
What is Microsoft .NET?

Microsoft began its Internet development efforts in 1995. Prior to this, Microsoft's focus had, for several
years, been on moving desktop and server operating systems to 32-bit, GUI-based technologies, but
once Microsoft realized the importance of the Internet, it made a dramatic shift. The company became
focused on integrating its Windows platform with the Internet and it succeeded in making Windows a
serious platform for the development of Internet applications.

However, it had been necessary for Microsoft to make some compromises in order to quickly produce
Internet-based tools and technologies. The most glaring example was Active Server Pages (ASP). While
ASP was simple in concept and easily accessible to new developers, it did not encourage structured or
object-oriented development. Creating user interfaces with interpreted script and limited visual
elements was a real step back from the form-based user interfaces of Visual Basic (VB). Many
applications were written with a vast amount of interpreted script, which lead to problems of debugging
and maintenance.

Visual Basic (and other languages) has continued to be used in Internet applications on Microsoft
platforms, but mostly to create components that were accessed in ASP. Before Microsoft .NET,
Microsoft tools were lacking in their integration and ease-of-use for web development. The few attempts
that were made to place a web interface on traditional languages, such as WebClasses in VB, were
compromises that never gained widespread acceptance. The result was that developing a large Internet
application required the use of a large number of loosely integrated tools and technologies.

Microsoft .NET is the first software development platform to be designed from the ground up with the
Internet in mind – although .NET is not exclusively for Internet development; rather it provides a
consistent programming model that can be used for many types of applications. However, when an
application needs Internet capabilities, access to those capabilities is almost transparent, unlike tools
currently used for Internet-enabled applications.

1



Chapter 1

10

To understand what the importance of .NET is, it's helpful to understand how current tools such as
COM limit us in a development model based on the Internet. In this chapter, we'll look at what's wrong
with COM and the DNA architectural model, and then examine how .NET corrects the drawbacks in
these technologies.

Although we'll discuss the drawbacks of current tools in the context of the Microsoft platform, almost all
apply in some form to all the platforms that are currently available for Internet development. Moreover,
many of these other platforms have unique drawbacks of their own.

The DNA Programming Model
In the late 1990s, Microsoft attempted to bring some order to Internet development with the concept of
Windows DNA applications. DNA consists of a standard three-tier development based on COM, with
ASP (as well as Win32 clients) in the presentation layer, business objects in a middle layer, and a
relational data store and engine in the bottom layer. The following diagram shows a generic Windows
DNA application:

Win32 Client
Applications

(e.g. Visual Basic forms)

Browser-based
interface

HTML/XML
Client-side script

Java Applets
ActiveXCOM components

on the client

SQL Server Exchange Oracle/
other RDBS

Mainframe /
Legacy

DCOM

COM/MTS/COM+ components
(business rules and processes)

HTTP

IIS / ASP

COM

COM

ADO CDO ADSI MSMQ

Pre-packaged components



What is Microsoft .NET?

11

Presentation Tier
In Windows DNA, there are two types of user interfaces – Win32 clients and browser-based clients.

Win32 clients are most often produced with a visual development tool such as Visual Basic. They are
simple to create, and offer a rich user interface. The drawback of such software is that it is difficult to
deploy and maintain – it must be installed on every client and every installation must be altered
whenever an upgrade to the software is made. In addition to these logistical difficulties, DLL conflicts
frequently occur on the client because of variations in the version of the operating system and other
software installed on the client. This is known as DLL Hell, which we'll discuss later on.

Browser-based clients are far easier to deploy than Win32 clients as the client only needs a compatible
browser and a network (Internet or intranet) connection. However browser-based clients are often more
difficult to create than Win32 clients, and offer a more limited user interface that has fewer controls and
permits only limited control over the layout of the screen and the handling of screen events.

There are some in-between options. If clients are restricted to certain browsers, Dynamic HTML
(DHTML) can be used to add functionality to the interface. If clients are further restricted to Internet
Explorer (IE), ActiveX controls can be used to create an interface that is close to that available in a
Win32 client. However, ActiveX controls have deployment issues of their own. VB can be used to
create ActiveX controls, but then deploying the controls requires lots of supporting VB DLLs to be
present on the client. Consequently, ActiveX controls are typically written in C++ to make the
installation as lightweight as possible, but this adds to development time and requires a higher level of
development expertise.

