
8
Reading from Databases

So far, you've learnt a lot about programming, and seen those techniques in use in a variety of Web
pages. Now it's time to turn our attention to one of the most important topics of building
Web sites – data. Whatever the type of site you aim to build, data plays an important part. From a
personal site (perhaps a vacation diary or a photo album), to a corporate e-commerce site,
data is key!

There are numerous ways to store data, but most sites use a database. In this chapter, we're going to
look at data stored in databases, and show how easily it can be used on Web pages. For this we are
going to use ADO.NET, which is the data access technology that comes as part of the .NET
Framework.

If the thought of databases sounds complex and scary, don't worry. We're going to show you just
how easy this can be. In particular, we'll be looking at:

❑ Basics of databases and how they work

❑ How to create simple data pages using Web Matrix

❑ Different ADO.NET classes used for fetching data

❑ Basics of ADO.NET and how it fetches data

❑ How to use Web Matrix to simplify developing data access pages

Let's develop some basic understanding of databases first.

Understanding Databases
Understanding some basics about databases is crucial to using data in your pages. You don't need
to be a database expert, but there are certain things you will need to know in order to work with
data in .NET. For a start, you need to understand how data is stored. All types of data on a
computer are stored in files of some sort. Text files, for example, are simple files and just contain

57084_08.qxp 30/01/2004 8:02 PM Page 247

plain text. Spreadsheets, on the other hand, are complex files containing not only the entered text and
numbers, but also details about the data, such as what the columns contain, how they are formatted, and
so on.

Databases also fall into the category of complex files. When using Microsoft Access, you have an MDB
file – this is a database file, but you can't tell anything about the data from the file itself. You need a way
to get to the data, either using Microsoft Access itself, or as we are going to do, using the .NET data
classes. Before you can access the data, you need to know how it is stored internally.

Tables
Within a database, data is stored in tables – these are the key components of all databases. A table is like a
spreadsheet, with rows and columns. You generally have multiple tables for multiple things – each
distinct type of data is stored separately, and tables are often linked together.

Let's look at an example that should make this easier to visualize. Consider an ordering system, for
example, where you store details of customers and the goods they've ordered. The following table shows
rows of customer orders, with columns (or fields) each piece of order information:

Customer Address Order Date Order Item Quantity Item Cost

John 15 High
Street
Brumingham
England
UK

01/07/2003 Widget 10 3.50

John 15 High
Street
Brumingham
England
UK

01/07/2003 Doodad 5 2.95

John 15 High
Street
Brumingham
England
UK

01/08/2003 Thingy 1 15.98

Chris 25 Easterly
Way
Cradiff
Wales
UK

01/08/2003 Widget 1 3.50

Dave 2 Middle
Lane
Oxborough
England
UK

01/09/2003 Doodad 2 2.95

248

Chapter 8

57084_08.qxp 30/01/2004 8:02 PM Page 248

This is the sort of thing you'd see in a spreadsheet, but there are a couple of big problems with this. For a
start, we have repeated information. John, for example, has his address shown three times. What
happens if he moves house? You'd have to change the address everywhere it occurs. Dave has two
addresses, but notice they are slightly different. Which one is correct? Are neither correct?

To get around these problems, we use a process called Normalization.

Normalization
This is the process of separating repeated information into separate tables. There are whole books
dedicated to database design, but we only need to look at the simplest case. A good beginner book on
database design is Database Design for Mere Mortals: A Hands On Guide to Relational Database Design, by
Michael J. Hernandez

What we need to do is split the previous table into three tables, one for each unique piece of information
– Customers, Orders, and OrderDetails. To link the three new tables together, we create ID columns
that uniquely identify each row. For example, we could create a column called CustomerID in the
Customers table. To link the Customers table to the Orders table, we also add this CustomerID to the
Orders table. Let's look at our tables now.

The Customers table is as follows:

The Orders table is as follows:

CustomerID Customer Address

1 John 15 High Street
Brumingham
England UK

2 Chris 25 Easterly Way
Cradiff
Wales UK

3 Dave 2 Middle Lane
Oxborough
England UK

Customer Address Order Date Order Item Quantity Item Cost

Dave 3 Middle
Lane
Oxborough
England
UK

01/09/2003 Thingamajig 1 8.50

249

Reading from Databases

57084_08.qxp 30/01/2004 8:02 PM Page 249

The OrderDetails table is as follows:

We now have three tables that can be linked together by their ID fields as shown in Figure 8-1:

Figure 8-1

We now have links between the tables. The CustomerID field in the Orders table is used to identify
which customer the order is for. Similarly, the OrderID field in the OrderDetails table identifies which
order a particular order line belongs to.

The unique key in a table is defined as its Primary Key – it's what uniquely defines a row. When used in
another table it is called the Foreign Key, so called because it's a key, but one to a foreign table. The

OrderDetailsID OrderID Order Item Quantity Item Cost

1 1 Widget 10 3.50

2 1 Doodad 5 2.95

3 2 Thingy 1 15.98

4 3 Widget 1 3.50

5 4 Doodad 2 2.95

6 4 Thingamajig 1 8.50

OrderID CustomerID OrderDate

1 1 01/07/2003

2 1 01/08/2003

3 2 01/08/2003

4 3 01/09/2003

250

Chapter 8

57084_08.qxp 30/01/2004 8:02 PM Page 250

foreign key is simply a column that is the primary key in another table. Because the values of the
primary key and the foreign key will be the same, we can use them to link the tables together. This
linking of the tables is done in Structured Query Language (SQL), usually as a query or a stored procedure.

SQL and Stored Procedures
Queries are the way in which we deal with data in a database, either to extract data or to manipulate it.
We can use an SQL statement or a stored procedure, which is an SQL statement wrapped to provide a
simple name. It's worth noting that a stored procedure is actually more than just wrapping an SQL
statement in a name, but that's a good enough description for what we need.

In Chapter 5 when we looked at functions, we had a function name encapsulating some code statements.
Think of a stored procedure in a similar way – it wraps a set of SQL statements, allowing us to use the
name of the stored procedure to run those SQL statements. We're not going to focus much on this topic
as it's outside the scope of this book.

To learn more about SQL, read SQL for Dummies (ISBN 0-7645-4075-0) by John Wiley & Sons Inc.

Here are a few reasons why you should always use stored procedures instead of direct SQL:

❑ Security: Using the .NET data classes with stored procedures protects you against certain forms
of hacking.

