
Review of UML

The purpose of this chapter is to set the scene by reviewing the key UML concepts, the main diagram
types, and the role of those diagrams within the software development process. If you're quite new to
UML this will serve as a practical introduction that will help you make sense of the rest of the book,
before you move on to further reading. If you're experienced with UML the chapter will serve as handy
revision and you might just find some nuggets of information that have so far eluded you.

Either way we'll all be moving on from roughly the same starting point: with the same appreciation of
UML notation, with an understanding of relevant software development processes, and with a common
bias towards .NET and the Visio for Enterprise Architects tool.

The final point is quite important, and the raison d'être for this book. In recent years the body of UML
literature has focused mainly on Java development and the use of modeling tools such as Rational Rose.
In this book we're applying a .NET development perspective at the same time as demonstrating the so
far under-documented Visio modeling tool that comes bundled with the Visual Studio .NET
Enterprise Architect.

With all this in mind we can now press on with the introduction to – or revision of, depending on your
background – the Unified Modeling Language.

What is the Unified Modeling Language?
When discussing UML, we need to establish one important point right up front.

The Unified Modeling Language is a notation; that is a set of diagrams and diagram elements
that may be arranged to describe the design of a software system. UML is not a process, nor is it a
method comprising a notation and a process.

1

Chapter 1

10

In theory you can apply aspects of the notation according to the steps prescribed by any process that
you care to choose – traditional waterfall, extreme programming, RAD – but there are processes that
have been developed specifically to complement the UML notation. You'll read more about the
complementary process(es) later in this chapter.

Why use UML?
Hidden inside that specific question there's a more generic question, which is "Why use a formal analysis
and design notation, UML or otherwise?" Let's start to answer that question by drawing an analogy.

Suppose you wanted to make a bridge across a small stream. You could just place a plank of wood
across from one side to the other, and you could do so on your own. Even if it failed to hold your
weight, the only downside would be wet feet.

Now suppose you wanted to make a bridge across a narrow river. You'd need to do some forward
planning to estimate what materials you'd need – wood, brick, or metal – and how much of each. You'd
need some help, and your helpers would want to know what kind of bridge you're building.

Finally, suppose you wanted to build a bridge across a very wide river. You'd need to do the same kind of
forward planning as well a communicating your ideas to a much bigger team. This would be a commercial
proposition with payback from fare-paying passengers, so you'd need to liaise with the relevant authorities
and comply with health-and-safety requirements. You'd also be required to leave behind sufficient
documentation to allow future generations to maintain the structure long into the future.

In a software context, this means that formal design becomes increasingly important as a function of the size
and complexity of the project; in particular, as a function of the number of people involved. Based on that
analogy, and wider project experience, we could conclude that a formal design notation is important in:

❑ Establishing a blueprint from the application

❑ Estimating and planning the time and materials

❑ Communicating between teams, and within a team

❑ Documenting the project

Of course, we've probably all encountered projects in which little or no formal design has been done
up-front (corresponding with the first three bullet points in that list); in fact more projects than we care
to mention! Even in those situations, UML notation has been found to be invaluable in documenting the
end result (the last bullet point in that list). Though not recommended, if that's the extent of your
commitment to UML you'll be most interested in the Reverse Engineering discussion in Chapter 5.

Now that we've answered the generic question, let's return to the specific question of why use UML?

Well it's become something of an industry standard, which means that there's a good chance of finding
other people who understand it. That's very important in terms of the communication and
documentation bullet points in our list. Also if you or anyone else in the team does not understand it,
there's a good chance of finding relevant training courses, or books like this one.

That's very pragmatic reasoning and perhaps more convincing than a more academic (or even
commercial) argument such as:

Review of UML

11

"The application of UML has a proven track record in improving the quality of software systems."

A Brief History of UML
Taking the phrase Unified Modeling Language as our starting point, we've discussed in the previous
section the "language" (namely, notation) aspect. In the next section, we'll investigate the "modeling"
aspect, which leaves us here with the word "unified". What, or who, preceded the UML and how did it
all become unified? This will become clear as we step through a brief history of UML.

In the beginning although there was a plethora of object-oriented "methods", there were three
principal methods:

❑ The Booch method devised by Grady Booch

❑ Object Modeling Technique (OMT) devised by Jim Rumbaugh

❑ Object Oriented Software Engineering (also known as Objectory) devised by Ivar Jacobson

These three methods have many ideas in common, yet different notation for expressing those ideas.
Some of you may remember that in an OMT class diagram the classes were represented as rectangular
boxes whereas in the Booch method they were represented as stylized cloud shapes. Also, each method
placed emphasis on different aspects of object-oriented software development. For example Jacobson
introduced the idea of use cases, not addressed by the other methods.

In simple terms, a use case is a unit of functionality provided by the system to an actor
(such as a user). For example, in a word-processing application one of the use cases
might be "Run spell checker".

The unification of these three methods combined the best bits of each method with a common notation
(UML) for the common concepts – the end result being an industry-standard notation for analysis and design.
If you speak with anyone who claims to be doing object modeling, chances are they'll be using UML.

So how did this unification play out in time? The key dates are:

❑ OOPSLA '94 – Jim Rumbaugh leaves General Electric to join Grady Booch at Rational
Software, so as to merge their methods and achieve standardization across the industry.