One important factor that is often overlooked in the DNA model is that there may be a need to implement
both Win32-based and Internet-based user interfaces. Alternatively, there may be a need to have different
types of user interface, perhaps one for novice or occasional users, and one for advanced users. This is
practical only if the design of the system keeps the user interface layer as thin as possible. Normally, it should
only contain logic that manages the user interface and performs basic validation of user data. (Such validation
of data in the client layer is important as it minimizes round trips to the server.)

Middle Tier
The middle tier in a DNA application should encapsulate as much of the business logic processing as
possible. Apart from those rules that are needed to validate data on the client, all the business rules
should be in the middle layer.

The middle tier is often broken down into sub-tiers. One tier may handle the interface to the client,
another tier the business rules, and another tier the interface to the data repositories.

Visual Basic is the language most commonly used to write middle-tier components. This is a more
sophisticated type of development than for forms-based Visual Basic programs; it requires a greater
level of expertise in COM and object-oriented programming. Understanding COM is important in
constructing a middle tier because the components in this layer must work together, which means that
all the components must be versioned properly so that they can understand each other's interfaces. It's
also important to create components that scale well, which often means developing components that are
implemented using Microsoft Transaction Server (MTS) or COM+ Services. Such components typically
use stateless designs, which can look very different from the stateful designs commonly used in client-
based components.



Chapter 1

12

Components in the middle tier may use a variety of protocols and components to communicate data to the
data tier. The diagram shows examples such as HTTP, ADO (ActiveX Data Objects), ADSI (Active
Directory Service Interfaces), and CDO (Collaboration Data Objects), but that list is by no means exhaustive.

Data Tier
Most business applications must store information for long-term use. The nature of the storage
mechanism varies with the installation but a relational database management system (RDBMS) is often
required, with the most common options being Microsoft SQL Server and Oracle. However, if the
information is based around documents and messages, a messaging data store such as Exchange may be
required, and many installations will depend on legacy mainframe systems.

Besides holding the data, the data tier may also contain logic that processes, retrieves, and validates
data. Stored procedures, written in some variation of SQL (Structured Query Language), can be used
with RDBMS databases to do this.

Issues with the DNA Model
The concept behind DNA is sound, but actually getting it to work well is overly complicated. A DNA
application will often require:

❑ Visual Basic code in forms, as well as in components on both the client and the server

❑ ASP scripting code as well as client-side scripting

❑ HTML, DHTML, CSS (Cascading Style Sheets)

❑ XML, XSL

❑ C++ in ActiveX components

❑ Stored procedures (Transact-SQL in SQL Server or PL-SQL in Oracle)

With so many options, it's all too easy to make inappropriate design decisions, such as putting logic on
the client that belongs on the server, or creating VBScript for formatting when CSS would work better.
Designing and constructing a complex DNA-based application requires a high level of expertise in a
number of different technologies.

The Limitations of COM
While COM is a viable platform for enterprise-level Internet applications, it does have some serious
limitations. Let's cover some of the major ones.

DLL Hell
COM-based applications are subject to major deployment and configuration issues. Small changes in
COM interfaces can render entire applications inoperable. This problem, in which small problems
cascade through an entire component-based tier is often referred to as DLL Hell – experienced COM
developers will attest to the appropriateness of the term. Getting a large set of DLLs to a compatible
state of versioning requires skill and a well-controlled deployment process.



What is Microsoft .NET?

13

While DLL Hell is most common in the middle tier, there are also deployment issues in the client tier
that are caused by COM. Any forms-based interface will depend on COM components in order to
function. Some of these components are from the tool used to create the interface (such as Visual Basic);
others may be custom-written DLLs. All will need to be installed on the client.

The class IDs (which are GUID-based identifiers) of all the COM-based components must be placed in
the local client's Windows Registry. Complex installation programs typically do this. Getting all the
necessary components registered and properly versioned on the client is a variant of DLL Hell, and
makes deploying client applications to large numbers of desktop machines an expensive process. This
has driven many application designers to use browser-based interfaces whenever possible in order to
avoid such deployment costs, even though the browser user interface is not as flexible.

Lack of Interoperability with Other Platforms
COM works well on pure Microsoft platforms but it doesn't provide the ability to activate or
interoperate with components on other platforms such as UNIX. For enterprise-level applications, this is
a significant shortcoming as large organizations often have a variety of operating platforms, and require
interoperability between them.

