
Getting Started with ASP.NET

ASP.NET is a new and powerful technology for creating dynamic web pages. It's a convergence of two
major Microsoft technologies, Active Server Pages (ASP) and .NET. ASP is a relative old-timer on the
web computing circuit and has provided a sturdy, powerful, and effective way of creating dynamic web
pages for five years or so now. .NET is the new kid on the block and is a whole suite of technologies
designed by Microsoft with the aim of revolutionizing the way in which programming development is
conducted in the future, and the way companies carry out business. As a conjunction of the two,
ASP.NET is a way of creating dynamic web pages while making use of the innovations present in .NET.

The first important thing to know about ASP.NET is that you don't need any ASP skills to be able to
learn it. In fact all you need is a little HTML knowledge for building your own web pages. Knowing any
ASP could in some ways be a disadvantage, because you might have to 'unlearn' some of the principles
you previously held to be true. ASP.NET is a more powerful technology than its old namesake. Not
only does it allow you to build dynamic web pages, but it also tailors the output in HTML to whatever
browser you're using, and comes with a great set of reusable, predefined, and ready to use controls for
use in your ASP.NET projects, which reduce the amount of code you have to write, so you can be more
productive while programming.

So what can you do with ASP.NET? It might be easier to list what you can't, as that is arguably shorter!
One of the most eye-catching things is the way you can use any programming language based in .NET,
such as C#, VB .NET, or JScript .NET, to create your web applications. Within these applications,
ASP.NET enables you to customize pages for a particular user, makes it much simpler now to keep
track of a particular user's details as they move around, and makes storing information to a database or
self-describing XML document faster and easier. You can alter the layout of the page using a visual IDE
rather than having to figure out positioning within code, and even alter the contents of files on your
machine (if you have the correct permissions). You can also use bits and pieces of other applications
without downloading the whole application: for example, you can access a zip code verifier that is
exposed by another web site, without having to download the whole of that application, or giving your
users the impression that they've left your site (we'll talk more about this in the Web Services chapter later
on). Basically, with ASP.NET the applications that you create are only limited by your imagination.

Chapter 1

10

In this first chapter we'll be mainly concerned with ASP.NET's installation process. We'll start with a
quick introduction to the world of web servers, dynamic web pages, and a little bit about what ASP.NET
is, but what we really aim to achieve is to get you up and running a fully functional web server, with a
fully functional ASP.NET installation. By the end of the chapter you'll have created a short ASP.NET
test page to check that both the web server and ASP.NET are both working as intended. We'll also have
a look at some of the most common pitfalls encountered, just in case things don't go as planned!

We will cover the following topics:

❑ Static Web Pages

❑ Dynamic Web Pages

❑ An overview of the different technologies for creating dynamic web pages, including
ASP.NET

❑ Installing Internet Information Services (IIS)

❑ Installing the .NET Framework

❑ Testing and troubleshooting your installation

What is a Static Web Page?
If you surf around the Internet today, you'll see that there are lots of static web pages out there. What do
we mean by a static web page? Essentially, it's a page whose content consists of some HTML code that
was typed directly into a text editor and saved as an .htm or .html file. Thus, the author of the page
has already determined the exact content of the page, in HTML, at some time before any user visits the
page.

Static web pages are often quite easy to spot: sometimes you can pick them out by just looking at the
content of the page. The content (text, images, hyperlinks, etc.) and appearance of a static web page is
always the same – regardless of who visits the page, or when they visit, or how they arrive at the page, or
any other factors.

For example, suppose we create a page called welcome.htm for our web site, by writing some simple
HTML like this:

<html>
<head><title>A Welcome Message</title></head>
<body>
 <h1>Welcome</h1>
 Welcome to our humble website. Please feel free to view our
 list of contents.

 If you have any difficulties, you can
 send email to the webmaster.
</body>
</html>

Getting Started with ASP.NET

11

Whenever any client comes to our site to view this page, it will look like this. The content of the page
was determined before the request was made – at the time the Webmaster saved the .htm file to disk:

How are Static Web Pages Served?
OK, so let's think for a moment about how a static, pure-HTML page finds its way onto a client
browser:

1. A web author writes a page composed of pure HTML, and saves it within an .htm file on the
server.

2. Sometime later, a user types a page request into their browser, and the request is passed from
the browser to the web server.

3. The web server locates the .htm page and converts it to an HTML stream.

4. The web server sends the HTML stream back across the network to the browser.

5. The browser processes the HTML and displays the page.

Chapter 1

12

WEB SERVER

Author writes
instructions

Client
requests web page

CLIENT

3

1

2

Web server locates HTM and instructions file

4 HTM and instructions
returned to browser

A module in the browser processes
instructions and turns them into HTM

5

Static, pure-HTML files like Welcome.htm make perfectly serviceable web pages. We can even spruce
up the presentation and usability of such pages by adding more HTML to alter the fonts and colors.
However, there's only so much we can achieve by writing pure HTML, precisely because the content is
completely determined before the page is ever requested.

The Limitations of Static Web Pages
For example, suppose we want to enhance our Welcome page – so that it displays the current time or a
special message that is personalized for each user. These are simple ambitions, but they are impossible
to achieve using HTML alone. If you're not convinced, try writing a piece of HTML for a web page that
displays the current time, like this:

Getting Started with ASP.NET

13

As you type in the HTML, you'll soon realize the problem – you know that the user will request the
page sometime, but you don't know what the time will be when they do so! Hard-coding the time into
your HTML will result in a page that always claims that the time is the same (and will almost always
display the wrong time).

In other words, you're trying to write pure HTML for a web page that displays the time – but you can't
be sure of the exact time that the web page should display until the time the page is requested. It can't be
done using HTML alone.

Also, HTML offers no features for personalizing your web pages: each web page that is served is the
same for every user. There's also no security with HTML: the code is there for everybody to view, and
there's nothing to stop you from copying somebody else's HTML code and using it in your own web
page. Static pages might be very fast, as quick as copying a small file over a network, but they are quite
limited without any dynamic features.

Since we can't create our page by saving our hard-coded HTML into a file before the page is requested,
what we need is a way to generate the HTML after the page is requested. There are two ways of doing
this. We'll look at them both shortly, but before we go any further we need to make sure everybody is
up to speed on the terminology we've introduced here.

What is a Web Server?
A web server is a piece of software that manages web pages and makes them available to 'client'
browsers – via a local network or over the Internet. In the case of the Internet, the web server and
browser are usually on two different machines, possibly many miles apart. However, in a more local
situation we might set up a machine that runs the web server software, and then use a browser on the
same machine to look at its web pages. It makes no difference whether you access a remote web server
(that is, a web server on a different machine from your browser application) or a local one (web server
and browser on the same machine), since the web server's function – to make web pages available to all
– remains unchanged. It might well be that you are the only person with access to your web server on
your own machine, as would be case if you were running a web server from your home machine.
Nevertheless, the principles remain the same.

While there are many web servers available – the commonest ones being Apache, Internet Information
Services (or IIS, for short) and Iplanet's Enterprise server – we're only going to talk about one in this
book: Microsoft's IIS. This is because it is the only web server that will run ASP.NET. The web server
comes as part of the installation for both Windows 2000 and Windows XP. IIS version 5.0 comes with
Windows 2000 and IIS version 5.1 with Windows XP; however, there is very little to distinguish the
two, and we shall treat them in this chapter as the same product. We'll look at how you go about
installing IIS shortly, but first, let's take a look at its role in helping to create dynamic web pages.

How are Dynamic Web Pages Served?
To fully understand the nature of dynamic web pages, we first need to look at the limitations of what
you can and can't do with a static web page.

Chapter 1

14

Two Ways of Providing Dynamic Web Page Content
Even though, in this book, we're only going to be creating dynamic web pages using one of two very
different methods, we need to be aware of the differences between these two different ways of doing
things, as the underlying principles for both feature heavily throughout the book.

Client-Side Dynamic Web Pages
In the client-side model, modules (or plug-ins) attached to the browser do all the work of creating
dynamic pages. The HTML code is typically sent to the browser, along with a separate file containing a
set of instructions, which is referenced from within the HTML page. However, it is also quite common
to find these instructions intermingled with the HTML code. The browser then uses them to generate
pure HTML for the page when the user requests the page – in other words, the page is generated
dynamically on request. This produces an HTML page, which is displayed in the browser.

So in this model our set of five steps now becomes six:

1. A web author writes a set of instructions for creating HTML, and saves it within an .htm file.
The author also writes a set of instructions in a different language. This might be contained
within the .htm file, or within a separate file.

2. Sometime later, a user types a page request into their browser, and the request is passed from
the browser to the web server.

3. The web server locates the .htm page, and may also have to locate a second file that contains
the instructions.

4. The web server sends both the newly created HTML stream and instructions back across the
network to the browser.

5. A module within the browser processes the instructions and returns the results as HTML
within the .htm page – only one page is returned, even if two were requested.

