the SAX Counter sample. This sample parses your
document and prints some statistics based on what it finds. To invoke Counter, type

java sax.Counter <options> <filename>

There are command-line options to turn on and off namespace processing, validation, and schema vali-
dation, and to turn on full checking of the schema document. If you omit the options and filename,
you’ll get a help screen describing all the options. The key reason to start with sax.Count is that if Xerces
is throwing an exception, it will probably throw that exception when you run sax.Count. From there,
you can try to figure out if the problem is with the XML file, your application, or Xerces (in which case
you should send mail to xerces-j-user@xml.apache.org with a bug report).

There’s a pair of DocumentTracer samples, one for SAX and one for XNI. These samples are in classes
named sax.DocumentTracer and xni.DocumentTracer, respectively. Their job is to print out all the SAX or
XNI callbacks as they are fired for your document. Occasionally these samples can be useful to help you
figure out which callbacks are being passed which data—especially when you’re tired and confused
after a long day of programming. They can also help you debug namespace-related problems, because
all the prefixes get expanded. The output of xni.DocumentTracer is more detailed and complete than
that of sax.DocumentTracer, due to the higher fidelity of the XNI callbacks, but most of the time you’ll
want to use sax.DocumentTracer so you can see exactly what SAX sees.

If you’re using the DOM, you can use the DOM Counter sample, which lives in dom.Counter. It does the
same thing as sax.Counter, but it uses the DOM and therefore will probably exercise some of the same
DOM code your application does.

CyberNeko Tools for XNI
Andy Clark is one of the Xerces committers and was the driving force behind the design of XNI. He’s
written a suite of tools called NekoXNI to showcase some of the things you can do with XNI. Even if you
aren’t interested in using XNI, you might want to have a look, because some of the tools are pretty use-
ful. In this section, we’ll look at a few of these tools.

NekoHTML
NekoHTML uses XNI to allow an application to process an HTML document as if it were an XML docu-
ment. There are both SAX and DOM parsers in the org.cyberneko.html.parsers package. You use
org.cyberneko.html.parsers.SAXParser just like the regular Xerces SAXParser; you can plug in your own
ContentHandlers and so on using the regular SAX API. The org.cyberneko.html.parsers.DOMParser
works like the Xerces DOMParser with one notable twist. Instead of using the Xerces XML DOM, it uses
the Xerces HTML DOM, which means you get a DOM implementation that is aware of some of the rules
of HTML. To use NekoHTML, you need to have nekohtml.jar in your classpath, in addition to the regu-
lar jars you need for Xerces. But if you need to process HTML, it’s worth it.

ManekiNeko
Another interesting and useful component of NekoXNI is a validator for Relax-NG called ManekiNeko.
This validator is based on James Clark’s Jing validator for Relax-NG, and it works by creating a wrapper

44

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 44

that converts XNI events into the SAX events that Jing already understands. This wrapped version
of Jing is then inserted into the appropriate spot in the XNI pipeline within an XMLParserConfiguration
called JingConfiguration. For ease of use, Andy has again provided convenience classes that work
just like the Xerces SAX and DOM parser classes. For a Relax-NG aware SAX parser, use org.cyberneko
.relaxng.parsers.SAXParser; for a DOM parser, use org.cyberneko.relaxng.parsers.DOMParser. You must
set the SAX validation and namespace features to true. You must also set a property that tells the Relax-
NG validator where to find the Relax-NG schema to be used for validation, because Relax-NG doesn’t
specify a way of associating a schema with a document. This property is called http://cyberneko.org
/xml/properties/relaxng/schema-location, and its value should be the URI for the schema file.

NekoPull
The last CyberNeko tool is NekoPull, the CyberNeko pull parser. The commonly used APIs for XML,
SAX, and DOM are push APIs. Once your program asks the parser to parse a document, your applica-
tion doesn’t regain control until the parse completes. SAX calls your program code via its event call-
backs, but that’s about as good as it gets. With the DOM, you have to wait until the entire tree has been
built before you can do anything.

The difficulty with SAX is that for any non-trivial XML grammar, you end up maintaining a bunch of
stacks and a state machine that remembers where you are in the grammar at any point in the parse. It
also makes it very hard to modularize your application. If you have an XML grammar where the ele-
ments are turned into objects of various classes, you have to do a lot of work to keep the event-handling
code for each class associated with each class. You end up trying to create ContentHandlers that handle
only the section of the grammar for a particular class, and then you have to build infrastructure to multi-
plex between these ContentHandlers. It can be done, but the process is tedious and error prone.

