Chapter 3

Tools for Security and
Insecurity

Cryptosystems and cryptographic protocols rely on various tools to be
implemented properly. Perhaps the most basic tool is a random bit gen-
erator.! Random bit generators are used to randomly generate symmetric
keys, private keys, padding, and so on in cryptography. They form the
cornerstone of algorithms designed to protect computer systems and the
cornerstone of algorithms that are designed to subvert computer systems.
A poor random number generator could lead to a weak or otherwise guess-
able private key. A poor random number generator could lead to a guess-
able symmetric key and thereby diminish the effectiveness of a cryptovirus
attack.

The survey books on cryptography that appeared in the 1990s gave
the impression that crypto is a panacea for the Internet and its needs.
However, experience has shown that this is far from the case [260]. For
example, symmetric ciphers were analyzed in detail and proposed as solu-
tions to common problems, yet little direction was given on how to arrive
at truly random symmetric keys. This led to implementations containing
very strong components as well as weak ones and security almost always
defaults to the weakest link.

The first part of this chapter describes various physical phenomena
that have been proposed in the literature as sources of randomness. It is
common practice to misuse such sources by utilizing cryptographic hash

'In fact, randomized algorithms in general require access to quality random num-
bers to run properly. Examples include the ubiquitous Quicksort and the randomized
algorithm for computing square roots modulo a prime p when p has no special form.
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functions as entropy extractors. The nature of this questionable practice
is discussed in some detail.

John von Neumann’s classic algorithm for unbiasing a biased coin is
one of the earliest known entropy extraction algorithms.? In this chapter
it is shown how to apply this algorithm to an entropy source that behaves
like a biased coin. A simple extension to Neumann’s algorithm is then
given along with references to other approaches. Common sense dictates
that the more entropy sources that can be used, the better, so an approach
is given to combine multiple sources of entropy securely. This approach
has the property that the resulting bit stream is perfectly random provided
that at least one of the entropy sources behaves like a biased coin and that
is provably quasi-random otherwise.

It is often the case that sources of physical randomness provide random
bits at a rate that is too slow for most applications. As a result efficient
algorithms are needed that can convert a small number of truly random
bits into a larger number of pseudorandom bits. Such algorithms are called
pseudorandom number generators and the general topic is addressed in this
chapter.

It is an unfortunate fact that even when random numbers are generated
properly they are often misused. For example, OpenSSL suffered from a
classic wrap-around bug in which the numbers from 1 to n were chosen
in such a way that the smallest of these numbers were more likely to be
chosen than the rest [233, 329]. This occurred in the selection of witnesses
for the Rabin-Miller probabilistic primality test. Uniform sampling is a
general subject that is important in designing secure malware as well. For
example, a worm may need to choose a server uniformly at random from a
set of three servers in order to decide which server to infect. Furthermore,
the worm may only have a random bit generator at its disposal to make
the selection. A common programming mistake is to generate two bits to
get a number x between 0 and 3 inclusive, and then let the final answer be
x mod 3. This is wrong since 0 will occur with a higher probability than
1. Uniform sampling techniques solve this problem and for this reason the
topic of uniform sampling is covered.

Even when used correctly, random bits are often utilized in a wasteful
fashion. This problem can be avoided by the judicious selection of efficient
algorithms for the problem at hand. As a case in point, the problem of
shuffling a deck of cards is covered. It is shown how successively choosing
a card from the deck randomly uses up more random bits on average

2In fact, it might even be the first published entropy extraction algorithm.
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than applying an unranking algorithm from algorithmic combinatorics.
This particular example is clearly applicable to on-line casinos, but is also
applicable to designing secure polymorphic viruses. A polymorphic virus
often needs to randomly permute instructions and may need to select a
random subset of machine registers to use in a decryption algorithm that
deciphers the bulk of the virus.

The chapter concludes with a discussion of how general advances in
cryptography lend strength to malicious software attacks. It is shown how
semantic security against plaintext attacks and adaptive chosen-ciphertext
security affect the cryptovirus extortion attack from the perspective of the
attacker. Also, the subject of mix networks is addressed. Mix networks
constitute a fundamental building block in secure on-line voting protocols,
electronic money protocols, and so on, and they are also crucial in carrying
out malicious software attacks in a way that protects the perpetrator, be
it a person or finite automaton.

3.1 Sources of Entropy

Computer programs utilize entropy sources to generate random numbers.
Often user input is used as an entropy source. For example, the RSA
toolkit SecurPC, which ran on Microsoft Windows 95, derived random
seeds based on keyboard and mouse timings. This data is collected dur-
ing a period of several minutes in which the user “bangs on the keyboard”
[248]. Aside from being a hassle from the user’s perspective, the security
of this approach is questionable to say the least. Reliance on user-supplied
entropy should be avoided or minimized whenever possible since it is vul-
nerable to attacks and can provide a false sense of security. This holds
true for normal security applications as well as for malicious software.
Desirable sources of entropy are those that are firmly rooted in physical
phenomena that are not affected by the actions of users. The emission from
radioactive material has been proposed as entropy source [124]. Although
this may be a very solid source of randomness, it requires specialized
hardware that does not come with typical personal computer systems.
An attractive candidate for entropy is AT&T’s truerand (described in
Chapter 2) since it is based on physical phenomena and is likely to work
on any PC equipped with a CPU crystal and a real-time clock crystal.
Truerand increments a counter in a busy-waiting fashion until a timer
interrupt causes the loop to terminate. This effectively pits the real-time
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clock signal against the microprocessor signal and in theory captures their
discrepancies in the resulting counter value.

Another attractive entropy source is the air turbulence that exists
within hard drives. The seek time for a drive is the time it takes the
read/write head to move over the track that it is going to read or write to.
Once in position, the disk must rotate so that the desired sector falls un-
der the read/write head. This is called the rotational latency or rotational
delay [221]. Seek times and rotational delay are governed by physical phe-
nomena and are affected by such things as chaotic air turbulence that is
generated within the confines of high-speed hard disk drives [81]. A typi-
cal way to extract entropy from this source is to measure the time it takes
to perform a disk read, for instance. Davis surmised that the movement
of a hard disk arm perturbs the flow of air inside the drive, thus creat-
ing chaotic turbulence. To implement programs that extract this type of
entropy, one has to be conscious of the fact that most operating systems
cache disk accesses. It is prudent to measure hard disk entropy by making
low level read/write calls.

Using hard disks as entropy sources was carefully studied at Lucent
Technologies [139]. Jakobsson et al devised an approach to extracting
randomness from hard disks based on multiple drive phenomena. They
derived experimental results using a Sun Ultra-1 with a Cheetah disk and
were able to generate between 5 and 577 random bits per minute depending
on the type of phenomena that was used. They subjected the resulting
bits to a battery of tests, and they passed with flying colors.

Designing software that avoids the use of specialized hardware is even
more important in the case of malicious software than in normal scenar-
ios. Consider computer viruses, for example. By their very nature they
propagate from machine to machine, some of which may lack the needed
specialized hardware and all of which are hostile environments to the virus.
Such programs clearly cannot assume the presence of specialized hardware
random number generators.

3.2 Entropy Extraction via Hashing

It is not an uncommon practice to collect randomness from entropy sources
to produce a byte stream and then hash this byte stream to derive a
“random” stream of bits. This heuristic is most likely based on the premise
that since the outputs of cryptographic hash functions look random, they
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are random. When hash functions are used as such, they are being used
as entropy extractors.®

Consider the SHA-1 cryptographic hash function, for example [211].
SHA-1 takes as input a variable length byte stream and outputs a 160-bit
hash value. SHA-1 is based directly on the MD4 algorithm [242]. MD4 is
a customized hash function designed with the explicit purpose of hashing
with optimized performance in mind. The original MD4 design goals were
to:

1. Make finding a collision difficult, taking about 2% operations to do
so (collision intractability).

2. Make finding a message yielding a pre-specified hash value difficult,
taking about 2'?® operations to do so (non-invertability).

