
Chapter 1: Configuring Linux

In This Chapter
� Removing unused services

� Installing a firewall and IP security

� Using logging

To make your Linux system secure enough to resist being compromised,
you should focus on two general areas:

✦ The Linux system itself, which is the focus of this chapter

✦ The security of the network to which the Linux system is connected

You need to secure the Linux system before attaching it to the network. It is
difficult to ensure the security of a system if it has been connected to a
public network before you begin configuring it for secure operation.
Because this chapter focuses on prevention, you need to begin with a clean
slate — in other words, a system that you are certain has not been turned
into a hacker’s willing pawn. 

If your Linux system will be exposed to the Internet, you want to protect it
from as much foul play as possible. You also want to protect your private
network resources from the Internet and the Linux system allowing public
access. To do this, you need to design a detailed security plan and develop
what is commonly called an isolation LAN or demilitarized zone (DMZ) on
your network. The simplest form of a secure LAN consists of two routers, as
shown in Figure 1-1.

The outside router controls access to systems within the secure LAN and
restricts (generally blocks entirely) connections that originate from hosts
on the internet that are targeting either the private network or the inside
router. The inside router is designed to allow private LAN traffic to pass out-
side the network and act as a second barrier between the private network
and the internet. It blocks all inbound connections and specifically blocks
connections initiated by hosts on the secure LAN and the outside router
itself. This ensures that if a secure LAN host or the outside router is com-
promised, intruders will not have gained access to the private network.
Even with a secure LAN configuration, your Linux host needs to be securely
configured. Although the secure LAN goes a long way towards protecting
your private network resources, your hosts on the secure LAN are exposed
to the Internet.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 9



Getting a Handle on TCP and UDP Services10

Getting a Handle on TCP and UDP Services
When you finish your Linux installation and before installing any other soft-
ware, you need to remove the default network services that won’t be used.
By default, the services running on your new Linux installation are providing
what the install package’s creator deems commonly used services. Because
your system will provide Web services (exclusively if possible) and because
it may be directly connected to the Internet, you will want to remove many
of the default services. Any service can provide an unscrupulous remote
user with a potential avenue into your system. If the service is available to
network users and is running, you should consider it a potential weakness.
Even though many hours are spent testing and identifying flaws in the Linux
system, testing can’t catch everything. However, you can minimize potential
threats by removing unneeded services.

Outside Router

Inside Router

Secure LAN Host

Private Network

Figure 1-1:
Secure LAN
configu-
ration.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 10



Book I
Chapter 1

Configuring Linux

Getting a Handle on TCP and UDP Services 11

Inetd
Identifying and controlling services, network services in particular, is fairly
straightforward on most current versions of Linux, including Red Hat,
Mandrake, and SuSE. Within the /etc directory, you will find a file called
inetd.conf. This file is used at system startup to load most of the system’s
networking services. Rather than have a large number of active processes lis-
tening for network connections, the inetd “super server” plays traffic cop
between service requests and available services, which results in a more effi-
cient use of system resources. Basically, inetd is a server service that listens
for requests that relate to TCP and UDP connections. Any requests for serv-
ices are then passed to the appropriate service if one is available. If no serv-
ice is available, the request is dropped. For example, if a Linux server is
allowing Web and FTP connections for hundreds of users, inetd allows the
creation of sessions for each individual connection rather than have numer-
ous instances of the ftpd or httpd processes idling all the time waiting for
users to connect. This frees up memory and CPU time for other uses. 

The inetd process relies on a corresponding conf file to determine which
processes are available for use. Figure 1-2 shows an example of an
inetd.conf file.

What you find in the inetd file varies depending on the distribution you
use, but how you can control it is the same across most distributions. You
can open the file with the text editor of your choice and add or remove
entries as needed. For example, the inetd server ignores any line with the #
symbol. Using the # symbol is also known as “commenting out” the code
that follows. 

“Commenting out” allows you to disable startup services without removing
the configuration. This is useful if you have a service you will use only occa-
sionally and you want to start it manually instead of at startup. You can also
temporarily disable one of the services by inserting the # symbol and restart-
ing the inetd. As the phrase “comment out” suggests, you can also use this

Figure 1-2:
Sample
inetd.
conf.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 11



Getting a Handle on TCP and UDP Services12

symbol to insert comments into the file. For example you might want to
note why you added or removed a particular entry. The process for restart-
ing inetd varies in some distributions, but in general, you can go to the
directory where the inetd is stored (/etc/rc.d/inet.d on Red Hat) and
type the inetd restart command. You need to run this command as root
or with root privileges. If this command doesn’t work on your distribution,
search that product’s support information for the relevant process to
restart the inetd process.