With the DOM, you can create a constructor that knows how to construct an instance of your class from
an org.w3c.dom.Element node, and then you can pass the DOM tree around to instances of the various
classes. You can handle contained objects by passing the right element in the DOM tree to the construc-
tors for those contained object types. The disadvantage of the DOM is that you have to wait until the
whole document is processed, even if you only need part of it. And, of course, there’s the usual problem
of how much memory DOM trees take up.

Pull-parsing APIs can give you the best of both worlds. In a pull-parsing API, the application asks the
parser to parse the next unit in the XML document, regardless of whether that unit is an element, charac-
ter data, a processing instruction, and so on. This means you can process the document in a streaming
fashion, which is a benefit of SAX. You can also pass the parser instance around to your various object
constructors. Because the parser instance remembers where it is in the document, the constructor can call
the parser to ask for the next bits of XML, which should represent the data it needs to construct an
object. Contained objects are handled just like the DOM case; you pass the parser instance (which again
remembers its place) to the constructors for the contained objects. This is a much better API.

Let’s walk through a pull implementation of the Book object building program:

1: /*
2: *
3: * NekoPullMain.java
4: *

45

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 45

5: * Example from "Professional XML Development with Apache Tools"
6: *
7: */
8: package com.sauria.apachexml.ch1;
9:

10: import java.io.IOException;
11: import java.util.Stack;
12:
13: import org.apache.xerces.xni.XMLAttributes;
14: import org.apache.xerces.xni.XNIException;
15: import org.apache.xerces.xni.parser.XMLInputSource;
16: import org.cyberneko.pull.XMLEvent;
17: import org.cyberneko.pull.XMLPullParser;
18: import org.cyberneko.pull.event.CharactersEvent;
19: import org.cyberneko.pull.event.ElementEvent;
20: import org.cyberneko.pull.parsers.Xerces2;
21:
22: public class NekoPullMain {
23:
24: public static void main(String[] args) {
25: try {
26: XMLInputSource is =
27: new XMLInputSource(null, args[0], null);
28: XMLPullParser pullParser = new Xerces2();
29: pullParser.setInputSource(is);
30: Book book = makeBook(pullParser);

You start by instantiating an instance of the pull parser and setting it up with the input source for the
document. Then you pass the parser, which is at the correct position to start reading a book, to a con-
structor function for the Book class.

31: System.out.println(book.toString());
32: } catch (IOException ioe) {
33: ioe.printStackTrace();
34: }
35: }
36:
37: private static Book makeBook(XMLPullParser pullParser)
38: throws IOException {
39: Book book = null;
40: Stack textStack = new Stack();

When you ask the parser for the next bit of XML, you get back an event. That event is an object (a struct,
really) that contains all the information about the piece of XML the parser saw. NekoPull includes event
types for the document, elements, character data, CDATA, comments, text declaration, DOCTYPE decla-
ration, processing instructions, entities, and namespace prefix mappings. The event types are deter-
mined by integer values in the type field of XMLEvent. Some of the events are bounded; that is, they
correspond to a start/end pairing and are reported twice. The bounded events are DocumentEvent,
ElementEvent, GeneralEntityEvent, CDATAEvent, and PrefixMappingEvent; a boolean field called start
distinguishes start events from end events.

You loop and call pullParser’s nextEvent method to get events until there aren’t any more (or until you
break out of the loop):

46

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 46

41: XMLEvent evt;
42: while ((evt = pullParser.nextEvent()) != null) {
43: switch (evt.type) {
44: case XMLEvent.ELEMENT :
45: ElementEvent eltEvt = (ElementEvent) evt;
46: if (eltEvt.start) {
47: textStack.push(new StringBuffer());
48: String localPart = eltEvt.element.localpart;
49: if (localPart.equals("book")) {
50: XMLAttributes attrs = eltEvt.attributes;
51: String version =
52: attrs.getValue(null, "version");
53: if (version.equals("1.0")) {
54: book = new Book();
55: continue;
56: }
57: throw new XNIException("bad version");
58: }

If you see a starting ElementEvent for the book element, you check the version attribute to make sure it’s
1.0 and then instantiate a new Book object. For all starting ElementEvents, you push a new StringBuffer
onto a textStack, just like for SAX. You do this to make sure you catch text in mixed content, which will
be interrupted by markup. For example, in

<blockquote>
I really didn’t like what he had to say

</blockquote>

the text "I really" and "like what he had to say" belongs inside the blockquote element, whereas the text
"didn’t" belongs inside the em element. Keeping this text together is what the textStack is all about.