Despite the fact that finding collisions was supposed to be difficult, a
collision in MD4 was in fact found [94]. This demonstrates the danger of
relying on primitives that cannot be proven to be correct.

Collision resistance and non-invertability were also the design criteria
used in devising SHA [201]. SHA was not designed to output “random-
looking hash values” and it was not designed to “extract truly random
bits from inputs with a sufficient amount of entropy.” The fact that it
may appear to do so on the surface is immaterial from the standpoint
of security. Properties (1) and (2) above were designed to provide suffi-
cient conditions for using a hash function to heuristically protect against
existential forgeries in digital signature schemes.

The use of SHA-1 to extract 160 “random” bits from the collected
entropy strings is perilous since there is no evidence to suggest that the
SHA-1 function does in fact do this. This use of SHA-1 assumes that it
is a magic box that can magically extract entropy from the input string
and output a truly random 160-bit string. The following quote is from a
paper by Juels et al [148]:

3Adam encountered this practice firsthand while reviewing the RNG code for a
company during a consulting engagement. The client used SHA-1 as an entropy ex-
tractor and the resulting entropy was used to generate random permutations. The
client company shall remain nameless.
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Timings of human interaction with a keyboard or mouse are
currently the most common source of random seeds for cryp-
tographic applications on PCs.  After a sufficient amount
of such timing data 1s gathered, it is generally hashed
down to a 128-bit or 160-bit seed. This method relies
for its security guarantees on unproven or unprovable as-
sumptions about the entropy generated by human users [97]
and the robustness of hash functions as entropy extractors.

The danger of using a complex algorithm to produce strong random num-
bers in the absence of a theoretical foundation or analysis was noted in
RFC 1750 [97]:

Another serious strateqy error is to assume that a very complex
pseudo-random number generation algorithm will produce strong
random numbers when there has been no theory behind or anal-
ysis of the algorithm.

There has been no theory or analysis behind SHA-1’s ability to extract
entropy from its input. The complexity of the SHA-1 algorithm in no way
justifies its use as a magic box.

Consider the case in which entropy is taken from two sources. The
first source is a weak source derived from user input (e.g., message arrival,
mouse inputs, etc.) and potentially guessable inputs such as the system
time. The second source is a strong source of entropy such as a hardware
RNG. There is strong reason to suspect that the clock input is poor indeed.
The following is from RFC 1750 [97]:

Computer clocks, or similar operating system or hardware val-
ues, provide significantly fewer real bits of unpredictability than
might appear from their specifications.

Suppose that 24 bytes are derived solely from the weak source and 24 bytes
are taken directly from the strong source. Finally, suppose that these two
sequences are concatenated and fed as input to SHA-1 to produce a 20-byte
value. The use of SHA-1 in this fashion could in fact result in a seed that
is significantly less random than 24 bytes from the strong entropy source.
It is conceivable that SHA-1 mixes this low-quality randomness with the
high-quality randomness and outputs bits having a degree of randomness
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that is somewhere between the two extremes. An extreme, albeit remote,
possibility is that SHA-1 will derive virtually all of the resulting entropy
from the weak source. Again, since there is no proof regarding SHA-1’s
true behavior as an entropy extractor, anything seems possible.

3.3 Unbiasing a Biased Coin

The notion of a biased coin is by and large an abstraction used by theorists
to articulate the behavior of a source of entropy. A real coin may certainly
be biased based on how it was minted. But in the context of computer
security, a biased coin is a general term for an entropy source that has a
fixed bias towards outputting binary 1’s or binary 0’s.

As it turns out, the existence of a biased coin is enough to guarantee
access to perfectly random bits. For many people, particularly those in the
computer security field, the mere mention of perfect anything borders on
taboo. Yet, in this case it is safe to say so. The math speaks for itself and
the proof of this statement is given in this chapter. The subtlety lies in
whether or not a given source of entropy in fact behaves like a biased coin
or not.

3.3.1 Von Neumann’s Coin Flipping Algorithm

A biased coin is a coin that has a fixed probability of heads, denoted by
prn = 1/2+06, where 0 is a Real number contained in the interval [-1/2,1/2].
The value ¢ is referred to as the bias of the coin. Let p; be the probability
of tails. Hence, p, = 1 — p,. For example, if a coin comes up heads
with probability 51% then 6 = 1/100. If the coin comes up heads with
probability 49% then § = —1/100.

The standard approach to removing bias is to use Neumann’s classic
unbiasing algorithm [309]. The problem of unbiasing a biased coin is one
whose fundamental nature is matched only by its elegant solution. It is
instructional to consider the problem using a concrete example. Suppose
that we are given a coin that comes up heads with probability 5/8. Neu-
mann’s solution is as follows. A series of experiments are performed in
which the coin is tossed twice in succession. If in a given experiment the
result is heads followed by tails, then the result of the toss is heads and
no more experiments are performed. If in a given experiment the result is
tails followed by heads, then the final outcome is tails and no more exper-
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iments are performed. If in a given experiment the tosses are the same,
then another experiment is performed. This is depicted in Table 3.1.

Observe that the probability of heads is the same as the probability
of tails. So, given that the two tosses are not the same the answer will
be heads with probability 1/2. The answer is therefore always correct
when an experiment terminates. An interesting aspect of this algorithm
is that the numerical value of the bias is not needed to generate fair coin
tosses. The probability that a given experiment will terminate with an
answer is 15/64+15/64 = 30/64. Although it is possible that this method
will never terminate when executed, the chances of this is negligible for
a bias of 1/8. Since the algorithm might never halt but always outputs
the correct answer when it does halt, it belongs to a class of algorithms
known as Las Vegas algorithms. The algorithm is tractable for any bias
that is not overwhelmingly close to heads or tails.

The following claim regarding Neumann’s algorithm can be proven.

Claim 1 When the input bits to Neumann’s algorithm are generated by a
biased coin, Neumann’s algorithm outputs a heads with probability 1/2.

To see this, consider the case that a value is output in iteration j. Since
the two input bits for iteration j are generated by a biased coin it follows
that the two flips are independent events. In iteration j, Neumann’s al-
gorithm outputs heads with probability (1/2 + §)(1/2 — §). It outputs
tails with probability (1/2 —6)(1/24 9). It follows from the commutative
property of multiplication that these probabilities are equal.

H Outcome \Probability\ Result H

heads-heads 25/64 do over
tails-tails 9/64 do over
heads-tails 15/64 heads
tails-heads 15/64 tails

Table 3.1 Unbiasing using Neumann’s algorithm
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3.3.2 Iterating Neumann’s Algorithm

There has been a significant amount of research on improving the effi-
ciency of Neumann’s algorithm? [148, 222]. Rather than reiterating one of
these algorithms, a simple example of how to slightly improve Neumann’s
method will be given. In the improvement described in Table 3.2, Neu-
mann’s algorithm is modified to accept four bits at a time instead of two.
A result of heads is indicated by a binary “1” and a tails is indicated by
a binary “0.”

The middle column shows the output when Neumann’s algorithm is
applied to the input nibble.> For example, if the input is 0001 then the
first two zeros causes a rejection, and the 01 causes a zero to be output.
The rightmost column shows the output when Neumann’s method is gen-
eralized to taking 4 bits as input. Observe that in each row the rightmost
column has at least as many bits listed as the middle column, and some-
times more so. It follows that this approach has a higher bandwidth than
Neumann’s algorithm.

To see the utility of this increased bandwidth algorithm, suppose that
this improved algorithm is supplied with a very long stream of input bits.
We would expect it to produce more perfectly random bits than Neu-
mann’s classic algorithm would.

The correctness of the improved algorithm will now be analyzed. Recall
from probability theory that if A and B are two events in a uniform
probability space, the conditional probability of A given B is defined as
follows.