6. The HTML is then processed by the browser, which displays the page.

Getting Started with ASP.NET

15

WEB SERVER

Author writes
instructions

Client
requests web page

CLIENT

3

1

2

Web server locates HTML and instructions file

4 HTML and instructions
returned to browser

Browser processes HTML
and displays page

6

A module in the browser processes
instructions and turns them into HTML

5

Client-side technologies have fallen out of favor in recent times, as they take a long time to download,
especially if you have to download more than one file. A second drawback is that each browser
interprets client-side scripting code in different ways, so you have no way of guaranteeing that if
Internet Explorer understands them, Netscape Navigator or Opera will also be able to process them.
Other major drawbacks are that it is a problem to write client-side code that uses server-side resources
such as databases because it is interpreted at client-side. Also, client-side scripting code isn't secure and
can be easily viewed with the View Source Code option on any browser, which might also be
undesirable, and may compromise the security of the web site.

Server-Side Dynamic Web Pages
With the server-side model, the HTML source is sent to the web server with an intermingled set of
instructions. Again this set of instructions will be used to generate HTML for the page at the time the
user requests the page. Once again, the page is generated dynamically upon request. However, there is a
subtle twist regarding where the processing of instructions is done:

1. A web author writes a set of instructions for creating HTML, and saves these instructions
within a file.

2. Sometime later, a user types a page request into their browser, and the request is passed from
the browser to the web server.

Chapter 1

16

3. The web server locates the file of instructions.

4. The web server follows the instructions in order to create a stream of HTML.

5. The web server sends the newly created HTML stream back across the network to the browser.

6. The browser processes the HTML and displays the page.

WEB SERVER

Author writes
instructions

Client
requests webpage

Browser processes HTML
and displays page

CLIENT

3

4
1

2

Web server locates instructions file

Web server processes instructions to create HTML

6

HTML stream returned to browser5

The twist is that all the processing is done on the server, before the page is sent back to the browser.
One of the key advantages this has over the client-side model is that only the HTML is actually sent to
the browser. This means that our page's original code is hidden away on the server, and that we can
safely assume that most browsers should be able to at least have a go at displaying the generated
HTML. ASP.NET, as you might have gathered, does its processing on the server-side.

While both processes for serving a dynamic web page add only a single step to the process for serving a
static web page (Step 5 on the client or Step 4 on the server) this single step is crucial. In this step the
HTML that defines the web page is not generated until after the web page has been requested. For
example, we can use either technique to write a set of instructions for creating a page that displays the
current time:

Getting Started with ASP.NET

17

<html>
<head><title>The Punctual Web Server</title></head>
<body>
 <h1>Welcome</h1>
 In Webserverland, the time is exactly
 <INSTRUCTION: produce HTML to display the current time>
</body>
</html>

In this case, we can compose most of the page using pure HTML. It's just that we can't hardcode the
current time. Instead, we can write special code (which would replace the highlighted line here) that
instructs the web server to generate that bit of HTML – during Step 5, on the client, or Step 4, on the
server – at the time the page is requested. We'll return to this example later in the chapter, and we'll see
how to write the highlighted instruction using ASP.NET.

Now we're going to look at the various different technologies, including ASP.NET, and see how the
logic is supported in each.

An Overview of the Technologies
You've just seen that there are also two distinct models for providing dynamic content. ASP.NET falls
into the server-side model. However, we're going to look at what we consider to be the most important
technologies in both models, as we will reference some of the client-side models in later chapters,
particularly if we mention old-style ASP. Not all of the technologies work in the same way as ASP.NET,
but they all allow the user to achieve the same endresult – that of dynamic web applications. If
ASP.NET is not an ideal solution to your problems, then you might want to consider these following
technologies, taking into account the following questions:

❑ Are they supported on the platform you use?

❑ Are they difficult to learn?

❑ Are they easy to maintain?

❑ Do they have a long-term future?

❑ Do they have extra capabilities, such as being able to parse XML?

❑ Are a lot of people already using them – are there a lot of tools available?

❑ Are the support, skills, and knowledge required to use them readily available?

We're now going to give a quick overview of what each one does, and in doing so, try to give you an
idea of where ASP.NET (and the ASP technology that preceded it) fits in to the big picture.

Client-Side Technologies for Providing Dynamic Content
Each of these technologies relies on a module (or plug-in) built into the browser to process the
instructions we talked about earlier. The client-side technologies are a mishmash of scripting languages,
controls, and fully fledged programming languages.

Chapter 1

18

JavaScript

JavaScript is the original browser scripting language, and is not to be confused with Java. Java is a
complete application programming language in its own right. Netscape originally developed a scripting
language, known as LiveScript, to add interactivity to its web server and browser range. It was
introduced in the release of the Netscape 2 browser, when Netscape joined forces with Sun, and in the
process, they changed its name to JavaScript. JavaScript borrows some of its syntax and basic structures
from Java (which in turn borrowed ideas from C), but has a different purpose – and evolved from
different origins (LiveScript was developed separately from Java).

For example, while JavaScript can control browser behavior and content, it isn't capable of controlling
features such as file handling. In fact JavaScript is actively prevented from doing this for security
reasons. Think about it: you wouldn't want a web page capable of deleting files on your hard drive,
would you? Meanwhile, Java can't control the browser as a whole, but it can do graphics and perform
network and threading functions.

JavaScript is much simpler to learn than Java. It is designed to create small, efficient applications that
can do many things, from performing repetitive tasks to handling events generated by the user (such as
mouse clicks, keyboard responses, and so on). However, JavaScript's functionality is necessarily
restricted.

Microsoft introduced their own version of JavaScript, known as JScript, in Internet Explorer 3.0 and
have supported it ever since, right up to and including IE6. It has only minor differences from the
Netscape version of the language, although in older versions of both browsers the differences were more
considerable.

VBScript

In Internet Explorer 3.0, Microsoft also introduced its own scripting language, VBScript, which was
based on its Visual Basic programming language. VBScript was intended to be a direct competitor to
JavaScript. In terms of functionality, there isn't much difference between the two: it's more a matter of
personal preference – VBScript has a similarly reduced functionality. Visual Basic developers
sometimes prefer VBScript because VBScript is, for the most part, a subset of Microsoft's Visual Basic
language (the forerunner of VB.NET). However, it enjoys one advantage that makes it more attractive to
novice programmers, in that unlike JavaScript, it isn't case-sensitive and is therefore less fussy about the
particulars of the code. Although this feature has the drawback that this makes it a lot slower and less
efficient.

However, the biggest drawback by far is that there isn't a single non-Microsoft browser that supports
VBScript for client-side scripting. For a short while there were some proprietary plug-ins for Netscape
that provided VBScript support, but these never took off. You'll find that JavaScript is much more
widely used and supported. If you want to do client-side scripting of web pages on the Internet then
JavaScript is the only language of choice. VBScript should only be considered when working on intranet
pages where it is known that all clients are IE on Windows.

With both JavaScript and VBScript there is a module, known as a script engine, built into the browser
that dynamically processes the instructions, or script, as it is known in this case.

Getting Started with ASP.NET

19

Java Applets

Java is a cross-platform language for developing applications. When Java first hit the Web in the mid-
1990s, it created a tremendous stir. The idea is to use Java code in the form of applets, which are
essentially Java components that can be easily inserted into web pages with the aid of the <applet> tag.

Java enjoys better functionality than scripting languages, offering better capabilities in areas such as
graphic functions and file handling. Java is able to provide these powerful features without
compromising security because the applets run in what is known as a sandbox – which prevents a
malicious program downloaded from the Web from doing damage to your system. Java also boasts
strong database support through JDBC (a technology for connecting to data sources).

Microsoft and Netscape browsers both have built-in Java support via something known as the Java
Virtual Machine (JVM), and there are several standard <object> and non-standard <applet> tags
that are used to add Java applets to a web page. These tags tell the browser to download a Java file from
a server and execute it with the Java Virtual Machine built into the browser. Of course, this extra step in
the web page building phase means that Java applets can take a little while to download, and can take
even longer to process once on the browser. So while smaller Java applets (that provide features such as
dropdown menus and animations) are very popular on the Web, larger ones are still not as widespread
as scripted pages.

Although the popularity of Java today isn't quite what some people expected, it makes an ideal teaching
tool for people wishing to break into more complex languages, and its versatility makes it well suited for
programming web applications.

Flash

Flash from Macromedia is a web motion graphics tool, enabling developers to create animations,
interactive graphics, and user interface elements such as menus. While this might seem slightly at odds
with the other fully fledged scripting and programming languages discussed here, Flash actually
provides its own scripting language, ActionScript, and as a result is fast becoming the standard way of
providing client-side dynamic content. It is also fully interoperable with many server-side technologies.

A plug-in enabling you to use and view Flash web pages comes as standard with most modern versions
of Internet Explorer and Netscape Navigator, but can be downloaded from the www.macromedia.com
if not present. The Flash tool that must be used to create Flash animations (.swf files) must be
purchased from Macromedia, although a 30 day demo version is available for free.