The inetd.conf file contains six attributes for each item. Here are the
attributes from left to right as shown in Figure 1-2:

✦ The service name: In the example, the first line has a service named ftp,
indicating it is an ftp service. The name of the service is taken from the
corresponding entry in the /etc/services file.

✦ The socket type: The socket type can be either stream or datagram. In
most cases, it’s stream. 

✦ The protocol type: This can be specified as either TCP or UDP. 

✦ The wait/nowait option: This option determines if a new process is
spawned for each request (nowait) or if each request is processed
sequentially one at a time (wait).

✦ The user whose rights are used to execute the service: The user is
root in the example.

✦ The path to the command that launches the daemon: The path is
/usr/local/tcpd in the example. A daemon is a program that waits in
the background until called upon by a user to actually do something.

The seventh field is optional. If you don’t need to specify any execution
arguments, feel free to omit this field.

Many Linux distributions include graphical tools for configuring the startup
services. Typically these configuration applets contain a list of startup serv-
ices and corresponding check boxes. To disable a service, you simply clear
the corresponding check box. In most cases, you need to manually shut
down the service by using a command in a terminal window or by restarting
the system. For more information about the specific tools available, consult
the developers of your desktop environment (KDE or Gnome).

Xinetd
On many current distributions, the xinetd daemon is used instead of inetd.
Conceptually, xinetd does the same thing inetd does. However, for the most
part, this similarity is only skin deep. The processes for configuring files and
for the construction of the configuration files are quite different. There are
some other critical operational differences. For example, any user can use
xinetd to start servers that do not need privileged ports. This is possible

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 12



Book I
Chapter 1

Configuring Linux

Getting a Handle on TCP and UDP Services 13

because, unlike inetd, xinetd does not require that the services in its config-
uration file (xinet.d) also appear in /etc/services. 

In the list below, the key enhancements (what xinetd does that inetd does
not) are outlined.

✦ Access control works on multi-threaded and single-threaded services. 

✦ Xinetd kills those services that no longer meet the existing access 
control criteria and those that have been removed from the xinet.d
configuration file.

✦ It can place limits on the number of processes a single host can spawn,
the number of servers a particular service can start, and the size of log
files. These configurable limitations go a long way towards preventing
denial-of-service attacks, which attempt to disrupt the system by
overutilizing available resources.

As noted earlier, the configuration file (/etc/xinetd.conf) for the xinetd
service is also notably different than the file used by inetd. The example
below (Figure 1-3) shows telnet, IMAP, and the default entries. By itself, this
configuration is not entirely useful; I’ve included it because it illustrates the
differences between the layout of inetd and xinetd. 

Figure 1-3:
Example
xinetd
configu-
ration file.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 13



No Sharing: NFS/RPC14

If you would like to convert an inet.d configuration file to be compatible
with xinetd, you can make use of one of a couple of conversion tools. Both
itox and xconv.pl come with full distributions of xinetd and are relatively
painless to use. For guidance, check out the information located here 
(under the configuration section): www.linuxfocus.org/English/
November2000/ article175.shtml.

No Sharing: NFS/RPC
Unless you’re dying for someone to turn your Linux server into the techno-
logical equivalent of Typhoid Mary, avoid the Remote Procedure Call (RPC)
and Network File Service (NFS). Keep in mind I’m talking about a Linux
server exposed to the Internet. RPC and NFS can be very useful on a private
network but have no business on at-risk systems. Both services are
designed to allow remote users to access resources:

✦ RPC allows the sharing of processing resources among computers.
With RPC, a single program can use the resources of several computers
collectively in a clustery arrangement.

✦ NFS is used to facilitate disk access. Remote users who have the appro-
priate access rights can mount and access data on an NFS-enabled hard
disk.

It is painfully easy to misconfigure these services, NFS in particular, in a
manner that creates huge holes. For example, a misconfigured NFS imple-
mentation allows anyone to mount and access data on the NFS-capable
drive. 

