CHAP E R

Why PHP and
MySQL?

¢+ 4+ o+

In This Chapter

This first chapter is an introduction to PHP, MySQL, and the inter- Understanding PHP and
action of the two. In it, we'll try to address some of the most com- MySQL

mon questions about these tools, such as “What are they?” and “How

do they compare to similar technologies?” Most of the chapter is A history of PHP

taken up with an enumeration of the many, many reasons to choose

PHP, MySQL, or the two in tandem. If you're a techie looking for some A history of MySQL
ammunition to lob at your PHB (“Pointy-Haired Boss” for those who

don’t know the Dilbert cartoons) or a manager asking yourself what The benefits of using

is this P-whatever thing your geeks keep whining to get, this chapter PHP and MySQL

will provide some preliminary answers.

What Is PHP?

PHP is the Web development language written by and for Web devel-
opers. PHP stands for PHP: Hypertext Preprocessor. The product was
originally named Personal Home Page Tools, and many people still
think that’s what the acronym stands for. But as it expanded in scope,
a new and more appropriate (albeit GNU-ishly recursive) name was
selected by community vote. PHP is currently in its fifth major
rewrite, called PHP5 or just plain PHP.

PHP and MySQL: A
competitive advantage

¢+ 4+ 0+

PHP is a server-side scripting language, which can be embedded in
HTML or used as a standalone binary (although the former use is
much more common). Proprietary products in this niche are
Microsoft’s Active Server Pages, Macromedia’s ColdFusion, and Sun’s
Java Server Pages. Some tech journalists used to call PHP “the open
source ASP” because its functionality is similar to that of the
Microsoft product —although this formulation was misleading, as
PHP was developed before ASP. Over the past few years, however,
PHP and server-side Java have gained momentum, while ASP has lost
mindshare, so this comparison no longer seems appropriate.

We'll explore server-side scripting more thoroughly in Chapter 2, but
for the moment you can think of it as a collection of super-HTML tags
or small programs that run inside your Web pages — except on the
server side, before they get sent to the browser. For example, you can
use PHP to add common headers and footers to all the pages on a
site or to store form-submitted data in a database.

4

Part | ¢+ PHP: The Basics

Strictly speaking, PHP has little to do with layout, events, on the fly DOM manipulation, or
really anything about what a Web page looks and sounds like. In fact, most of what PHP does
is invisible to the end user. Someone looking at a PHP page will not necessarily be able to tell
that it was not written purely in HTML, because usually the result of PHP is HTML.

PHP is an official module of Apache HTTP Server, the market-leading free Web server that
runs about 67 percent of the World Wide Web (according to the widely quoted Netcraft Web
server survey). This means that the PHP scripting engine can be built into the Web server
itself, leading to faster processing, more efficient memory allocation, and greatly simplified
maintenance. Like Apache Server, PHP is fully cross-platform, meaning it runs native on sev-
eral flavors of Unix, as well as on Windows and now on Mac OS X. All projects under the aegis
of the Apache Software Foundation —including PHP — are open source software.

What Is MySQL?

MySQL (pronounced My Ess Q El) is an open source, SQL Relational Database Management
System (RDBMS) that is free for many uses (more detail on that later). Early in its history,
MySQL occasionally faced opposition due to its lack of support for some core SQL constructs
such as subselects and foreign keys. Ultimately, however, MySQL found a broad, enthusiastic
user base for its liberal licensing terms, perky performance, and ease of use. Its acceptance
was aided in part by the wide variety of other technologies such as PHP, Java, Perl, Python,
and the like that have encouraged its use through stable, well-documented modules and
extensions. MySQL has not failed to reward the loyalty of these users with the addition of
both subselects and foreign keys as of the 4.1 series.

Databases in general are useful, arguably the most consistently useful family of software
products —the “killer product” of modern computing. Like many competing products, both
free and commercial, MySQL isn’t a database until you give it some structure and form. You
might think of this as the difference between a database and an RDBMS (that is, RDBMS plus
user requirements equals a database).

There’s lots more to say about MySQL, but then again, there’s lots more space in which to
say it.

The History of PHP

Rasmus Lerdorf — software engineer, Apache team member, and international man of

mystery —is the creator and original driving force behind PHP. The first part of PHP was devel-
oped for his personal use in late 1994. This was a CGI wrapper that helped him keep track of
people who looked at his personal site. The next year, he put together a package called the
Personal Home Page Tools (a.k.a. the PHP Construction Kif) in response to demand from users
who had stumbled into his work by chance or word of mouth. Version 2 was soon released
under the title PHP/FI and included the Form Interpreter, a tool for parsing SQL queries.