❑ OOPSLA '95 – Booch and Rumbaugh publish version 0.8 of the Unified Method. Rational
Software buys Objectory and Ivar Jacobson joins the company.

❑ January 1997 – Booch, Rumbaugh, and Jacobson (the three amigos) release – through
Rational – a proposal for the UML version 1.0.

❑ September 1997 – UML version 1.1 is adopted by the Object Management Group (OMG).

The Object Management Group, previously best known for the CORBA standard, is a non-profit
organization – comprising many member companies – that encourages, standardizes, and supports
the adoption of object technologies across the industry. You can find out more about the OMG at
http://www.omg.org.

Chapter 1

12

If we've given the impression that the Unified Modeling Language is the exclusive work of only three
contributors, the three amigos, then let's set the record straight. Some of the concepts are based in the
early work of other individuals – for example, David Harel's work on Statechart diagrams – and some
further enhancements have come from other member organizations of the OMG; for example, the
Object Constraint Language (OCL) devised by IBM.

OCL was devised so that additional rules could be added to a UML model in a language that less
ambiguous than English. For example, the statement "Person.Employer=Person.Manager.Employer"
may be less ambiguous than "a person and their manager must both work for the same company."

More information on OCL can be found at
http://www-3.ibm.com/software/ad/library/standards/ocl.html.

At the time of writing, the UML specification is at version 1.4 and in mid-2001 the OMG members
started work on a major upgrade to UML 2.0. Modeling tools – including Visio for Enterprise Architects
– will always be one or two steps behind in their support for the specification, but that's not usually a
big problem because the core concepts discussed in the next section are now quite mature and stable.

At the time of writing, the version of Visio for Enterprise Architects used in the construction of this
chapter provides support for UML at least up to version 1.2 – this can be determined from the About
error checking in the UML model section of the Microsoft Visio Help:

"Semantic error checking occurs automatically, noting errors in the design of UML model elements,
based on the well-formedness rules in the UML 1.2 specification."

End-to-End UML Modeling
Having looked at why UML is useful, and where it came from, we'll now look at the notation itself. To
cover the complete notation in a single chapter would be impossible, so for a deeper coverage I'll refer
you to some other works.

❑ Instant UML by Pierre-Alain Muller (Wrox Press, ISBN 1-86100-087-1).

❑ The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar
Jacobson (Addison Wesley, ISBN 0-201-57168-4).

❑ UML Distilled by Martin Fowler with Kendall Scott (Addison Wesley, ISBN 0-201-65783-X).

What we'll do here is cover the essential notation and core concepts that will allow us to progress
through the rest of the book with a common understanding.

We'll also aim to address one of the problems of many UML courses and books. The problem being,
that all too often the various diagrams are presented in isolation without a clear indication of how they
relate to one another. To make matters worse, different examples are often used to demonstrate the
different diagrams, not one of those examples being for a system that you might actually want to build.
Think here of a statechart diagram that describes a motor car gearbox, or a sequence diagram that
describes the operation of a hotel elevator.

Review of UML

13

So in the following section we'll have a single example, an Order Processing system, which you should be
able to relate to even if you don't intend to build such a thing, and at the end, we'll pull it all together.

UML Essential Notation and Core Concepts
Now we'll step through the UML diagrams in turn, all the way from an activity diagram through to a
deployment diagram in this order:

❑ Activity Diagram

❑ Use Case Diagram

❑ Sequence and Collaboration Diagram

❑ Statechart Diagram

❑ Static Structure Diagram

❑ Component Diagram

❑ Deployment Diagram

Each diagram is labeled in light gray with some of the names given to the UML elements that are
shown, which – for the record – reflects the UML metamodel.

The UML Metamodel is itself a UML model, which defines the rules for constructing
other UML models. Whereas in one of your own models you might state "Bank is
associated with one or more Accounts", the metamodel would state a more generic
relationship of "a Class may be associated with any Other Class".

On the whole, the model elements have been labeled using Visio EA terminology so as to reduce the
potential for confusion when you come to use the tool. Historically – and in other modeling tools – you
may have encountered alternative UML terminology. The alternative terms have been tabulated
towards the end of this chapter.

As you'll see later in this chapter, the software development process that you follow might well be
described as use-case driven, which implies the use case diagram as an obvious starting point. But those
use cases will doubtless fit into some kind of overall business process, perhaps modeled up-front by a
business analyst. So we'll take a business process as our starting point and use this as a vehicle for
demonstrating the most suitable diagram for that purpose; the activity diagram.

Activity Diagram
The activity diagram is the closest you'll get in UML to a flow chart, and the closest you'll get to a
business process diagram. Here is a sample activity diagram with the important UML elements labeled,
followed by a description of those elements.

Chapter 1

14

OrderClerk Logistics Accounts

Take Order

unpicked : Order Pick Stock

Deliver Item(s)
Prepare Invoice

object in state

entry action

initial state
swim lane

Send Invoice

entry/Print Invoice

transition (fork)

transition (join)

state

control flow

❑ Initial state is where the diagram begins.

❑ Control flow shows a transfer of control from one activity to another.

❑ State represents a period of time during which a piece of work is carried out by person
or team.