Pr[An B]

PrAIB] = =55

The following are probabilities of outputting 0 and 1 when one bit is
output.

p2p2 1
Pr[0 is output | one bit is output| = 5 = h2 =3
PPt

4For example, the work of Juels et al shows how to simulate the maximum number
of coin flips for a given number of die rolls.
50One nibble equals four bits.
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" Input H Neumann Improved Neumann H
0000 - -
0001 0 00
0010 1 10
0011 - 0
0100 0 01
0101 00 00
0110 01 01
0111 0 01
1000 1 11
1001 10 10
1010 11 11
1011 1 11
1100 - 1
1101 0 00
1110 1 10
1111 - -

Table 3.2 Improved Neumann Algorithm with 4-bit input

;1

2pip? 2

Pr[l is output | one bit is output| =

It remains to consider the case that two bits are output. Below, the
probability for 00 is derived.

3 2.9 | 3
. . + + 1
Pr[00 is output | two bits are output| = PiDn T PePh T Phlt

A(pipn + vivy + i) 4

It is straightforward to show that the conditional probability is 1/4 for
01, 10, and 11 as well.

3.3.3 Heuristic Bias Matching

A crucial observation in Neumann’s classic algorithm is that the bias must
be the same for both flips in a given execution of Neumann’s algorithm
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for the output bit to be unbiased. This suggests that great care should be
exercised when applying Neumann’s algorithm to a given entropy source.

Neumann’s method can be heuristically applied to remove bias in the
output of truerand using the following algorithm. (Truerand is discussed
in Chapter 2.) In the first step truerand is invoked to obtain the 16 least
significant bits of the counter i. Let s; denote these 16 bits. Truerand is
then invoked again to obtain another set of 16 bits s,. The least significant
bits from each of these two sets are used as a Neumann experiment, then
the two penultimate bits are used as a second experiment, and so on. For
concreteness, suppose that s; and sy are as follows:

s1 =0100111010001011
59 =0101111100101010

Experiment 1 results in 10, experiment 2 results in 11, experiment 3 results
in 00, and so on. A result of 10 is interpreted as a randomly chosen binary 1
and a result of 01 is interpreted as a randomly chosen binary 0. A result of
00 or 11 is regarded as a failed experiment. Let p; ; denote the probability
that a binary 1 occurs in the ;% bit of the ¢*® trial, where j = 0,1,...,15
and 1 =1,2,3,4,.... Consider the following two assumptions:

1. Pij = Pi+1,5 for ¢ = 1,3,5,7, ... and j = 0, 1,2, ey 15.

2. for all 7 there exists a j contained in {0, 1,2, ..., 15} such that p; ; is
neither overwhelming nor negligible.

Assumption (1) implies that truerand behaves consistently across pairs
of invocations, which is necessary for correctness. Assumption (2) implies
that in each trial ¢ there is at least one probability p; ; capable of producing
a fair toss.% For example, suppose that p; 15 = 1 for i = 1,2, 3, .... In this
case the random number generator will never output a bit based on bit
position j = 15. If for all 7, p; ; = 1 for 7 = 0,1,2,...,15 then truerand
would not provide any randomness at all.

This approach demonstrates the notion of heuristic bias matching. A
series of “random” positive integers are obtained from a timing-sensitive
entropy source. The source should not be based on user inputs, and there
should be reason to believe that the source behaved in the same basic way

6This assumption can actually be weakened a little since truerand need only provide
such a probability sufficiently often.
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to produce each of these numbers. The integers are such that the entropy
is arguably concentrated in the least significant bits. The most significant
bits may have no entropy at all. Pairs of these integers are obtained from
the source. To apply Neumann’s algorithm, the least significant bits are
run through Neumann’s algorithm, then the second least significant bits,
and so on. Of course, this is only a heuristic. But, one would expect
that the biases may in fact match up this way. If they do, then perfectly
random bits will result. To guard against the possibility that the biases
do not match up, multiple entropy sources should be used and a general
approach such as Santha and Vazirani’s algorithm (described in Section
3.4) should be employed to combine the sources.

3.4 Combining Weak Sources of Entropy

Consider a true RNG predicated on the “randomness” derived from key-
board latency. What if the user breaks his or her arm and has to type
methodically with one hand?” This may eliminate some if not all the ran-
domness for a time. What if a hardware-based RNG suffers a breakdown,
thus rendering the hardware RNG unavailable? Such a solution would
then have to rely entirely on other sources of randomness until the failure
is rectified.

A solid approach to generating pseudorandom bits based on physical
randomness is given in Figure 3.1. The two dark gray boxes are separate
sources that are believed to provide a measurable amount of true entropy.
Each source is treated separately and the output of each source is sent
through an unbiasing algorithm as indicated by the light gray boxes. The
operating system RNG could, for instance, be the Intel hardware RNG.
This RNG uses two free-running oscillators, one that is fast and one that
is much slower. A thermal noise source is used to modulate the frequency
of the slower clock signal. The slower clock triggers measurements of the
faster clock. The drift between the two is used to generate bits, which may
be biased [149]. The Intel hardware RNG applies Neumann’s algorithm
internally to produce an unbiased stream (in theory). This is why the
output of the Intel RNG does not go through a light gray box in Figure
3.1.

The three bit streams produced by the three light gray boxes are then

"Look for key, press key, look for key, press key (commonly referred to as hunting
and pecking).
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Figure 3.1 Sound approach to generating and using randomness

bitwise exclusive-or’ed. This is indicated by the & symbol. Observe that if
one of the physical sources of randomness behaves like a biased coin then
exactly one of the streams going into & will be completely random. This
is what makes this random number generation method robust. Suppose
that all but one of the sources is compromised, either due to device failure
or a malicious adversary. As long as one of the streams is truly random,
the output of the @ operation will be truly random. If a source were to
shut down, then the stream that it would normally contribute to & can be
set to all zeros. This will have a null effect on the bitwise XOR operation.

In fact, it is sufficient that in the bitwise XOR operation, one bit in
each bit position be completely random. This will now be analyzed. Let
B; = bi1b;2---b;; denote the bit string that is output by Neumann’s
algorithm when applied to entropy source . FEach string B; is k bits
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in length. Since there are three sources in Figure 3.1, it follows that
1 < ¢ < 3. The strings By, By, and B3 are bitwise exclusive-or’ed to
obtain a k-bit seed S = 5155 - - - s using the following algorithm.

XORTheBitStrings(By, By, Bs):

1. forjzltok:dO'

2. =b1; D ba; D b3

3. output the bit string S = s189- - - S

The value S may be used to seed a pseudorandom bit generator.®

The following claim can be proven regarding the application of the
exclusive-or operation to the streams.

Claim 2 If for all j where 1 < j < k there exists an i € [1,3] such that
b, j is chosen uniformly at random, then S is a truly random k-bit string.

To see this, consider bit position 7 where 1 < 5 < k. Without loss
of generality, let b; ; be a bit that is chosen uniformly at random, with
1 <1 < 3. Let p,, denote the probability that the three bits in bit position
J other than b; ; exclusive-or to the value heads where heads corresponds
to 1. Hence,

Ph=Prbyj ©by; ®bs; ®bi;] =1

The probability that s; = 1 is fph + (1 —pp) = % This is the
probability that bit 0; ; = 0 and pj, results in heads plus the probability

that bit b; ; = 1 and pj, results in tails.

Observe that the perfect randomness in each bit in S is closely related
to the security of each plaintext bit in a Vernam ciphertext.?® The uncon-
ditional security of the One-time pad holds regardless of the probability
distribution over the message space.

In addition to being provably secure when a biased coin is available,
this solution produces quasi-random bits when such a coin is not available,
provided that enough sources of weak entropy are used. This follows
immediately from the work of Santha and Vazirani [253], who weaken the

8Other k-bit strings may need to be obtained as well, for example, to compute the
primes p and ¢ in Blum-Blum-Shub.