By the middle of 1997, PHP was being used on approximately 50,000 sites worldwide. It was
clearly becoming too big for any single person to handle, even someone as focused and ener-
getic as Rasmus. A small core development team now runs the project on the open source
“benevolent junta” model, with contributions from developers and users around the world.
Zeev Suraski and Andi Gutmans, the two Israeli programmers who developed the PHP3 and
PHP4 parsers, have also generalized and extended their work under the rubric of Zend.com
(Zeev, Andi, Zend, get it?).

Chapter 1 4+ Why PHP and MySQL?

The fourth quarter of 1998 initiated a period of explosive growth for PHP, as all open source
technologies enjoyed massive publicity. In October 1998, according to the best guess, just
over 100,000 unique domains used PHP in some way. Just over a year later, PHP broke the
one-million domain mark. When we wrote the first edition of this book in the first half of 2000,
the number had increased to about two million domains. As we write this, approximately 15
million public Web servers (in the software sense, not the hardware sense) have PHP
installed on them.

Public PHP deployments run the gamut from mass-market sites such as Excite Webmail and
the Indianapolis 500 Web site, which serve up millions of pageviews per day, through “mass-
niche” sites such as Sourceforge.net and Epinions.com, which tend to have higher functional-
ity needs and hundreds of thousands of users, to e-commerce and brochureware sites such
as The Bookstore at Harvard.com and Sade.com (Web home of the British singer), which
must be visually attractive and easy to update. There are also PHP-enabled parts of sites,
such as the forums on the Internet Movie Database (imdb.com); and a large installed base of
nonpublic PHP deployments, such as LDAP directories (MCI WorldCom built one with over
100,000 entries) and trouble-ticket tracking systems.

In its newest incarnation, PHP5 strives to deliver something many users have been clamoring
for over the past few years: much improved object-oriented programming (OOP) functional-
ity. PHP has long nodded to the object programming model with functions that allow object
programmers to pull out results and information in a way familiar to them. These efforts still
fell short of the ideal for many programmers, however, and efforts to force PHP to build in
fully object-oriented systems often yielded unintended results and hurt performance. PHP5’s
newly rebuilt object model brings PHP more in line with other object-oriented languages such
as Java and C++, offering support for features such as overloading, interfaces, private mem-
ber variables and methods, and other standard OOP constructions.

With the crash of the dot-com bubble, PHP is poised to be used on more sites than ever.
Demand for Web-delivered functionality has decreased very little, and emerging technological
standards continue to pop up all the time, but available funding for hardware, licenses, and
especially headcount has drastically decreased. In the post-crash Web world, PHP’s shallow
learning curve, quick implementation of new functionality, and low cost of deployment are
hard arguments to beat.

The History of MySQL

Depending on how much detail you want, the history of MySQL can be traced as far back as
1979, when MySQL’s creator, Monty Widenius, worked for a Swedish IT and data consulting
firm, TcX. While at TcX, Monty authored UNIREG, a terminal interface builder that connected
to raw ISAM data stores. In the intervening 15 years, UNIREG served its makers rather well
through a series of translations and extensions to accommodate increasingly large data sets.

In 1994, when TcX began working on Web data applications, chinks in the UNIREG armor,
primarily having to do with application overhead, began to appear. This sent Monty and his
colleagues off to look for other tools. One they inspected rather closely was Hughes mSQL,
a light and zippy database application developed by David Hughes. mSQL possessed the dis-
tinct advantages of being inexpensive and somewhat entrenched in the market, as well as
featuring a fairly well-developed client API. The 1.0 series of mSQL release lacked indexing,
however, a feature crucial to performance with large data stores. Although the 2.0 series of
mSQL would see the addition of this feature, the particular implementation used was not
compatible with UNIREG’s B+-based features. At this point, MySQL, at least conceptually,
was born.

6

Part | ¢+ PHP: The Basics

Monty and TcX decided to start with the substantial work already done on UNIREG while
developing a new API that was substantially similar to that used by mSQL, with the exception
of the more effective UNIREG indexing scheme. By early 1995, TcX had a 1.0 version of this
new product ready. They gave it the moniker MySQL and later that year released it under a
combination open source and commercial licensing scheme that allowed continued develop-
ment of the product while providing a revenue stream for MySQL AB, the company that
evolved from TcX.

Over the past ten years, MySQL has truly developed into a world class product. MySQL now
competes with even the most feature-rich commercial database applications such as Oracle
and Informix. Additions in the 4.x series have included much-requested features such as
transactions and foreign key support. All this has made MySQL the world’s most used open
source database.

Reasons to Love PHP and MySQL

There are ever so many reasons to love PHP and MySQL. Let us count a few.

Cost

PHP costs you nothing. Zip, zilch, nada, not one red cent. Nothing up front, nothing over the
lifetime of the application, nothing when it’s over. Did we mention that the Apache/PHP/MySQL
combo runs great on cheap, low-end hardware that you couldn’t even think about for
IIS/ASP/SQL Server?