❑ Transition (fork) shows the point as which two or more parallel activities will commence.

❑ Transition (join) shows the point as which two or more parallel activities must synchronize
and converge.

❑ Swim lane allows all of the activities carried out by a particular person or team arranged into
a column.

❑ Entry action shows what must happen when the activity begins.

❑ Object in state shows an object that is produced or consumed in the course of an activity, with
the production or consumption (object flow) being represented by the dashed line.

Review of UML

15

What the diagram shows

The Order Processing business process begins when an Order Clerk performs the Take Order activity.
This activity results in an Order object being created in unpicked state. Next, the Pick Stock activity is
performed (for the Order) by the Logistics team.

At this point some parallel behavior occurs – the Logistics team Deliver Item(s) around the same time
that the Accounts department Prepare Invoice. Only when the items have been delivered and the
invoice has been prepared can the Accounts department then Send Invoice. Immediately prior to
sending the invoice they must Print Invoice.

Those are the essential points of an activity diagram, but not a complete coverage. In particular you will
see some additional syntax in the description of a Statechart diagram.

Use Case Diagram
Here is a sample use case diagram with the important UML elements labeled, followed by a description
of those elements.

Take Order
<<extends>>

Mark for Special
Delivary

OrderClerk

DeliveryMan

Accountant

Deliver Items

Prepare Invoice

Send Invoice

<<uses>>

<<uses>>
Choose Order

Pick Stock StockPicker

<<uses>>

actor use casecommunicates

❑ Actor represents a person or external system that initiates a use case in order to get some
value from the application.

❑ Use case is a well-defined unit of functionality that the system provides to one or more actors.

❑ Communicates shows that a particular actor makes use of a particular use case.

❑ A <<uses>> relationship shows where a piece of potentially-reusable functionality has been
factored out into a separate use case.

Chapter 1

16

❑ An <<extends>> relationship shows where some additional functionality may be provided in
support of a use case, that extended functionality having been factored out into a separate use case.

A Note about Stereotypes

You might wonder why the words <<uses>> and <<extends>> are enclosed within angled brackets <<
like this >>. It's because they are stereotypes; these allow a single UML element (in this case a
generalization line with a triangular head) to represent slightly different concepts.

Any UML element may be stereotyped and later you will see components stereotyped
as <<executable>> or <<library>> in a component diagram.

What the Diagram Shows

Taking the original activity diagram as a starting point, each of the activities – Take Order, Pick Stock,
Deliver Items, Prepare Invoice, and Send Invoice – has been represented as a use case. A one-to-one
correspondence between activities and use cases is not mandatory, but here it shows the potential for
traceability between the diagrams.

You will also see a correspondence between the actors in this diagram and the swim lanes from the
original activity diagram. The Order Clerk swim lane is represented as an Order Clerk actor, the
Logistics swim lane is represented by DeliveryMan and StockPicker actors, and the Accounts swim
lane is represented as an Accountant actor.

Choose Order represents functionality that is common to (used by) the Deliver Items, Prepare Invoice,
and Pick Stock use cases. To deliver items, prepare an invoice, or pick stock the actor must first choose
an order, but to take a new order the actor does not need to first choose an order (obviously) and to
send an invoice the actor need not chose an order (because they will choose an invoice).

In the course of taking an order, the Take Order use case may be extended by functionality to Mark for
Special Delivery. This has been modeled separately as an extension so that the extended behavior may
be changed with no impact on the main use case; for example, this extension may bypass the standard
procedure and instead send an instant message to the Stock Picker and Delivery Man.

Sequence and Collaboration Diagram
Use cases are realized (that is, described in terms of interactions between collaborating objects) using
interaction diagrams, of which there are two types:

❑ Sequence diagrams

❑ Collaboration diagrams

Here is a sample sequence diagram with the important UML elements labeled, followed by a
description of those elements.

Review of UML

17

stockPicker StockPicker

: PickStockController : ChooseOrderController : StockItemsForm chosenOrder : Order : Warehouse

run

chooseOrder()

chosenOrder

display()

select stock item

allocateStock(stockItem)

removeItem(stockItem)

message

object

stockItem

❑ Object refers to an object instance that sends messages to, or receives messages from, other
object instances. The objects are labeled as instanceName : ClassName where the instance
name is commonly omitted to show no particular instance of the class in question.

❑ Message shows an interaction between two objects, which may be labeled using descriptive
text (such as select stock item above) or may be labeled with the name of an operation on the
receiving class, such as allocateStock above. A return message may be shown as a dotted line.

Here is an equivalent collaboration diagram showing the same set of interactions. Whereas a sequence
diagram has a top-to-bottom time line to show the order of events, a collaboration diagram uses a
numbering scheme. Apart from the visualization style, sequence diagrams and collaboration diagrams
may be thought of as equivalent to the extent that some modeling tools, such as Rational Rose, allow
automatic switching between the visualization styles.

Chapter 1

18

stockPicker StockPicker : Warehouse

chosenOrder
2: c

ho
os

eO
rde

r()

3: c
ho

se
nO

rde
r

4: display()

5: select stock item

7: allocateStock(stockItem)

8: removeItem(stockItem)
6: stockItem

: StockItemsForm

: ChooseOrderController

: PickStockController
1: run

What these Diagrams Show

Both diagrams show the sequence of object interactions that support the PickStock use case. The
sequence is:

1. The StockPicker actor runs the PickStockController (which in this design is a control class
responsible for the use case).