9Gilbert Vernam published the One-time pad cryptosystem in 1926 [308] and it
wasn’t proven to provide perfect secrecy until some 30 years later [270].
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assumption that a biased coin is available. The pseudorandomness results
from the fact that several weakly random bit streams are bitwise exlusive-
or’ed with each other. The basic idea may be illustrated using several
examples. Consider the two entropy sources in Table 3.3.

Consider the first row in Table 3.3. A final result of heads occurs if
source 1 results in heads and source 2 results in tails, or if source 1 results
in tails and source 2 results in heads. This is g% + %g = 2—2 = %. A coin-
flip that results from the XOR of the bits from the two sources is in every
case the same or better than the best flip in either of the two sources.!”

It is important not to misinterpret Figure 3.1. Relying on three sources
alone may not always be a good idea. This is especially true if the sources
are poor. However, when only a small amount of physical sources is avail-
able some form of unbiasing should be performed on each before exclusive-
or’ing the resulting bit streams. If only one entropy source is available and
the source is known to be reliable then it can be used to form multiple
arrays of bytes. These byte arrays can be run through the Santha-Vazirani
algorithm to extract quasi-random bits.

The Santha-Vazirani algorithm is a good way to combine weak entropy
sources to guarantee that the randomness improves. However, the state of
the art in entropy extraction has advanced considerably in recent years.
There is a wealth of scientific literature on the subject [207, 266, 267, 296,
297, 298, 299]. Entropy extraction is an area of theoretical computer sci-
ence unto itself. It has far more applicability than to cryptography alone
since truly random numbers are needed to run randomized algorithms such
as Quicksort properly. Entropy extraction algorithms have their own set of

10A coin flip that is heads with probability 3/8 is in some sense just as erroneous as
one with probability 5/8 since the absolute values of the biases are identical.

H pr source 1 \ pr source 2 H pr, under XOR H
10/16 12/16 7/16
10/16 4/16 9/16
4/8 5/8 4/8
2/16 4/16 5/16
1 5/8 3/8
12/16 14/16 5/16

Table 3.3 Entropy from the XOR of two sources
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assumptions, not unlike the factoring assumption, Diffie-Hellman assump-
tion, and so on. It is a subject that has been largely neglected in texts
dealing with cryptography. Given the robust nature of modern entropy
extraction algorithms, there is little reason not to employ them to arrive
at provably random seeds for PRNGs.!! Were a company to advertise
both the entropy source assumptions and the intractability assumptions
that their products relied upon, that company would truly raise the bar
in the computer security industry.

It is unfortunate that entropy extractors are largely, if not entirely,
ignored by the software industry. They are often dismissed as being too
slow or otherwise not necessary. To the contrary, the Santha-Vazirani
algorithm is even faster than using most hash functions such as SHA-
1 to extract entropy. It simply performs the bitwise XOR operation on
collected entropy streams. Also, the speed is in many cases irrelevant. The
proper way to generate random bits is to work hard to get a truly random
seed and then let the faster pseudorandom number generator do the rest.
All that is needed is a truly random seed and perhaps a couple more
randomly chosen parameters in order to operate a secure cryptographic
pseudorandom number generator properly.

3.5 Pseudorandom Number Generators

Subsection 3.5.1 presents a pseudorandom number generator that has un-
dergone standardization. It does not enjoy provably secure properties, but
constitutes a sound heuristic approach to the problem. The approach is
ideal for applications that demand a high volume of pseudorandom bits
per second. Subsection 3.5.2 covers PRNGs that have provably secure
properties under well-accepted intractability assumptions.

3.5.1 Heuristic Pseudorandom Number Generation

The algorithm below is a U.S. Federal Information Processing Standard
(FIPS) approved method to pseudorandomly generate keys and initializa-
tion vectors for use with DES. It is from the ANSI X9.17 standard [135].

' The assumptions regarding the nature of entropy sources have been weakened
considerably.
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ANSIX917TPRBG(s,m,k):

input: a random 64-bit seed s, integer m, and a DES EDE key k

output: m pseudorandom 64-bit strings xy, xs, ..., Tp,

1. compute I = Ey(D) where D is a 64-bit representation of the
date/time in as fine a resolution as possible.

2. for i =1 to m do:

3. z; = Ex(I @ s)

4. s=FEp(z; ®1)

5. output (x1, za, ..., Tm)

This approach is a sound way to generate pseudorandom bits provided
that DES is replaced by a more modern cipher such as AES. Any pro-
grammer that employs this method for pseudorandom bit generation by
replacing DES with AES is employing a sound primitive.

3.5.2 PRNGs Based on Reduction Arguments

A definitive source for provably secure techniques regarding pseudoran-
dom number generators and related primitives is Pseudorandomness and
Cryptographic Applications by Michael Luby [177]. The definition of a
pseudorandom bit generator (PRBG) is given below.

Definition 1 Let k, ¢ be positive integers such that ¢ > k + 1 and ¢ is
a specified polynomial function of k. A (k,¢)-PRBG is a function from
k-bit strings to £-bit strings that can be computed in polynomial time (in
k). The input to the PRBG is a k-bit seed sy and the output is an (-bit
string that is pseudorandom.

A simple and relatively fast (k, /)-PRBG is the Blum-Blum-Shub gen-
erator [30]. It uses the parameters p,q, and n. The values p and ¢ be
two large distinct primes and n = pq. These two primes must be kept
secret. The Blum-Blum-Shub generator is defined as follows. Let sy be a
quadratic residue modulo n. The pseudorandom bit stream is found by
computing z; for i =1,2,3, ..., 7.

2z = (82" mod n) mod 2

It was originally shown that the output of the Blum-Blum-Shub gen-
erator could be e-distinguished from ¢ truly random bits if and only if
there exists an unbiased Monte Carlo algorithm that solves the quadratic
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residues problem (see Appendix B.3.5) having an error probability of at
most d, for any § greater than zero.'? An even stronger result was shown
by Vazirani and Vazirani [307]. They proved that this PRBG is secure
under the weaker assumption that factoring is intractable.

The Blum-Blum-Shub PRBG is also regarded as being secure when
the loga(loga(n)) least significant bits of s mod n are used (instead of
just the least significant bit). So, when n is a 768-bit composite, the 9
least significant bits can be used in the pseudorandom bit stream.

Why is this a favorable approach to generating bits pseudorandomly?
The answer to that question is simple. Whereas DES,; AES, and so forth
have only been around for a few decades or less, brilliant mathematicians
have been trying to solve the factoring problem for centuries. . .and have
yet to publish a solution.

A provably secure pseudorandom number generator (PRNG) will op-
erate in a secure fashion if and only if the following three conditions hold:

1. The secret PRNG parameters must be kept secret. This includes the
initial seed (and the primes, as in the case of the Blum-Blum-Shub
PRNG, etc.).

2. The parameters for the PRNG must be correct: This means that
the seed must be chosen perfectly at random (and the primes in
Blum-Blum-Shub must be chosen correctly, etc.).

3. The underlying computational intractability assumption (or assump-
tions) must hold. In the case of the Blum-Blum-Shub PRNG, this
means that factoring must in fact be hard.

If any of the above conditions do not hold then the PRNG may be
compromised.

3.6 Uniform Sampling

Often a problem requires that a number be chosen randomly or pseudo-
randomly from a set that has a number of elements that is not a power
of 2. When this is the case random bit generators, be they pseudo or
otherwise, cannot be used directly to generate the needed number. What

12Thus, polynomial indistinguishability holds under the quadratic residuosity as-
sumption.
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is needed is an algorithm that utilizes the available random bit generator
to sample from such sets uniformly at random.

For example, suppose that a computer worm propagates on a local
area network by randomly selecting a machine to infect from the set of
machines that are adjacent to the current host. If six such machines are
connected directly to the host, then such an algorithm will be needed.!?
This problem boils down to using a coin to simulate the rolling of a fair
six-sided die. The die roll can be simulated perfectly as follows. The coin
is flipped three times to obtain a 3-bit number. This number is uniformly
distributed between 0 and 7 inclusive. If the number is between 0 and
5 then the number is output. Otherwise, the three bits are thrown out
and this procedure is repeated. Since all 6 faces of the die are equally
likely, this method samples {0, 1,2,3, 4,5} uniformly at random. Uniform
sampling techniques are needed when a random bit generator is available
and when elements must be sampled from a set that has a cardinality that
is not a power of 2.