MySQL is a slightly different animal in its licensing terms. Before you groan at the concept of
actually using commercial software, consider that although MySQL is open-source licensed
for many uses, it is not and has never been primarily community-developed software. MySQL
AB is a commercial entity with necessarily commercial interests. Unlike typical open source
projects, where developers often have regular full-time (and paying) day jobs in addition to
their freely given open source efforts, the MySQL developers derive their primary income
from the project. There are still many circumstances in which MySQL can be used for free
(basically anything nonredistributive, which covers most PHP-based projects), but if you
make money developing solutions that use MySQL, consider buying a license or a support
contract. It’s still infinitely more reasonable than just about any software license you will
ever pay for.

For purposes of comparison, Table 1-1 shows some current retail figures for similar products
in the United States. All prices quoted are for a single-processor public Web server with the
most common matching database and development tool; $0 means a no-cost alternative is a
common real-world choice.

Table 1-1: Comparative Out-of-Pocket Costs

ASP/SQL ColdFusion
Item Server MX/SQL Server JSP/Oracle PHP/MySQL
Development tool $0-2499 $599 $0-~2000 $0-249
Server $999 $2298 $0—~35,000 $0

RDBMS $4999 $4999 $15,000 $0-220

Chapter 1 4+ Why PHP and MySQL?

Open source software: don't fear the cheaper

But as the bard so pithily observed, we are living in a material world —where we’ve internal-
ized maxims such as, “You get what you pay for,” “There’s no such thing as a free lunch,” and
“Things that sound too good to be true usually are.” You (or your boss) may, therefore, have
some lingering doubts about the quality and viability of no-cost software. It probably doesn’t
help that until recently software that didn’t cost money — formerly called freeware, shareware,
or free software —was generally thought to fall into one of three categories:

4 Programs filling small, uncommercial niches
4 Programs performing grungy, low-level jobs
4+ Programs for people with bizarre socio-political issues

It’s time to update some stereotypes once and for all. We are clearly in the middle of a sea
change in the business of software. Much (if not most) major consumer software is dis-
tributed without cost today; e-mail clients, Web browsers, games, and even full-service office
suites are all being given away as fast as their makers can whip up Web versions or set up
FTP servers. Consumer software is increasingly seen as a loss-leader, the flower that attracts
the pollinating honeybee —in other words, a way to sell more server hardware, operating
systems, connectivity, advertising, optional widgets, or stock shares. The full retail price of a
piece of software, therefore, is no longer a reliable gauge of its quality or the eccentricity-level
of its user.

On the server side, open source products have come on even stronger. Not only do they
compete with the best commercial stuff; in many cases there’s a feeling that they far exceed
the competition. Don’t take our word for it! Ask IBM, any hardware manufacturer, NASA,
Amazon.com, Rockpointe Broadcasting, Ernie Ball Corporation, the Queen of England, or
the Mexican school system. If your boss still needs to be convinced, further ammunition is
available at www.opensource.org and www.fsf.org.

The PHP license

The freeness of open source and Free software is guaranteed by a gaggle of licensing schemes,
most famously the GPL (Gnu General Public License) or copyleft. PHP used to be released
under both the GPL and its own license, with each user free to choose between them. This has
recently changed. The program as a whole is now released under its own extremely laissez-
faire PHP license on the model of the BSD license, whereas Zend as a standalone product is
released under the Q Public License (this clause applies only if you unbundle Zend from PHP
and try to sell it).

You can read the fine print about the relevant licenses at these Web sites:
4+ www.php.net/license/
4 www.mysql.com/doc/en/GPL_license.html
4 www.troll.no/gpl/annotated.html

Most people get PHP or MySQL via download, but you may have paid for it as part of a Linux
distribution, a technical book, or some other product. In that case, you may now be silently

disputing our assertion that PHP costs nothing. Here’s the twist: Although you can’t require a
fee for most open source software, you can charge for delivering that software in a more con-
venient format — such as by putting it on a disk and shipping the disk to the customer. You

can also charge anything the market will bear for being willing to perform certain services or
accept certain risks that the development team may not wish to undertake. For instance, you

7

8

Part | ¢+ PHP: The Basics

are allowed to charge money for guaranteeing that every copy of the software you distribute
will be virus-free or of reasonable quality, taking on the risk of being sued if a bunch of cus-
tomers get bad CD-ROMs that contain hard-drive-erasing viruses.

Usually, open source software users can freely choose the precisely optimal cost-benefit
equation for each particular situation: no cost and no warranties, or expensive but well sup-
ported, or something in between. No organized attempt has been made yet to sell service and
support for PHP (although presumably that will be one of the value-adds of Zend). MySQL AB
does sell support as part some of its licensing packages for the MySQL product. Other open
source products, such as Linux, have companies such as Red Hat standing by to answer your
questions, but the commercialization process is still in the early stages for PHP.