❑ Speed: Stored procedures are optimised the first time they are called, and then the optimised
code is used in subsequent calls.

❑ Separation: It keeps the SQL separate from your code.

In the remainder of this book, we'll actually be using a mixture of SQL and stored procedures for the
simple reason that sometimes it's easier to use SQL in the context of an example. Remember, our focus is
on ASP.NET. We'll be using Microsoft Access for the samples, and although Access doesn't support
stored procedures, its use of stored queries is equivalent.

Let's get on with some examples.

The Web Matrix Data Explorer
You've already seen how powerful Web Matrix is for creating Web pages, and this power extends to
working with data. Where you've used the Workspace Explorer in the top right hand corner of Web
Matrix to work with files, you can use the Data Explorer to work with data. This provides ways of
creating databases, connecting to existing ones, and working with tables and queries. Let's give this a go.

Try It Out Connecting to a Database
1. Select the Data Explorer tab, and click the Add Database Connection button – the one that's second

in from the right, and will be the only one highlighted, as shown in Figure 8-2, if you haven't
already got a database connection open:

251

Reading from Databases

57084_08.qxp 30/01/2004 8:02 PM Page 251

Figure 8-2

2. Select Access Database from the window that appears and press OK.

3. Enter the following into the Data File text area (use a central location for the database, so that we
can reuse it later in the book):

C:\BegASPNET11\data\Northwind.mdb

4. Press OK to connect to the database. This is the Northwind database, one of the sample
databases that ships with Microsoft Access.

5. Figure 8-3 shows the tables contained in this database:

Figure 8-3

252

Chapter 8

57084_08.qxp 30/01/2004 8:02 PM Page 252

You can double-click on these to open the table, and see and change the data. One thing you might
notice is that you don't see any queries – that's because Web Matrix doesn't support queries in Access.
When connecting to SQL Server, you'll see the stored procedures – you can even create and edit
them – but for Access, you are limited to tables only.

How It Works
There's nothing really to explain about how it works. What we are doing is simply creating a connection
to a database that Web Matrix can use. This isn't required for ASP.NET to fetch data from databases, but
Web Matrix has some great ways to generate code for you, so you don't have to do as much coding.

Creating Data Pages
Pages that display data can be created in a number of ways, and let's first look at the three ways that
Web Matrix uses to save you coding. This is the quickest way to get data into your pages and saves a
great deal of time. However, what it might not do is give you the knowledge to access databases without
using Web Matrix. After we've seen the easy ways, we'll look at the .NET classes that deal with data.
This way you'll have techniques to work with and without Web Matrix.

Displaying Data Using the Data Explorer
You've already seen how easy connecting to a database is using the Data Explorer. Creating pages
directly from this explorer is even easier – all you have to do is drag the table name and drop it onto a
page. This will automatically create a connection on the page and a fully functional data grid. Let's give
this a go.

Try It Out Creating a Grid
1. Create a new ASP.NET page called Grid1.aspx.

2. From the Data Explorer, drag the Suppliers table onto your empty page as shown in
Figure 8-4:

Figure 8-4

253

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 253

3. Save the page and run it as shown in Figure 8-5:

Figure 8-5

Amazing! A sortable grid full of data and you didn't have to write even a single line of code!

How It Works
The workings rely on two controls – the AccessDataSourceControl that provides the connection to
the database, and an MxDataGrid, which is a Web Matrix control (also covered in Chapter 10) that
displays the data. Looking at the HTML view for these controls gives you a good idea of what they do.

Let's start with the AccessDataSourceControl:

<wmx:AccessDataSourceControl id="AccessDataSourceControl2"
runat="server" SelectCommand="SELECT * FROM [Suppliers]"
ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0; Ole DB Services=-4;

Data Source=C:\BegASPNET11\data\Northwind.mdb"></wmx:AccessDataSourceControl>

The first thing to notice is the way the control is declared. You're used to seeing asp: at the beginning of
controls, but not wmx:. This prefix is the namespace – remember the previous chapter where we said that
namespaces provide a separation between classes. In this case, these controls are part of Web Matrix, and
have thus been given a namespace that is different from the standard server controls.

Apart from the id and runat, two other attributes provide the details regarding which database to
connect to and what data to fetch:

❑ The SelectCommand: Defines the SQL that will return the required data – in this case, it's all
rows and columns from the Suppliers table. This is the default since we dragged this table,
but we can customize the SelectCommand to return only selected rows or columns.

❑ The ConnectionString: Defines the OLEDB connection string. You only need to worry about
the bit with the path of the database file – the Data Source bit (if you move the file, you'll need
to change this). The other parts of the ConnectionString just define the type of database and

254

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 254

some database specific features. You don't need to know about these specifically (they are fully
documented in the .NET help files); just copy them if you ever need to use them again.

At this stage, you have enough details to connect to a database and fetch data, but don't have any way to
display it. For that we are going to use the MxDataGrid control:

<wmx:MxDataGrid id="MxDataGrid2" runat="server"
DataSourceControlID="AccessDataSourceControl2" BorderColor="#CCCCCC"
AllowSorting="true" DataMember="Suppliers" AllowPaging="true"
BackColor="White" CellPadding="3" DataKeyField="SupplierID"
BorderWidth="1px" BorderStyle="None">
<PagerStyle horizontalalign="Center" forecolor="#000066"
backcolor="White" mode="NumericPages"></PagerStyle>

<FooterStyle forecolor="#000066" backcolor="White"></FooterStyle>
<SelectedItemStyle font-bold="true" forecolor="White"
backcolor="#669999"></SelectedItemStyle>

<ItemStyle forecolor="#000066"></ItemStyle>
<HeaderStyle font-bold="true" forecolor="White"
backcolor="#006699"></HeaderStyle>

</wmx:MxDataGrid>

This may seem complex but is actually very simple. Let's look at all of the attributes:

As part of the grid, we also have some style elements:

Attribute Description

DataSourceControlID This contains the ID of the data source control from
which data will be fetched. In this case, it's the ID of
the AccessDataSourceControl we described
earlier.

BorderColor This is the color of the grid border.

AllowSorting Indicates whether or not the grid will support sorting.

DataMember This contains the database table name.

AllowPaging Indicates whether or not the grid supports paging.
The default number of rows in a page is 10, and this
can be changed with the PageSize attribute.

BackColor This is the background color for the grid.