This general uniform sampling algorithm is as follows. Let RBG(i)
denote a perfectly random bit generator that returns a string consisting
of i > 0 truly random bits.

Input: Integer N > 1

Output: R chosen uniformly at random from [0,N-1]
ChooseltoN Randomly(N):

1. Let T be the smallest power of 2 such that T" > N
2. compute R = RBG(logs(T))

3. if R < N then output R and halt

4. goto step (2)

The following claim regarding uniform sampling can be proven.

Claim 3 Assuming that the function RBG() returns random bit strings,
the function ChooseltoNRandomly() outputs R drawn uniformly at ran-
dom from [0,N-1].

To see this, observe that the strings that are output by RBG are
chosen independently at random. Suppose that C'hooseltoN Randomly
halts with R in iteration j. Let p;; denote the probability that R = 1
with 0 < ¢ < N in iteration j. Clearly p;; = 1/T. Since step (3) is

13Tt is in fact possible to view the whole world in terms of computer viruses!
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the only step that outputs a value, and since this value is R it follows
that ChooseltnNRandomly outputs R drawn uniformly at random from
[0, N —1].

In a given iteration of C'hooseltoN Randomly, the value R will be less
than N with probability N/T. So, the probability that a given iteration
causes a repeat in step (4) is 1 — N/T'. Since T' is the smallest power of 2
such that "> N, it follows that N/T > 1/2. So, the probability that no
answer is found after j iterations is,

(1-5) <(-2)'=3

It follows that C'hooseltoN Randomly is an efficient Las Vegas algorithm.
Observe that ChooseltoN Randomly will never loop if N is a power of 2.
This implies that the algorithm is efficient even when random bit strings
are needed. This makes the function ideal for use as a public function
in an Application Programming Interface (API). Note that this function
is how users obtain random numbers in Figure 3.1. This is indicated
by the solid arrow emanating from “uniform sampling algorithm” that
terminates at the bottom of the figure. The dotted arrow that leaves
the “uniform sampling algorithm” and that terminates at the bottom of
the figure indicates that applications have direct access to pseudorandom
sampled values.

In OpenSSL [233], the function BN _rand_range() generates a crypto-
graphically strong pseudorandom number rnd in the range 0 < rnd <
range. BN_pseudo_rand_range() does the same, but is based on the func-
tion BN _pseudo_rand(). The function BN_rand_range() was added in
OpenSSL 0.9.6a and the function BN _pseudo_rand _range() was added in
OpenSSL 0.9.6c.

int BN_rand_range(BIGNUM *rnd, BIGNUM *range);
int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

The functions return 1 on success, 0 on error. The error codes can be
obtained by ERR_get_error().

147t was included in the function BN_is_prime_fasttest() to fix the bug that was
pointed out [329].
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3.7 Random Permutation Generation

Generating random permutations is a fundamental problem in computing.
On-line casinos need to generate random permutations over {1, 2,3, ..., 52}
to properly shuffle a deck of cards. Computer worms benefit from choosing
random permutations over the set of machines on a network to arrive at an
unpredictable hit list. This allows worms to attempt to travel from one
existing machine to another, rather than simply choosing IP addresses
randomly to try to propagate to. This is important since many heuristic
antiviral network monitors are effective against stupid worms that ping
non-existent Internet addresses. Malicious software is difficult to detect
when it looks, smells, tastes, and feels like all the benign software around
it.

3.7.1 Shuffling Cards by Repeated Sampling

The following algorithm shuffles a deck of cards in-place and is thereby
very memory efficient. Initially, deck[i] =i for i =1,2,3, ..., 52.

CardShuffle():

1. for + =1 to 51 do:

2. j = number drawn uniformly at random between ¢ and 52 inclusive
3. card = deck][j]

4. decklj] = deck]i]

5. deckli] = card

Assuming that a random (or pseudorandom) bit generator is available,
step (2) above can be implemented using Neumann’s method. For exam-
ple, when ¢ = 1 a 6-bit number r is generated. If the number is between 0
and 51 inclusive, then we set j = r+ 1. Otherwise, we generate another 6
bits and repeat. From Lemma 3 it follows that j will be drawn from the
correct probability distribution.

It remains to consider the running time of CardShuffle(). Suppose
that a fair coin is available. How many times would one expect to have
to flip it to get heads? The answer is 2. Suppose that a biased coin is
available that comes up heads with probability 3/4. How many times
would one expect to have to flip it to get heads? The answer is 4/3. The
expected number of random bits needed to shuffle using CardShuffle() is
found by summing the expected number of bits needed in each iteration.
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The expected number of bits needed per iteration is given below. The
number immediately before the colon is .

. 64 . 64 ) 64 . 64
1.6>|<5—2 2.6>:<5—1 3.6*% . 2().6*33
21:5*% 22:5*% 23:5*% 36:5*?3
37:4*% 38:4*1—2 39:4>|<14 44:4*196

45:3*% 46:3*% 47:3*% 48:3*?
49:2*% 50:2*5
51: 1*%

For example, in the first iteration when ¢ = 1, one would expect to
have to use 6(64/52) bits to draw the first card in the shuffle. Observe
that 6 % 64 = 384 factors out of the top row, 5 % 32 = 160 factors out of
the second row, and so on. The top row is equivalent to the following,

1 1 1 1
6464 (L +4+4+ - +5)

The rightmost term is the difference between two Harmonic numbers,
namely Hso and Hso. The n'® Harmonic number H,, is defined by,

1 1 &
H,=14+ -4+ - =
ot ’;

| =

This definition is from Concrete Mathematics by D. Knuth et al [122].

Clearly all Harmonic numbers are rational. The above expression is equiv-
alent to,

384(Hsy — Hys) +160(Hsy — Hyg) + 64(Hyg — Hg) + 24(Hs — Hy) +2+ 5+ 1
After simplifying, the following expression is obtained.
384Hs; — 224H3, — 96H16 — 40Hs — 24H, + 5+ 2

These five Harmonic numbers are given below [111].
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g 25 761 2436559
T2 BT 980 T 720720
586061125622639
Hao = ~ 4.0585
327 144403552893600

14 16543572074
Hy = 063600165435720745359 ~ 4.53804
3099044504245996706400

The expected number of random bits needed to shuffle a single deck is
355.9 using this method.

3.7.2 Shuffling Cards Using Trotter-Johnson

Algorithms to generate and enumerate permutations fall under the cat-
egory of algorithmic combinatorics. Ranking and Unranking algorithms
allow computer scientists to efficiently store, generate, and use combina-
torial objects. Consider the problem of storing a particular permutation
of n objects in a computer. If the objects are numbers, for instance, one
could simply store them in an array. However, a more efficient way is to
establish a bijection between the n! combinatorial objects and the natural
numbers from 0 to n! — 1 and subsequently store the natural number that
uniquely identifies the object.

When a Ranking function is supplied with a combinatorial object it
returns the object’s rank (a natural number that uniquely represents the
object). When a rank is given to an Unranking function, it returns the
corresponding combinatorial object. An example of such a bijection will
go a long way to illustrate this concept. Consider the problem of establish-
ing a bijection between {0,1,2,...,9} and the (g) subsets of {1,2,3,4,5}
containing three elements. Table 3.4 depicts a co-lex ordering that defines
such a bijection.