Ease of Use

PHP is easy to learn, compared to the other ways to achieve similar functionality. Unlike Java
Server Pages or C-based CGI, PHP doesn’t require you to gain a deep understanding of a
major programming language before you can make a trivial database or remote-server call.
Unlike Perl, which has been semijokingly called a “write-only language,” PHP has a syntax
that is quite easy to parse and human-friendly. And unlike ASP.NET, PHP is stable and ready
to solve your problems today.

Many of the most useful specific functions (such as those for opening a connection to an
Oracle database or fetching e-mail from an IMAP server) are predefined for you. A lot of
complete scripts are waiting out there for you to look at as you're learning PHP. In fact, it’s
entirely possible to use PHP just by modifying freely available scripts rather than starting
from scratch —you'’ll still need to understand the basic principles, but you can avoid many
frustrating and time-consuming minor mistakes.

We must mention one caveat: Easy means different things to different people, and for some
Web developers it has come to connote a graphical, drag-and-drop, What You See Is What You
Get development environment. To become truly proficient at PHP, you need to be comfort-
able editing HTML by hand. You can use WYSIWYG editors to design sites, format pages, and
insert client-side features before you add PHP functionality to the source code. There are
even ways, which we’ll detail in Chapter 3, to add PHP functions to your favorite editing envi-
ronment. It’s not realistic, however, to think you can take full advantage of PHP’s capabilities
without ever looking at source code.

Most advanced PHP users (including most of the development team members) are diehard
hand-coders. They tend to share certain gut-level, subcultural assumptions — for instance,
that hand-written code is beautiful and clean and maximally browser-compatible and there-
fore the only way to go—that they do not hesitate to express in vigorous terms. The PHP
community offers help and trades tips mostly by e-mail, and if you want to participate, you
have to be able to parse plain-text source code with facility. Some WYSIWYG users occasion-
ally ask list members to diagnose their problems by looking at their Web pages instead of
their source code, but this rarely ends well.

That said, let us reiterate that PHP really is easy to learn and write, especially for those with
a little bit of experience in a C-syntaxed programming language. It’s just a little more involved
than HTML but probably simpler than JavaScript and definitely less conceptually complex
than JSP or ASP.NET.

Chapter 1 4+ Why PHP and MySQL?

If you have no relational database experience or are coming from an environment such as
Microsoft Access, MySQL's command line interface and lack of implicit structure may at first
seem a little daunting. Again, the word easy is relative. However, MySQL’s increasingly faithful
adherence to the ANSI SQL-92 standard and a comprehensive suite of external client pro-
grams, coupled with graphical administration tools such as PHPMyAdmin and the new
MySQL Control Center, will get even neophyte users up and running quickly compared to
other databases. None of these will substitute for learning a little theory and employing

good design practices, but that subject is for another chapter.

HTML-embeddedness

PHP is embedded within HTML. In other words, PHP pages are ordinary HTML pages that
escape into PHP mode only when necessary. Here is an example:

<HEAD>

<TITLE>Example.com greeting</TITLE>

</HEAD>

<BODY>

<P>Hello,

<?php

// We have now escaped into PHP mode.

// Instead of static variables, the next three lines
// could easily be database calls or even cookies;
// or they could have been passed from a form.

$firstname = 'Joyce';
$lastname = 'Park';
$title = "Ms.';

echo "$title $lastname";
// 0K, we are going back to HTML now.
7>
We know who you are! Your first name is <?php echo
$firstname; ?>.</P>

<P>You are visiting our site at <?php echo date('Y-m-d H:--1i:s");
OL/P>

<P>Here is a link to your account management page: <A
HREF="http://www.example.com/accounts/<?php echo
"$firstname$lastname"; ?>/"><?php echo $firstname; ?>'s account
management page</P>

</BODY>

</HTML>

When a client requests this page, the Web server preprocesses it. This means it goes through
the page from top to bottom, looking for sections of PHP, which it will try to resolve. For one
thing, the parser will suck up all assigned variables (marked by dollar signs) and try to plug
them into later PHP commands (in this case, the echo function). If everything goes smoothly,
the preprocessor will eventually return a normal HTML page to the client’s browser, as shown
in Figure 1-1.

9

] O Part | ¢+ PHP: The Basics

Example.com greeting - Mozilla {Build ID: 2002051006}
. File Edit View Go Bookmarks Tools Window Help Debug QA

% htip://localhostisent_code/ch1/greeting.php Cy, Search ‘:5-5
o O

Hello, Ms. Park . We know who you are! Your first name 1s Joyce.