CellPadding This defines the amount of padding between grid
cells. A higher number means the cells will be spaced
further apart.

DataKeyField This is the primary key of the table.

BorderWidth This is how wide the border of the grid is. Here it is 1
pixel (px stands for pixel), which is a thin border.

BorderStyle This is the style of the border.

255

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 255

❑ PagerStyle: Defines the style of the pager section. In our grid, this is the last row showing the
page numbers, but it appears before the footer if a footer row is being shown.

❑ FooterStyle: Defines the style of the footer row. In our grid, we aren't showing a footer, but
the style is set so that the footer will look correct if it is shown.

❑ SelectedItemStyle: Defines the style of items when they are selected. Our grid isn't selectable
by default, but like the FooterStyle the default style is set in case item selection is added.

❑ ItemStyle: Defines the style for each row of data in the grid.

❑ HeaderStyle: Defines the style for the header row, where the column names are shown.

That's all there is to this example – two controls that are linked together. When the page is loaded, the
AccessDataSourceControl connects to the database and runs the command. The MxDataGrid then
fetches the data stored by the data source control and constructs a grid around it. In fact, the grid is the
most complex piece of code here because of all the properties being set - purely to change the look. At its
simplest, you could have the following:

<wmx:MxDataGrid id="MxDataGrid2" runat="server"

DataSourceControlID="AccessDataSourceControl2">

</wmx:MxDataGrid>

This only contains the attributes required to display data.

Displaying Data Using the Web Matrix Template Pages
You've probably noticed a number of template pages when you add a new page in Web Matrix – some of
those are for data reports. These provide a simple way to get more functionality into grids than the
example earlier used.

The supplied template pages are as follows:

❑ Simple Data Report: Gives a simple grid without paging or sorting

❑ Filtered Data Report: Gives a grid with a filter option, so you can select the rows displayed

❑ Data Report with Paging: Gives a grid with paging enabled

❑ Data Report with Paging and Sorting: Gives a grid with paging and column sorting enabled

❑ Master – Detail Grids: Gives two grids, representing a master table and a child table

❑ Editable Grid: Gives a grid allowing updates to the data

❑ Simple Stored Procedure: Gives a grid that uses a stored procedure for its data source

All of these supplied templates connect to a SQL Server database, and need modification if they are to be
used with a different database. However, they provide a quick way to get pages constructed, allowing
you to make a few simple changes to get what you need, rather than coding from scratch.

Let's look at one of these - the report with paging and sorting.

256

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 256

Try It Out Creating a Data Page

1. Create a new page using the Data Pages templates. Pick the Data Report with Paging and Sorting,
and call it SortPage.aspx.

2. In the design window, select the All tab and change this line:

<%@ import Namespace="System.Data.SqlClient" %>

To:

<%@ import Namespace ="System.Data.OleDb" %>

If this is not done, errors will be encountered while loading the page.

3. In the design window, select the Code tab, find the BindGrid() subroutine, and change the
code so it looks like the following:

void BindGrid()
{
// TODO: update the ConnectionString value for your application
string ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Data Source=C:\BegASPNet11\data\Northwind.mdb";
string CommandText;

// TODO: update the CommandText value for your application
if (SortField == String.Empty)
CommandText = "select * from Suppliers order by CompanyName";

else
CommandText = "select * from Suppliers order by " + SortField;

OleDbConnection myConnection = new OleDbConnection(ConnectionString);
OleDbDataAdapter myCommand = new OleDbDataAdapter(CommandText,

myConnection);

DataSet ds = new DataSet();
myCommand.Fill(ds);

DataGrid1.DataSource = ds;
DataGrid1.DataBind();

}

Use a different path if you've installed the samples in a directory other than C:\BegASPNET11.

4. Save the file and run it; you'll see something like Figure 8-6:

257

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 257

Figure 8-6

This isn't much different from the drag and drop approach we used in the first example, but it uses the
.NET data classes and a DataGrid control, rather than the Web Matrix controls
(AccessDataSourceControl and MxDataGrid). It means this technique will work even if Web Matrix
isn't installed on the server running the page. Let's see how it works.

How It Works
The first thing to look at is the namespace change:

<%@ import Namespace="System.Data.OleDb" %>

By default, the data pages are configured to use SQL Server and therefore use the SqlClient
namespace. Since we are using Access, we have to use the OleDb namespace.

Now let's look at the declaration of the grid itself. We won't show all the properties, as some are to do
with the visual style. Instead, we'll concentrate on those that are related to the code we'll see:

<asp:datagrid id="DataGrid1" runat="server"

AllowPaging="true" PageSize="6" OnPageIndexChanged="DataGrid_Page"

AllowSorting="true" OnSortCommand="DataGrid_Sort">

Here we have the following properties defined:

❑ AllowPaging: When set to true, allows the grid to page the results. This works in a way
similar to the MxDataGrid where the page numbers are shown at the bottom of the grid.

❑ PageSize: Defines the number of rows to show per page.

❑ OnPageIndexChanged: Defines the event procedure to call when the page number is changed.
When a page number link is clicked, the procedure defined here is run.

258

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 258

❑ AllowSorting: Allows the grid to sort the rows on the basis of column selections. Setting this
to true enables links on the column headings.

❑ OnSortCommand: Defines the event procedure to call when a column heading is clicked.

Now let's look at the code that uses this grid, starting with the Page_Load() event:

void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack) {

// Databind the data grid on the first request only
// (on postback, rebind only in paging and sorting commands)

BindGrid();
}

}

Here we are calling the BindGrid() routine, but only if this is the first time the page has been loaded.
This ensures that the grid, in its initial state, displays data in a default sort order. You'll see how this
works as we go through the code.

Next, we have two events for the grid. The first is for when a page is selected on the grid, and is the
event procedure defined in the OnPageIndexChanged attribute:

void DataGrid_Page(object sender, DataGridPageChangedEventArgs e)
{
DataGrid1.CurrentPageIndex = e.NewPageIndex;
BindGrid();

}

Notice that the second argument to this procedure is of type DataGridPageChangedEventArgs. This is
automatically sent by ASP.NET and contains two properties, of which we are interested in only
one – NewPageIndex. This identifies the number of the page selected, so we set the CurrentPageIndex
property of the grid to the selected page number. We then call the BindGrid() routine to re-fetch the
data and bind it to the grid. Later, we'll look at why you need to do this.