Such is the power and versatility of Flash that it has become a popular catch-all for developers who wish
to include graphics or sound. The Actionscript language it uses resembles JavaScript in many ways,
which is an added advantage for developers already familiar with JavaScript. Flash files are added to
HTML pages using the Flash tool. In reality the tool auto-generates an <object> or <embed> tag,
which the browser recognizes and deals with appropriately.

Server-Side Technologies for Providing Dynamic Content
The server-side technologies rely on modular attachments added onto the web server rather than the
browser. Consequently, only HTML, and any client-side script, is sent back to the browser by the web
server. In other words, none of the server-side code is sent back. Server-side technologies have a more
consistent look and feel than client-side ones, and it doesn't take that much extra learning to move
between some of the server-side technologies (excepting CGI).

Chapter 1

20

CGI

The Common Gateway Interface (CGI) is a mechanism for creating scripts on the server, which can
then be used to create dynamic web applications. CGI is a module that is added to the web server. It
has been around for quite a bit longer than even ASP, and right now a large proportion of dynamically
created web pages are created using CGI and a scripting language. However, it's incorrect to assume
that CGI does the same job as ASP.NET or ASP. Rather, CGI allows the user to invoke another
program (such as a Perl script) on the web server in order to create the dynamic web page, and the role
of CGI is to pass data – which might be supplied by the user – to the this program for processing.
However, it does provide the same end result – a dynamic web application.

However, CGI has some severe shortcomings:

❑ It is not easy for a beginner to learn how to program such modules

❑ CGI requires a lot of server resources, especially in a multi-user situation

❑ It adds an extra step to our server-side model of creating dynamic content: namely, it's
necessary to run a CGI program to create the dynamic page, before the page is processed on
the server

What's more, the format in which CGI receives and transmits data means that the data cannot be
handled in any straightforward manner by most programming languages: you need one with good
facilities for manipulating text and communicating with other software. The most suitable programming
languages that can work on any operating system for doing this are C, C++, and Perl. While they can
more than adequately do the job for you, they're some of the more complex languages to learn. Visual
Basic doesn't offer enough text handling facilities, and is therefore rarely used with CGI.

Despite this, CGI is still very popular with many big web sites, particularly those running on UNIX
operating systems. It also runs on many different platforms, which will ensure its continued popularity.

ASP

Active Server Pages (ASP) is now dubbed 'Classic ASP', and if you see this term in the book, we will be
using it to describe any ASP that isn't ASP.NET. ASP commonly relied on either of the JavaScript or
VBScript scripting languages (although it was also possible to use any scripting language installed on
Windows, such as PerlScript) to create dynamic web pages. ASP is a module (the asp.dll file) that you
attach to your web server, and which then processes the JavaScript/VBScript on the web server,
producing HTML, which is then sent, via the server, to the client. Processing is thus all done on the
server, rather than the browser.

ASP lets us use practically any of the functionality provided by Windows, such as database access, e-
mailing, graphics, networking, and system functions, and all from within a typical ASP page. However,
ASP's shortcomings are that it is very, very slow. It is also restricted to using only scripting languages: it
can't do all the things that a fully-fledged programming language can. Secondly, the scripting languages,
being the 'junior' versions of full programming languages, took a lot of shortcuts to make the language
smaller. Some of these shortcuts mean that our programs written with scripting languages are longer and
more complicated than is otherwise necessary. As we're going to see, ASP.NET rectifies a lot of this by
making code more structured, easier to understand, and shorter.

Getting Started with ASP.NET

21

JSP

JavaServer Pages (JSP) is a technology that enables us to combine markup (HTML or XML) with Java
code to dynamically generate web pages. The JSP specification is implemented by several web servers,
in contrast with ASP, which is only supported under IIS, and plug-ins are available that enable us to use
JSP with IIS 4.0/5.x. One of the main advantages of JSP is the portability of code between different
servers. JSP is also very powerful, faster than ASP, and instantly familiar to Java programmers. It allows
the Java program to leverage the aspects of the Java2 platform such as JavaBeans and the Java 2
libraries. JavaServer Pages isn't directly related to ASP, but it does boast the ability to embed Java code
into your web pages using server-side tags. More details about JSP can be found at the official site at
www.javasoft.com/products/jsp/index.html and at the JSP FAQ at
www.esperanto.org.nz/jsp/jspfaq.html.

ColdFusion

ColdFusion (www.macromedia.com/software/coldfusion/) also enables servers to access data as the
server builds an HTML page. Cold Fusion is a module installed onto your web server. Like ASP,
ColdFusion pages are readable by any browser. ColdFusion also utilizes a proprietary set of tags, which
are processed by the ColdFusion Server software. This server software can run on multiple platforms,
including IIS, Netscape Enterprise Server, and Unix/Apache. The major difference is that while
ASP.NET solutions are built primarily with programming languages and objects, ColdFusion utilizes
HTML-like tags, which encapsulate functionality. A drawback is that the ColdFusion software doesn't
come for free, and indeed you could find yourself paying well in excess of a thousand dollars for the
privilege of running Cold Fusion on your web server.

PHP

PHP (originally Personal Home Pages, but more recently PHP Hypertext Preprocessor) is another
scripting language for creating dynamic web pages. When a visitor opens the page, the server processes
the PHP commands and then sends the results to the visitor's browser, just as with ASP.NET or
ColdFusion. Unlike ASP.NET or ColdFusion, however, PHP is opensource and cross-platform. PHP
runs on Windows NT and many Unix versions, and runs on the Apache web server (the free web server
that commonly runs on UNIX and other related platforms). When built as an Apache module, PHP is
especially speedy. A downside is that you have to download PHP separately and go through a series of
quite complex steps to install it and get it working on your machine. Also, PHP's session management
(the management of numerous simultaneous users) was non-existent until PHP 4, and is still inferior to
ASP's even now.

PHP's language syntax is similar to C and Perl. This might prove a barrier to people with no prior
programming experience, but if you have a background in either language then you might want to take
a look. PHP also has some rudimentary object-oriented features, providing a helpful way to organize
and encapsulate your code. You can find more information about PHP at www.php.net.

ASP.NET

So why are we looking at all these other technologies if in this book we're only going to be learning
about ASP.NET? Hopefully, you'll see a similarity between the technologies, and this will aid your
understanding of ASP.NET.

Chapter 1

22

ASP.NET also relies on a module attached to the web server. However, the ASP.NET module (which is
a physical file called aspnet_isapi.dll) doesn't do all of the work itself: it passes some on to the
.NET Framework to do the processing for it. Rather than going into ASP.NET in this subsection here,
it's time to start talking about it as a separate entity in its own right, as this is the focus of the book.

What is ASP.NET?
We're going to be asking this question a lot throughout the book, and each time we ask it, we're going to
give you a slightly more in-depth answer. If we were we to give you a full answer now, you'd be
overwhelmed by as-yet meaningless jargon. So, you'll probably be aware of some unanswered questions
each time we describe it.

Our original definition, right at the very start of the chapter, was "ASP.NET is a new and powerful
technology for creating dynamic web pages", and this still holds true. However, as you now know, it
isn't the only way to deliver dynamic web pages, so let's refine our definition a little to read:

ASP.NET is a new and powerful server-side technology for creating dynamic web pages.

Secondly, ASP.NET isn't the only thing that we're interested in. In fact, it's one of a set of technologies
that comprise the Microsoft .NET Framework. For now, you can think of this as a giant toolkit for
creating all sorts of applications, and in particular, for creating applications on the Web. When we come
to install ASP.NET we will also be installing the .NET Framework at the same time, and we'll be using
bits and pieces of the .NET Framework throughout the book.

How does ASP.NET Differ from ASP?
Steady on! We're just getting to this part. As we've already said, ASP is restricted to using scripting
languages, mainly JavaScript or VBScript (although it can use any scripting language supported by the
Windows system). We add ASP code to our pages in the same way as we do client-side script, and this
leads to problems such as messy coding and restricted functionality. ASP.NET has no such problems.

First off, ASP.NET enables you to use a far greater selection of full programming languages, and also
enables you to utilize to the full the rich potential of the .NET Framework. It helps you create faster,
more reliable dynamic web pages with any of the programming languages supported by the .NET
Framework. Typical languages supported natively are C#, VB .NET, and a new version of JScript called
JScript .NET. On top of this, it is expected that third-party developers will create versions of Perl,
Python and many others to work in ASP.NET. And no, before you ask, we don't expect you to know
any of these programming languages. We're going to choose one language, C#, and teach you ASP.NET
with it. We've chosen C#, as it's arguably the most popular of the .NET languages, and it can do pretty
much anything that the other languages we mentioned can do. Lastly, and most importantly, we've
chosen C# as it comes free with ASP.NET – so when you install ASP.NET, you get C# as well.