You are visiting our site at 2002-07-29 00:52:42

Here 15 a link to your account management page: Joyee's account
management page

Document: Done {0.82 secs) —J- =5

Figure 1-1: A result of preprocessed PHP

If you peek at the source code from the client browser (select Source or Page Source from the
View menu, or right-click if you're using the AOL browser), it will look like this:

<HEAD>
<TITLE>Example.com greeting</TITLE>
</HEAD>
<BODY>
<P>Hello,
Ms. Park
We know who you are! Your first name is Joyce.</P>

<P>You are visiting our site at 2002-04-21 19-34-24</P>

<P>Here is a link to your account management page: Joyce's account
management page</P>

</BODY>

</HTML>

This code is exactly the same as if you were to write the HTML by hand. So simple!
The HTML-embeddedness of PHP has many helpful consequences:

4 PHP can quickly be added to code produced by WYSIWYG editors.

4+ PHP lends itself to a division of labor between designers and scripters.

4+ Every line of HTML does not need to be rewritten in a programming language.

4 PHP can reduce labor costs and increase efficiency due to its shallow learning curve
and ease of use.

Perhaps the sweetest thing of all about embedded scripting languages is that they don’t need
to be compiled into binary code before they can be tested or used —just write and run. PHP
is interpreted (as are many newish computer languages), although the Zend Engine does

Chapter 1 4+ Why PHP and MySQL?

some behind-the-scenes precompiling into an intermediate form for greater speed with
complex scripts.

But what if you happen to want compilation? This can be desirable if you wish to distribute
nonreversible binaries so others can use the code without being able to look at the source.
The Zend team now offers a precompiler, Zend Encoder, which will deliver the code in a non-
reversible intermediate representation, as well as substantially speed up large complex PHP
scripts.

Cross-platform compatibility

PHP and MySQL run native on every popular flavor of Unix (including Mac OS X) and Windows.
A huge percentage of the world’s HTTP servers run on one of these two classes of operating
systems.

PHP is compatible with the three leading Web servers: Apache HTTP Server for Unix and
Windows, Microsoft Internet Information Server, and Netscape Enterprise Server (a.k.a.
iPlanet Server). It also works with several lesser-known servers, including Alex Belits’ fhttpd,
Microsoft’s Personal Web Server, AOLServer, and Omnicentrix’s Omniserver application
server. Specific Web-server compatibility with MySQL is not required, since PHP will handle
all the dirty work for you.

Table 1-2 shows a brief matrix of the possible OS/Web-server combinations.

Table 1-2: Operating Systems and Web Servers for PHP

Variables UNIX Windows

Flavors AIX, A/UX, BSDI, Digital UNIX/Tru64, Windows 95/98/ME
FreeBSD, HP-UX, IRIX, Linux, Mac OS X, Windows NT/2000/XP/2003
NetBSD, OpenBSD, SCO UnixWare,
Solaris, SunOS, Ultrix, Xenix, and more

Web servers Apache, thttpd, Netscape 1IS, PWS, Netscape, Apache, Omni

Now that PHP runs on Macintosh, PHP is almost totally cross-platform. You can develop on
almost any client OS using your favorite tools and then upload your PHP scripts to a server
on almost any OS. We'll discuss the development process in more detail in Chapter 3.

Not tag-based

PHP is a real programming language. ColdFusion, by contrast, is a bunch of predefined tags,
like HTML. In PHP, you can define functions to your heart’s content just by typing a name and
a definition. In ColdFusion, you have to use tags developed by other people or go through the
Custom Tag Extension development process.

As a witty PHP community member once said, “ColdFusion makes easy things easy, and
medium-hard things impossible.” And as every programmer will agree, once you experience
the power of curly brackets and loops, you never go back to tags.

11

12

Part | ¢+ PHP: The Basics

Stability

The word stable means two different things in this context:

4 The server doesn’t need to be rebooted often.

4+ The software doesn’t change radically and incompatibly from release to release.
To our advantage, both of these connotations apply to both MySQL and PHP.

Apache Server is generally considered the most stable of major Web servers, with a reputation
for enviable uptime percentages. Although it is not the fastest nor the easiest to administer,
once you get it set up, Apache HTTP Server seemingly never crashes. It also doesn’t require
server reboots every time a setting is changed (at least on the Unix side). PHP inherits this
reliability; plus, its own implementation is solid yet lightweight. In a two-and-a-half-month
head-to-head test conducted by the Network Computing labs in October 1999, Apache Server
with PHP handily beat both IIS/Visual Studio and Netscape Enterprise Server/Java for stability
of environment.