Lack of Built-In Inheritance
One of the most important ways in which functionality can be reused is for a software component to be
inherited by another component, and then extended with new functionality. (Chapter 6 covers this issue
in detail.) Inheritance is crucial in developing complex application frameworks, but COM does not
support inheritance natively.

Inheritance has been possible on Microsoft platforms at the source language level, using languages such
as C++ and Delphi. However, since inheritance is not built into the basic structure of COM, many
languages (such as VB6) don't support it, and there was no capability on Microsoft platforms before
.NET to allow languages to inherit from components written in another language.

Limitations of VB6 for DNA Application Development
Visual Basic 6 is easily the most popular language for developing applications with the DNA model. It is
used in two major roles: forms-based VB clients and COM components (either on the client or the
server). There are other options, of course, including C++, J++, and various third-party languages such
as Delphi and Perl, but the number of VB developers outnumbers them all put together.

However, although it's popular, VB6 isn't without its limitations, which include:

❑ No capability for multithreading – which implies, for example, that VB6 can't be used to write
an NT-type service. There are also situations in which the apartment threading used by
components created in VB6 limits performance.

❑ A lack of implementation inheritance and other object-oriented features – this makes VB6
unsuitable for the development of object-based frameworks.



Chapter 1

14

❑ Poor error-handling ability – VB6's archaic error handling becomes especially annoying in a
multi-tier environment. It's difficult in VB6 to track and pass errors through a stack of
component interfaces.

❑ Poor integration with other languages such as C++ – VB6's implementation of COM, although
easy to use, causes problems with such integration. Class parameters (object interfaces) in VB6
are "variant compliant", forcing C++ developers who want to integrate with VB to convert
parameters to less appropriate types. These varying data structures and interface conventions
must be resolved before components in VB can be integrated into a multiple language project.
Besides requiring extra code, these conversions may also result in a performance hit.

❑ No effective user interface for Internet-based applications – perhaps the biggest drawback to
using VB6 became apparent when developing for the Internet. While VB6 forms for a Win32
client were state-of-the-art, for applications with a browser interface VB6 was mostly relegated
to use in components.

Microsoft tried to address this last problem in VB6 with WebClasses and DHTML Pages but
neither caught on:

❑ WebClasses offered an obscure programming model, and limited control over visual layout.

❑ DHTML Pages in VB6 had to send a (usually large) DLL to the client, and so needed a high-
bandwidth connection to be practical. This limited their use mostly to intranet applications.
DHTML Pages were also restricted to Internet Explorer.

Limitations of DNA Internet Development
There are a few additional areas in which previous Microsoft tools and technologies fell short of the
ideal for Internet application development.

Different Programming Models
With DNA-based software development, creating software that is accessed by a user locally is done very
differently from development for the Internet. The starkest example of this is the use of VB forms for
client-server user interfaces versus the use of ASP for Internet user interfaces. Even though both
situations involve designing and implementing GUI-based user interfaces, the tools and programming
techniques used are quite different.

Having very different programming models for these similar types of development causes several problems:

❑ Developers have to learn multiple programming models.

❑ Code developed for one type of interface typically cannot be used for the other type of
interface.

❑ It is uncommon to have both local and web-based user interfaces for an application, even
though this could result in a better user experience for local users. Usually, it's simply too
expensive to implement two interface tiers.



What is Microsoft .NET?

15

No Automatic State Management
Developers using VB6 forms and local components are accustomed to making the user interface more
convenient by creating forms that remember things for the user – the interface maintains state. If a
piece of information is placed in a text box, it stays there until it is explicitly changed or removed by the
developer or user.

ASP, however, has no such capability. Every time a page is rendered, we must make sure that all the
visual controls have their information loaded. It is the programmer's responsibility to manage the state
in the user interface, and to transfer state information between pages.

This means that developers have to write a lot of code for Internet user interfaces that is not relevant to
the business problem the application is designed to solve. In addition, if an Internet application is going
to run on a group of web servers (often called a web farm), then considerable additional work is
necessary to design a state management system that is independent of a particular server.

Weak User Interfaces over the Web
It is possible to produce sophisticated user interfaces for the Web by using DHTML and writing a lot of
JavaScript. However, most web-based applications actually offer fairly primitive user interfaces because
it takes too much time and expertise to write a sophisticated one. (Including a lot of nice graphics
doesn't make a user interface sophisticated – it just makes it pretty.)