The portmapper controls the use of NFS and RPC. The portmapper is
another daemon and is typically housed at /etc/rc.d/rc.inet2, though
the location can vary depending on the distribution. If you do not know the
location, you can try running the find command on the /etc directory.
For example, the following line finds instances of words containing map:

find /etc -name “*map*” -print | more

You can replace the *map* argument with *nfs*, *port*, or *rpc* to thor-
oughly scan the /etc/rc.d directories for the startup locations of the NFS
and RPC services. Like other configuration files, find the relevant entries
and place a # in front of the execution lines or simply delete the entries.
After the services have been disabled, you need to restart the system to
unload them.

If you want to access your server remotely, Telnet is not a good option
because it has no system for protecting information passed between the
connecting client and the server. Instead, you should use the Secure Shell
(SSH) client-server utility. SSH encrypts all the data that passes between the

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 14



Book I
Chapter 1

Configuring Linux

Misleading Binaries (SUID/GUID Binaries) 15

client and the server. Not only is the logon information protected, but the
data transferred is protected as well. Virtually all modern Linux distribu-
tions include an SSH implementation, but if it is not present, you can down-
load it. To install SSH, you can download the source, run the ./configure
script, and then run the make and make install commands. For more
information on the installation process for SSH, see www.openssh.com. 

Misleading Binaries (SUID/GUID Binaries)
In addition to network services, some of the programs on your Linux system
can be real liabilities because they need root privileges to do much. Some
programs use a specialized bit (set on the binary itself) — called either Set
User ID (SUID) or Group User ID (GUID) — to gain more privileges than the
user who might run the program or use its services. For example, if users
want to send e-mail, they need to use the services of an SMTP server such
as Sendmail. However, they probably won’t have all the rights needed to
perform all the tasks that the mail server needs to do. To perform the
needed tasks, Sendmail often runs with the Set User ID bit set to use root
account privileges.

Any program that uses SUID/GUID to run with elevated privileges is a liabil-
ity. If a malicious user gains control of the application, that user may be able
to interact with the system using the elevated system rights provided by the
SUID/GUID setting. Fortunately, you can easily identify the binaries that have
been configured to use the SUID/GUID funtionality. If you check the file
attributes of a binary and see an s where you would normally see an r or x
(r-sr-xr-x, for example), you have a binary using SUID/GUID. So how do
you find and, if not needed, disable these binaries? The easiest method is to
use the find command to search the entire system and build a list of the
SUID/GUID-enabled applications. Here’s an elegant solution that uses the
find command with the option to dump the output to a text file:

find / \( -perm -4000 -o -perm -2000 \) -exec ls -ldb {} \;
>> /tmp/suids   

This command creates the text file suids in the /tmp directory with infor-
mation about all the binaries using the SUID/GUID capability. You can find
and delete any binaries that you know you don’t need. If you determine that
some of the binaries may prove useful, you can refine their access rules
(by using the CHMOD command) so that not just anyone can run them. This
is especially useful if one of the remaining binaries needs to be granted root
access.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 15



Protection with Firewalls16

Here are a couple handy ways to help you determine if you need a particular
service or program:

✦ Visit the home page of your Linux distribution and search for the 
program.

✦ Search for “man program/service” using a search engine like Yahoo! or
Google. The manual (man) pages typically reveal a wealth of informa-
tion about the program/service and its usage.

Protection with Firewalls
Although many third-party security products, including firewalls, are avail-
able for Linux, several handy features are included with the operating
system out of the box. Having a firewall on your Linux system is exception-
ally important if the system is outside any other firewalls. For example, if
the resources for setting up a secure LAN are not available, the Linux server
you build needs a local firewall installed if it is connected to the Internet.
Even if you’re using a secure LAN configuration, an additional, local firewall
adds an extra line of defense to stave off intruders if they compromise one
of your existing routers. 

Ipchains
Ipchains is a long-standing firewalling mechanism that is available on most
Linux distributions that use kernel version 2.2.x. To get started, you need to
enable ipchains. If your system is using the IP address 10.50.4.55 with the
mask 255.255.255.0 (internally), you need to run the following commands
with root privileges:

echo 1 > /proc/sys/net/ipv4/ip_forwardipchains -A forward -j
MASQ -s 10.50.4.0/24 -d 0.0.0.0/0

The first command enables ip_forwarding, and the second entry config-
ures the server with which network to grant Internet access. If you want to
load the ipchains service at startup, you need to place the two preceding
commands into the etc/rc.d/rc.local file. After you have the firewall
running, you can use the ipchains -L command to see the configured IP
filtering rules. Of course to start with, there is not much to see. The output
of this command looks something like Figure 1-4.