Getting Started with ASP.NET

23

At this stage you might be thinking, "Hang on, I've got to figure out C#, then I've got to get a handle on
ASP.NET – that sounds like an awful lot to learn." Don't worry; you won't be learning two languages.
ASP.NET, as we said right from the beginning, is not a language – it is a technology. This technology is
accessible via a programming language. What we're going to be doing is teaching you ASP.NET features
as we teach you C#. So in other words, you will be creating your web pages using C# and using
ASP.NET to drive it. However, before you rush out and get a C# book instead, we will be approaching
the language from the angle of creating dynamic web pages only.

In summation, ASP.NET is a server-side technology that lets you use fully-fledged programming
languages to create your web pages.

I'm Still Confused about ASP, ASP.NET, and C#
It's really important to get these terms separate and distinct in your mind, so before we move on to
actually installing and running ASP.NET, we're going to go back and redefine them just to make sure:

❑ ASP – a server-side technology for creating dynamic web pages that only lets you use scripting
languages

❑ ASP.NET – a server-side technology for creating dynamic web pages that lets you use any
fully-fledged programming language supported by .NET

❑ C# – our chosen programming language for writing code in ASP.NET

Now it's time to get it all installed.

The Installation Process
Installation is going to be done in three steps. We're going to install the web server first, next we're
going install the prerequisites required for ASP.NET to work, and then lastly we're going to install either
the .NET Framework Redistributable or the .NET Framework SDK (both of which contain ASP.NET),
and are available for download from www.asp.net.

SDK stands for Software Development Kit, and the only real difference between it and the
Redistributable is the huge amounts of extra documentation and examples it supplies – 131MB
compared with 21MB for it's lightweight brother.

Anybody who is familiar with ASP might be used to it being installed automatically with the web server,
and thereby doing it all in one step. This is true – classic ASP is still installed with the web server.
However, ASP.NET is currently only available as a separate download. This means you will have to
download ASP.NET from Microsoft's web site or from CD (if you have one). However, before you can
install ASP.NET, it is necessary to have a working web server.

If you have installed IIS 5.x already, or have installed either the Windows 2000 Server or Advanced
Server operating system, then the good news is that you can skip this section, and go straight onto the
section about installing the .NET Framework. However, for the rest of us, you will have to pay careful
attention to the next section.

Chapter 1

24

Installing the IIS 5.x Web Server
We'll look at the installation process for IIS on Windows 2000 Professional and Windows XP
Professional together as they don't differ significantly. The main difference is that Windows 2000 installs
IIS 5.0, while Windows XP installs IIS 5.1. The options for installation are exactly the same; the only
thing that might differ is the look of the dialog boxes.

It's worth noting that you cannot install IIS on Windows XP Home Edition, and therefore you
cannot run ASP.NET on it. It will only work on Windows XP Professional.

Before you install it though, it's worth noting that you might not have to do much in this initial stage, as
it's possible you're already running IIS 5.x. We'll describe a process for checking whether this is the case
as part of the installation process. You should also note that to install anything (not just ASP.NET, but
literally anything) on Windows 2000/XP you need to be logged in as a user with administrative rights. If
you're uncertain of how to do this, we suggest you consult your Windows documentation. Right let's get
started!

Try It Out – Locating and/or Installing IIS 5.x on a Web Server Machine

1. Go to the control panel (Start | Settings | Control Panel) and select the Add/Remove Programs
icon. The following dialog will appear, displaying a list of your currently installed programs:

Getting Started with ASP.NET

25

2. Select the Add/Remove Windows Components icon on the left side of the dialog, to get to the
screen that allows you to install new windows components:

3. Locate the Internet Information Services (IIS) entry in the dialog, and note the checkbox that
appears to its left. Unless you installed Windows 2000 via a custom install and specifically
requested IIS, it's most likely that the checkbox will be unchecked (as shown above).

4. If the checkbox is cleared, then check the checkbox and click on Next to load Internet
Information Services 5.x. You might be prompted to place your Windows 2000/XP
installation disk into your CD-ROM drive. It will take a few minutes to complete. Then go to Step 5.

OR

If the checkbox is checked then you won't need to install the IIS 5.x component – it's already
present on your machine. Go to Step 6 instead.

Chapter 1

26

5. Click on the Details button – this
will take you to the dialog shown
here. There are a few options here,
for the installation of various
optional bits of functionality. For
example, if the World Wide Web
Server option is checked then our
IIS installation will be able to serve
and manage web pages and
applications. If you're planning to
use FrontPage 2000 or Visual
InterDev to write your web page
code, then you'll need to ensure
that the FrontPage 2000 Server
Extensions checkbox is checked.
The Internet Information Services
Snap-In is also very desirable, as
you'll see later in the chapter, so
ensure that this is checked too, the other options (although checked here) aren't necessary for
this book.

For the purpose of this installation, make sure all the checkboxes in this dialog are
checked. Then click on OK to return to the previous dialog.

6. There's one other component
that we'll need to install, for
use later in this book – it's the
Script Debugger. If you scroll
to the foot of the Windows
Components Wizard dialog
that we showed above, you'll
find a checkbox for Script
Debugger. If it isn't already
checked, check it now and
click on Next to complete the
installation. Otherwise, if both
IIS 5.x and the script
debugger are already present,
you can click on Cancel to
abort the process:

Getting Started with ASP.NET

27

How It Works

IIS starts up automatically as soon as your installation is complete, and thereafter whenever you boot up
Windows – so you don't need to run any further startup programs, or click on any short-cuts as you
would to start up Word or Excel.

IIS installs most of its bits and pieces on your hard drive, under the \WinNT\system32\inetsrv
directory. However, more interesting to us at the moment is the \InetPub directory that is also created
at this time. This directory contains subdirectories that will provide the home for the web page files
that we create.

If you expand the InetPub directory, you'll find that it contains several subdirectories:

❑ \iissamples\homepage contains some example classic ASP pages.

❑ \iissamples\sdk contains a set of subdirectories that hold classic ASP pages that
demonstrate the various classic ASP objects and components.

❑ \scripts is an empty directory, where ASP.NET programs can be stored.

❑ \webpub is also empty. This is a 'special' virtual directory, used for publishing files via the
Publish wizard. Note that this directory only exists if you are using Windows 2000
Professional Edition.

❑ \wwwroot is the top of the tree for your web site (or web sites). This should be your default
web directory. It also contains a number of subdirectories, which contain various bits and
pieces of IIS. This directory is generally used to contain subdirectories that hold the pages that
make up our web site – although, in fact, there's no reason why you can't store your pages
elsewhere.

❑ \ftproot, \mailroot, and \nntproot should form the top of the tree for any sites that
use FTP, mail, or news services, if installed.

❑ In some versions of Windows , you will find an \AdminScripts folder, which contains
various VBScript files for performing some common 'housekeeping' tasks on the web server,
allowing you to stop and start services.

Working with IIS
Having installed IIS web server software onto our machine, we'll need some means of administering its
contents and settings. In this section, we'll meet the user interface that is provided by IIS 5.x.

In fact, some versions of IIS 5.x provide two user interfaces, the MMC and the PWS interface. We're
only going to look at one, as the other version is now obsolete. The version we will use is the Microsoft
Management Console (MMC), which that is a generic way of managing all sorts of services. Let's take a
quick look at it now.

The Microsoft Management Console (MMC)

The beauty of the MMC is that it provides a central interface for administrating all sorts of services that
are installed on your machine. We can use it to administer IIS – but in fact, when we use it to
administer other services the interface looks roughly the same. The MMC is provided as part of the
Windows 2000 operating system, and also comes with older Windows server operating systems.

Chapter 1

28

The MMC itself is just a shell – on its own, it doesn't do much at all. If we want to use it to administer a
service, we have to add a snap-in for that service. The good news is that IIS 5.x has its own snap-in.
Whenever you need to administer IIS, you can simply call up the Internet Services Manager MMC
console by selecting Start | Control Panel |Administrative Tools |Internet Services Manager.

Having opened the IIS snap-in within the MMC, you can perform all of your web management tasks
from this window. The properties of the web site are accessible via the Default Web Site node. We'll be
using the MMC more a little later in the chapter.

Testing your Installation
The next thing to do is test the web server to see if it is working correctly, and serving pages as it
should. We've already noted that the web server should start as soon as IIS has been installed, and will
restart every time you start your machine. In this section, we'll try that out.

In order to test the web server, we'll start up a browser and try to view some web pages that we know are
already placed on the web server. In order to do that, we'll need to type a URL (Uniform Resource
Locator) into the browser's Address box, as we often do when browsing on the Internet. The URL is an
http://... web page address that indicates which web server to connect to, and the page we want to view.

What URL do we use in order to browse to our web server? If your web server and web browser are
connected by a local area network, or if you're using a single machine for both web server and browser,
then it should be enough to specify the name of the web server machine in the URL.

