
Chapter 3

How to Write a Program
In This Chapter
� Designing your program

� Understanding the technical details

� Choosing a programming language

� Defining how the program should work

� Knowing the life cycle of a typical program

Although you can sit down at your computer and start writing a program
right now without any planning whatsoever, the result would likely to

prove as messy as trying to bake a cake by throwing all the ingredients
together without following a recipe.

You can write a simple program that displays your cat’s name on-screen with-
out much planning, but for anything more complex, you want to take time to
design your program on paper before you even touch a computer. After you’re
sure that you know what you want your program to do and how you want it
to look on-screen, you can worry about writing a program that actually
accomplishes this task.

Before You Write Your Program
If you design your program before writing it, you don’t waste time writing a
program that doesn’t work or that solves the wrong problem and isn’t worth
trying to salvage afterward. By planning ahead of time, you increase the odds
that your program actually works and performs the task that you want.

The following three items are crucial to consider in designing a program:

� The user: Who’s going to use your program?

� The target computer: Which computer do people need to run your pro-
gram? Is it a Windows 98/Me/NT/2000/XP computer, a Macintosh, a main-
frame, a computer running Linux, a handheld Palm or PocketPC, or a
supercomputer?

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 37

� You: Are you going to write the entire thing yourself or get help from
others? If you’re going to get others to help you, which parts of the pro-
gram are they going to write?

When you’re designing a program, you don’t need to worry about which pro-
gramming language you’re going to use. Once you know exactly what you
want your program to do, then you can choose which programming language
might be easiest to use.

The program’s users
If you’re the only person who’s going to use your program, you can pretty
much make your program look and act any way you want, just as long as you
know how to make it work. But if you plan to give or sell your program to
others, you need to know who’s going to use your program.

Knowing your program’s typical user is critical. If users don’t like your pro-
gram for any reason, they’re unlikely to use it. Whether the program actually
works is often irrelevant.

By designing your program with the user in mind, you increase the odds that
people use your program and (you hope) buy a copy for themselves.

Even if you write a program that works perfectly, users still may ignore it
because they don’t like the way it looks, they don’t understand how to give it
commands, it doesn’t work the same way as the old program they currently
use, the colors don’t look right to them, and so on. The goal is to make your
program meet your users’ needs, no matter how weird, bizarre, or illogical
they may seem. (The needs — not the users.)

The target computer
After you identify the user, you need to know what type of computer the user
intends to run the program on. The type of computer that your program runs
on can determine which computer languages you can use, the hardware that
your program can expect to find, and even the maximum size of your program.

If you’re writing a program to run on a Macintosh, for example, your program
can take advantage of sound, color graphics, a large hard disk, and plenty of
memory. You need to rewrite that same program drastically, however, to run
it on a Palm handheld computer, with its limited sound capability, much sim-
pler color graphics, and limited amount of memory and storage space.

38 Part I: Programming a Computer

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 38

If you can copy and run your program on another computer with little or no
modification, your program is considered portable. The computer language
that you use to write your program can affect its portability. That’s why so
many people use C/C++ — C and C++ programs tend to be more portable than
other programming languages.

Your own programming skill
When designing any program, consider your own programming skill. You may
get a great idea for a program, but if you’re a beginner with little experience,
writing your program may take a long time — if you don’t give up out of frus-
tration first.

39Chapter 3: How to Write a Program

Portability and cross-platform issues
Rather than pick a single computer, many pro-
grammers try to write programs that can run on
a variety of computers, such as the Macintosh
and Windows 98/Me/NT/2000/XP. Any program
that can run on two or more different types of
computers is cross-platform. Microsoft Word is
a cross-platform program because you can buy
separate versions that run in the Macintosh and
Windows environments.

A program that can run on multiple computers
increases your number of potential customers,
but also increases the number of potential
problems that you must face. Some of the prob-
lems include offering customer support for each
version of your program and trying to make
each program version work the same although
they may run on completely different operating
systems and computers with totally different
capabilities.

At one time, WordPerfect offered versions of its
word processor that ran on MS-DOS, Windows,
the Macintosh, the Amiga, and the Atari ST. So
besides hiring enough programmers to work on

each word-processor version, the makers of
WordPerfect also needed to hire technical sup-
port people who knew how to answer questions
for each computer type. Needless to say, this
situation cost the company a bundle every
month. Developing and supporting so many dif-
ferent versions of WordPerfect cut into the
company’s profits, so WordPerfect dropped
support for the Amiga, Macintosh, and Atari ST
because keeping them wasn’t worth the cost.