PHP and MySQL are also both stable in the sense of feature stability. Their respective develop-
ment teams have thus far enjoyed a clear vision of their project and refused to be distracted
by every new fad and ill-thought-out user demand that comes along. Much of the effort goes
into incremental performance improvements, communicating with more major databases, or
adding better session support. In the case of MySQL, the addition of reasonable and expected
new features has hit a rapid clip. For both PHP and MySQL, such improvements have rarely
come at the expense of compatibility. Applications written in PHP3 will function with little or
no revision for PHP4 and 5. And because of the standards-based SQL support, MySQL 3.x
databases are easily moved to more current versions (and most likely always will be).

Speed

PHP is pleasingly zippy in its execution, especially when compiled as an Apache module on
the Unix side. The MySQL server, once started, executes even very complex queries with
huge result sets in record-setting time.

PHP5 is much faster for almost every use than CGI scripts. There is an unfortunate grain of
truth to the joke that CGI stands for “Can’t Go Instantly.” Although many CGI scripts are writ-
ten in C, one of the lowest-level and therefore speediest of the major programming languages,
they are hindered by the fact that each request must spawn an entirely new process after
being handed off from the http daemon. The time and resources necessary for this handoff
and spawning are considerable, and there can be limits to the number of concurrent pro-
cesses that can be running at any one time. Other CGI scripting languages such as Perl and
Tcl can be quite slow. Most Web sites have moved away from use of CGI for performance and
security reasons.

Although it takes a slight performance hit by being interpreted rather than compiled, this is
far outweighed by the benefits PHP derives from its status as a Web server module. When
compiled this way, PHP becomes part of the http daemon itself. Because there is no transfer
to and from a separate application server (as there is with ColdFusion, for instance) requests
can be filled with maximum efficiency.

Although no extensive formal benchmarks have compared the two, much anecdotal evidence
and many small benchmarks suggest that PHP is at least as fast as ASP and readily outperforms
ColdFusion or JSP in most applications.

Chapter 1 + Why PHP and MySQL? 13

Open source licensing

We’ve already dealt with the cost advantages of open source software in the “Cost” section of
this chapter. The other major consequence of these licenses is that the complete source code
for the software must be included in any distribution.

In fact, the Unix version of PHP is released only as source code; so far, the development team
has staunchly resisted countless pleas to distribute official binaries for any of the Unixes. At
first, new users (particularly those also new to Unix) tend to feel that source code is about as
useful as a third leg, and most vastly prefer a nice convenient rpm. But there are both prag-
matic and idealistic reasons for including folders full of pesky . c and . h files.

The most immediate pragmatic advantage is that you can compile your PHP installation with
only the stuff you really need for any given situation. This approach has performance and
security advantages. For instance, you can put in hooks to the database(s) of your choice.
You can recompile as often as you want: maybe when an Apache security release comes out,
or when you wish to support a new database application. By compiling a custom application
specifically suited to your system, or any given snapshot of your system, performance and
stability are increased over their already respectable baseline.

What sets open source software apart from its competitors is not just price but control.
Plenty of consumer software is now given away under various conditions. Careful scrutiny of
the relevant licenses, however, will generally reveal limits as to how the software can be used.
Maybe you can run it at home but not at the office. Perhaps you can load it on your laptop,
but you're in violation if you use it for business purposes. Or, most commonly, you can use it
for anything you want but forget about looking at the code —much less changing it. There are
even community licenses that force you to donate your improvements to the codebase but
charge you for use of the product at the end!

Caution Don't even think about coming back with a riposte that involves violating a software
license —we're covering our ears; we're not listening! Especially with the explosion in no-cost
software, there's just no good reason to break the law. Besides, it's bad karma for software
developers. What goes around, comes around, don't ya know?

For all their openness, the licenses for MySQL and PHP are quite different. You should not
assume that you understand the MySQL terms simply because you have read the PHP
license. They have many similarities to be sure but also some radically different provisions,
especially when it comes to when you should pay.

Table 1-3 shows examples of the various source and fee positions in today’s software

marketplace.
Table 1-3: Source/Fee Spectrum
Fee Structure Closed Source Controlled Source Open Source
Fee for all uses Macromedia ColdFusion - -
Fee for some uses Corel WordPerfect Sun Java MySQL

No fee for any use Microsoft IE Sun StarOffice GPLed software

14

Part | ¢+ PHP: The Basics

Genuinely open source software like PHP cannot seek to limit the purposes for which it is
used, the people allowed to use it, or a host of other factors. The most critical of these rights
is the one allowing users to make and distribute any modifications along with the original
software. In the most extreme case, where one or more developers decide to release a sepa-
rate, complete version of a piece of software, this practice is referred to as code forking.