Developers who cut their teeth on producing state-of-the-art interactive user interfaces in VB during the
mid-1990s were never satisfied with the compromises necessary for web interfaces. Better user interfaces
on the Web would be an enormous boost for user productivity.

The Need to Abstract the Operating System
Today's applications need to use the Windows API for a variety of purposes. VB6 developers use the API to
monitor Windows messages, manipulate controls, read, and write INI files, and a variety of other tasks.

This is some of the fussiest programming VB6 developers ever have to do. The Windows API is hard to
program to for a variety of reasons. It isn't object-based, which means we must learn complex calls to
functions with long lists of arguments. The naming scheme for the functions is inconsistent and since the
whole API is written in C/C++, getting calling conventions right on data types such as strings is very messy.

There's a larger issue here as well. As hardware platforms proliferate, it's no longer enough for software
just to run on desktop clients and servers. There are handheld and wireless devices of various kinds,
kiosks, and other types of systems, many of which run on different processors and don't use standard
Windows as an operating system. Any software written with calls to the Windows API won't be portable
to any of these systems without major changes. The only way that software produced with Microsoft
tools can become more portable is to abstract away the Windows API, so that application software does
not write directly to it. This actually creates the possibility of an equivalent layer of abstraction on other
platforms that could allow Microsoft-based software to run on them.

All of these limitations had to be addressed, but Microsoft decided to look beyond just Visual Basic and
solve these problems on a global level. All of these limitations are solved in Visual Basic .NET
(VB.NET) through the .NET Framework.



Chapter 1

16

The Solution – Microsoft .NET
Microsoft's .NET initiative is broad-based and very ambitious. It includes the .NET Framework, which
encompasses the languages and execution platform, plus extensive class libraries providing rich built-in
functionality. Besides the core .NET Framework, the .NET initiative includes protocols (such as the
Simple Object Access Protocol, commonly known as SOAP) to provide a new level of integration of
software over the Internet, and a set of pre-built web-based services called .NET My Services (formerly
codenamed Hailstorm).

Microsoft also released several products early in 2001, which were described as being part of the .NET
Enterprise Server family: SQL Server 2000, Commerce Server 2000, BizTalk Server, Exchange 2000,
Host Integration Server (the successor to SNA Server), and Internet Security and Administration (ISA)
Server (the successor to Proxy Server).

Some of the marketing literature for these products emphasizes that they are part of Microsoft's .NET
strategy. However, it is important to understand the difference between these products and the .NET
Framework. The .NET Enterprise Servers are not based on the .NET Framework. Most of them are
successors to previous server-based products, and they use the same COM/COM+ technologies as
their predecessors.

These .NET Enterprise Servers still have a major role to play in future software development projects.
When actual .NET Framework projects are developed, most will depend on the technologies in the
.NET Enterprise Servers for functions like data storage and messaging.

The General Goals of .NET
Many of the goals Microsoft had in mind when designing .NET reflect the limitations we identified for
their earlier tools and technologies.

Creating Highly Distributed Applications
The trend in business applications is towards a more highly distributed model. The next generation of
applications may have their elements distributed among various organizations. This contrasts with
today's dominant model in which all the elements of an application (except possibly a browser-based
client) are located solely within a single organization.

Simplifying Software Development
Developers need to be able to concentrate on the business logic in their applications, and to stop writing
logic for things like state management and scalability. Writing software for the Internet should not
require expertise in a long list of Internet-specific technologies.

A related goal is to have development for the Internet look very much like development for other
platforms. A component accessed over a local network or over the Internet should be manipulated with
code very much like that for a component accessed on the local machine. The software platform should
be able to take care of the details in transmitting information to and from the component.



What is Microsoft .NET?

17

Better User Interfaces over the Web
User interface development also needs to be as similar as possible for the Internet compared to local access.
While using local, platform-specific interfaces will always offer more flexibility than a browser-based
interface, Microsoft .NET aims to make those two types of interfaces as similar to develop as possible.

By making web-based user interfaces richer and more flexible than they are now, bringing them as close
as possible to the richness of local, forms-based interfaces.

Simplifying Deployment
The problems of DLL Hell, and the need for large installs of forms-based applications, are just two
examples of current deployment issues. Microsoft .NET aims to make deployment as simple as it was
for DOS – just copy a compiled module over to a system and run it. No registration, no GUIDs, no
special installation procedure.