The second event procedure is for sorting the grid, and is defined in the OnSortCommand attribute:

void DataGrid_Sort(object sender, DataGridSortCommandEventArgs e)
{
DataGrid1.CurrentPageIndex = 0;
SortField = e.SortExpression;
BindGrid();

}

The second argument for this procedure is of type DataGridSortCommandEventArgs, which contains
the expression on which the grid is being sorted. In this case, this is automatically set by the DataGrid
as the column headings are sortable, and so contains the column name.

The first line sets the CurrentPageIndex of the grid to 0, having the effect of starting the grid at page 1.
We do this because we are re-sorting. We then set SortField to the sorted field, and rebind the grid.

Notice that SortField hasn't been declared as a variable – in fact it's a property. This might seem
confusing because properties are always attached to objects, prompting the question what object is this

259

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 259

one attached to. Well, since it hasn't got a named object, ASP.NET takes this as being a property of the
current Page. By default, a Page doesn't have a SortField property, so we define one:

protected String SortField {

get {
object o = ViewState["SortField"];
return (o == null) ? String.Empty : (String)o;

}
set {
ViewState["SortField"] = value;

}
}

The interesting point is that we haven't defined a class. Because we are coding within an ASP.NET page,
the Page is a class, so all we are doing is adding a property to the page (for the purpose of referencing
the sorted field later when we bind the grid). When the page is run, ASP.NET adds your code to the class
for the page. It's not like the examples in the previous chapter, where we were creating a separate
class – here we want our property to be part of the same class as the rest of the code.

The get part of the property first fetches the sort value from the ViewState into an object variable (all
items in ViewState are returned as objects), and then checks to see if the object is null. This would be
the case if the sort hasn't been defined, such as the first time the page is loaded. If it is null, then an
empty string is returned, otherwise the object is converted to a string with the (String) cast and that is
returned. This is a perfectly safe conversion because we know that the ViewState for this item only
contains a string, as that's what the set part of the property does. ViewState was covered in Chapter 6.

Using String.Empty is a special way of defining an empty string, and avoids having to use open and
close quotation marks next to each other, where it's often difficult to see if there is a space between the
quotation marks.

Now let's look at the BindGrid() routine:

void BindGrid() {

The first two lines define string variables to hold the connection string and the text for the command to
run. Notice that the connection string has been changed to an Access one:

string ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\BegASPNet11\data\Northwind.mdb";

string CommandText;

The use of the @ symbol before part of the string tells the C# compiler to treat the string exactly as it is
typed. We need to do this because in C#, the backward slash character (\) is treated as an escape
sequence, indicating that the following character is something special. To avoid this we can either use to
slash characters together (\\), meaning we really want a slash character, or use the @ symbol. Later in the
chapter, you'll see examples of the \\ style.

Next, we check the SortField property to see if we are sorting the data in the order selected by the user
(that is, if the user has clicked one of the column headings). This is accessing the SortField property of
the Page and therefore calls the get part of the property. If the sort order hasn't been defined, the
String.Empty is the value of SortField. So we set the command string to order by the CompanyName.
If a sort string has been set, then we use that as the sort order. In either case, we are simply selecting all
rows and columns from the Suppliers table:

260

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 260

if (SortField == String.Empty)
CommandText = "select * from Suppliers order by CompanyName";

else
CommandText = "select * from Suppliers order by " + SortField;

These commands use SQL statements, but we could equally have used stored queries or stored
procedures. In practice, you should use stored queries, but using SQL directly here means we don't have
to create the stored query – since we're concentrating on ASP.NET we don't want to distract ourselves
with the stored procedure. We'll be looking at stored procedures later in the chapter.

Now we come to the part where we connect to the database. Don't worry too much about this
code – although we are going to explain it, we're not going to go into too much detail in this section, as
we'll be going over the theory later. To define the connection we use an OleDbConnection object, and as
part of the instantiation we pass in the connection string details. This tells ASP.NET which database to
connect to, but doesn't actually open the connection. It defines where to connect to when we are ready to
connect:

OleDbConnection myConnection = new OleDbConnection(ConnectionString);

Now we use an OleDbDataAdapter to define the command to run – this will be the SELECT query to
fetch the data. The data adapter performs two functions. It provides the link between the database and
the DataSet. It is also how data is fetched from and sent to the database (we'll be looking at the
DataAdapter in detail in the next chapter). The two arguments we pass in are the command text to run
the SQL statement, and the connection object. These define which command to run and which database
to run it against:

OleDbDataAdapter myCommand = new OleDbDataAdapter(CommandText,
myConnection);

Note that we still haven't connected to the database and fetched any data, as we've nowhere to store that
data. For that we use a DataSet object, which you can think of as a mini database (it's not actually a
mini database, but that descriptions works well for the moment). It provides a place for the data to be
held while we manipulate it:

DataSet ds = new DataSet();

Now that we have all of the pieces in place (the connection, the command to run, and a place to put the
data), we can go ahead and fetch the data. For that we use the Fill() method of the data adapter,
passing in the DataSet. This opens the database connection, runs the command, places the data into the
DataSet, and then closes the database connection.

myCommand.Fill(ds);

The data is now in our DataSet so we can use it as the DataSource for the grid, and bind the grid:

DataGrid1.DataSource = ds;
DataGrid1.DataBind();

}

This may look like a complex set of procedures, but it's actually a simple set of steps that is used many
times when you need to fetch data. You'll be seeing this many times during this book, and we'll go over
its theory later so you really understand what's happening. For now though, let's look at another way to
save time, by using the Web Matrix Code Wizards.

261

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 261

Displaying Data Using the Code Wizards
There are times where both the drag and drop from the Data Explorer and the template pages cannot
provide you with exactly what you need. Perhaps you'd like to customize the query, or just add a
routine to fetch data to an already existing page. The code wizards allow you to add code routines to a
page, giving you a finer control of the data being fetched or updated. Let's give this a go.

Try It Out Creating a Data Page

1. Create a new blank ASP.NET page called CodeWizard.aspx.

2. Switch to Code view and you'll notice that the Toolbox now shows Code Wizards as shown in
Figure 8-7:

Figure 8-7

3. Pick the SELECT Data Method and drag it from the Toolbox, dropping it into your code window.
This starts the wizard, and the first screen as shown in Figure 8-8 is where you pick the database
to connect:

Figure 8-8

262

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 262

4. The drop-down list shows configured data sources (from the Data Explorer) as well as an option
to create a new connection. Pick the existing connection and press Next to go to the screen
shown in Figure 8-9:

Figure 8-9

Now you can select the columns you wish to show. You can pick multiple columns (the * means
all columns from the table) from multiple tables. You simply select them individually. However,
when picking columns from multiple tables, you must join the tables. Remember our discussion
of linked tables and keys from the beginning of the chapter – you need the primary and foreign
key to join the tables.