2. The PickStockController calls the chooseOrder() operation on the ChooseOrderController
which results in...

3. a chosenOrder being returned. This interaction represents the fact that the Pick Stock use
case <<uses>> the Choose Order use case.

4. The PickStockController calls the display() operation of a StockItemsForm.

5. The StockPicker actor selects a stock item on the StockItemsForm.

6. The selected stockItem is returned to the controller.

7. To allocate the stock to the order, the PickStockController calls the allocateStock()
operation of the Order – specifically the chosenOrder that was retrieved in Step 3. The
stockItem from Step 6 is passed as a parameter.

8. To remove the item from stock, the PickStockController calls the removeItem() operation
of the Warehouse passing stockItem as a parameter.

Statechart Diagram
The inclusion of Order as an object in state in the original activity diagram hints at the fact that this will
be a state-full class. We could have included the object multiple times on that diagram to show the state
changes of an Order that result from the various activities, but for clarity we didn't.

Review of UML

19

To show the complete set of states for an Order, and – most importantly – to show the circumstances in
which an Order will transition from one state to another, we draw a Statechart diagram.

Here is a sample Statechart diagram with the important UML elements labeled, followed by a
description of those elements.

create

allocateStock [stock not available]

Unpicked

Canceled Invoiced
invoice

Delivered

Picked
allocateStock [stock available] / removeItem

cancel deliver
transition

event [condition] / action

state

❑ State represents the status of an object (a function of its attributes and links) over a period of
time between transitions.

❑ Transition is a movement of the object from one state to another, triggered by the object
receiving an event.

❑ Each transition is triggered by an event, and the transition occurs only if the [condition] is met
and the action is successful.

What the Diagram Shows

Upon receiving the create event, the Order transitions from the initial state into state Unpicked.

When an allocateStock event occurs the Order will return to the Unpicked state if the [stock not
available] condition is true, otherwise – if the [stock available] condition is true and the removeItem
action completes – then it will transition to state Picked. Alternatively the transition from state
Unpicked may be to state Canceled if a cancel event is received.

The order may transition to state Delivered, from state Picked, upon receiving a deliver event. It may
transition to state Invoiced, from state Delivered, upon receiving an invoice event.

When Canceled or Invoiced, that's the end of the line for this Order, so there is a notional transition to
the end state.

Only those transitions shown on the diagram are allowed. Thus for example it is impossible to move
an order to state Canceled once it has been picked, because none of the states Picked, Delivered,
or Invoiced has an outward transition to state Canceled.

Chapter 1

20

Static Structure Diagram
The sequence diagrams, collaboration diagrams, and statechart diagrams that we've encountered in the
previous two sections are termed dynamic diagrams. They represent the dynamic model, which is the
model showing how our system will behave over time.

We also need a static model, showing the persistent relationships and dependencies between classes and
components. Out first static model will be the Static Structure diagram (Visio terminology), which is
otherwise more commonly known as the class diagram.

Here is a sample class diagram with the important UML elements labeled, followed by a description of
those elements.

StockPicker

class

association class

(aggregation) association

dependency

PickStockController ChooseOrderController

+chooseOrder()

displays orders

Order

+orderNumber : int
-orderDate : string

+allocateStock(in stockItem : string)

1

1..*-orderedItem

-stockedItem

displays stock items

holds stock
-location

Warehouse

+removeItem(in stockItem : string)

StockItemsForm

+display()

StockAllocation

-stockPickedDate : string

StockItem

+serialNumber : string
-itemType : string

1 *

Controller

+run()
generalization

❑ Class represents an object class as a rectangle comprising three segments that show the class
name, the member attributes, and the member operations.

❑ Generalization is an inheritance relationship between a super-class and one or more subclasses.

❑ Dependency shows that one class depends (maybe temporarily) on the functionality of another
class, but is otherwise not linked up to instances of the other class in any persistent sense.

❑ Composition shows that instances of one class may be linked to instances of another class
persistently in an owner-owned kind of relationship. The composition, which is a special form
of association, may be adorned with roles and multiplicities.

Review of UML

21

❑ Association is a more general form of linkage between class instances, which does not imply
an owner-owned relationship. The association may be adorned with an association class,
instances of which occur only for each link between the two associated classes.

What the Diagram Shows

PickStockController and ChooseOrderController are specializations of a generalized class called
Controller. In our design, all controller classes will be subclasses of the Controller super-class.

The PickStockController class depends on the ChooseOrderClass class, the StockItemsForm class, and
the Warehouse class. Look back at the sample sequence diagram to see how the PickStockController
calls operations of those other classes.

The ChooseOrderController depends on the Order class by virtue of the fact that it displays orders.

A Warehouse instance owns aggregate StockItem instances according to the following aggregation:

1 (multiplicity) Warehouse (class) location (role) holds stock (association name) of * (many multiplicity)
stockedItem (role) StockItems (class).

Each Order instance is associated with one or more (1..*) StockItems, with linked stock items taking the
role of orderedItem. For each such link there arises a StockAllocation instance that holds the date that
the stock was picked and allocated.