In the figure, three chains are in place by default. The chains are for inbound,
outbound, and forwarded packets. But because you have not configured the
behavior of these chains, nothing useful is happening at this point. To set a
rule, you need to invoke the ipchains command and tell it what to do. Take
a look at the following example:

ipchains -A input -p icmp -i eth0 -j REJECT

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 16



Book I
Chapter 1

Configuring Linux

Protection with Firewalls 17

Here’s a closer look at the components of this example:

✦ The ipchains -A input portion indicates that you’re appending (A) a
new rule to the ipchains input chain. In place of -A, you can use -L to
see the current ipchains rules and -D to delete a rule from a chain.

✦ The option -p specifies that you’re going to set a rule for a protocol.

✦ Net is the type (used with the -p option), and in this case, that is all
ICMP traffic.

✦ Eth0 is the network interface to apply the rule to.

✦ The -j REJECT option specifies that the ICMP traffic should be rejected
at the interface. The result is that any inbound ICMP traffic on the Eth0
interface is summarily rejected.

See Book I, Chapter 3, for information about products that make ipchains
and other firewall configuration easier. This chapter only touches on the
capabilities of the ipchains tool. If you’re interested in finding out more
about ipchains, visit www.rt.com/man/ipchains.8.html or type “man
ipchains” on your Linux server to see the almost overwhelming number of
ipchains run-time options.

Iptables
Another option for implementing a firewall on your Linux system is through
the use of iptables. They are similar in function (they both control network
access); however, iptables has several advantages over ipchains. The advan-
tages are noteworthy enough that if you are using a 2.4.x or newer kernel
version (any build of Red Hat newer than 7.1, for example) you should use
iptables. Below are some of the ways in which iptables differs from ipchains.

✦ Iptables, unlike ipchains, uses a single chain to process filtered packets.
Because of this, iptables allows you to exert finer control over the kinds
of filtering options you choose. For example, a packet forwarded by an
ipchains host must traverse the input, forward, and output chains to
make it to its destination. An iptables host must only check the packet

Figure 1-4:
Example
ipchains
rules
configu-
ration.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 17



Protection with Firewalls18

against the output filter. If the host is using iptables, a conflicting rule
on the input chain won’t stop the forwarding of the packet.

✦ The iptables host processes inbound packets using only the inbound
rules, and outbound packets using only the outbound rules. If you want to
specify the network interface to be used with a particular rule, you must
use the appropriate option in your configuration. The –i option must be
used with the inbound or forward chains and the –o option must be used
with the outbound chains. Remember that the inbound interface will not
use outbound rules and the outbound interface will not use inbound
rules. If you mix your options, the rule will not have the intended effect.

✦ Unlike ipchains, you must specify the source or destination port after
the protocol declaration (ICMP, TCP, or UDP). In ipchains the order was
not all that important, however with iptables the rules will fail to oper-
ate as expected if the proper order is not used. 

As you might expect, the configuration file (typically located in /etc/
sysconfig/iptables) has changed considerably as well. The overall
arrangement is a bit cleaner and if you use comments, it is fairly straightfor-
ward to understand what is going on in the configuration. In Figure 1-5, the
configuration first sets a rule that allows the local host (running iptables) to
pass any traffic to or from localhost. The next entry allows the passage of
ICMP type 3 traffic. Type 3 “Destination Unreachable” messages are used
when systems that forward data to another host cannot find the targeted
host. Next, there are mountd and NFS connections allowed. These would
probably be essential if you needed to connect to your system over a net-
work to send data (to upload Web page content for example), but if you are
working locally on the machine, these could be eliminated. The mountd
entry in this example only works if you go to the NFS configuration file
/etc/rc.d/init.d/nfs and assign the mountd service to a single port
(33333 in this case). By default, the port is picked during system startup and
varies between 32000 and 42000. Finally, the configuration file allows the
passing of http traffic on port 80. If you need to use https as well, you could
duplicate this last entry and change the destination port (dport) and source
port (sport) values to 443.

In Figure 1-4, note that three chains are in place by default.