Getting Started with ASP.NET

29

Identifying your Web Server's Name
By default, IIS will take the name
of your web server from the name
of the computer. You can change
this in the machine's network
settings. If you haven't set one,
then Windows will generate one
automatically – note that this
automatic name won't be terribly
friendly; probably something
along the lines of "P77RTQ7881".
To find the name of your own web
server machine, select Start |
Settings | Network and Dial-up
Connections or Start | Settings |
Control Panel | System
(depending on which operating
system you are using – if it isn't in
one, try the other) and from the
Advanced menu select Network
Identification. The Network
Identification tab will display your
machine name under the
description Full computer name:

My machine has the name chrisu, and (as you can see here and in the earlier screenshot of the MMC
dialog) my web server has adopted the same name. On a computer within a domain you might see
something different such as WROX_UK/chrisu, if the computer was in the WROX_UK domain. However,
this doesn't alter operation for ASP.NET. Browsing to pages on this machine across a local area network
(or, indeed, from the same machine), I can use a URL that begins http://chrisu/…

There are a couple of alternatives if you're using the same machine as both web server and browser. Try
http://127.0.0.1/… – here, 127.0.0.1 is a default that causes requests to be sent to a web server on the
local machine. Alternatively, try http://localhost/… – 'localhost' is an alias for the 127.0.0.1 address –
you may need to check the LAN settings (in your browser's options) to ensure that local browsing is not
through a proxy server (a separate machine that filters all incoming and outgoing web traffic employed
at most workplaces, but not something that affects you if you are working from home).

Throughout the book, in any examples that require you to specify a web server name, the
server name will be shown as localhost, implicitly assuming that your web server and
browser are being run on the same machine. If they reside on different machines, then you
simply need to substitute the computer name of the appropriate web server machine.

Chapter 1

30

Browsing to a Page on your Web Server
Now you know the name of your web server, and that web services are running; you can view some
classic ASP pages hosted on your web server by browsing to them with your web browser. Let's test out
this theory by viewing our default home page:

Try It Out – Testing the Web Service

1. To verify that web services are working, start up your browser and type
http://my_server_name/localstart.asp into the address box. (My server is named chrisu, so I
typed in http://chrisu/localstart.asp.) Now press Enter; and (if all is well) you should get to see
a page like this one:

Note that the default page we see here uses the .asp extension, denoting a Classic ASP page.
Support for ASP3 is provided as part of the standard IIS5.x web server program.

Getting Started with ASP.NET

31

What Do You Do If This Doesn't Work?

If you don't get this page, then
take a look at the following
steps as we try to resolve the
problem. If it's not working
correctly, then most likely
you'll be greeted with this
screen:

If you get this page then it can mean a lot of things. However, one of the most likely problems is that
your web services under IIS are not switched on. To switch on web services, you'll first need to start the
IIS admin snap-in that we described earlier in the chapter. (Select Start | Run, type MMC and hit OK,
then select Open from the MMC's Console menu and locate the iis.msc file from the dialog.
Alternatively, just use the shortcut that you created there.)

Chapter 1

32

Now, click on the + of the root node in the left pane of the
snap-in, to reveal the Default sites. Then right-click on
Default Web Site, and select Start:

If it's still not working then here are a few more suggestions about what could be wrong, which are
based on particular aspects of your PC's setup. If you're running on a network and using a proxy server
(a piece of software that manages connections from inside a firewall to the outside world – don't worry if
you don't have one, they're mainly used by big businesses), there's a possibility that this can prevent
your browser from accessing your web server. Most browsers will give you an opportunity to bypass the
proxy server:

❑ If you're using Internet Explorer, you need to go to View | Internet Options (IE 4) or Tools |
Internet Options (IE 5/IE 6) and select the Connections tab. In IE 5/IE 6 press the LAN
Settings button and select Bypass the proxy server for local addresses. In IE 4, this section
forms part of the Connections dialog:

Getting Started with ASP.NET

33

❑ If you're using Netscape Navigator (either version 4.x or 6.x) and you are having problems
then you need to turn off all proxies and make sure you are accessing the Internet directly. To
do this, select Edit | Preferences. In the resulting dialog select Advanced | Proxies from the
Category box on the left. Then on the right, select the Direct Connection to Internet option,
and hit OK. Although you won't be browsing online to the Internet, it'll allow Netscape
Navigator to recognize all variations of accessing local ASP.NET pages, such as
http://127.0.0.1, http://localhost, and so on.

You may hit a problem if your machine name is similar to that of some web site out there on the
Internet – for example, if your machine name is jimmyd but there also happens to be a public web site
out there called http://www.jimmyd.com. When you type http://jimmyd into your browser's address box,
expecting to view a page on your local web server, you unexpectedly get transported to
http://www.jimmyd.com instead. If this is happening to you, then you need to make sure that you're not
using a proxy server in your browser settings – again, this can be disabled using the Internet Options |
Connection dialog or the Edit | Preferences dialog.

Lastly, if your web server is running on your home machine with a modem, and you get an error
message informing you that your web page is offline, this could in fact be a misperception on the part of
the web server. This can be corrected by changing the way that your browser looks for pages. To do
this, select View | Internet Options (IE 4) or Tools | Internet Options (IE 5/IE 6), choose the
Connections tab and select Never dial a connection.

Of course, you might encounter problems that aren't answered above. In this case, the chances are that
it's related to your own particular system setup. We can't possibly cover all the different possible
configurations here, but if you can't track down the problem, you may find some help at one of the web
sites and newsgroups listed later in this chapter.

Managing Directories on your Web Server
Before we install ASP.NET, we need to make one last pit stop in IIS. This is because when you come to
run your ASP.NET pages, you need to understand where to place your pages, and how to make sure
you have the permission to access them. As this is governed by IIS, now seems as good a time as any to
investigate this.

These days, many browsers are sufficiently advanced that you can use them to locate and examine files
and pages that exist on your computer's hard disk. So, for example, you can start up your browser, type
in the physical location of a web page (or other file) such as C:\My Documents\mywebpage.html,
and the browser will display it. However, this isn't real web publishing at all:

❑ First, web pages are transported using a protocol called HTTP – the HyperText Transfer
Protocol. Note that the http:// at the beginning of a URL indicates that the request is being
sent by HTTP. Requesting C:\My Documents\mywebpage.html in your browser doesn't use
HTTP, and this means that the file is not delivered and handled in the way a web page should
be. No server processing is done in this case. We'll discuss this in greater detail when we
tackle HTTP in Chapter 2.

❑ Second, consider the addressing situation. The string C:\My Documents\mywebpage.html
tells us that the page exists in the \My Documents directory of the C: drive of the hard disk of
the machine on which the browser is running. In a network situation, with two or more
computers, this simply doesn't give enough information about the web server to locate the file.

Chapter 1

34

However, when a user browses (via HTTP) to a web page on some web server, the web server will need
to work out where the file for that page is located on the server's hard disk. In fact, there's an important
relationship between the information given in the URL, and the physical location (within the web
server's file system) of the file that contains the source for the page.

Virtual Directories
So how does the relationship between the information given in the URL, and the physical location of a
file work? In fact, it can work by creating a second directory structure on the web server machine,
which reflects the structure of your web site. It sounds like it could be complicated, but it doesn't have
to be. In fact, in this book it's going to be very simple.

The first directory structure is what we see when we open Windows Explorer on the web server – these directories
are known as physical directories. For example, the folder C:\My Documents is a physical directory.

The second directory structure is the one that reflects the structure of the web site. This consists of a
hierarchy of virtual directories. We use the web server to create virtual directories, and to set the
relationship between the virtual directories and the real (physical) directories.

When you try to visualize a virtual directory, it's probably best not to think of it as a directory at all.
Instead, just think of it as a nickname or alias for a physical directory that exists on the web server
machine. The idea is that, when a user browses to a web page that is contained in a physical directory
on the server, they don't use the name of the physical directory to get there, instead, they use the
physical directory's nickname.

To see how this might be useful, consider a web site that publishes
news about many different sporting events. In order to organize the
web files carefully, the Webmaster has built a physical directory
structure on the hard disk, which looks like this:

Now, suppose you visit this web site to get the latest news on the Javelin event in the Olympics. If the
URL for this web page were based on the physical directory structure, then the URL for this page would
be something like this:

http://www.oursportsite.com/sportsnews/athletics/field/javelin/default.asp

Getting Started with ASP.NET

35

That's OK for the Webmaster, who understands his directory structure, but it's a fairly unmemorable
web address! So, to make it easier for the user, the Webmaster can assign a virtual directory name or
alias to this directory – it acts just like a nickname for the directory. Here, let's suppose we've assigned
the virtual name javelinnews to the c:\inetpub\...\javelin\ directory. Now, the URL for the
latest Javelin news is:

http://www.oursportsite.com/javelinnews/default.asp

By creating virtual directory names for all the directories (such as baseballnews, 100mnews,
200mnews, and so on) it's easy for the user to type in the URL and go directly to the page they want:

http://www.oursportsite.com/baseballnews/default.asp
http://www.oursportsite.com/100mnews/default.asp
http://www.oursportsite.com/200mnews/default.asp

Not only does this save the user from long, unwieldy URLs – it also serves as a good security measure,
because it hides the physical directory structure from all the web site visitors. This is good practice,
otherwise hackers might be able to work out and access our files if they knew what the directory
structure looked like. Moreover, it allows the Webmaster's web site structure to remain independent of
the directory structure on their hard drive – so they can move files the between different physical
folders, drives, or even servers, without having to change the structure of his web pages. There is a
performance overhead to think about as well, as IIS has to expend effort translating out the physical
path. It can be a pretty costly performance-wise to have too many virtual directories.