5. Select the Products table and the ProductName column, and the Categories table and the
CategoryName column. Notice the Preview pane at the bottom of the window shows the SQL
statement, but without the tables joined together, as shown in Figure 8-10:

Figure 8-10

6. To join these tables together, we need a WHERE clause, so press the WHERE button to open the
WHERE Clause Builder window.

7. Select your options the same as shown in Figure 8-11:

263

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 263

Figure 8-11

8. Click OK and you'll see the WHERE clause part of the window is filled in as shown in
Figure 8-12:

Figure 8-12

9. Press the Next button, and on the Query Preview window press the Test Query button:

Figure 8-13

264

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 264

You can see just the required columns in Figure 8-13.

10. Press Next.

11. From the Name Method window, change the name textbox to GetProductsDataSet. Make sure
the radio button at the bottom is set to DataSet and press Finish. We'll look at the DataReader
later in the chapter.

12. Once the code has been added, you want a way to display it. You can do this by switching to
Design view and dragging a DataGrid onto the page.

13. Switch to Code view and add the following code, after the GetProductsDataSet function:

void Page_Load(Object sender, EventArgs e)
{
DataGrid1.DataSource = GetProductsDataSet();
DataGrid1.DataBind();

}

14. Save the page and run it – you should see Figure 8-14:

Figure 8-14

You can see how we now only have two columns and from two different tables. Let's see how this
works.

How It Works
The key to this is the wizard that allows you to build up an SQL statement. This is great if you are a
newcomer to SQL as you don't have to understand how the SQL language works. Perhaps the most
important part of this wizard is the WHERE Clause Builder shown in Figure 8-11.

265

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 265

This is where (pun intended) we add the WHERE part of the SQL statement, and this is what filters the
rows and joins tables together. We've selected the Join option allowing us to specify the primary key
(CategoryID in the Categories table) and the foreign key (CategoryID in the Products table). The
WHERE clause becomes:

WHERE [Categories].[CategoryID] = [Products].[CategoryID]

If we wanted to add a third table, perhaps Suppliers, we could use an AND clause. Once you've
declared one WHERE clause, the WHERE button has a different name – AND Clause as shown in
Figure 8-15:

Figure 8-15

Pressing the AND Clause button shows the same WHERE Clause Builder, but this time you'd set the link
between the Suppliers and Products tables as shown in Figure 8-16:

Figure 8-16

266

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 266

Now when you look at the WHERE clause section you see two tables joined together as in Figure 8-17:

Figure 8-17

The WHERE Clause Builder can also be used to filter data so that only selected rows are shown; we'll look
at that later. For now though, let's look at the code the wizard created for us (it may look slightly
different in your page – we've wrapped it so it's easier to read):

System.Data.DataSet GetProductsDataSet() {
string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +

"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

string queryString = "SELECT [Products].[ProductName], " +
"[Categories].[CategoryName] FROM [Products], [Categories] " +
"WHERE ([Categories].[CategoryID] = [Products].[CategoryID])";

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;
System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

return dataSet;
}

Let's tackle this systematically. First, we have the function declaration:

System.Data.DataSet GetProductsDataSet() {

This is defined as type System.Data.DataSet, which means it's going to return a DataSet (we'll look
at this in detail in the next chapter). You'll notice that the declaration has the System.Data namespace
before it. This is done because, while declaring variables or functions, ASP.NET needs to know where the
type is stored.

Normally we use the <%@ import Namespace="..." %> page directive to indicate the namespaces being
used in a page, and thus we don't have to specify the namespace when declaring variables. The wizard
isn't sure what namespaces have been set at the top of the page, so it includes the full namespace
just-in-case, ensuring that the code will compile under all situations.

267

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 267

Next, we have the connection string that simply points to our existing database:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

Notice that this uses two backward slash characters to avoid the problem of the single slash character
being an escape sequence. In our earlier example we used the @ symbol.

Now we have the connection object:

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

One thing that's immediately obvious is the fact that this example doesn't use the OleDbConnection
type to define the connection to the database; it uses IDbConnection. If this seems confusing, refer to
the discussion of interfaces in the previous chapter, where we talked about generic routines.

IDbConnection is an interface that defines what the Connection class must do, and since the wizard is
building a generic routine, it uses this interface. This is because the wizard allows you to connect to
different database types. This is seen on the first screen and is the same as the Data Explorer allowing you
to pick either Access or SQL Server database. To make the wizard simpler, it uses the generic interface as
the type rather than having to use the type for a specific database.

The Interface simply enforces the correct signature on a class implementing the interface. There's no
actual requirement for the implementation to do anything. You could have a class that implements the
Open() method but that actually does something else instead of opening a connection. It would be
dumb, but it could be done.

Next we have the SQL string, as built up by the wizard:

string queryString = "SELECT [Products].[ProductName], " +
"[Categories].[CategoryName] FROM [Products], [Categories] " +
"WHERE ([Categories].[CategoryID] = [Products].[CategoryID])";

Now we have the definition of the command object. In previous examples, we passed the command text
directly into the OleDbDataAdapter. Underneath, ASP.NET actually creates another object – a Command
object. However, you don't see that Command object, as it is used internally. The wizard creates the
Command object directly, by making use of the CommandText property to store the SQL command, and
the Connection property to store the database connection. As with the connection that used the
interface as its type, the command is also defined as an interface type (IDbCommand).

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Now we have the definition of the data adapter, and as with the connection, the type of the variable is
the interface type:

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

268

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 268

We mentioned earlier that the data adapter is the link between our page and the data. As part of this
link, the adapter provides not only data fetching, but also data modification. It does so with different
command objects, exposed as properties of the adapter. These allow the different commands to run
depending upon the action being performed. In this example, we are fetching data so we use the
SelectCommand property (so named because we are selecting rows to view).

dataAdapter.SelectCommand = dbCommand;

If you use the data adapter directly, without explicitly creating a Command, this is what it does behind the
scenes.