I strongly recommended that you become familiar with the syntax and use
of ipchains and iptables before you use either in a production environment.
It’s easy to overlook something and leave your system exposed. Make a plan
for the kinds of traffic you need to allow in and out of your server and for
the services and ports that need to be blocked. With a clear plan, your
results will be much better. To find additional information about ipchains
configurations, check out www.linux.org/docs/ldp/howto/IPCHAINS-
HOWTO.html. If you will be working with iptables, there is a great source of
general information and configuration examples located at www.jollycom.
ca/iptables-tutorial/iptables-tutorial.html.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 18



Book I
Chapter 1

Configuring Linux

Playing Games: IP Masquerade 19

Playing Games: IP Masquerade
Network Address Translation (NAT) is used to hide a group host address
behind a single public address. Typically NAT is used to allow multiple pri-
vate hosts to use a single public IP address to access the Internet. Everyone
on the private network sharing the single public IP is effectively “masked” —
hence the moniker Masquerade — from the Internet. The individual host can
use a private IP address (192.168.1.22, for example) and use NAT to access
public networks with a different IP address that is routable on the Internet.
The advantage to this configuration is that an organization with many inter-
nal hosts needs only a single publicly known IP address for all of its
resources.

To use IP Masquerade, you need a build that already supports it, or you may
need to recompile your kernel to use IP Masquerade. Most current Linux
releases support IP Masquerade. To check your system, you can run this
command:

uname -a

The results reveal the kernel version your system is using. To use IP
Masquerade, you need kernel version 2.0.x or greater. On the Red Hat distri-
bution, within the /etc/rc.d/rc.local script is an entry that loads the

Figure 1-5:
Example
iptables
configu-
ration.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 19



Keeping on Top with Logging20

/etc/rc.d/rc.firewall script during system startup. The purpose of the
rc.firewall script is to load all the needed modules to run IP Masquerade
and process its relevant configuration files. This file is where you enter the
traffic restrictions (rule sets) like the ipchains and iptables examples earlier
in this chapter. Many sample IP Masquerade configurations are available,
including www.tldp.org/HOWTO/IP-Masquerade-HOWTO/, which helps you
get your masquerade configuration up and running.

Keeping on Top with Logging
Although it’s important to have a handle on the services running on your
system and use firewalling if possible, comprehensive logging is one of the
most useful methods for ensuring that your system remains secure. The
syslog daemon is used on Linux and Unix systems to facilitate logging. On
most Linux installations, a global configuration file controls the behavior of
the syslog component. The /etc/syslog.conf file passes the logging
instructions to the syslog daemon. Most default Linux installations are
designed to balance security and functionality, and as a result, the default
logging behavior needs improvement.

Within the syslog.conf file, you will find entries that look like this:

*.=info;*.=notice /usr/log/notice.log

Each entry has three elements:

✦ The first item is the source of the log information, called a facility — in
other words, which processes should be monitored for logging output. 
* is used to specify “all available” log sources.

✦ The information following the * specifies the kinds of events that will be
captured, known as priority. For example, in *.=notice, all log sources
are monitored, and only the notice priority events are captured.

✦ The last element specifies what will be done with the logging informa-
tion, and in most cases where the log information will be stored. In the
example, the logging output is stored in the file /usr/log/notice.log.

It is fairly useful to log different facilities to different log files. Although this
can increase the amount of disk space used by log files, it can make locating
information about particular events easier. 

Several facilities that you should track may not be logged by default. To
begin logging these items, you need to create a new entry in the syslog.
conf log file. Table 1-1 shows some of the common facilities that you
should use.

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 20



Book I
Chapter 1

Configuring Linux

Keeping on Top with Logging 21

Table 1-1 Common Logging Facility Options
Facility Use

Auth/Security Log information relating to user authentication.

Authpriv A more detailed version of auth.

Cron Logs activity of the cron daemon, which is used to schedule events.

Daemon Collects information about all system daemons.

Mail Tracks mail server activity. This is a must have if you’re running a
mail server.

Syslog Information about the syslog server itself.

Along with this selection of facilities, you need to understand the priorities
that are available. How much detail you need is up to you. Keep in mind that
if a problem occurs and you don’t have enough information to identify the
source, the logs are essentially useless. However, if you collect every trans-
action and message in the log, it may be nearly impossible to locate mean-
ingful information. Table 1-2 describes the available priorities.

Table 1-2 Logging Priorities
Priority Use

Info Logs general informational messages

Notice Logs occurrences that require special interaction (that is, user prompts)

Warning System warning, “might be a problem”

Err System error, “a problem occurred”

Crit Critical condition, “a big problem has occurred”

Alert Intervention required, “problem happening, need help”

Emerg Serious system failure, “something is hosed”

Panic System panic, “HUGE problem”

Debug Logs nearly everything

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 21



Book I: Configuring Linux and Windows for Apache22

d Bk01Ch01.qxd  11/4/03  10:45 AM  Page 22