The real work of building the object is done when you hit the end tag, where you get an ending
ElementEvent. Here you grab the text you’ve been collecting for this element and, based on the tag
you’re closing, call the appropriate Book setter method. You should be pretty familiar with this sort of
code by now:

59: } else if (!eltEvt.empty) {
60: String localPart = eltEvt.element.localpart;
61: StringBuffer tos =
62: (StringBuffer) textStack.pop();
63: String text = tos.toString();
64: if (localPart.equals("title")) {
65: book.setTitle(text);
66: } else if (localPart.equals("author")) {
67: book.setAuthor(text);
68: } else if (localPart.equals("isbn")) {
69: book.setIsbn(text);
70: } else if (localPart.equals("month")) {
71: book.setMonth(text);
72: } else if (localPart.equals("year")) {
73: int year = 0;
74: year = Integer.parseInt(text);
75: book.setYear(year);

47

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 47

76: } else if (localPart.equals("publisher")) {
77: book.setPublisher(text);
78: } else if (localPart.equals("address")) {
79: book.setAddress(text);
80: }

When you see a CharactersEvent, you’re appending the characters in the event to the text you’re keeping
for this element:

81: }
82: break;
83: case XMLEvent.CHARACTERS :
84: CharactersEvent chEvt = (CharactersEvent) evt;
85: StringBuffer tos =
86: (StringBuffer) textStack.peek();
87: tos.append(chEvt.text.toString());
88: break;
89: }
90: }
91: return book;
92: }
93: }

As you can see, the style inside the constructor method is somewhat reminiscent of a SAX content han-
dler. The difference is that when you get to contained objects, the code is dramatically simpler. You just
have a bunch of methods that look like makeBook, except that as part of the processing of certain end
ElementEvents, there’s a call to the constructor function of another class, with the only argument being
the pull parser.

As we’re writing this, the first public review of JSR-173, the Streaming API for XML, has just begun.
Perhaps by the time you’re reading this, NekoXNI’s pull parser will be implementing what’s in that JSR.

At the moment, the NekoXNI tools are separate from Xerces, but there have been some discussions
about incorporating all or some of the tools into the main Xerces distribution.

Practical Usage
We’ve covered a lot of ways you can use Xerces to get information out of XML documents and into your
application. Here are two more practical usage tips.

Xerces isn’t thread safe. You can’t have two threads that execute a single Xerces instance at the same
time. If you’re in a multithreaded situation, you should create one instance of Xerces for each thread. If
for some reason you don’t want to do that, make sure the access to the parser instance is synchronized,
or you’ll run into some nasty problems. A common solution pattern for concurrent systems is to provide
the thread with a pool of parser instances that have already been created.

That leads us into the second tip. If your application is processing many XML documents, you should
try to reuse parser instances. Both the Xerces SAXParser and DOMParser provide a method called reset
that you can use to reset the parser’s internal data structures so the instance can be used to parse another

48

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 48

document. This saves the overhead of creating all the internal data structures for each document. When
you combine this with grammar caching, you can get some nice improvements in performance relative
to creating a parser instance over and over again.

Common Problems
This section addresses some common problems that people encounter when they use Xerces. Most of
these issues aren’t Xerces specific, but they happen so frequently that we wanted to address them.

❑ Classpath problems—It’s a simple mistake but a surprisingly common one. Both xml-apis.jar
and xercesImpl.jar must be on your classpath in order to use Xerces. Leaving one of them out
will cause pain and suffering. If you want to use the samples, you need to include
xercesSamples.jar on your classpath.

The other thing to beware of is strange interactions between your classpath and either the JDK
1.3 Extension Mechanism or the JDK 1.4 Endorsed Standards Override Mechanism. If it looks
like you aren’t getting Xerces or the Xerces version that you think you’re using, look for old ver-
sions of Xerces in these places. You can determine the version of Xerces by executing the follow-
ing at your command line:

java org.apache.xerces.impl.Version

This command prints out the version of Xerces you’re using. You can also call the static method
org.apache.xerces.impl.Version#getVersion from inside a program to get the version string.

❑ Errors not reported or always reported to the console—If you don’t provide an ErrorHandler,
one of two behaviors will occur. In every version of Xerces prior to 2.3.0, if no ErrorHandler is
registered, no error messages are displayed. You must register your own ErrorHandler if you
want error messages to be reported. This problem confused a lot of people, so in version 2.3.0
the behavior was changed so that error messages are echoed to the console when no
ErrorHandler is registered. In these versions of Xerces, you need to register your own
ErrorHandler to turn off the messages to the console.