Support for a Variety of Languages
While the idea of one grand, unifying language sounds good in theory, in the real world, different types
of developers need different tools. Microsoft .NET is designed to support a multitude of languages, from
Microsoft and third-parties. This will allow the development community to evolve languages that best fit
various development needs.

An Extendable Platform for the Future
A new platform needs the capability to adapt to changing conditions through extensions and variations. .NET
is designed with greater extendibility and flexibility than any previous software development platform.

Future Portability of Compiled Applications
Operating systems will make major changes and perhaps entirely new ones will be introduced in the
future. Investments in software development need to be carried forward to those platforms. The goal of
.NET is to allow applications to move from current platforms to future platforms, such as 64-bit
operating systems with a simple copy, and no recompilation.

The Structure of Microsoft .NET
These are ambitious goals. To understand how they are accomplished, we need to understand the
general structure of Microsoft .NET.

One way to look at .NET is to see how it fits into the rest of the computing world. Here is a diagram of
the major layers of .NET, showing how they sit on top of an operating system, and provide various ways
to interface to the outside world. Note how the entire architecture has been created to make it as easy to
develop Internet applications, as it is to develop for the desktop:



Chapter 1

18

Remote systems over
Intranet/Internet

(any hardware/OS)

Remote users over
Intranet/Internet

(any browser)

Local users
(forms-based
interfaces)

ASP.NET
Web Forms Web Services

ASP.NET Application Services

Windows Forms
Controls Drawing

Windows Application Services

.N
ET

 F
ra

m
ew

or
k

.NET Framework Base Classes

Net

ThreadingXMLADO.NET Message Queues

Etc.DiagnosticsSecurity

Operating System
Windows 2000 XP/NT/98/Me - others in future

Memory Management Common Type System Lifecycle Monitoring

Common Language Runtime

The first point of this diagram is that .NET is a framework that covers all the layers of software development
above the operating system. It provides the richest level of integration among presentation technologies,
component technologies, and data technologies ever seen on a Microsoft, or perhaps any, platform.

The .NET Framework wraps the operating system, insulating software developed with .NET from most
operating system specifics such as file handling and memory allocation.

The .NET Framework itself starts with the execution engine, memory management, and component
loading, and goes all the way up to multiple ways of rendering user and program interfaces. In between,
there are layers that provide just about any system-level capability that a developer would need.

The Common Language Runtime
The Common Language Runtime (CLR) is at the heart of the .NET Framework. The core of the CLR is
an execution engine that loads, executes, and manages code that has been compiled into an
intermediate byte-code format called Microsoft Intermediate Language (MSIL and often referred to as
just IL). This code is not interpreted – it is compiled to native binary code before execution by just-in-
time compilers built into the CLR.

That means there are two levels of compilers in .NET. The language compiler takes the source code and
creates MSIL. This MSIL byte code is portable to any .NET platform. At execution time, this code is then
compiled by the just-in-time compilers into the native binary code of the machine the code is executed on.

Chapter 3 will cover the capabilities of the CLR in detail. Do not skip that chapter.
Understanding the CLR is a vital step in understanding .NET as a whole.



What is Microsoft .NET?

19

The .NET Framework Class Library
The next layer up in the framework provides the services and object-models for data, input/output,
security, and so forth. It is called the .NET Framework class library, sometimes referred to as the .NET
base classes. .NET includes functionality that is, in many cases, a duplication of existing class libraries.
There are several reasons for this:

❑ The .NET Framework class library is implemented in the .NET Framework, which makes
them easier to integrate with .NET-developed programs.

❑ The .NET Framework class library brings together most of the system class libraries into one
location, which increases consistency and convenience.

❑ The class libraries in the .NET Framework class library are much easier to extend than older
class libraries.

❑ Having the libraries as part of the .NET Framework simplifies deployment of .NET
applications. Once the .NET Framework is installed on a system, individual applications don't
need to install base class libraries for common functions like data access.