Let's have a crack at setting up our own virtual directories and permissions (please note that these
permissions are set automatically if you use the FrontPage editor to create a new site – so don't use
FrontPage to set up this site for you unless you know what you're doing).

Try It Out – Creating a Virtual Directory and Setting up Permissions
Let's take a quick look now at how you can create your own virtual directory. We'll use this directory to
store the examples that we'll be creating in this book. We don't want to over complicate this example by
creating lots of directories, so we'll demonstrate by creating a single physical directory on the web
server's hard disk, and using the IIS admin tool to create a virtual directory and make the relationship
between the two:

1. Start Windows Explorer and create a new physical directory named BegASPNET, in the root
directory of your hard drive. For example, C:\BegASPNET\:

Chapter 1

36

2. Next, start up the IIS admin tool (using the MMC, as we described earlier). Right-click on
Default Web Site, and from the menu that appears select New | Virtual Directory. This starts
the Virtual Directory Creation Wizard, which handles the creation of virtual directories for
you and the setting up of permissions as well. You'll see the splash screen first, which looks
like this. Click on Next:

Getting Started with ASP.NET

37

3. Type BegASPNET in the Alias text box; then click Next:

4. Click on the Browse… button and select the directory \BegASPNET that you created in Step
1. Then click Next:

Chapter 1

38

5. Make sure that the Read and Run scripts checkboxes are checked, and that the Execute
checkbox is empty. Click on Next, and in the subsequent page click on Finish:

6. The BegASPNET virtual directory will appear on the tree in the IIS admin window:

Getting Started with ASP.NET

39

How It Works

You've just created a physical directory called BegASPNET; this directory will be used throughout the
book to store our code examples. The download files from wrox.com are also designed to follow this
structure. Within this directory we recommend that you create a subdirectory for each of the chapters in
order to keep things tidy (this needn't be a virtual directory – just a physical one.)

You've also created a virtual directory called BegASPNET, which you created as an alias for the
physical BegASPNET directory. If when we create Chapter 1 examples you place the ASP.NET files in
the physical C:\BegASPNET\Ch01, directory, you can use the browser to access pages stored in this
folder. You'll need to use the URL http://my_server_name/BegASPNET/Ch01/….

You should also note that the URL uses the alias /BegASPNET – IIS knows that this stands for the
directory path C:\BegASPNET. When executing ASP.NET pages, you can reduce the amount of typing
you need to do in the URL, by using virtual directory names in your URL in place of the physical directory names.

We also set the permissions Read and Run – these must be set or the IIS security features will prevent
you from running any ASP.NET pages. The Execute checkbox is left empty as allowing others to run
applications on your own machine is a sure way of getting viruses or getting hacked. We'll take a closer
look at permissions now, as they are so important. If you don't assign them correctly you may find that
you're unable to run any ASP.NET pages at all – or worse still, that anybody at all can access your
machine, and alter (or even delete) your files via the Web.

Permissions
As we've just seen, we can assign permissions to a new directory as we create it, by using the options
offered in the Virtual Directory Wizard. Alternatively, we can set permissions at any time, from the IIS
admin tool in the MMC. To do this, right-click on the BegASPNET virtual directory in the IIS admin
tool, and select Properties. You'll get the following dialog:

Chapter 1

40

It's quite a complicated dialog, and it contains a lot of options – not all of which we wish to go into now.

Access Permissions

The four checkboxes on the left are of interest to us, as they govern the types of access for the given
directory and dictate the permissions allowed on the files contained within that directory. Let's have a
look at what each of these options means:

❑ Script source access – This permission enables users to access the source code of an ASP.NET
page. It's only possible to grant this permission if the Read or Write permission has already
been assigned. But we generally don't want our users to be able to view our ASP.NET source
code, so we would usually leave this checkbox unchecked for any directory that contains
ASP.NET pages. By default, all directories created during setup have Script Source Access
permission disabled. You should leave this as is.

❑ Read – This permission enables browsers to read or download files stored in a home directory
or a virtual directory. If the browser requests a file from a directory that doesn't have the Read
permission enabled, then the web server will simply return an error message. Note that when
the folder has Read permission turned off, HTML files within the folder cannot be read, but
ASP.NET code within the folder can still be run. Generally, directories containing information
that you want to publish (such as HTML files, for example) should have the Read permission
enabled, as we did in our Try It Out.

❑ Write – If the write permission on a virtual directory is enabled, then users will be able to
create or modify files within the directory, and change the properties of these files. For
reasons of security, this is not normally turned on, and we don't recommend you alter it.

❑ Directory Browsing – If you want to allow people to view the contents of the directory (that is,
to see a list of all the files that are contained in that directory), then you can allow this by
checking the Directory Browsing option.

If someone tries to browse the contents of a directory that has Directory Browsing enabled but
Read disabled, then they may receive the following message:

Getting Started with ASP.NET

41

For security reasons, we'd recommend disabling this option unless your users
specifically need it – such as when transferring files using FTP (file transfer protocol),
from your web site . If you don't know what FTP is then, we strongly recommend that
you disable it, as you wont need it!

Execute Permissions

There's a drop-down listbox near the foot of the Properties dialog, labeled Execute permissions. This
specifies what level of program execution is permitted on pages contained in this directory. There are
three possible values here – None, Scripts only, or Scripts and Executables:

❑ Setting Execute permissions to None means that users can only access static files, such as
image files and HTML files. Any script-based files of other executables contained in this
directory are inaccessible to users. If you tried to run an ASP.NET page, from a folder with
the permission set to None, you would receive the following – note the Execute Access
Permission forbidden message in the page:

Chapter 1

42

❑ Setting Execute permissions to Scripts Only means that users can also access any script-based
pages, such as ASP.NET pages. So if the user requests an ASP.NET page that's contained in
this directory, the web server will allow the ASP.NET code to be executed, and the resulting
HTML to be sent to the browser.

❑ Setting Execute permissions to Scripts and Executables means that users can execute any
type of file type that's contained in the directory. It's generally a good idea to avoid using this
setting, in order to prohibit users from executing potentially damaging applications on your
web server.

For any directory containing ASP.NET files that you're publishing, the appropriate setting for the Execute
permissions is Scripts Only. There is one last thing about directories that needs pointing out though.

Configuring Directory Security
For the release version of ASP.NET, all ASPX pages run under a special user account with the name of
ASPNET. For security reasons, by default this account has restricted permissions, and ordinarily this
isn't a problem. However, the database samples in this chapter use Access. When updating data in an
Access database, a separate file is created (with a suffix of .ldb), which holds the locking information. These
are the details that store who is updating records, and the locking file is created and removed on demand.

Getting Started with ASP.NET

43

The security problem we encounter is that while running pages we are running under the ASPNET
account, and this account doesn't have write permissions in the samples directory. Consequently any
ASP.NET pages that update the Northwind.mdb database will fail. Setting the write permission is
simple – just follow these steps:

1. In Windows Explorer, select the BegASPNET directory, where the samples are located.

2. Using the right mouse button, select the Properties menu option, and from the Properties
dialog that appears, select the Security tab:

Chapter 1

44

3. Click the Add button to display the Select Users or Groups dialog. In the blank space enter
ASPNET and click the Check Names button. This checks the name you've entered and adds
the machine name to it:

4. Click the OK button to return to the Properties dialog, and you'll see that the ASPNET user is
now shown in the list of users. In the Permissions area, at the bottom of this screen, select the
Write permission and tick it. This gives the ASPNET user write permission to the BegASPNet
directory tree:

Getting Started with ASP.NET

45

5. Click the OK button to save the changes, and to close the dialog.

This security issue is only a problem if you need write access to a directory, as both Access and our
XML samples do. Most production web sites wouldn't use Access as their database store, since Access
isn't designed for a high number of users. In these cases it's more likely that SQL Server will be used.
Luckily, the only changes you'd have to make to the code samples shown in this chapter is to the
connection string, which contains the details of how to connect to the database. The .NET SDK
documentation has examples of connection strings for SQL Server.

Now you've started to familiarize yourself with IIS, you're ready to prepare your machine for the
installation of ASP.NET itself.

Prerequisites for Installing ASP.NET
Before you can install ASP.NET or the .NET Framework you will need to install the Microsoft Data
Access Components (MDAC) version 2.7 or later. This is a set of components that will enable you to
use ASP.NET to communicate with databases and display the contents of your database on a web page.
Without these components installed you won't be able to run any of the database examples in this book.
This will affect examples as early as Chapter 2, so please don't skip this stage! Although you might
already have an earlier version of MDAC installed (such as 2.5 if you're using Windows 2000), unless
you have specifically upgraded, in all likelihood you won't have the most up-to-date version and will
still need to upgrade.