The Trotter-Johnson algorithm is a minimal-change algorithm for gen-
erating the n! permutations. It is a well-known algorithm developed in the
early 1960s by Trotter and Johnson [142, 301]. In this algorithm, 7 is a
permutation over {1,2 3, ...,n}. The value r is a rank of such a permuta-
tion, hence, r € {0,1,2,...,n! — 1}. Shimon Even and Kreher and Stinson
wrote excellent introductory texts on algorithmic combinatorics [98, 163].
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| T | rank(T) |
3.2.1] 0
[4,2,1] 1
[4,3,1] 2
[4,3,2] 3
[5,2,1] 4
5,3,1] 5
5.,3.2] 6
5.4,1] 7
[5,4,2] 8
[5,4,3] 9

Table 3.4 Co-Lex ordering for 3-element subsets

TrotterJohnsonUnrank(r,n):

1. 9 = 0
2. 7wl =1
3. for j =2 to n do:
4. T = L%J
5. k= r — j?"z
6. if 5 is even then
for i = 7 — 1 down to j — k do:
7. m[i + 1] = «[i]
8. ) — k] =7
9. else
10. for i = 7 — 1 down to k£ + 1 do:
11. mli + 1] = 7[i]
12. wlk+1] =7

13. o =T
14. output 7 and halt

This algorithm is the natural way to select a particular ordering of
the 52 cards in a deck. The actual value of 52! is needed to implement
shuffling based on unranking. When expressed in decimal the value of 52!
is,

80658175170943878571660636856403766975289505440883277824000000000000

Expressed in hexadecimal, the value of 52! is
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2FDE529A3274C649CFEB4B180ADB5CB9602A9E0638 AB2000000000000

The abundance of zeros on the right side of these numbers is due to
the fact that every other number in 1 %2 %3 %4 % 5% .- %52 is evenly
divisible by 2 and every other fifth number is evenly divisible by 5. The
number of binary digits needed to express 52! is exactly 226.

Given the above value for 52!, Trotter-Johnson unranking can be used
to shuffle as follows. A random 226-bit number r is chosen. If the number
is less than 52! then it is supplied to Algorithm 2.18 with n = 52. The
algorithm will return the shuffle 7. If » > 52! then r is discarded, another
226 bits are chosen randomly, and this process repeats.

Multiprecision libraries such as OpenSSL contain routines for testing
if one big number is less than another. To test if + < y the algorithm
scans the bits of x from the most significant bits to least significant bits.
The algorithm does this with y at the same time. The algorithm makes a
determination if and when two bits differ.

Now consider the running time of this approach. Observe that,

52! & 80.658175 x 10?2
2226 ~ 107.839787 x 10*

So, one would expect to have to generate a sequence of 226 bits about
1.337 times. It follows that using TrotterJohnsonUnrank, about 302.2
random bits will be needed on average to shuffle a single deck. Since
302.2 < 355.6, it is more efficient to use TrotterJohnsonUnrank to shuffle
cards. When 50,000 shuffies are performed we would expect TrotterJohn-
sonUnrank to use up about 1.8 megabytes of randomness.’® The iterated
approach would use up approximately 2.12 megabytes of randomness. The
unranking algorithm helps to pave the way for using PRNGs based on rig-
orous mathematical foundations that tend to be more computationally
demanding than ad hoc constructions.

Finally, if combinatorial objects need to be selected uniformly at ran-
dom then the output of the uniform sampling algorithm can be used as
input to a combinatorial unranking algorithm. This is depicted in Figure
3.1. The rounded box labeled “uniform sampling algorithm” is used to
generate a rank r uniformly at random that is supplied to the unranking
algorithm.

15This is using the common definition of a kilobyte in which 1 kilobyte equals 1,024
bytes (not 1,000 bytes).
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3.8 Sound Approach to Random Number
Generation and Use

The algorithms that were presented for unbiasing coin flips and perform-
ing uniform sampling are Las Vegas algorithms. That is, they will always
output the correct answer, but strictly speaking there is no guarantee that
they will ever halt. Since well-designed functions return error codes any-
way, it makes sense to make these algorithms Monte Carlo. To do so, the
number of attempts to arrive at an answer can be fixed to, say, 32,000.
If they don’t arrive at an answer then they halt with failure. Otherwise,
they halt at or before 32,000 iterations have passed with the correct an-
swer. This way, the calling function can handle failures gracefully, and we
can say something meaningful about the worst-case running time of the
algorithm.'® As of this writing the OpenSSL functions BN _rand_range()
and BN _pseudo_rand_range() are still of the Las Vegas type.

Figure 3.1 depicts four output arrows. Two are from the uniform
sampling algorithm and two are from the combinatorial unranking algo-
rithm. These give direct access to random and pseudorandomly sampled
values as well as random and pseudorandomly generated combinatorial
objects. The truly random output of the uniform sampling algorithm
gives the calling application access to truly random bits. This call can
be used to test the quality of the random seeds that are used to seed the
pseudorandom number generator. This may be ascertained by subjecting
the bit stream to FIPS-140 statistical tests, among others.!” The uni-
form sampling function allows applications to generate coin flips, die rolls,
roulette wheel spins, and so on. Finally, the unranking function allows
applications to generate random/pseudorandom permutations over sets,
random /pseudorandom subsets, and so on. The nice aspect of this API is
that at the lowest level, only the uniform sampling algorithm is visible to
application programmers. This should help ward off programming errors
that result from incorrect sampling.

Developing a design document and documenting code is clearly good
software engineering practice. Yet, this seldom ever occurs in practice.
Companies are often riddled with deadlines and wind up with off-the-
cuff implementations all the time. However, security software should be

16This may seem like nitpicky advice. However, we would like to think that when
libraries such as OpenSSL are used to control access to nuclear arsenals such measures
are taken.

1"That is, the monobit test, the poker test, the runs test, and the long runs test.
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designed so that third parties can easily verify its correctness. Part of
this involves articulating the design and commenting the code, and part
of it involves creating a well-designed application programming interface.
Adam has seen in a number of consulting engagements no design docu-
ments whatsoever, poorly documented code, and to top it all off, random
number generation code that is intimately merged with other code that
performs such things as socket connections. This hampers efforts to verify
the implementation and can be very time-consuming to analyze. Code
that performs the functionality described in Figure 3.1 should be imple-
mented in a completely standalone fashion.

3.9 RNGs Are the Beating Heart of System
Security

Random number generators constitute the very foundation of secure com-
puting machines. If one were to break or otherwise be able to predict
the output of an RNG that is used, it would likely yield unadulterated
access to the machine or sensitive data. A random number generator is a
prime target for carrying out insider attacks. A Trojan horse that lives in
and attacks a random number generator could potentially give the author
unfettered access to private keys, symmetric keys, and the like. This is in
fact the very heart of kleptographic attacks since it employ cryptotrojans
that hide in random number generators and that masquerade as producers
of truly random bits.

Military and government agencies would do well to employ the algo-
rithm of Santha and Vazirani to produce seeding material. This will hedge
against the threat of insider abuse, a topic that is gaining widespread in-
terest in DARPA and ARDA. Applications that rely on a single source of
entropy are paving the way for potentially devastating insider attacks. By
exclusive-or’ing the bit streams from multiple sources, this threat is min-
imized. A malicious software program will also benefit from taking this
approach, since it will prevent the program from relying entirely on the
random number generator provided by the operating system. It is con-
ceivable that the random numbers produced by the operating system are
logged or are otherwise predictable. A computer host is an environment
that is hostile to malware and as such malicious software will benefit from
taking some entropy directly from available peripherals.

Given that truly random seeds are critical for the operation of IN-
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FOSEC devices, one has to wonder why there are no FIPS standards
encompassing how they are generated. The ANSI X9.17 standard covers
a heuristically sound way to generate pseudorandom bits, but this tech-
nique was proposed by the Banking Industry and does not cover how the
initial seed is derived. A U.S. government standard that encompasses a
sound method for extracting entropy from multiple sources would improve
the security of computer software on a very large scale. Neumann’s al-
gorithm dates back to the middle of the last century. Formal results on
weakening Neumann’s assumptions can be traced back to the early 1980s,
and research on the subject has continued.