The .NET Framework class library contains thousands of classes and interfaces. Here is just some of the
functionality it contains:

❑ Database access and manipulation

❑ Creation and management of threads

❑ Interfaces from .NET to the outside world – Windows Forms, Web Forms, Web Services, and
console applications

❑ Definition, management, and enforcement of application security

❑ Application configuration

❑ Working with Directory Services, Event Logs, Processes, Message Queues and Timers

❑ Creating and working with Windows Services

❑ Encrypting and decrypting files

❑ Parsing and manipulating data in XML files

❑ Sending and receiving data with a variety of network protocols

❑ Accessing metadata information stored in assemblies, which are the execution units of .NET
(think of them as DLLs and EXEs)

Much of the functionality that you might think of as being part of a language has been moved to the
.NET Framework classes. For example, the System.Math.Sqrt method in the Framework Classes
replaces the Visual Basic keyword Sqr for extracting a square root.

All .NET languages have these Framework classes available. That means that C#, for example, can use the
same function mentioned above for getting a square root. This makes accessing base functionality highly
consistent across languages. All calls to Sqrt look essentially the same (apart from syntactical differences
between languages) and access the same underlying code. Here are examples in VB.NET and C#:



Chapter 1

20

' Example using Sqrt in Visual Basic .NET
Dim dblNumber As Double = 200
Dim dblSquareRoot As Double
dblSquareRoot = System.Math.Sqrt(dblNumber)

// Same example in C#
Double dblNumber = 200;
Double dblSquareRoot;
dblSquareRoot = System.Math.Sqrt(dblNumber);

User and Program Interfaces
In a sense, the top layer of the .NET Framework is an extension of the .NET Framework Base Classes
layer immediately underneath it. It comprises highly innovative user and program interfaces that allow
.NET to work with the outside world. These interfacing technologies are all highly innovative:

❑ Windows Forms is a language-independent forms engine that brings the drag-and-drop
design features of Visual Basic to all .NET-enabled languages, and also enables developers to
develop forms-based interfaces with little or no access to the Win32 API. They are discussed
in Chapters 12 and 13.

❑ Web Forms brings drag-and-drop design and an event-driven architecture to Web-based
interfaces, implementing a programming model that is much like standard VB6 forms-based
development. User interfaces created with Web Forms also have built-in browser
independence and state management. They are discussed in Chapters 14 and 15.

❑ Web Services allow remote components, possibly running on completely different operating
systems, to be invoked and used. This capability for communications and interoperability with
remote components over the Internet serves as the mechanism by which highly-distributed
applications can be built, going far beyond what is feasible with existing technologies like
DCOM. Web Services are discussed in Chapter 22.

XML as the .NET Meta-Language
Much of the underlying integration of .NET is accomplished with XML:

❑ Web Services depend completely on XML for interfacing with remote objects.

❑ The information about execution modules, called assemblies, can be exported as XML.

❑ ADO.NET, the successor to ADO, is heavily dependent on XML for remote representation of
data. Essentially, when ADO.NET creates what it calls a DataSet (a more complex successor
to a recordset), the data is converted to XML for manipulation by ADO.NET. Then the
changes to that XML are posted back to the data store by ADO.NET when remote
manipulation is finished. (Chapter 11 discusses ADO.NET in more detail.)

XML, and its relationship to VB.NET, is discussed further in Chapter 10.



What is Microsoft .NET?

21

How Microsoft .NET Attains Its Goals
Now that we've had a short introduction to the structure of .NET, we can better understand how it
meets the goals Microsoft set out for it.

Simplified Software Development
.NET simplifies the development of business application software through:

❑ Pre-Written Functionality – The .NET Framework Base Classes make it unnecessary to write
system-level code. These classes furnish a wide array of functionality, and can be extended via
inheritance if additional functionality is needed. It is no longer necessary to start over from
scratch if a particular pre-built component does not do exactly what we need.

❑ Transparent Integration of Internet Technologies – In .NET, the protocols and mechanisms
for accessing Internet resources are built into the platform in such a way that we do not need
to handle the details. For example, Web Services are created by simply marking a function
with a <WebMethod> attribute (more on this in Chapter 22). Creating simple web interfaces
with Web Forms doesn't require an extensive knowledge of HTML, or how to handle
information from an HTTP post operation. The controls used in Web Forms automatically
produce JavaScript (if the browser in use can run it) to handle data validation on the client. If
the browser does not support JavaScript, the data validation is run transparently on the server.

This integration of web technologies reduces the expertise barriers to web development.
While it's still helpful to know a lot about HTML, DHTML, and so on, traditional VB
developers will find that developing web software with VB.NET is much easier than with ASP.