To fetch the data, we then create a DataSet and use the Fill() method of the adapter:

System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

And finally, we return the data:

return dataSet;
}

This code is more complex than the previous example, but it follows a similar path. It creates a
connection, creates a command, creates a data adapter, and then a DataSet. A look at these objects and
their relationships in more detail will give you a clearer picture of how they work together.

To find out more about the DataAdapter's properties and methods consult the .NET Documentation.
The OleDbDataAdapter is in the System.Web.OleDb namespace and the SqlDataAdapter is in
the System.Web.SqlClient namespace.

ADO.NET
All of the data access we've seen so far is based upon ADO.NET – the common name for all of the data
access classes. We'll only be looking at a few of these, and the ones you'll use most are:

❑ Connection: Provides details of connecting to the database

❑ Command: Provides details of the command to be run

❑ DataAdapter: Manages the command, and fetchs and updates data

❑ DataSet: Provides a store for data

❑ DataReader: Provides quick read-only access to data

ADO.NET is designed to talk to multiple databases, so there are different objects for different database
types. To keep the separation, ADO.NET classes are contained within different namespaces:

❑ System.Data: Contains the base data objects (such as DataSet) common to all databases.

269

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 269

❑ System.Data.OleDb: Contains the objects used to communicate to databases via OLEDB.
OLEDB provides a common set of features to connect to multiple databases, such as Access,
DBase, and so on.

❑ System.Data.SqlClient: Provides the objects used to communicate with SQL Server.

For some of the objects there are two copies – one in the OleDb namespace, and one in the SqlClient
namespace. For example, there are two Connection objects – OleDbConnection and SqlConnection.
Having two objects means they can be optimized for particular databases. Look at Figure 8-18 to see
how they relate to each other:

Figure 8-18

270

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 270

On the left we have the database and the connection, in the middle we have four Command objects, and
on the right a DataAdapter and a DataSet. Notice that the DataAdapter contains four Command
objects:

❑ SelectCommand: Fetches data

❑ UpdateCommand: Updates data

❑ InsertCommand: Inserts new data

❑ DeleteCommand: Deletes data

Each of these Command objects has a Connection property to specify which database the command
applies to, a CommandText property to specify the command text to run, and a CommandType property to
indicate the type of command (straight SQL or a stored procedure).

As we said earlier, if you don't explicitly create Command objects and use the DataAdapter directly, a
Command is created for you using the details passed into the constructor of the DataAdapter, and this
Command is used as the SelectCommand.

We'll be looking at the UpdateCommand, InsertCommand, and DeleteCommand in the next chapter.

Let's look at these objects in a bit more detail, concentrating on the OleDb ones as we're using Access. If
you want to use SQL Server, you can simply replace OleDb with SqlClient in the object names; just
change the connection string, and continue working.

The OleDbConnection Object
As we've said earlier, the Connection object provides us with the means to communicate to a database.
Probably the only property you'll use is the ConnectionString property that can either be set as the
object is instantiated:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection conn = new OleDbConnection(connectionString);

or it can be set with the property:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Data Source=C:\\BegASPNET11\\data\\Northwind.mdb";

OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connectionString;

The two main methods you'll use are Open() and Close(), which (unsurprisingly) open and close the
connection to the database. When used as we have so far, there is no need to do this explicitly since the
Fill() method of a DataAdapter does it for you.

The OleDbCommand Object
The OleDbCommand has several properties that we'll be looking at:

271

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 271

The three main methods of the command you'll use are the execute methods:

In the examples so far, we haven't used these methods as the execution of the command is handled
transparently for us. You'll see the ExecuteReader() method in action when you look at the
DataReader, and the ExecuteNonQuery() method in action in the next chapter.

The Parameters Collection
A parameter is an unknown value – a value that ADO.NET doesn't know until the page is being run,
and is often used to filter data based upon some user value. For example, consider a page showing a list

Method Description

ExecuteNonQuery() This executes the command but doesn't return any data.
It is useful for commands that perform an action, such as
updating data, but don't need to return a value.

ExecuteReader() This executes the command and returns a
DataReader object.

ExecuteScalar() This executes the command and returns a single value.

Property Description

 CommandText Contains the SQL command or the name of a stored
procedure.

Indicates the type of command being run, and can be one of
the CommandType enumeration values, which are:

StoredProcedure To indicate a stored procedure is
being run.

TableDirect To indicate the entire contents of
a table are being returned. In this
case, the CommandText property
should contain the table name.
This value only works for Oledb
connections.

CommandType

Text To indicate a SQL text command.
This is the default value.

Connection The Connection object being used to connect to a database.

Parameters A collection or Parameter objects, which are used to pass
details to and from the command.

272

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 272

of products, with a drop-down list showing the product categories. The user could select a category so
that only those categories are shown.

The Parameters collection contains a Parameter object for each parameter in the query. Thus, a
command with three parameters would have objects looking like in Figure 8-19:

Figure 8-19

Let's look at an example to see how this works.

Try It Out Using Parameters

1. Create a new blank ASP.NET page called Parameters.aspx.

2. Add a Label and change the Text property to Category:.

3. Add a DropDownList next to the label and change the ID property to lstCategory.

4. Add a Button next to the DropDownList and change the Text property to Fetch.

5. Add a DataGrid underneath the other controls. Your page should now look like Figure 8-20:

Figure 8-20

273

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 273

6. Double-click the Fetch button to switch to the Click event procedure. Add the following code:

void Button1_Click(object sender, EventArgs e) {
DataGrid1.DataSource =

GetProducts(Convert.ToInt32(lstCategory.SelectedValue));
DataGrid1.DataBind();

}

7. Underneath that procedure, add the following code:

void Page_Load(Object Sender, EventArgs e)
{
if (!Page.IsPostBack) {
lstCategory.DataSource = GetCategories();
lstCategory.DataValueField = "CategoryID";
lstCategory.DataTextField = "CategoryName";
lstCategory.DataBind();

}
}

8. Underneath the preceding block of code, drag a SELECT Data Method wizard from the toolbox
onto the page. Pick the current database connection and select the CategoryID and
CategoryName columns from the Categories table. Call the procedure that you have created
GetCategories and have it return a DataSet.

9. Drag another SELECT Data Method wizard onto the page, underneath the SELECT Data Method
wizard that you just created. Pick the current database connection, and select ProductName,
QuantityPerUnit, UnitPrice, and UnitsInStock from the Products table.