If somewhere down the road you develop irreconcilable differences with the PHP develop-
ment team, you can take every bit of code they’ve labored over for all these years and use it
as the basis of your own product. You couldn’t call it PHP, and you’d have to include stuff in
your documentation that gave due credit to the authors —the rationale is that source code
distributions make it next to impossible for any single person or group to hijack a program to
the detriment of the community as a whole, because every user always has the power to take
the source and walk.

Users new to the open source model should be aware that this right is also enjoyed by the
developers. At any time, Rasmus, Zend, and company can choose to defect from the commu-
nity and put all their future efforts into a commercial or competing product based on PHP. Of
course, the codebase up to this point would still be available to anyone who wanted to pick
up the baton, and for a product as large as PHP that could be a considerable number of vol-
unteer developers.

This leads to one other oft-forgotten advantage of open source software: You can be pretty
sure the software will be around in a few years, no matter what. In these days of products
with the life spans of morning glories, it’s hard to pick a tool with staying power. Fans of 0S/2,
Amiga, NeXT, Newton, Firefly, Netscape, BeOS, Napster, and a host of other once-hot technolo-
gies know the pain of abandonment when a company goes belly-up, decides to stop support-
ing a technology, or is sold to a buyer with a new agenda. The open source model reduces the
chances of an ugly emergency port in a couple of years and thus makes long-term planning
more realistic.

Many extensions

PHP makes it easy to communicate with other programs and protocols. The PHP develop-
ment team seems committed to providing maximum flexibility to the largest number of users.

Database connectivity is especially strong, with native-driver support for about 15 of the most
popular databases plus ODBC. In addition, PHP supports a large number of major protocols
such as POP3, IMAP, and LDAP. PHP4 added support for Java and distributed object architec-
tures (COM and CORBA), making n-tier development a possibility for the first time. PHP5
extends this support even further, offering a fully incorporated GD graphics library and
revamped XML support with DOM and simpleXML.

Most things that PHP does not support are ultimately attributable to closed-source shops on
the other end. For instance, Microsoft has not thus far been eager to cooperate with open
source projects like PHP. Potential users who complain about lack of native Mac OS 9 or .NET
support on the PHP mailing list are simply misinformed about where the fault lies.

Fast feature development

Users of proprietary Web development technologies can sometimes be frustrated by the
glacial speed at which new features are added to the official product standard to support
emerging technologies. With PHP, this is not a problem. All it takes is one developer, a C

compiler, and a dream to add important new functionality. This is not to say that the PHP

Chapter 1 4+ Why PHP and MySQL?

team will accept every random contribution into the official distribution without community
buy-in, but independent developers can and do distribute their own extensions which may be
later folded into the main PHP package in more or less unitary form. For instance, Dan Libby’s
elegant xmlrpc-epi extension was adopted as part of the PHP distribution in version 4.1, a few
months after it was first released as an independent package.

PHP development is also constant and ongoing. Although there are clearly major inflection
points, such as the transition between PHP4 and PHP5, these tend to be most important deep
in the guts of the parser — people were actually working on major extensions throughout the
transition period without critical problems. Furthermore, the PHP group subscribes to the
open source philosophy of “release early, release often,” which gives developers many oppor-
tunities to follow along with changes and report bugs. Compare this release scheme to the
.NET transition, which has left developers with almost a year in which Microsoft is not really
improving IIS but has not yet released a prime-time version of .NET server.

It hasn’t always been the case that MySQL added new features in a timely fashion. It would
probably be fair to say that a significant chunk of PostgreSQL users are former MySQL users
frustrated by the lack of transaction support, for example. However, the 4.0 and 4.1 versions
have remedied this and other inequities. Transactions are in the software today, while subse-
lects and foreign keys are experimental but coming along nicely.

Popularity

PHP is fast becoming one of the most popular choices for so-called two-tier development
(Web plus data). Figure 1-2 charts growth since 1999.

/3 PHF: PHP Usage Stats - Microsoft Internet Explorer

Jﬁle Edit View Favorites Tools Help

| Back » = - @D () 4| Qoearch GiFavorkes {nveda (4| 5 S w2 & =

| Address [&] hitp: v phe netjusage.pho | “I.inhs »

-

Usage Stats for November 2003

FPHP: 14,528,743 Domains, 1,326,604 IP Addresses
Source: Netcraft

PHP Usage for Nov 2003

16000000 ~

| (55)

12000000 -

1000000 -

BOGHOOG

GOGHO0G -

4000000 +

2000000 =

F PP FFS X

DAL il
L | _'|:I
[Eioere [giema
Figure 1-2: Netcraft survey of PHP use

15

16

Part | ¢+ PHP: The Basics

Although it’s not evident from this graphic, the period October 1998 through October 1999
showed 800 percent growth in the number of domains. As Web sites become even more ubig-
uitous, and as more of them go beyond simple static HTML pages, PHP is expected to gain
ground quickly in absolute numbers of users.