3.10 Cryptovirology Benefits from General
Advances

The original Macintosh cryptovirus was a proof-of-concept that had sub-
stantial room for improvement. For example, instead of using the outputs
of truerand directly, it could have applied Neumann’s algorithm or a more
advanced entropy extractor to the output of truerand. Ideally, a cryp-
tovirus would also utilize such sources as hard disk turbulence and the
RNG that is provided by the underlying operating system. Although the
simple extortion attack did not require a large number of random bits,
it should have nonetheless applied an entropy extractor to several differ-
ent sources of entropy. In this section a number of improvements and
extensions to the cryptovirus attack are discussed.

3.10.1 Strong Crypto Yields Strong Cryptoviruses

In all likelihood the RSA cipher as originally defined is secure enough
to mount the cryptovirus extortion attack. However, improved public
key cryptosystems exist. A known drawback to RSA is that each RSA
ciphertext ¢ = m® mod n leaks the Jacobi symbol of m with respect to n
[175]. (See Appendix B.2 for an explanation of the Jacobi symbol.) The
Jacobi symbol of m with respect to n is either 1 or —1. Since e is odd, it
is not hard to see that,

J(m/n) = J(m/n)¢ = J(m®/n) = J(c/n) (3.1)
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Since the Jacobi symbol must be one of two different values, a sin-
gle bit of information about m is leaked in every ciphertext. Ideally, no
poly-time computable function of the plaintext should be efficiently com-
putable given the ciphertext. In this example the computable function has
a certain semantic meaning, namely the Jacobi function. But other effi-
ciently computable functions with semantic meaning may exist. Another
drawback to RSA is that it is deterministic. Every time that a particular
message mq is encrypted in RSA the exact same ciphertext ¢; will result.
This means that it is possible to guess the plaintext in a given ciphertext
and then verify the guess. For example, suppose ¢; = m§ mod n is known.
If my is suspected as being the plaintext it can be encrypted to obtain
cg = m§ mod n. If co = ¢; then mg = m;. When a user encrypts short
messages there is the risk that someone else can guess the plaintext and
verify the guess. A heuristic way to prevent adversaries from guessing the
plaintext and then verifying is to shrink the message space and include a
random bit string in each encryption. This makes each plaintext message
map to more than one ciphertext message. However, a provably secure
approach is more desirable. In the more general case it should not be
possible to select two messages and distinguish between their encryptions.

These observations lead to two notions of security: semantic security
and message Indistinguishability, respectively. As it turns out, when the
adversary is allowed to be any probabilistic poly-time algorithm these
two definitions of security are equivalent. To avoid such vulnerabilities a
semantically secure cryptosystem can be used [117]. An encryption algo-
rithm is semantically secure against plaintext attacks if for all probability
distributions over the message space, anything that a passive adversary
can compute efficiently about the plaintext given the ciphertext can also
be efficiently computed without the ciphertext given any historical infor-
mation about the plaintext.

An efficient public key cryptosystem called Optimal Asymmetric En-
cryption Padding (OAEP) has been proposed [19] that can be imple-
mented given any trapdoor one-way function such as RSA. Its security
was proven within the random oracle model'® [18]. When a cryptosystem
is used that is semantically secure against plaintext attacks to encrypt a
symmetric key, no partial information about the symmetric key is revealed
in the resulting ciphertext. Such a cryptosystem therefore provides more
security than using RSA as originally defined. In computer security, the
standard approach is to formalize the capabilities of the adversary in a

18The security of OAEP has recently been reinvestigated in [109, 272].
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threat model, develop an algorithm to deal with the possible presence of
the adversary, and then prove that the algorithm is secure within that
threat model. The bottom line is that a cryptosystem is only guaranteed
to be secure within the threat model that it is designed to handle and may
well succumb to more powerful adversaries should they exist.?

Semantic security against plaintext attacks guarantees that an adver-
sary that tries to determine some additional partial information concerning
a plaintext given the corresponding ciphertext along with existing partial
information cannot do so. However, there exists an even more powerful
type of adversary than this. For example, in the case of the cryptovirus
extortion attack what has not been considered is a group of victims that
is prepared to pay multiple ransoms, that use the virus writer as a de-
cryption oracle, and that choose the public key ciphertexts based on pre-
viously decrypted ciphertexts. This amounts to what is called an adaptive
chosen-ciphertext attack. This illustrates some of the subtleties in design-
ing secure systems. A cryptosystem that is semantically secure against
plaintext attacks is not necessarily semantically secure against adaptive
chosen-ciphertext attacks. However, it turns out that OAEP is secure
against adaptive chosen-ciphertext attacks.

This reasoning implies that cryptoviruses benefit directly from general
advances in cryptology. Even though the original cryptovirus did not use
multiple entropy sources and an entropy extractor, and even though it
did not use OAEP, it is straightforward to utilize these more advanced
techniques to design secure cryptoviruses.

3.10.2 Mix Networks and Cryptovirus Extortion

Arguably, the weakest aspect of the extortion attack from the perspec-
tive of the virus writer is obtaining the ransom without getting caught.
To this end, it may be best to avoid demanding cash entirely. If the
virus writer seeks information alone, then a more attractive alternative is
possible. Methods exist that enable two mutually distrusting parties to
communicate securely over a network in an anonymous fashion. The basic
vehicle for doing so is called a miz network [54]. A mix network forms
the basis for anonymous remailing systems and is a fundamental building
block for many cryptographic protocols [55, 119, 137, 295]. In a nutshell
a mix network is a service that lets users send messages anonymously to
other users, and that makes the correlation of output messages with input

19Gide channel analysis and kleptographic attacks must also be considered.
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messages nearly impossible. Mix networks fall into two major catagories:
synchronous mixes and asynchronous mixes. In practice asynchronous
mixes are ideal for anonymizing e-mail traffic, whereas synchronous mixes
are best for randomizing message traffic in batches. It is typically easier
to produce formal proofs of security for synchronous mixes than for asyn-
chronous mixes, and as a result synchronous mixes tend to be employed
in protocols such as electronic voting. This allows ballots to be cast in a
provably anonymous fashion. Asynchronous mixes are arguably easier to
deploy on a large scale and rely on a number of heuristic defenses against
particular attacks.

A mix network consists of a collection of N mix net nodes. The basic
idea behind an asynchronous mix is to take an incoming message, send
it from node to node along a randomly chosen path, and then send it to
its final destination. It is necessary to use encryption to prevent corre-
lations based on content as well as to fix the length of each message so
that correlations based on size are not possible. This implies that large
messages need to be broken down into smaller pieces, and short messages
need to be padded out to the requisite length. The fixed sized messages
are encrypted using a probabilistic public key cryptosystem. Therefore,
even if the same message is sent through the network on more than one
occasion it will look different each time with overwhelming probability.
Not only are outsiders a threat to mix networks, but insiders are a threat
as well. A properly designed mix net is still secure even if a fixed fraction
of the nodes are operated by malicious persons that collude in order to
track messages. Assuming that a sufficient number of messages go in and
out of a given node at any given time it is important that the message
go through multiple honest nodes to make the probability of tracing it
negligible. A mix network is depicted in Figure 3.2.

Onion routing is a common method for implementing asynchronous
mix networks. In an onion routing system, each of the N nodes has a
key pair. A user selects a random traversal among the N nodes and
successively encrypts in reverse-order the message using the public keys
corresponding to the nodes that the message will traverse. In choosing the
traversal, the same node can be chosen multiple times and therefore loops
are possible in the path that the message takes. The layers of the resulting
ciphertext are peeled away by performing decryption as the message trav-
els through the network. By padding with random bytes it is possible to
accomplish this in such a way that the length of the transmitted message
is always the same.
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Figure 3.2 Asynchronous mix network

Over time a given mix net node may receive 1,000 incoming messages.
These are decrypted, the order of them is mixed, and the resulting mes-
sages are sent out. The original packet headers are discarded and the
messages are sent in newly constructed packets. This prevents trivial
matching based on packet headers. If a message is decrypted entirely
then it is sent to the final recipient. This way, a given input message to
the node may end up being any of 1,000 different outgoing messages (see
Figure 3.3).