10. Click the WHERE button and pick the CategoryID from the Products table making it Filter on
@CategoryID, as shown in Figure 8-21:

Figure 8-21

11. Click OK and Next to get to the Name Method screen.

12. Call the procedure GetProducts and have it return a DataSet. Press Finish to insert the code.

274

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 274

13. Save the file and run it.

14. Select a category and then click Fetch to see only the products for that category shown in Figure
8-22:

Figure 8-22

What you've achieved here is two things. First, you've used two controls that are bound to data – the list
of categories and the grid of products. Second, you only fetched the products for a selected
category – you've filtered the list. Let's see how this works.

How It Works
Let's start the code examination with the Page_Load() event, where we fill the Categories list:

void Page_Load(Object Sender, EventArgs e) {

We only want to fetch the data and bind it to the list the first time the page is loaded, so we use the
IsPostBack property of the page to check if this is a postback. If it isn't, it must be the first load, so we
fetch the data. We don't need to do this on subsequent page requests as the list itself stores the data.

if (!Page.IsPostBack) {

lstCategory.DataSource = GetCategories();

Instead of calling the DataBind straight away, we want to tell the list which columns from the data to
use. A DropDownList stores two pieces of information – one is shown on the page (the text field), and
the other is hidden (the value field). The text field is used for what the user needs to see, while the value
field often contains an ID – what the user doesn't need to see. The DropDownList doesn't automatically
know which columns contain these pieces of information, thus we use the DataValueField and
DataTextField properties. The DataValueField is the CategoryID, the unique key for the category,
and this will be used later in our code:

275

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 275

lstCategory.DataValueField = "CategoryID";

lstCategory.DataTextField = "CategoryName";

lstCategory.DataBind();

}

}

When the Fetch button is clicked, we need to get the value from the DropDownList. For this, we use the
SelectedValue property, which is new to ASP.NET 1.1. This contains the ID of the selected category,
and we pass this into the GetProducts routine, which will return a DataSet of the products.

However, we can't pass this value directly into GetProducts as an integer value is expected, and the
SelectedValue returns a string. So we have to convert it first using the ToInt32 method of the
Convert class. This is a static class method (which doesn't require an instance of the Convert class) and
simply takes a single string argument. The return value from ToInt32 is an integer representation of the
string passed in.

The DataSet returned from GetProducts is set to the DataSource of the grid and the DataBind
method is called to bind the data:

void Button1_Click(object sender, EventArgs e) {
DataGrid1.DataSource =

GetProducts(Convert.ToInt32(lstCategory.SelectedValue));
DataGrid1.DataBind();

}

There are two routines to fetch data, but one of them is the same as we've already seen – using a simple
DataSet to fetch data (in this case the Categories). What we want to see is the GetProducts routine,
which gets filtered data. The first thing to notice is that it accepts an int argument – this will contain the
CategoryID, passed in from the button click event:

System.Data.DataSet GetProducts(int categoryID) {

Next, we define the connection details, as we've seen in previous examples:

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

Then we define the query:

string queryString = "SELECT [Products].[ProductName], "
"[Products].[QuantityPerUnit], [Products].[UnitPrice],"+
"[Products].[UnitsInStock] FROM [Products] " +
"WHERE ([Products].[CategoryID] = @CategoryID)";

Note that the WHERE clause is filtering on CategoryID. However, the value used for the filter
(@CategoryID) is not a real value but a placeholder. This tells ADO.NET that the value will be supplied
by a parameter.

276

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 276

Once the query string is set, we define our command to run the query, as follows:

System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Now we come to the definition of the parameter. Like many of the other examples, this uses a database
specific object – an OleDbParameter, which defines what is being passed into the query:

System.Data.IDataParameter dbParam_categoryID =
new System.Data.OleDb.OleDbParameter();

We then set the properties of the parameter. The ParameterName indicates the name of the parameter,
and we set the value to be the same as the placeholder. The Value property stores the value for the
parameter, and is set to the CategoryID passed into the procedure from the button click event – it's the
ID of the category selected from the list. The DbType property indicates the database type – Int32 is the
database equivalent of an Integer:

dbParam_categoryID.ParameterName = "@CategoryID";
dbParam_categoryID.Value = categoryID;
dbParam_categoryID.DbType = System.Data.DbType.Int32;

At this point, even though we have a Parameter object, it's not associated with the command, so we
add it to the Parameters collection of the command:

dbCommand.Parameters.Add(dbParam_categoryID);

When ADO.NET processes the command, it matches parameters in the collection with the placeholders
in the query and substitutes the placeholder with the value in the parameter.

The rest of the code is as we've seen it before. We create a DataAdapter to run the command, and use
the Fill() method to fetch the data into our DataSet:

System.Data.IDbDataAdapter dataAdapter =
new System.Data.OleDb.OleDbDataAdapter();

dataAdapter.SelectCommand = dbCommand;
System.Data.DataSet dataSet = new System.Data.DataSet();
dataAdapter.Fill(dataSet);

return dataSet;
}

As you can see, there really isn't that much code; even though we've introduced a new object, much of
the code remains the same.

Filtering Queries
There's a very important point to know about filtering data, as you may see code elsewhere that uses a
bad method of doing it – it simply builds up the SQL string (as we've done), but instead of using
parameters, it just appends the filter value to the SQL string. For example, you might see this:

277

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 277

string queryString = "SELECT [Products].[ProductName], "
"[Products].[QuantityPerUnit], [Products].[UnitPrice]," +
"[Products].[UnitsInStock] FROM [Products] " +
"WHERE ([Products].[CategoryID] = " + CategoryID + ")";

This simply appends the CategoryID value (from the function argument) into the SQL string. Why is
this bad when it achieves the same objectives while using lesser code? The answer has to do with
hacking. This type of method potentially allows what are known as SQL Injection Attacks, which are 'very
bad things' (do a Web search for more details on SQL Injection). If you have a scale for 'bad things to do',
then this is right up there, at the top!

Using Parameters protects you from this. Although it has the same effect, the processing ADO.NET does
secure you against this type of attack.

Although using Parameters involves a little more work, it's much safer and should always be used.

The OleDataAdapter Object
The OleDbDataAdapter contains the commands used to manipulate data. The four Command objects it
contains are held as properties; SelectCommand, UpdateCommand, InsertCommand, and
DeleteCommand. The SelectCommand is automatically run when the Fill() method is called. The
other three commands are run when the Update method is called – we'll be looking at this in the next
chapter.