Currently, two of the most popular cross-platform
compilers include Real Basic and Delphi/Kylix.
Real Basic lets you write programs that can run
on Macintosh, Linux, and Windows with minor
modifications, while Delphi and Kylix let you
write programs that can run on both Windows
and Linux. If you want your program to run on
different operating systems, you’ll need to use
a cross-platform compiler. As another alterna-
tive, you can always write your program in
C/C++ and then compile it on different operating
systems and tweak each version to make it run
under specific operating systems.

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 39

Your programming skill and experience also determine the programming lan-
guage that you choose. Experienced programmers may think nothing about
writing entire programs in C or C++. But novices may need to spend a long
time studying C and C++ before writing their programs, or they may choose
an easier programming language, such as BASIC.

Some novices take the time to learn difficult languages, such as C/C++, and
then go off and write their program. Others take an easier approach and
choose a simpler language such as Visual Basic so they can create (and
market) their programs right away. Don’t be afraid to tackle a heavy-duty lan-
guage such as C/C++, but don’t be afraid to use a simpler language such as
Visual Basic either. The important goal is to finish your program so you can
start using it and (possibly) start selling it to others.

Many programmers create their program by using a language such as Visual
Basic and then later hire more experienced programmers to rewrite their pro-
grams in a more complex language such as C/C++, which can make the pro-
gram faster and more efficient.

The Technical Details
of Writing a Program

Few people create a program overnight. Instead, most programs evolve over
time. Because the process of actually typing programming commands can

40 Part I: Programming a Computer

Beware of the golden handcuffs
Rather than learn programming themselves,
many people hire someone to write programs
for them. But take care! Freelance program-
mers sometimes live by a rule known as the
“golden handcuffs,” which means that they get
the gold and you get the handcuffs.

Here’s how the golden handcuffs work: You hire
someone to write your program, and the pro-
grammer takes your money. Then that person
writes a program that doesn’t work quite the
way that you want. Rather than lose the money
you already invested in developing the program,
you pay the programmer more money, and then

this programmer develops a new version of your
program that doesn’t quite work either.

At this point, you’re handcuffed. Do you keep
paying money to a programmer who never com-
pletely finishes the job, or do you give up alto-
gether? What’s worse, you can’t hire a new
programmer to work on the same program
because the original programmer owns your
program’s source code, so nobody else can
modify it. Thus the only way that you can modify
the program is to hire the original programmer
again and again and again and. . . .

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 40

prove so tedious, time-consuming, and error-prone, programmers try to
avoid actually writing their programs until they’re absolutely sure that they
know what they’re doing.

Prototyping
To make sure that they don’t spend months (or years) writing a program that
doesn’t work right or that solves the wrong problem, programmers often pro-
totype their programs first. Just as architects often build cardboard or plastic
models of skyscrapers before a construction crew starts welding I-beams
together, programmers create mock-ups (prototypes) of their programs first.

A prototype usually shows the user interface of the program, such as win-
dows, pull-down menus, and dialog boxes. The prototype may look like an
actual program, but clicking menus doesn’t do anything. The whole idea of
the prototype is to show what the program looks like and how it acts, without
taking the time to write commands to make the program actually work.

After the programmer is happy with the way the prototype looks, she can pro-
ceed, using the prototype as a guideline toward completing the final program.

41Chapter 3: How to Write a Program

General purpose versus specialized
programming languages

General purpose programming languages, such
as C/C++, BASIC, Pascal, assembly language,
and so on, give you the ability to create practi-
cally anything you want, but it may take a long
time to do so. To make programming faster and
easier, many people have developed special-
ized programming languages for solving spe-
cific types of problems.

For example, SNOBOL is a little known language
specifically designed for manipulating text. If
that’s what you need, then writing a program in
SNOBOL can be much quicker than using
C/C++. Of course, if you want to do something
else besides text manipulation, programming in
SNOBOL will likely be a horrible choice.

Similarly, programmers often use LISP and
Prolog to create artificially intelligent programs
as both LISP and Prolog include commands for
decision-making. While you could create an
artificially intelligent program using COBOL or
BASIC, you would have to write at least twice
as many instructions in either FORTRAN, C/C++,
or COBOL to accomplish what a single LISP or
Prolog command could accomplish.

So the moral of the story is that you can make
programming a lot easier if you just choose the
right programming language to help you solve
the right problem.