The Microsoft Data Access Components is a small download (roughly 5 or 6 MB) available for free
from Microsoft's site at www.microsoft.com/data. The installation for MDAC 2.7 is pretty
straightforward, and it also comes as part of the Windows Component Update of the .NET Framework,
but we'll run through it quickly just to make sure that everything is clear.

Try It Out – Installing MDAC 2.7

1. MDAC 2.7 comes as a single file MDAC_typ.exe that you will need to run. If you run this
EXE file, then it will begin the installation process.

2. After agreeing to the terms of the license, there's a good chance that you will be asked to
reboot your system, it will tell you this in advance:

Chapter 1

46

3. Then the installation process will continue without requiring further intervention, although
you might have to wait for a system reboot, if one was specified earlier.

You're now ready to install ASP.NET.

Installing ASP.NET and the .NET Framework SDK
We're almost ready to install ASP.NET, but there are two important points to be made beforehand.

First, there are two different types of installation available from Microsoft's www.asp.net site, the .NET
Framework SDK and .NET Framework Redistributable. Both downloads contain ASP.NET, C#, and
the .NET Framework.

The .NET Framework Redistributable download is a smaller, streamlined download that only contains
the bare bones needed for you to run ASP.NET and the .NET Framework. None of the extra
documentation or samples will be included. The size differential between the two is pretty big (the
Redistributable is 21MB while the .NET Framework SDK is a staggering 131MB), so unless you have
the .NET Framework SDK on CD (which you can order from the Microsoft site) or broadband high-
speed Internet access, you'll probably want to download the Redistributable version.

Getting Started with ASP.NET

47

Don't worry, this won't affect your ability to run the examples in this book – everything's been written
so that it will run on the .NET Framework Redistributable version of ASP.NET. While you won't have
direct access to the help files, all support materials are available online at Microsoft's www.asp.net site.

Also, don't worry that you might end up replacing an existing Classic ASP installation, since ASP.NET
will be installed alongside ASP and they will both continue to work with no action from us.

We'll now walk you through a typical installation of both .NET Framework Redistributable and the
.NET Framework SDK. The installation process is the same for Windows 2000 and Windows XP, so
once again we're only going to detail the installation process on the former. Although the wizard looks a
bit different on XP, it asks for exactly the same things.

Try It Out – Installing the .NET Framework Redistributable

1. After downloading, click on the installation file (currently called dotnetfx.exe), you will be asked
to confirm your intent, and then, after a short interval, you are propelled into the setup wizard:

Chapter 1

48

2. Click on Next and accept the License agreement to continue. ASP.NET will now install
without further intervention:

3. You will be notified when installation has finished, and unlike with MDAC 2.7, you probably
won't have to reboot. You can now jump to the testing section, later in this chapter, to check
everything is working.

Try It Out – Installing the .NET Framework SDK

1. After downloading, click on setup.exe and confirm that you do want to install NET
Framework SDK package. After an interval of a few minutes, you are propelled into the setup wizard:

Getting Started with ASP.NET

49

2. Click on Next and accept the License agreement to continue. The next dialog after the license
agreement will ask you which different pieces of the SDK you need to install. You should
check all of them, although if you're short of hard drive space, you could choose to omit the
SDK_Samples or Documentation. The Software Development Kit is essential:

3. After clicking on Next you get to a dialog that specifies the destination folder for the different
.NET Framework SDK samples and bits and pieces. You can choose to install these wherever
you want. More importantly there is a checkbox at the foot of the dialog, which asks you to
Register Environment Variables. This checkbox should be checked, as we will use the
environment variables in later chapters:

Chapter 1

50

4. Click on Next and the .NET Framework SDK will install without further ado. It shouldn't
require a reboot.

Troubleshooting Hints and Tips
The installation process is very straightforward, and will work on the majority of machines. However,
sometimes the particular configuration of your machine will prevent it from installing. Unfortunately we
can't cover all of the possible eventualities, but if it doesn't work on your machine, you should check
that you have enough hard disk space, as this is the most common cause of problems. Also try to ensure
that the installation process isn't curtailed half way, as no installer is completely foolproof at removing
all the different bits and pieces of the aborted install, and this can cause problems when you try to
reinstall, and leave you needing to reformat your hard drive to get it to work correctly. Other than that,
check the list of newsgroups and resources later in this chapter.

ASP.NET Test Example
OK, we've now reached the crux of the chapter, checking to see if everything is working correctly. Do you
remember the punctual web server code that we talked about earlier in the chapter – in which we wanted
to write a web page that displays the current time? We'll return to that example now. As you'll see it's quite
a simple bit of code, but it should be more than enough to check that ASP.NET is working OK.

Try It Out – Your First ASP.NET Web Page

1. Open up a text editor and type in the following code exactly as you see it, including case, as
C# is case-sensitive and will reject Void instead of void, for instance:

<script language="c#" runat="server">
void Page_Load()
{
 time.Text=DateTime.Now.Hour.ToString() + ":" +
 DateTime.Now.Minute.ToString() + ":" +
 DateTime.Now.Second.ToString();
}
</script>

<html>
<head><title>The Punctual Web Server</title></head>
<body>
 <h1>Welcome</h1>
 In WebServerLand the time is currently:
<asp:label id="time" runat="server" />
</body>
</html>

Getting Started with ASP.NET

51

We strongly suggest (and will assume throughout) that you use Notepad to code all the examples in
this book, since it will always do precisely what you ask it to and no more. It's therefore a lot easier
to track down any problems you're having, and is a great deal easier than troubleshooting problems
caused by FrontPage or similar web page editors.

2. Save this page as punctual.aspx. Make sure that you save it in the physical folder you
created earlier, C:\BegASPNET\Ch01\.

When you save the file, you should double-check that your new file has the correct suffix. It
should be .aspx, since this is how you tell the web server that the page contains ASP.NET
code. Be aware that Notepad (and many other text editors) consider .txt to be the default.
So in the Save or Save As dialog, make sure that you change the Save As type to read All
Files, or All Files(*.*), or enclose the path and filename in quotes.

3. Now start up your browser and type in the following:

http://localhost/BegASPNET/Ch01/punctual.aspx

4. Click on the refresh button of the browser and the displayed time will change. In effect the
browser is showing a new and different instance of the same page.

5. Now on your browser select View Source or similar (depending on which browser you're
using) from the browser menu to see the HTML source that was sent from the web server to
the browser. The result is shown below. You can see that there is no ASP.NET code to be
seen, and nothing before the first <html> tag – the ASP.NET code has been processed by the
web server and used to generate pure HTML, which is hard-coded into the HTML source
that's sent to the browser:

Chapter 1

52

Here, you can see the HTML that was sent to the browser when I refreshed the page at
15.10:10.

6. As we mentioned before, you can expect this to work in any browser – because ASP.NET is
processed on the web server. If you have another browser available, give it a go!

How It Works

Easy wasn't it? If you didn't get it to work first time, then don't rush off to e-mail technical support just
yet – have a little look at the next section, ASP.NET Troubleshooting, first. Now let's take a look at the
ASP.NET code that makes this application tick.

There is only one block of ASP.NET code (ignoring the server control – we'll look at using server
controls in Chapter 3) in the whole program. It's enclosed by the <script> and </script> tags and
although it does span three lines it is actually only one line of code spread over three lines, because it
won't fit within the margins of the book on one line:

<script language="c#" runat="server">
void Page_Load()
{
 time.Text=DateTime.Now.Hour.ToString() + ":" +
 DateTime.Now.Minute.ToString() + ":" +
 DateTime.Now.Second.ToString();
}
</script>

The script delimiters specify which code is to be run by ASP.NET. We'll look at these in detail in the
next chapter. If we ignore the <script> tags for the time being, and just think of them as ASP.NET
code delimiters, then we're left with just three lines. If we further ignore the void Page_Load() and
surrounding curly braces { }, which are standard to many ASP.NET programs, and which we'll be
discussing in Chapter 3, we're left with this:

time.Text=DateTime.Now.Hour.ToString() + ":" +
 DateTime.Now.Minute.ToString() + ":" +
 DateTime.Now.Second.ToString();

Getting Started with ASP.NET

53

This code tells the web server to go off and run the C# DateTime.Now() function on the web server.
The C# DateTime.Now() function returns the current time at the web server. We can divide this up
to return values for the hours, minutes, and seconds, using the DateTime.Now.Time format. We also
add a ToString, because as it stands, we can't return a date data type, it has to be a string data type.
We will look at data types in Chapter 4. Anyway we don't really want to dig into the code here, all we
need to know is that the code tells the web server to go and get the system time and return it as three
values, each converted to a string and separated by a colon. The resulting string looked like this:

15:39:15

The formatted string is returned as part of the <ASP: label> control, further down the page. We'll be
looking at this control in Chapter 3.