The DataSet Object
While the other objects we've looked at have different classes for different databases, the DataSet is
common to all databases, and is therefore in the System.Data namespace. It doesn't actually
communicate with the database – the DataAdapter handles all communication.

The DataSet has many properties and methods; we'll look at them in the next chapter. Since this chapter
is concentrating on displaying data, all you need to remember is that when we fetch data it is stored in
the DataSet, and then we bind controls to that data.

The DataReader Object
The DataReader, an object that we haven’t come across yet, is optimised for reading data. When dealing
with databases, connecting to them and fetching the data can often be the longest part of a page,
therefore we want to do it as quickly as possible. We also want to ensure that the database server isn't
tied up – we want not only to get the data quickly, but also stay connected to the database for as little
time as possible.

For this reason we aim to open the connection to the database as late as possible, get the data, and close
the connection as soon as possible. This frees up database resources, allowing the database to process
other requests. This is the technique that the DataAdapter uses when filling a DataSet. If you manually
open a connection, it isn't automatically closed.

278

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 278

Many times, when fetching data we simply want to display it as it is, perhaps by binding it to a grid. The
DataSet provides a local store of the data, which is often more than we need, so we can use an
OleDbDataReader to stream the data directly from the database into the grid. Let's give this a go.

Try It Out Using a DataReader
1. Create a new blank ASP.NET page called DataReader.aspx.

2. Drag a DataGrid control from the Toolbox onto the page.

3. Switch to Code view and start the code wizard by dragging the SELECT Data Method onto the
code page.

4. Select the existing database connection from the first screen and press Next.

5. Select the Products table, and from the Columns select ProductName, QuantityPerUnit, UnitPrice,
and UnitsInStock.

6. Click Next, and Next again, to go past the Query Preview screen.

7. Enter GetProductsReader as the method name, and select the DataReader option on the Name
Method screen.

8. Press Finish to insert the code into your page.

9. Underneath the newly inserted method, add the following:

void Page_Load(Object sender, EventArgs e) {
DataGrid1.DataSource = GetProductsReader();
DataGrid1.DataBind();

}

10. Save the page and run it.

You'll see a grid containing just the selected columns. This doesn't look very different from the other
examples, but it's how the data is fetched that's important. Let's look at this.

How It Works
Let's start by looking at the code that the wizard generated for us. The declaration of the function returns
an IDataReader – the interface that data readers implement:

System.Data.IDataReader GetProductsReader() {

Next we have the connection details – these are the same as you've previously seen (although they might
look different in your code file, as this has been formatted to fit on the page):

string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
"Ole DB Services=-4; Data Source=C:\\BegASPNET11\\" +
"data\\Northwind.mdb";

System.Data.IDbConnection dbConnection =
new System.Data.OleDb.OleDbConnection(connectionString);

Next, we have the query string and the command details:

string queryString = "SELECT [Products].[ProductName], " +
"[Products].[QuantityPerUnit], [Products].[UnitPrice], " +

279

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 279

"[Products].[UnitsInStock] FROM [Products]";
System.Data.IDbCommand dbCommand = new System.Data.OleDb.OleDbCommand();
dbCommand.CommandText = queryString;
dbCommand.Connection = dbConnection;

Once the command details are set, we can open the database connection:

dbConnection.Open();

Even though the database connection has been opened for us when using a DataSet, we still have to
open it manually because we are using an OleDbCommand and a data reader.

Next, we declare the data reader. It is of type IDataReader and the object is created by the return value
of the ExecuteReader() method of the command:

System.Data.IDataReader dataReader =
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

Remember that the command has the SQL statement, so ExecuteReader() tells ADO.NET to run the
command and return a data reader. The argument indicates that as soon as the data is finished with the
connection to the database, the connection should be closed. When using ExecuteReader(), you
should always add this argument to make sure the connection is closed as soon as it is no longer
required.

Finally, we return the reader object:

return dataReader;
}

To bind to the grid, we simply use this function as the DataSource for the grid. Since the function
returns a stream of data, the grid just binds to that data:

void Page_Load(Object sender, EventArgs e) {
DataGrid1.DataSource = GetProductsReader();
DataGrid1.DataBind();

}

DataReader Methods and Properties
The DataReader exists as SqlDataReader (for SQL Server) and OleDbDataReader (for other
databases), as well as a common IDataReader interface. If you are not using generic code, you can
create the reader as follows:

System.Data.OleDbDataReader dataReader = new _
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

Using data readers is the most efficient way of fetching data from a database, but you don't have to bind
to a grid. You can use the properties and methods to fetch the data directly. If you do this, it's best to use
the OleDbDataReader rather than the interface, as the OleDbDataReader contains more properties that
make it easier to use. For example, consider the following code:

280

Chapter 8

57084_08.qxp 30/01/2004 8:03 PM Page 280

System.Data.OleDbDataReader dataReader = new _
dbCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

if (!dataReader.HasRows)
Response.Write("No rows found");

else
while (dataReader.Read())
Response.Write(dataReader("ProductName") + "
";

dataReader.Close();

This first uses the HasRows property to determine if there are any rows, and then uses the Read method
to read a row. This is done within a loop, with Read returning the true if there is a current row and
moving onto the next, and false if there are no rows.

Summary
The results of the examples in this chapter have been relatively simple, but you've actually learned a lot.
The first three main topics looked at how to use the Web Matrix to reduce your development time,
taking away much of the legwork you'd normally have to do. We looked at the using the Data Explorer to
drag and drop tables directly onto page, using the Web Matrix template pages, and using the code
wizards.

After looking at the quick way of getting data, you saw the theory behind it, examining the objects. Even
though we continued to use the wizards to generate code, you were now able to see how this wizard
code worked (just because we understand how it works doesn't mean we abandon anything that makes
our job easier).

Now it's time to look at taking your data usage one step further by showing how to update data, and
how to manage your data-handling routines.

Exercises
1. In this chapter we created a page that showed only the products for a selected category. Try and

think of ways to enhance this to show products for either a selected category or all categories.

2. In Exercise 1, we wanted to bind data from a database to a DropDownList as well as manually
add an entry. There are two ways to solve this issue – using techniques shown in this chapter,
and using techniques not yet covered. Try and code the solution using the known technique, but
see if you can think of a way to solve it using a new technique.

281

Reading from Databases

57084_08.qxp 30/01/2004 8:03 PM Page 281

57084_08.qxp 30/01/2004 8:03 PM Page 282