❑ Multiple calls to characters—In SAX applications, it’s common to forget that the characters call-
back may be called more than once for the character data inside an element. Unless you buffer
up the text by, say, appending it to a StringBuffer, it may look like your application is randomly
throwing away pieces of character data.

❑ When is ignorableWhitespace called?—It’s not enough that the definition of ignorable whites-
pace is confusing to people. The ignorableWhitespace callback is called for ignorableWhitespace
only when a DTD is associated with the document. If there’s no DTD, ignorableWhitespace isn’t
called. This is true even if there is an XML schema but no DTD.

❑ Forgot validation switches—Another common problem is forgetting to turn on the validation
features. This is true both for DTD validation and for schema validation. A single feature must
be turned on for DTD validation; but for schema validation you must have namespace support
turned on in addition to the feature for schema validation. That’s three properties. Make sure
you have them all on.

❑ Multiple documents in one file—People like to try to put multiple XML documents into a sin-
gle file. This isn’t legal XML, and Xerces won’t swallow it. You’ll definitely see errors for that.

49

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 49

❑ Mismatched encoding declaration—The character encoding used in a file and the encoding
name specified in the encoding declaration must match. The encoding declaration is the encod-
ing="name" that appears after <? xml version="1.0" encoding="name"?> in an XML document.
If the encoding of the file and the declared encoding don’t match, you may see errors about
invalid characters.

❑ Forgetting to use namespace-aware methods—If you’re working with namespaces, be sure to
use the namespace-aware versions of the methods. With SAX this is fairly easy because most
people are using the SAX 2.0 ContentHandler, which has only the namespace-aware callback
methods. If you’re using DocumentHandler and trying to do namespaces, you’re in the wrong
place. You need to use ContentHandler. In DOM-based parsers, this is a little harder because
there are namespace-aware versions of methods that have the letters NS appended to their
names. So, Element#getAttributeNS is the namespace-aware version of the
Element#getAttribute method.

❑ Out of memory using the DOM—Depending on the document you’re working with, you may
see out-of-memory errors if you’re using the DOM. This happens because the DOM tends to be
very memory intensive. There are several possible solutions. You can increase the size of the
Java heap. You can use the DOM in deferred mode—if you’re using the JAXP interfaces, then
you aren’t using the DOM in deferred mode. Finally, you can try to prune some of the nodes in
the DOM tree by setting the feature http://apache.org/xml/features/dom/include-ignorable-
whitespace to false.

❑ Using appendChild instead of importNode across DOM trees—The Xerces DOM implementa-
tion tries to enforce some integrity constraints on the contents of the DOM. One common thing
developers want to do is create a new DOM tree and then copy some nodes from another DOM
tree into it. Usually they try to do this using Node#appendChild, and then they start seeing
exceptions like DOMException: DOM005 Wrong document, which is confusing. To copy nodes
between DOM trees you need to use the Document#importNode method, and then you can call
the method you want to put the node into its new home.

Applications
We’ve covered a lot of ground in this chapter, and yet we’ve hardly begun. XML parsing has so many
applications that it’s hard to show all the ways you might use it in your application. Here are a couple of
ideas.

One place you end up directly interacting with the XML parser is in the kind of example we’ve been
using through out this chapter: turning XML documents into domain-specific objects within your appli-
cation. Although there are some proposals for tools that can do it for you, this is a task where you’ll still
see developers having direct interaction with the parser, at least for a little while longer.

Another application people use the parser for directly is filtering XML. When you have a very large
XML document and you need only part of it, using SAX to cut out the stuff you don’t want to deal with
is a very viable solution.

50

Chapter 1

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 50

XML parsers have a place as a document and schema development tool. They provide the means for you
to create XML documents and grammars in many forms (DTDs, XML Schema, and Relax-NG) and verify
that the grammars you’ve written do what you want and that your documents conform to those gram-
mars.

The reality is that most developers are doing less with XML parsers directly. That’s because lots of clever
tool and application developers have leveraged the fundamental capability of XML parsing and used it
to build tools that operate at a higher level. Although we hope you’re excited about Xerces and all the
cool things you can do with it, we hope you’re even more excited by some of the tools that have already
been built on top of it. Those tools are what the rest of this book is about.

51

Xerces

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 51

01 543555 Ch01.qxd 11/5/03 9:40 AM Page 52