If the web server and browser are on different machines, then the time returned by the web server
might not be the same as the time kept by the machine you're using to browse. For example, if this page
is hosted on a machine in Los Angeles, then you can expect the page to show the local time in Los
Angeles, even if you're browsing to the page from a machine in Cairo.

This example isn't wildly interactive or dynamic, but it illustrates the way in which we can ask the web
server to go off and do something for us, and return the answer within the context of an HTML page. Of
course, by using this technique with things like HTML forms and other tools, we'll be able to build a
more informative, interactive interface with the user.

ASP.NET Troubleshooting
If you had difficulty with the example above, then perhaps you fell into one of the simple traps that
commonly snare new ASP.NET programmers, and that can easily be rectified. In this section we'll look
at a few common errors and reasons why your script might not run. If you did have problems, maybe
this section will help you to identify them.

Program Not Found, the Result of the ASP.NET Isn't Being Displayed, or
The Browser Tries to Download the File

You'll have this problem if you try to view the page as a local file on your hard drive, like this:

C:\BegASPNET\Ch01\punctual.aspx

Chapter 1

54

You'll also get this problem if you click on the
file in Windows Explorer. If you have
Microsoft FrontPage or Visual Studio .NET
installed, then it will start up and attempt to
help you to edit the code. Otherwise, your
browser may display a warning message, or
most likely it will ask you which application
you wish to use to open up the ASPX file:

Older browsers may try to
download the file:

The Problem

This is because you're trying to access the page in a way that doesn't cause the ASP.NET page to be
requested from the web server. Because you're not requesting the page through the web server, the
ASP.NET code doesn't get processed, and that's why you don't get the expected results.

To call the web page through the web server and have the ASP.NET code processed, you need to
reference the web server in the URL. Depending on whether you're browsing to the server across a
local network, or across the Internet, the URL should look something like one of these:

http://localhost/BegASPNET/Ch01/punctual.aspx

http://www.distantserver.com/BegASPNET/Ch01/punctual.aspx

Getting Started with ASP.NET

55

Page Cannot Be Displayed: HTTP Error 403
If you get a 403 error
message, then it's
probably because you
don't have permission to
execute the ASP.NET
code contained within the
page – notice the Execute
Access Forbidden Error
message at the end of the
error page:

As you'll recall, permissions are controlled by
the properties of the virtual directory that
contains the ASP.NET page. To change these
properties, you'll need to start up the IIS admin
snap-in in the MMC, as we described earlier in
the chapter. Find the BegASP.NET virtual
directory in the left pane, right-click on it, and
select Properties. This will bring up the
BegASPNET Properties dialog that we met
earlier in the chapter:

Here, you'll need to check that the value shown in the Execute Permissions box is Scripts only or
Scripts and Executables –but definitely not None.

Chapter 1

56

Page Cannot Be Found: HTTP Error 404
If you get this error
message then it
means that the
browser has
managed to
connect to the web
server successfully,
but that the web
server can't locate
the page you've
asked for. This
could be because
you've mistyped
the URL at the
browser prompt. In
this case, you'll see
a message like this:

If you get this page, then you might suspect one of the following errors:

❑ A simple typing error in the URL, such as
http://localhost/BegASPNET/Ch01/punctually.aspx

❑ A wrong directory name, like http://localhost/BegASPNET/punctual.aspx instead of
http://localhost/BegASPNET/Ch01/punctual.aspx

❑ Including a directory separator (/) after the file name, like this
http://localhost/BegASPNET/Ch01/punctual.aspx/

❑ Using the directory path in the URL, rather than using the alias, such as
http://chrisu//BegASPNET/Ch01/punctual.aspx

❑ Saving the page as an .html or .htmfile, rather than as an .aspxfile, like this
http://localhost/BegASPNET/Ch01/punctual.htm

Of course, it may be that you've typed in the URL correctly, and you're still experiencing this error. In
this case, the most likely cause is that you have used Notepad to save your file and that (when you saved
the file) it used its default Save As Type setting, which is Text Documents (*.txt). This automatically
appends a .txt suffix to the end of your file name. In this case, you will unwittingly have finished up
with a file called punctual.aspx.txt.

Getting Started with ASP.NET

57

To check if that is what happened, go to
Windows Explorer, and view the (physical)
folder that contains the file. Go to the Tools
menu and select Folder Options…. Now, in
the View tab, ensure that the Hide file
extensions for known file types is
unchecked, as shown here:

Now click OK and return to view your file in Windows Explorer. You may well see something like
the following:

As you can see, Notepad has been less than honest in its dealings with you: when you thought that you
had saved your file as punctual.aspx, it had inconveniently saved it as punctual.aspx.txt. Not
surprisingly, your web server won't be able to find your file if it's been renamed accidentally. To correct
the filename, right-click on it in the right pane above, select Rename from the drop-down menu that
appears and remove the .txt at the end.

Chapter 1

58

Web Page Unavailable while Offline
Very occasionally, you'll come across the
following message box:

This happens because you've tried to request a page and you haven't currently got an active connection
to the Internet. This is a misperception by the browser (unless your web server isn't the same machine
as the one you're working on) – it is trying to get onto the Internet to get your page when there is no
connection, and it's failing to realize that the page you've requested is present on your local machine.
One way of retrieving the page is to hit the Connect button in the dialog; but that's not the most
satisfactory of solutions (since you might incur call charges). Alternatively, you can adjust the settings on
your browser. In IE 5/IE 6, select the File menu and uncheck the Work Offline option.

This could also be caused if you're working on a network and using a proxy server to access the
Internet. In this case, you need to bypass the proxy server or disable it for this page, as we described in
the section Browsing to a Page on your Web Server, earlier in the chapter. Alternatively, if you're using
a modem and you don't need to connect, you can correct this misperception by changing the way that
IE looks for pages. To do this, select the Tools | Connections option and select Never dial a
connection.

I Just Get a Blank Page
If you see an empty page in your browser then it probably means that you managed to save your
punctual.aspx without entering any code into it, or that you didn't remember to refresh the browser.

The Page Displays the Message but not the Time
If the web page displays the message "In WebServerLand, the time is currently" – but doesn't display
the time – then you might have mistyped the code. For example, you may have mistyped the name of
the control:

time.text=Hour(Now) & ":" & Minute(Now) & ":" & Second(Now)

and:

<asp:label id="hour" runat="server" />

The name of the control 'hour', must match the first word in the line of ASP.NET code, otherwise the
control won't be able to identify it.

Getting Started with ASP.NET

59

I Get an Error Statement Citing a Server Error
You may get a message stating that the page cannot be displayed, and citing a server error such as:

This means that there's an error in the ASP.NET code itself. Usually, there's additional information
provided with the message. For example, you'd get this error message if you omitted the closing
</script> tag on your code. To double-check that this isn't the case, use the sample
punctual.aspx from the Wrox site at www.wrox.com.

I Have a Different Problem
If your problem isn't covered by this description it's worth testing some of the sample ASP.NET pages
that are supplied with the QuickStart tutorials at www.asp.net; (it doesn't matter which installation
you've got locally, you can still use these). They should help you to check that IIS has actually installed
properly. You can always uninstall and reinstall if necessary, although before you do this, rebooting
your server might solve the problem.

You can get support from http://p2p.wrox.com, which is our web site dedicated to support issues in this
book. Alternatively, there are plenty of other web sites that are dedicated to ASP and ASP.NET. In fact
you will find very few sites which focus on just one of the two technologies. Here are just a few:

Chapter 1

60

http://www.asp.net
http://www.asptoday.com
http://www.asp101.com
http://www.15seconds.com
http://www.4guysfromrolla.com

There are lots of solutions, discussions and tips on these pages, plus click-throughs to other related
pages. Moreover, you can try the newsgroups available on www.asp.net such as aspngfreeforall.

By now, you should have successfully downloaded, set up, and installed both IIS and ASP.NET, and got
your first ASP.NET application up and running. If you've done all that, you can pat yourself on the
back, make a cup of tea, and get ready to learn about some of the principles behind ASP.NET in the
next chapter.

Summary
We started the chapter with a brief introduction to ASP.NET and to dynamic web pages in general and
we looked at some of the reasons why you'd want to use a server-side technology for creating web
pages. We looked at some of the history behind dynamic web pages, in the form of an overview of the
other technologies. We'll expand on this very brief introduction to ASP.NET in the next chapter.

The bulk of the chapter was taken up by a description of the installation process. You must have
installed IIS 5.0/5.1, MDAC 2.7 and either the .NET Framework Redistributable or the .NET
Framework SDK to be able to progress further with this book, so please don't be tempted to skip parts
that might not have worked. We've listed plenty of resources that will help you get everything up and
running, and there's rarely a problem that somebody somewhere hasn't encountered before.

The next chapter covers the software installed with ASP.NET, the .NET Framework, and will build up in
much greater detail what ASP.NET does, what the .NET Framework is, and how the two work together.

Getting Started with ASP.NET

61