❑ Unified Programming Models for All Types of Development – Web Services are just regular
functions with a <WebMethod> attribute attached, which means they are created and
consumed much like local components. Once the Web Service's location is referenced, Web
Service classes are instantiated the same way as local classes, and their interface looks like a
typical object interface. Web Services even have IntelliSense in the development
environment, just like local components.

Likewise, developing user interfaces in Windows Forms is very similar to developing them in
Web Forms. Both contain commonly used controls, such as labels and text boxes, which have
similar properties and methods. Of course, not everything can be the same, because the
disconnected model for Web Forms means it is impractical to have as many events as in
Windows Forms. (For example, the mouse-moving events are mostly missing from Web
Forms.) However, there's enough commonality between the two to make it easy to move
between the two types of development, and for traditional VB developers to start using Web
Forms.

Highly Distributed Systems
The vision of Microsoft .NET is of globally distributed systems that use XML as a universal glue in
order to allow functions running on different computers across organizations to form a single
application. In this vision, systems from servers to wireless palmtops (and everything in between) will
share the same general platform, with versions of .NET available for all of them, and with each able to
integrate transparently with the others.



Chapter 1

22

Web Services are the mechanism for reaching this vision. In Web Services, software functionality is
exposed as a service that doesn't care what the consumer of the service is (apart from security
considerations). Web Services allow developers to build applications by combining local and remote
resources to create an integrated, distributed solution.

Web Services have enormous potential. For example, a commercial software company could produce a
Web Service that calculates sales tax for every jurisdiction in the nation. A subscription to that Web
Service could then be sold to any company that needs to calculate sales tax. The customer has no need
to deploy the sales tax calculator because is it just called over the Web. The company producing the
sales tax calculator can dynamically update it to include new rates and rules for various jurisdictions and
their customers that use the Web Service don't have to do anything to get these updates.

Better User Interfaces over the Web
Web Forms are a giant step towards much richer web-based user interfaces. Their built-in intelligence
allows rich, browser-independent screens to be developed quickly, and to be easily integrated with
compiled code.

Simplified Deployment
Executable modules in .NET are self-describing. Once the CLR knows where a module resides, it can
find out everything else it needs to know to run the module, such as the module's object interface and
security requirements, from the module itself. That means that a module can be copied to a new system
and immediately executed.

The CLR is capable of loading multiple versions of a single DLL that can be executed side-by-side.
Each executable module identifies the particular DLL it needs, and the CLR runs it against the correct
one. This means that versioning difficulties are dramatically reduced with .NET.

This is a huge leap from the complex deployment of before. While advanced applications still need an
installation program to accomplish tasks such as setting up database connections and other
configuration information, such programs are much simpler than before. Simple applications do not
need an installation program at all.

But perhaps the most radical improvement for deployment is the ability of .NET to deploy over the
Internet. The components and forms for an application can be placed on a web server, and a simple
launch program on the client can automatically cause elements of the application to be copied from the
web server as needed, and for new versions of the application's components to be automatically updated
on the client. The only requirement for the client to use this capability is to have the .NET Framework
installed on it, and to have Internet connectivity. This option promises to revitalize the use of smart
client interfaces, because the deployment costs associated with COM-based client applications are
virtually eliminated.



What is Microsoft .NET?

23

Support for a Variety of Languages
The CLR executes binary code in MSIL, and that code looks the same regardless of the original source
language. All .NET-enabled languages use the same data types and the same interfacing conventions.
This makes it possible for all .NET languages to interoperate transparently. One language can call
another easily, and languages can even inherit classes written in another language and extend them. No
other platform has anywhere near this level of language interoperability.

This makes choosing a language mostly a matter of taste. .NET-enabled languages will typically have
the same performance characteristics, the same overall functionality, and will interoperate with other
languages the same.

One of the most important aspects of meeting this goal is that Visual Basic becomes a first-class language. It
has almost exactly the same capabilities as C#. It has inheritance, structured error handling, and other
advanced features. With the large number of developers who already know Visual Basic, VB.NET should set
the stage for Visual Basic to continue to be the most popular programming language in the world.

Extendibility of the Platform
The completely object-based approach of .NET is designed to allow base functionality to be extended
through inheritance (unlike COM), and the platform's functionality is appropriately partitioned to allow
various parts (such as the just-in-time compilers discussed in Chapter 3) to be replaced as new versions
are needed.

It is likely that, in the future, new ways of interfacing to the outside world will be added to the current
trio of Windows Form, Web Forms, and Web Services. The architecture of .NET makes such additions
quite practical.