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 41

Many programmers use Visual Basic because it’s easy for creating prototypes
quickly. After you use Visual Basic to create a prototype that shows how your
user interface works, you can start adding actual commands to later turn
your prototype into an honest-to-goodness working program.

Choosing a programming language
After you refine your prototype until it shows you exactly how your program
is to look and act, the next step is choosing a programming language to use.

You can write any program by using any programming language. The trick is
that some languages make writing certain types of programs easier.

The choice of a programming language to use can pit people against one
another in much the same way that religion and politics do. Although you
can’t find a single “perfect” programming language to use for all occasions,
you may want to consider a variety of programming languages. Ultimately, no
one cares what language you use as long as your program works.

42 Part I: Programming a Computer

Using multiple programming languages
Instead of writing an entire program using one
programming language (such as C++), some
compilers can convert source code into a spe-
cial file known as an object file. The purpose of
object files is that one programmer can write a
program in C++, another in assembly language,
and still a third in Pascal. Each programmer
writes his portion of the program in his favorite
language and stores it in a separate object file.
Then the programmers connect (or link) all these
object files together to create one big program.
The program that converts multiple object files
into an executable program is known as a linker.

In the world of Microsoft Windows, another
way to write a program using multiple lan-
guages is to use dynamic link libraries (DLLs),
which are special programs that don’t have a
user interface. One programmer can use C,
another can use Java, and a third can use
COBOL to create three separate DLL files. Then
a fourth programmer can write a program using
another language such as Visual Basic, which

creates the user interface and uses the com-
mands that each separate DLL file stores.

A third way to write a program is to use your
favorite language (such as Pascal) and then
write assembly language instructions directly in
parts of your program. (Just be aware that not
all compilers enable you to switch between dif-
ferent languages within the same program.)

Finally, Microsoft offers a programming frame-
work dubbed .NET. By using the .NET frame-
work, one programmer can program in C#,
another can program in FORTRAN, and still
another can program in BASIC. Then their dif-
ferent programs can share data and communi-
cate with other programs through the .NET
framework and create a single user interface
that unifies these separate programs. The
whole point to all of these different methods is
that by using different programming languages,
you can take advantage of each language’s
strengths, while minimizing its weaknesses.

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 42

Defining how the program should work
After choosing a specific programming language, don’t start typing
commands into your computer just yet. Just as programmers create mock-
ups (prototypes) of their program’s user interface, they often create mock-up
instructions that describe exactly how a program works. These mock-up
instructions are known as pseudocode.

If you need to write a program that guides a nuclear missile to another city to
wipe out all signs of life within a 100-mile radius, your pseudocode may look
as follows:

1. Get the target’s coordinates.
2. Get the missile’s current coordinates.
3. Calculate a trajectory so the missile hits the target.
4. Detonate the nuclear warhead.

By using pseudocode, you can detect flaws in your logic before you start
writing your program — places where the logic behind your program gets
buried beneath the complexity of a specific programming language’s syntax.

In the preceding example, you can see that each pseudocode instruction
needs further refining before you can start writing your program. You can’t
just tell a computer, “Get the target’s coordinates” because the computer
wants to know, “Exactly how do I get the target’s coordinates?” So rewriting
the preceding pseudocode may look as follows:

1. Get the target’s coordinates.
a. Have a missile technician type the target
coordinates.
b. Make sure that the target coordinates are
valid.
c. Store the target coordinates in memory.

2. Get the missile’s current coordinates.
3. Calculate a trajectory so the missile hits the target.
4. Detonate the nuclear warhead.

You can refine the instructions even further to specify how the computer
works in more detail, as follows:

1. Get the target’s coordinates.
a. Have a missile technician type the target
coordinates.
b. Make sure that the target coordinates are
valid.

1) Make sure that the target coordinates are
complete.

(continued)

43Chapter 3: How to Write a Program

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 43

2) Check to make sure that the target
coordinates are within the missile’s range.

3) Make sure that the target coordinates
don’t accidentally aim the missile at friendly
territories.
c. Store the target coordinates in memory.

2. Get the missile’s current coordinates.
3. Calculate a trajectory so the missile hits the target.
4. Detonate the nuclear warhead.

When programmers define the general tasks that a program needs to accom-
plish and then refine each step in greater detail, they say that they’re doing a
top-down design. In other words, they start at the top (with the general tasks
that the program needs to do) and then work their way down, defining each
task in greater detail until the pseudocode describes every possible step that
the computer must go through.