The static structure diagram (class diagram) shown here as an example does not contain the complete
set of classes for the entire application, but rather those classes that are relevant to the Pick Stock use
case. As such, it represents View of Participating Classes (VOPC) for that use case.

Component Diagram
An application will be delivered or deployed typically not as individual classes or even a package of
classes, but rather as one or more deployable components – executables or libraries – into which the
classes or packages have been collected.

For a Java application, these components would likely be JAR files. For a .NET application the
components will be executables (.EXE) and libraries (.DLL) corresponding to the solution structure
within Visual Studio .NET.

Here is a sample component diagram with the two component types described overleaf:

<<executable>>
OrderProcessingApp

<<library>>
Controllers

<<library>>
Forms

<<library>>
Entities

Chapter 1

22

❑ <<executable>> represents a .EXE file, a program that you would actually run.

❑ <<library>> represents a .DLL file, a collection of classes that you might reference in a project.

The component diagram is a static diagram, just like the class diagram, because it shows how the
application is organized rather than how it will behave over time.

What the Diagram Shows

Our application will comprise a main executable program, the OrderProcessingApp deployed as file
OrderProcessingApp.exe. This program will depend on a library of control classes deployed as file
Controllers.dll, which in turn will depend on two more component libraries: Forms.dll and
Entities.dll.

We've hinted at the fact that components represent deployable collections of classes. For this example,
the mapping of classes onto the <<library>> components will be:

❑ The Controllers <<library>> component realizes classes PickStockController and
ChooseOrderController.

❑ The Forms <<library>> component realizes the StockItemsForm class.

❑ The Entities <<library>> component realizes classes Order, Warehouse, StockAllocation
and StockItem.

Note that this is just one way in which classes may be mapped on to components, in this case according
to the types of each class: form, control, or entity. You might instead decide to package classes onto
components according to application subsystems, for example StockControl.dll (containing forms,
controls, and entities relating to stock control functionality) and OrderHandling.dll (containing forms,
controls, and entities relating to order handling functionality).

Visio for Enterprise Architects note – although you can't see in this diagram the
classes that are mapped to each component, you can double-click any component in
Visio EA to view and set the list of mapped classes as shown in the following figure.

Review of UML

23

Deployment Diagram
The final UML diagram we'll look at is the deployment diagram, the purpose of which is to show the
physical nodes on which the software components will actually be installed. Here is a sample
deployment diagram for our hypothetical deployment platform:

Windows 2000
Client

Windows XP
Client

Windows NT
SQL Server

Windows .NET
Server

node

❑ Node is a run-time computational or physical resource – a software or hardware device on
which software components may be deployed.

Chapter 1

24

What the diagram shows

Our deployment platform will comprise a backend Windows NT server running a SQL Server database,
with the Entities.dll component deployed to this node. There will also be a Windows .NET
application server that services Windows 2000 and Windows XP clients.

Whether the Forms.dll component and the Controllers.dll component are deployed on the
Windows .NET Server or on the clients themselves will depend on our choice of a thin- or fat-client
architecture. For the sake of argument, we'll assume these components to be deployed to the Windows
.NET Server. In either case, we'll deploy the main OrderProcessingApp.exe executable program
directly on the client nodes.

Visio for Enterprise Architects note – although you can't see in this diagram the
components that are deployed to each node, you can double-click any node in Visio EA
to view and set the list of deployed components as shown in the following figure.

Fitting the Pieces into the UML Jigsaw
As stated earlier, the problem with many UML books and training courses is that they often present the
various diagram types in isolation. To make things worse, the examples are often disjointed and not
relevant to any system that you're ever likely to build: a vehicle gearbox as the state diagram example, a
telephone handset as the sequence diagram example, an insect classification for the class diagram. All of
which leaves you wondering about the relevance of these modeling techniques and the relationships
between the various techniques.

To address the issues of relevance and consistency of examples you will notice that all of the diagrams
in the previous section relate to a common application, the order processing application, which is one
that should be familiar to you, whatever your background.

Review of UML

25

Now, what of the relationships between the diagrams that we've alluded to? Well, each diagram shows a
different aspect of the same application design so they should be taken, not individually in isolation, but as
a consistent whole. The word consistent in that sentence is important because you affect the correctness
and completeness of your design significantly by ensuring consistency between the diagrams.

The following figure shows how the various diagrams relate to each other at the macroscopic level. The
Use Case Diagram represents the functionality requirements of the system from a user's – or a least a
system analyst's – perspective. These use cases are realized as the object interactions of a Sequence (or
Collaboration) Diagram and the use case participating classes may be represented as a Class (Static
Structure) Diagram. For each class that is stateful in nature there may be a State diagram.