Although it’s somewhat more difficult to get firm figures, it seems that PHP is also in a strong
position relative to similar products. According to a 2002 Zend report, Microsoft Active
Server Pages technology appears to be utilized on about 24 percent of Web servers, whereas
ColdFusion is implemented on approximately 4 percent of surveyed domains. PHP is used on
over 24 percent of all Web servers, as measured by a larger and more accurate sample, and is
now said to be the most popular server-side scripting language on the Web.

Active Server Pages and ColdFusion used to be highly visible because they tended to be dis-
proportionately selected by large e-commerce sites. However, the realities of the Web finally
caught up with us—and it is the flashy e-commerce sites that were disproportionately
thinned by the dot-bomb crash. It is now becoming clearer that most Web sites are informa-
tional rather than direct revenue centers and, therefore, do not repay high development
expenses in an immediate way. PHP enjoys substantial advantages over its competitors in
this development category, which has turned out to be the majority of the Internet.

Not proprietary

The history of the personal computer industry to date has largely been a chronicle of propri-
etary standards: attempts to establish them, clashes between them, their benefits and draw-
backs for the consumer, and how they are eventually replaced with new standards.

But in the past few years the Internet has demonstrated the great convenience of voluntary,
standards-based, platform-independent compatibility. E-mail, for example, works so well
because it enjoys a clear, firm standard to which every program on every platform must
conform. New developments that break with the standard (for example, HTML-based e-mail
stationery) are generally regarded as deviations, and their users find themselves having to
bear the burdens of early adoption.

Furthermore, customers (especially the big-fish businesses with large systems) are fed up
with spending vast sums to conform to a proprietary standard — only to have the market
uptake not turn out as promised. Much of the current momentum toward XML and Web ser-
vices is driven by years of customer disappointment with Java RMI, CORBA, COM, and even
older proprietary methods and data formats.

Right now, software developers are in a period of experimentation and flux concerning propri-
etary versus open standards. Companies want to be sure they can maintain profitability while
adopting open standards. There have been some major legal conflicts related to proprietary
standards, which are still being resolved. These could eventually result in mandated changes
to the codebase itself or even affect the futures of the companies involved. In the face of all
this uncertainty, a growing number of businesses are attracted to solutions that they know
will not have these problems in the foreseeable future.

PHP is in a position of maximum flexibility because it is, so to speak, antiproprietary. It is not
tied to any one server operating system, unlike Active Server Pages. It is not tied to any pro-
prietary cross-platform standard or middleware, as Java Server Pages or ColdFusion are. It is
not tied to any one browser or implementation of a programming language or database. PHP
isn’t even doctrinaire about working only with other open source software. This independent
but cooperative pragmatism should help PHP ride out the stormy seas that seem to lie ahead.

Chapter 1 + Why PHP and MySQL? 17

Strong user communities

PHP is developed and supported in a collaborative fashion by a worldwide community of
users. Some animals (such as the core developers) are more equal than others —but that’s
hard to argue with, because they put in the most work, had the best ideas, and have managed
to maintain civil relationships with the greatest number of other users.

The main advantage for most new users is technical support without charge, without bound-
aries, and without the runaround. People on the mailing list are available 24/7/365 to answer
your questions, help debug your code, and listen to your gripes. The support is human and
real. PHP community members might tell you to read the manual, take your question over to
the appropriate database mailing list, or just stop your whining— but they’ll never tell you to
wipe your C drive and then charge you for the privilege. Often, they’ll look at your code and
tell you what you're doing wrong or even help you design an application from the ground up.

As you become more comfortable with PHP, you may wish to contribute. Bug tracking, offer-
ing advice to others on the mailing lists, posting scripts to public repositories, editing docu-
mentation, and, of course, writing C code are all ways you can give back to the community.

MySQL, while open-source licensed for nonredistributive uses, is somewhat less community
driven in terms of its development. Nevertheless, it benefits from a growing community of
users who are actively listened to by the development team. Rarely has a software project
responded so vigorously to community demand. And the community of users can be
extremely responsive to other users who need help. It’s a point of pride with a lot of SQL
gurus that they can write the complicated queries that get you the results you are looking for
but had struggled with for days. In many cases, they’ll help you for nothing more than the
enduring, if small, fame that comes with the archived presence of their name on Google
Groups. Try comparing that with $100 per incident support.

Summary

PHP and MySQL, individually or together, aren’t the panacea for every Web development
problem, but they present a lot of advantages. PHP is built by Web developers for Web devel-
opers and supported by a large and enthusiastic community. MySQL is a powerful standards-
compliant RDBMS that comes in at an extremely competitive price point, even more so if you
qualify for free use. Both technologies are clear-cut cases of the community banding together
to address its own needs.

+ o+