Writing pseudocode can prove time-consuming. But the alternative is to start
writing a program with no planning whatsoever, which is like hopping in your
car and driving north and then wondering why you never seem to wind up in
Florida.

Pseudocode is a tool that you can use to outline the structure of your pro-
gram so that you can see all the possible data that the computer needs to
accomplish a given task. The idea is to use English (or whatever language you
understand best) to describe the computer’s step-by-step actions so that you
can use the pseudocode as a map for writing the actual program in whatever
language (C/C++, FORTRAN, Pascal, Java, and so on) that you choose.

The Life Cycle of a Typical Program
Few programs are written, released, and left alone. Instead, programs tend to
go through various cycles where they get updated continuously until they’re
no longer useful. (That’s why many people buy a new word processor every
few years even though the alphabet hasn’t changed in centuries.)

Generally, a typical program goes through a development cycle (where you
first create and release it), a maintenance cycle (where you eliminate any
glaring bugs as quickly as possible), and an upgrade cycle (where you give
the program new features to justify selling the same thing all over again).

The development cycle
Every program begins as a blank screen on somebody’s computer. During the
development cycle, you nurture a program from an idea to an actual working
program. The following steps make up the development cycle:

44 Part I: Programming a Computer

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 44

1. Come up with an idea for a program.

2. Decide the probable identity of the typical user of the program.

3. Decide which computer the program is to run on.

4. Pick one or more computer languages to use.

5. Design the program by using pseudocode or any other tool to outline
the structure of the program.

6. Write the program.

7. Test the program.

This step is known as alpha testing.

8. Fix any problems that you discover during alpha testing.

Repeat Steps 7 and 8 as often as necessary.

9. Give out copies of the program to other people to test.

This step is known as beta testing.

10. Fix any problems that people discover during beta testing.

Repeat Steps 9 and 10 as often as necessary.

11. Release the program to the unsuspecting public and pray that it works
as advertised.

The maintenance cycle
Most programmers prefer to create new programs than maintain and modify
existing ones, which can prove as unappealing as cleaning up somebody
else’s mess in an apartment. But the number of new programs that program-
mers create every year is far less than the number of existing programs, so at
some point in your life, you’re likely to maintain and update a program that
either you or somebody else wrote.

The following list describes typical steps that you may need to follow to
maintain an existing program:

1. Verify all reports of problems (or bugs) and determine what part of
the program may be causing the bug to appear.

2. Fix the bug.

3. Test the program to make sure that the bug is really gone and that any
changes you make to the program don’t introduce any new bugs.

4. Fix any problems that may occur during testing.

45Chapter 3: How to Write a Program

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 45

5. Repeat Steps 1 through 4 for each bug that someone reports in the
program.

Given the buggy nature of software, these steps may go on continuously
for years.

6. Release a software patch, which users can add to an existing version
of the program to incorporate corrections that you make to “patch
up” the problems.

The upgrade cycle
Companies don’t make money fixing software and making it more stable, reli-
able, and dependable. Instead, companies make money by selling new ver-
sions of their programs that offer additional features and options that most
people probably don’t use or need in the first place.

Still, because so many programs undergo modification to take advantage of
new hardware or software, you may find yourself occasionally upgrading a
program by adding new features to it. The following steps make up the
upgrade cycle:

1. Determine what new feature you want to add to the program.

2. Plan how this new feature is to work (by using pseudocode or another
tool to help structure your ideas).

3. Modify the program to add this new feature.

4. Test this new feature (by using alpha testing) to make sure that it
works and doesn’t introduce new bugs into the program.

5. Fix any problems that may occur during alpha testing.

6. Give out copies of the program to other people to beta test.

7. Fix any problems that the beta testers report.

8. Repeat Steps 1 through 7 for each new feature that you need to add to
the program.

9. Release the program as a new version and wait for the public to start
reporting bugs that keep the program from working correctly so that
you can start the maintenance cycle all over again.

Despite all the university courses and such important-sounding titles as
“software engineer,” programming is still less of a science and more of an art.
Writing, modifying, and updating software doesn’t require a high IQ or an
advanced mathematics degree as much as it requires creativity, determina-
tion, and plenty of imagination. You can write a program any way that you
want, but the best way to prevent possible problems later on is to be orga-
nized and methodical in your approach.

46 Part I: Programming a Computer

06 549979 Ch03.qxd 11/4/03 12:20 PM Page 46