Take Order
<<extends>>

Mark for Special
Delivary

OrderClerk

DeliveryMan

Accountant

Deliver Items

Prepare Invoice

Send Invoice

<<uses>>

<<uses>>
Choose Order

Pick Stock StockPicker

<<uses>>

actor use casecommunicates
stockPicker StockPicker

: PickStockController : ChooseOrderController : StockItemsForm chosenOrder : Order : Warehouse

run

chooseOrder()

chosenOrder

display()

select stock item

allocateStock(stockItem)

removeItem(stockItem)

message

object

stockItem

StockPicker

class

association class

(aggregation) association

dependency

PickStockController ChooseOrderController

+chooseOrde()r

displays orders

Order

+orderNumber : int
-orderDate : string

+allocateStock(in stockItem : string)

1

1..*-orderedItem

-stockedItem

displays stock items

holds stock
-location

Warehouse

+removeItem(in stockItem : string)

StockItemsForm

+display()

StockAllocation

-stockPickedDate : string

StockItem

+serialNumber : string
-itemType : string

1 *

Controller

+run()
generalization

create

allocateStock [stock not available]

Unpicked

Canceled Invoiced
invoice

Delivered

Picked
allocateStock [stock available] / removeItem

cancel deliver
transition

event [condition] / action

state

Use cases are
realized with
Sequence
Diagrams

Use case
participating
classes shown in
the Class Diagram

Some messages
will correspond
with operations in
the Class
Diagram

Stateful
classes have a
State Diagram

State transitions
correspond with
messages in the
Sequence
Diagram

Don't worry if you can't read the detail in these four diagrams. You've seen them all before in this
chapter and you can refer back to them. What is important is that you understand the significance
of the arrows that show how the diagrams fit together.

Here's the consistency bit, which we've distilled into the following set of rules:

❑ Does every use case have at least one Sequence or Collaboration Diagram describing its
realization? If not, the design is incomplete.

❑ Is every one of the classes of the Static Structure Diagram present on at least one Sequence (or
Collaboration) diagram? If not, you might be missing a use case realization or even a whole
use case because, effectively, the class is never used.

Chapter 1

26

❑ For all stateful classes is there a corresponding Statechart Diagram? If not, the rules for
allowable state changes will be ambiguous or unknown.

❑ For each event in a Statechart Diagram is there a corresponding message in a Sequence
Diagram that provides a context in which the event actually occurs? If not, the state transition
may never occur.

Depending on your approach to analysis and design, and the kind of application you're developing,
those rules may be more or less important and you're unlikely ever to achieve 100% mutual consistency.
So treat them not as revealed truth but as rules of thumb – I've found that they've certainly served me
well in my development work.

The fact that the previous figure has arrows emitting from the Use Case Diagram – with none going in –
suggests that as the starting point. That's true unless you draw some activity diagrams up-front, and it
makes perfect sense to start with the diagram that represents the functional requirements doesn't it?
However, the diagram to start with is not really a question of UML but a question of process.

We'll conclude this chapter by looking at the process side of things, just after a brief mention of the tools
that support the modeling effort.

UML Modeling Tools
It's doubtful that anyone would be working with UML these days without the aid of a modeling tool,
because these tools are to software design what a word processor is to writing.

In creating a chapter like this one, few authors would ever dream of writing out the words long-hand
with pencil and paper. How would they delete unwanted paragraphs, rephrase sentences and insert the
pictures without making the first draft a complete mess? – and how time-consuming would it be to write
it all out again for the final draft?

Now make the analogy with UML diagrams and a modeling tool. How would you add an operation to a
class on a static structure diagram, or change the order of events in a collaboration diagram, or change a
relationship between an actor and a use case in a use case diagram without a significant amount
of redrawing?

At this point, the following question might occur to you:

"OK, but we could just use a good drawing package to solve those problems. They're only
diagrams, right?"

Wrong! The whole point about a modeling tool is that besides allowing you to draw the diagrams, it
actually understands the model you're creating. It knows that a line between two classes is an
association or aggregation so an instance of one class must be linked to an instance of another class,
perhaps via a member variable. It's this understanding of the model that allows the modeling tool to
provide added value to your software development effort through code generation, documentation
production, and model semantic checking.

Before the arrival of Visual Studio .NET on the software development scene, your choice of modeling
tool would most likely have been one of Rational Rose, Select Enterprise, or Together Control Center –
none of which cater specifically for UML in the context of .NET. The main contenders in the .NET
modeling space are Rational XDE and Visio for Enterprise Architects.

Review of UML

27

Rational XDE has the Rational pedigree, some impressive .NET-related features, and tight integration
with Visual Studio .NET; so it's well worth a look if you're from a Rational tools background. The main
problem is that you may have to shell out on an expensive license on top of what you've already paid
for Visual Studio .NET, and – on that subject – it actually won't run without the IDE.

Visio for Enterprise Architects comes bundled with the Visual Studio .NET (Enterprise Architect
version) and/or an MSDN Universal Subscription, so you may already have it at no extra cost. It
supports UML notation as well as the back-catalogue of other Visio diagram types. Code generation,
reverse engineering, model semantic checking, and document production are supported, plus
integration with the Visual Studio .NET IDE. All of which make this not just a drawing tool, or – more
accurately – no longer just a drawing tool.

Process Essentials
UML is a notation not a process, but invariably you will use UML in the context of a software
development process; so which one to choose?

As indicated already, you are not compelled to use any particular process. You could adopt a pure
Rapid Application Development (RAD) approach, or join the growing band of practitioners adopting the
eXtreme Programming approach. Just a few years ago you might have been tempted by the Select
Perspective method, which was – and still is – biased towards component-based development and based
on an iterative-incremental approach. In all cases there would be nothing to stop you using UML as the
analysis and design notation.