It is also possible for a mix node to decrypt a message, determine the
next intended recipient, and then re-encrypt the message using the public
key of the recipient. When this re-encryption is probabilistic, it makes it
more difficult for the original sender to identify his or her own message as
it moves through the mix network.

An asynchronous mix network must have a sufficiently large message
volume at all times. If only a handful of messages is traveling through the
network then correlation is trivial. There are numerous attacks on mix net-
works that have been described in the literature.?’ For example, an active

20Lance Cottrell described several attacks against asynchronous mix networks [75].
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Figure 3.3 Mixing in a mix network node

adversary may try to determine the partial path of an unknown message
by sandwiching it between messages of the adversaries’ own choosing. The
object is to fill the queue of messages in the mix with custom-made mes-
sages, all except for the one that needs to be traced. The adversary then
watches the messages as they leave the node to determine where the sand-
wiched message goes. The adversary takes note of how many messages
each intended recipient receives. This is enough to determine where the
sandwiched message went.

A novel solution to this problem has been proposed [112]. The idea
is to regard the mix net nodes as probabilistic algorithms and let them
affect the paths that messages take. The way this is accomplished is by
flipping coins, and with a certain probability sending a given message on a
short, randomly chosen inter-mixz detour. When a detour occurs it has the
effect of adding a few new layers back onto the message in question. This
mechanism has the novel property that even the sender does not know for
sure what path his or her message will take within the mix network. The
probability that a given message is sent on a detour must be low enough
to keep the message volume from growing out of control.

Methods have been devised to not only allow anonymous messages
to be sent, but also to allow anonymous replies [112]. In the cryptovirus
attack, the virus can instruct the victim to place the victim’s email address
on a public bulletin board. To avoid embarrassment, the virus can tell
the victim to first encrypt the e-mail address using the public key in
the virus. The e-mail address can be chosen specifically for dealing with
the virus writer and therefore not reveal the identity of the victim. The
virus writer periodically scans the board for such ciphertexts, and decrypts
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them when found. The virus writer then sends the demand anonymously
to the victim. Provided that the ransom is information, the victim can
include the ransom within the anonymous reply. As long as the ransom
itself does not reveal the identity of the victim, the attack preserves the
victim’s anonymity. A mix network is therefore a powerful building block
for carrying out cryptovirus attacks.

To apprehend the virus writer, law enforcement bodies may seek to
subpoena the administrators of each node in the mix network. Such a
subpoena might call for the current private key and all previous private
keys of each of the administrators. If all of the needed private keys and
message traffic were obtained, this would allow law enforcement to trace
any given message. However, if each mix net node adhered to a de facto
mix net protocol standard, generated new key pairs every so often, and
deleted all previous private keys and coin tosses, then the subpoena would
likely not help law enforcement. Also, if the nodes spanned multiple coun-
tries then the tracing effort would be hampered even more due to legal
complications.

The fact that mix net nodes traditionally decrypt incoming messages
and then re-encrypt them when they are sent out, implies that the indi-
vidual private keys of each mix net administrator can be used to trace
message traffic. A recent method known as wuniversal re-encryption has
been proposed as a basis for a provably secure mix network [120]. By
using a cryptosystem such as ElGamal that allows re-encryption without
first decrypting, it is possible to have the mix net nodes randomize the in-
coming messages in an oblivious fashion. With respect to the virus attack,
this implies that there are no administrator private keys for law enforce-
ment to subpoena. If a re-encryption mix net node does not store the
random permutation that it used in a mix operation, then the permuta-
tion is effectively lost forever.?! This property makes re-encryption mixes
very attractive to criminals that need to communicate anonymously.

Various indirect methods exist to achieve financial gain through extor-
tion. For example, a determined attacker may premeditate an extortion
attempt by purchasing several shares of a small public company, provided
that a substantial number of shares are up for sale. Once the attack is
carried out the victim can be forced to purchase a high volume of shares
from the small company. This has a tendency to drive the share price
up, at which point the attacker can cash out. The obvious drawback to

21Unless all of the inputs and outputs of the re-encryption mix network are obtained.
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this method is that all of the outstanding shareholders may be regarded
as suspects.

3.11 Anonymizing Program Propagation

An important issue that has been glossed over is the anonymity of the
actual virus propagation. Strictly speaking, given enough snapshots of
the states of machines on a network it is theoretically possible to trace the
flow of a virus or worm perfectly. So, an interesting theoretical question is
how to design a virus or worm that cannot be traced. Intuitively it would
seem that a solution along these lines would make use of some form of mix
network.

At first sight Figure 3.4 may appear to be quite silly. It looks like an
artery or something out of a Dr. Seuss book, but it is quite illustrative of a
new concept that will now be introduced. Consider a simple generalization
of a mix network in which it is programs that are mixed instead of simply
messages. Suppose further that programs can submit themselves to the
mix network. In this case a program can choose a destination, jump into
the mix, and then reappear at the destination much like the bug does
in the figure. This in itself would not be very useful unless the program
had a way of gaining control when it arrives at its destination. This
could be accomplished by having the client programs for the mix network
automatically run the programs that are received from the network.

This system is somewhat similar to the worm that was researched
at the Palo Alto Research Center (see Appendix A.1) with one critical
difference: a program’s starting location cannot be ascertained at all once
the program travels through the network.?? A nice feature to have would
be a program that submits itself to the mix and that can either choose
the destination machine explicitly or let the mix choose the final machine
based on its own random coin flips. This latter approach allows programs
to literally disappear without a trace from one machine and show up at
some random location that the program itself could not have predicted
accurately. This aspect would make viruses and worms very happy.

The system can be construed as a distributed operating system in
which the processes may optionally be distributed anonymously among
many machines. It may at first sight appear to be suicidal for users. In
many respects this is in fact the case. However, a virtual machine with

22The program could be designed to reveal this information deliberately, however.
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Figure 3.4 A mix that mixes programs

a security kernel that verifies the signature on programs before running
them can be used to implement execution rights and access control.

The system has some very interesting implications for digital copyright
issues. Suppose that the system is based on a mix that enables anonymous
messages to be sent along with anonymous replies [112]. Also, suppose that
a program is written that uses private information retrieval (see Section
6.2) to search for a particular MP3 song and retrieve it. The program can
contain a specific query as well as the database administrator algorithm.
The program runs the database administator algorithm on the query and
the database of the machine when it arrives.?® If this program shows up
on a machine through the mix, takes an MP3, and then disappears back to

2The scheme can utilize tagged private information retrieval (see Section 6.4) and
use a questionable encryption scheme (Subsection 6.6.2) to “encrypt” the response to
the query. A sting operation can be performed by pirates against law enforcement in
which witnesses of non-encryption are revealed to refute the validity of ciphertexts that
are “evidence.”
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where it came from, is the owner of the machine at fault in a legal sense? If
the database consists of public domain songs as well as commercial songs
then the owner of the machine will never have any way of knowing if a
commercial song has ever been taken off the machine or not.

In this respect the system acts like a passive file server since programs
can show up out of nowhere, take files, and jump back into the mix. The
only overt action that the mix client does that makes file sharing possible
is to send control to programs that arrive from the mix. This overt action
can be eliminated without hindering public file sharing capabilities. The
system can be designed to check for the requisite level of access control,
but contain a rather convenient bug that accidentally allows world read
permissions to commercial MP3s. Can users be liable for not finding bugs
in their software and fixing them? Can companies be liable for selling
or distributing buggy software? Should laws be passed to force users
not to trust the world? The mix-based distributed operating system just
described is hackable by design.?* The cryptographic agent that moves
through it is designed to hide what it is doing. This is an example of
how cryptography can be maliciously used by software pirates to violate
copyright laws.

?4Tn terms of world read permissions.