Future Portability
By abstracting away the underlying platform as much as possible .NET makes possible a future in which
software is moved to new hardware and operating system platforms. The core elements of .NET have
been submitted to standards bodies, with the intent of standardizing the core of .NET on different
systems. The ultimate goal is that code compiled on one implementation of .NET (such as Windows)
could be moved to another implementation of .NET on a different operating system and executed
without change.

The Role of COM
.NET integrates very well with COM-based software, which is fortunate because COM is not going to
disappear for a while. Any COM component can be treated as a .NET component by other .NET
components. The .NET Framework wraps COM components and exposes an interface that .NET
components can work with. This is absolutely essential to the quick acceptance of .NET, because it
makes .NET interoperable with a tremendous amount of COM-based software.

Going in the other direction, the .NET Framework can expose .NET components with a COM interface.
This allows COM components to use .NET-based components as if they were developed using COM.
(COM interoperability is discussed in more detail in Chapter 17).



Chapter 1

24

However, native .NET components do not interface using COM. The CLR implements a new way for
components to interface that is not COM-based. Use of COM is only necessary when interfacing to
COM components produced by non-.NET tools.

In the long term, the fact that .NET does not use COM internally may lead to the decline of COM – but
that is for the very long term. In the short to medium term, COM is definitely still important.

The Role of DNA
Earlier in the chapter, we discussed the limitations of the current DNA programming model. These
limitations are mostly inherent in the technologies used to implement DNA today, not in the overall
structure or philosophy. There is nothing fundamentally wrong with the multi-tiered approach to
development specified by the DNA model. Many design issues, such as the need to encapsulate business
rules, or to provide for multiple user interface access points to a system, apply to .NET.

In many cases, applications developed in the .NET Framework will still use a DNA model to design the
appropriate tiers. However, the tiers will be a lot easier to produce in .NET:

❑ The presentation tier benefits from the new interface technologies, particularly Web Forms for
Internet development

❑ The middle tier requires far less COM-related headaches to develop and implement

❑ Richer, more distributed middle tier designs are possible by using Web Services

The architectural skills that experienced developers have learned in the DNA world are still valuable in
the .NET world.

Additional Benefits
In addition to the advantages conferred by meeting the goals we discussed previously, .NET offers a
number of additional benefits. These include:

❑ Faster development – we have less to do as the system handles more

❑ More reuse because of inheritance

❑ Greater scalability – many capabilities to help applications scale are built into .NET

❑ Easier to build sophisticated development tools – debuggers and profilers can target the
Common Language Runtime, and thus become accessible to all .NET-enabled languages

❑ Fewer bugs – whole classes of bugs should be unknown in .NET; for example, with the CLR
handling memory management, memory leaks should be a thing of the past

❑ Potentially better performance – Microsoft's heavy investment in system level code for
memory management, garbage collection, and the like have yielded an architecture that
should meet or exceed performance of typical COM-based applications today



What is Microsoft .NET?

25

Impact on Visual Basic
Since VB.NET is built on top of the .NET framework, the shortcomings in VB6 that we discussed earlier
have been eliminated. In fact, VB gets the most extensive changes of any existing language in the Visual
Studio suite. These changes pull VB in line with other languages in terms of data types, calling
conventions, error handling, and – most importantly – object-orientation. These changes will be covered
in Chapters 5, 6, and 7.

Microsoft includes a migration tool in Visual Studio .NET, and it can assist in porting VB6 projects to
.NET, but it will not do everything required. There are some areas, including unsupported, obsolete
syntax such as GOSUB, where the tool merely places a note that indicates something needs to be done.
You can find more information about compatibility between VB6 and VB.NET in Appendix A.

Summary
This chapter explained the importance of .NET and just how much it changes the way that applications are
developed. Understanding these concepts is essential in order to use VB.NET in the most effective manner.

It is possible to use VB.NET merely to write the same kinds of software as were written in VB6, only
faster and more cleanly. However, this would be failing to use much of the value of VB.NET. The real
opportunities are in creating entirely new types of applications such as Web Services, and in
implementing application frameworks that promote reuse of code. The rest of this book explains the
concepts and technologies you'll need to do that.

In the next chapter we'll get started creating VB.NET applications, as well as take a first look at the new
development environment provided by Visual Studio .NET.