To round off this chapter we'll focus in on two processes in particular, the (Rational) Unified Process
and the Microsoft Solutions Framework; the former because has been devised by the authors of UML
as the preferred partner process, and the latter because in this book we're interested in designing
software for the Microsoft environment.

(Rational) Unified Process
The Unified Process has its roots in the Objectory method devised originally by Ivar Jacobson. It
represents the unification of the process ideas of the three amigos, thus it is complementary to the Unified
Modeling Language and is marketed by Rational Software as the Rational Unified Process (RUP).

In practical terms what you get when you purchase this product is a set of HTML pages describing the
process, its roles, activities, and artifacts, along with a set of Microsoft Word templates that provide a
starting point for those artifacts – not to mention a great deal of encouragement to buy the Rational Suite.

Three of the essential points of this process are that it is:

❑ Use-case driven – this ensures that the system we build will actually meet the requirements of
the business.

❑ Architecture-centric – so we won't complete the analysis under the blind assumption that we
can build the application on our chosen technical platform. Early on we'll do some
technical prototyping.

Chapter 1

28

❑ Risk managed – with an emphasis on tackling the tricky parts of the system – the
architecturally significant use cases – at the beginning rather than at the end to reduce the
likelihood of nasty surprises later on.

The fact that the process is use-case driven suggests that we start with the use case diagram(s). That's
true to an extent, but not the whole story. We've already suggested that activity diagrams may add value
early on by describing the workflow of the business, in essence the ordering of the use cases. There's a
lot to be gained by producing a static structure diagram (class diagram) of fundamental business entities
up front, to be called the domain model.

The point is that although the various diagrams will each have a lesser, or greater, impact as we move
through various stages of the process, we won't simply be stepping through the diagrams in waterfall fashion.
Rather, we'll analyze, design, and build the software as a series of increments via a set of iterations.

Within each iteration, any combination of diagrams may be valuable, those diagrams becoming more
detailed as we go along. However, it goes without saying that as we approach implementation we'll have
much greater need for component diagrams than for use case diagrams!

Though the Unified Process is iterative, not waterfall in nature, these iterations do fit into a series of
distinct phases called Inception, Elaboration, Construction, and Transition.

❑ Inception is the initial phase in which you establish the business case for the project and
determine the project scope.

❑ Elaboration is the phase in which you gather detailed requirements, undertake analysis and
high-level design, define the architecture, and plan for construction.

❑ Construction is the phase in which you undertake the detailed design and build the software
components themselves.

❑ Transition is the final phase in which you test the software, tune for performance, and train
the users in preparation for going live.

The relationship between phases and iterations is shown in the following figure.

Elaboration Construction TransistionInception

Inception Iteration #1 Elaboration Iteration #1

Elaboration Iteration #2

Construction Iteration #1

Construction Iteration #2

Construction Iteration #3

Construction Iteration #4

Transition Iteration #1

Transition Iteration #2

Review of UML

29

RUP .NET Developer's Configuration
Since we're dealing specifically with .NET application design in this book it's worth mentioning that the
Rational Software web site (http://www.rational.com/products/rup/sample.jsp) describes a variant of the
Rational Unified Process called RNDC, which is defined as the following:

"The RUP .NET Developers' Configuration (RNDC) is a straightforward, lightweight process
configuration of the Rational Unified Process® that has been specifically customized to address the
needs of the .NET software developer."

There are two important aspects here.

Firstly, it's a customization of the Rational Unified Process specifically for the .NET development
environment. Historically RUP has been biased towards Java software development and tools, with
.NET now presenting some new technical challenges – and marketing opportunities – for customized
version of the process.

Secondly, it's aimed specifically at software developers rather than all the team members defined by
RUP. Presumably, no customization was required for technology-independent business analysts, but this
also seems to reflect Rational's positioning of UML in the context of .NET. Experimentation with the
new Rational XDE UML modeling tool shows this to be much more of a developer tool than Rational
Rose ever was.

At the URL listed above is the RNDC roadmap, which provides a somewhat disappointing overview of
the customized process. Under the headings Requirements Activities and Analysis Activities it simply
states the following, which is at least consistent with the presumption that certain aspects of the process
require no customization:

"Requirements activities are technology independent."

"Analysis activities are technology independent."

Under the heading Define an Initial Architecture, the reader is encouraged to use the .NET Framework
– in particular Enterprise Templates – "to create reusable reference architecture templates for .NET applications
that can be tailored to support a certain application structure or a specific application domain"

Finally, the RNDC roadmap references several concepts and guidelines such as "Concepts: Microsoft .NET
Architectural Mechanisms" and "Guidelines: Partitioning Strategies in Microsoft .NET". Unfortunately these
additional references are not hyperlinked in the RNDC, which renders it not too useful in itself. For a
complete picture – with hyperlinks to all the required content – we need to look into the RUP .NET Plug-in.

RUP .NET Plug-in
The vanilla Rational Unified Process may be enhanced by applying various plug-ins for:

❑ Compatibility with alternative approaches, such as eXtreme Programming

❑ Technologies such as IBM Websphere and, of course, .NET

You can find general information about the .NET Plug-in at URL
http://www.rational.com/tryit/rup/seeit.jsp and, more usefully, you can step through a slide-show
presentation at URL http://www.rational.com/demos/viewlets/rup/msnet/MSNET_Tour_viewlet.html.

Chapter 1

30

In that presentation you will see that this plug-in contains detailed information in the form of workflows,
roadmaps, guidelines, and links to relevant information on the Microsoft Developer Network (MSDN)
and Rational Developer Connection web sites.

Microsoft Solutions Framework
The Microsoft Solutions Framework (MSF) is a process-methodology for development in a Microsoft
environment. In effect, we can view MSF to be a potential substitute for the Rational Unified Process,
perhaps one that is more relevant to the Microsoft tools we'll be working with.

A Framework not a Process
We've referred to the MSF as a process, to justify a comparison with RUP. In fact, it's a framework
incorporating a Process Model (the process), a Team Model, and a Risk Management Model. Let's start
with the process model.

The process model is described as phase-based, milestone-driven, and iterative. We've taken the liberty
of incorporating iterations within the four phases of the core process – Envision, Plan, Develop, and
Stabilize – to come up with the following figure.

Plan Develop StabilizeEnvision

Envision Iteration #1 Plan Iteration #1

Plan Iteration #2

Develop Iteration #1

Develop Iteration #2

Develop Iteration #3

Develop Iteration #4

Stabilize Iteration #1

Stabilize Iteration #2

You should be experiencing some déjà vu now, and if you're not you should look back at the RUP process
described previously. For Envision (MSF) read Inception (RUP), for Plan (MSF) read Elaboration (RUP),
for Develop (MSF) read Construction (RUP), and for Stabilize (MSF) read Transition (RUP).

The process model is not the only area of similarity between the MSF and RUP. As mentioned above, the
MSF includes a Risk Management Model and earlier we described RUP as being a risk-managed process,
and where the MSF incorporates a Team Model this corresponds with RUP roles and activities.

A sensible conclusion then is that whichever process you start off with – RUP or MSF – the underlying
concepts and approach are similar enough to allow a degree of compatibility or a change of mind later
on. Indeed the MSF datasheet proclaims the following:

"[MSF] ... can easily coexist with virtually any other process framework or provide sufficient
structure where no methodologies are in place."

Review of UML

31

Summary
In this chapter we've introduced the Unified Modeling Language in terms of what it is (an analysis /
design notation) and what it is not (a software development process). We said that the notation
represents a synthesis of three predecessor methods – Object Modeling Technique (OMT), the Booch
Method, and Object-Oriented Software Engineering (OOSE) – with contributions from some others.

In terms of why you might use UML at all, we offer four main reasons:

❑ Establishing a blueprint from the application

❑ Estimating and planning the time and materials

❑ Communicating between teams, and within the team

❑ Documenting the project

The remainder of the chapter was divided into two main sections, End-to-End UML Modeling dealing
with the UML notation and Process Essentials dealing with the companion process(es). Let's now review
the modeling and process sections.

Modeling Summary
In this section, we looked at seven UML diagram types:

❑ Activity diagrams

❑ Use Case diagrams

❑ Sequence diagrams

❑ Collaboration diagrams

❑ Statechart diagrams

❑ Component diagrams

❑ Deployment diagrams

Each kind of diagram was annotated with the UML metatypes such as actor, use case, class,
dependency, association, and so on.

Each diagram represented a different view of exactly the same application, so that you could relate the
diagrams to each other with the help of the What this diagram shows sections. We consider the
relationships between the diagrams to be so important – and all too often ignored – that we placed
further emphasis on this point in the Fitting the Pieces into the UML Jigsaw section.

Finally, we suggested that you will almost certainly be doing UML modeling with a dedicated modeling
tool, and that doesn't just mean a good drawing tool. Visio for Enterprise Architects represents such a
modeling tool, no longer just a drawing tool, that we set out as the preferred tool on which the rest of
this book has been based.

Chapter 1

32

In the main, Visio terminology has been used in this chapter so as to avoid confusion when you come to
use the tool. Other modeling tools may use slightly different terminology and, in fact, the UML terms
themselves have changed slightly over the years. To help with the transition to – or from – other books
and tools, here is a summary of this chapter's Visio UML terms and the alternative terminology that you
may encounter:

Visio Terminology Other Terminologies

Static Structure Diagram Class Diagram

Package Category

<<uses>> <<import>>

State Activity (on Activity Diagram), State (on Statechart)

Statechart Diagram State Transition Diagram

Transition (fork) Synchronization (start)

Transition (join) Synchronization (end)

Process Summary
As to which software development process you should adopt, two were picked out two for discussion.
The Unified Process, because it's the natural companion for the Unified Modeling Language, and the
Microsoft Solutions Framework, because it's the Microsoft process offering. What these have in
common with each other – and with other good object oriented software processes, such as the Select
Perspective – is that they are:

❑ Iterative and incremental

❑ Use-case driven

❑ Focused on Risk Management

You also have a choice of eXtreme Programming, traditional waterfall, or RAD, and as the UML
notation is independent of the process, ultimately the choice is yours.

In the next chapter, to complete our foundations for working with Visio for Enterprise Architects, we'll
take a tour of the Visio environment and look at some of the available diagram features relevant to the
software developer.

Review of UML

33

