
P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

1
Getting Up and Running

PHP, which stands for HyperText Preprocessor, is widely used for creating programmed features for
Web sites because it is easy to learn and also because PHP syntax is drawn from other widely used
languages, making it familiar to many programmers. In this chapter we present a very brief history
of PHP, and then discuss the nature of PHP as it relates to the Web.

Before you can get into the nitty-gritty of programming with PHP5, you need a clear understanding
of how PHP programs work across the Web, and that obviously implies knowledge of the Web
protocol called HyperText Transfer Protocol (HTTP). HTTP is the language or format for
communications from browser to Web server and back, and is therefore fundamental to many
aspects of PHP. HTTP gets some coverage in this chapter, and quite a bit more in Chapter 3.

You’ll see how to properly setup PHP on a Linux server, and on a Windows server as well. PHP
programs run in conjunction with Web pages, which in turn run (or are distributed by) Web server
software (such as Apache or IIS), which in turn run on top of an operating system (such as Linux or
Windows). Although it’s not strictly necessary to know everything about network operating
systems to build good PHP programs, there are many aspects of PHP that are controlled or affected
by the Web server. If you’re unfamiliar with server computers, Web servers, and the like, don’t
worry. You’ll soon see how they work, and look at the requirements and process of installing basic
Web server software.

This chapter leads you through installing PHP on a Red Hat Linux machine running Apache, and
through installing PHP on a Windows 2000 machine running IIS. Just pick the one that’s right for you.

You’ll also examine the contents of the PHP configuration file php.ini with you, and test your
PHP installation.

Obviously there’s a lot of work for you in this chapter, so let’s get started.

The Roots of PHP
PHP is a programming language designed to work with HTML, but unlike HTML, PHP has data
processing capabilities. If you are familiar with HTML, you know that it is not really a programming
language, but more of a rendering language—that is, HTML enables you to write Web pages using

CO
PYRIG

HTED
 M

ATERIA
L

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

code that creates a pleasing (hopefully) display of text, graphics, and links within a browser. Although
there are a few helpful features of HTML (such as the capability to cause a form submission), for the most
part HTML does nothing programmatically. For example, there are no HTML commands that enable you
to add two numbers together, or access a database.

If you remember the Web back in the early ’90s, you may recall that early Web pages were made from
HTML code written as plain text source files. When you made a connection to a Web site with your
browser, the Web server software sent these plain text HTML files to be processed and rendered into
Web pages. Your browser actually did the rendering process (and still does, to be sure), but if you clicked
View ➪ Page Source, you’d see the raw HTML code.

Javascript (and a few other almost unknown programming languages) improved the situation for Web
designers in that it provided for programmatic functionality within Web pages. However, it was limited
to programmatic functionality on the user’s computer, not on the back-end (on the Web server), where all
the really cool data processing and database access takes place. Practical Extraction and Reporting
Language (PERL) was one of the first widely used languages for programming on the back-end, but has
limitations of its own, such as an inability to be mixed in with HTML for easy in-page programming.

So where does PHP fit in with HTML? PHP began as PHP/FI, developed in 1995 by Rasmus Lerdorf from
some Perl scripts he had created for tracking accesses to his online resume. Eventually, Rasmus wrote an
implementation in C, released the source code to the public, and by the beginning of 1998 version 3.0 of
PHP was released (written by Rasmus Lerdorf, Andi Gutmans, and Zeev Suraski), the first version that is
very similar to the current releases of PHP.

The main goal of PHP is to enable users to easily develop dynamic Web pages. The difference between
dynamic Web pages and static Web pages is that the content and structure of dynamic Web pages may
change each time they are accessed (that’s what the back-end programming is for) whereas the content
and structure of static Web pages is fixed and does not change unless the designer manually changes them.

Unlike many other languages, PHP can be embedded directly into HTML, making it quite easy for those
familiar with HTML to grasp how to add back-end, programmatic functionality to their Web pages. This
single capability is one of the most important factors in PHP’s usefulness, and thereby its popularity. But
have no doubt that PHP is growing into a much more full-features language going well beyond the initial
intentions of its authors. PHP intends to be the primary language for a great variety of online and offline
applications, and PHP5 is showing every sign of doing just that.

And you shouldn’t forget how well PHP works with HTTP (HyperText Transfer Protocol), the
communications protocol (pre-agreed format for data communications) for Web. Whenever you click a
link or enter a Web address into your browser, a request in HTTP format is sent to the Web server, which
responds by sending back the Web page. If the Web page isn’t found, you’ll probably get the “404 Not
Found” error. Sending back the correct page or sending an error if the page is not found are HTTP
functions. We discuss HTTP thoroughly in Chapter 2 because several important aspects of PHP
applications depend on HTTP.

Installing, Configuring, and Running PHP
Before you can write a PHP application that works with your Web pages, you need to have PHP installed
and configured. Because you’ll be writing a Web application, it’s a given that you’ll need a Web server
and some Web pages (a short HTML primer is provided in Chapter 3, although it’s assumed that you

2

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

know or can easily pick up how to make basic Web pages). You’ll also need to download, install, and
configure PHP, so we provide complete instructions about how to do these things in the coming sections.
Note that some configuration options for PHP are related to very specific application requirements (you
don’t need to worry about them unless you need them) so many of the options aren’t discussed until you
reach the appropriate chapter.

System Requirements
To run the code in this book you will need at least the following software:

❑ Server software (an operating system such as Windows 2000 or Linux)

❑ A PHP-compatible Web server (such as Apache or Internet Information Server (IIS)

❑ PHP5 (get the download from www.php.net)

❑ A relational database system (starting at Chapter 9, we use SQLite or MySQL)

❑ A Web browser (such as IE, Mozilla, and so on)

❑ A text editor, such as Notepad, Emacs, vi, BBEdit, and so on.

You shouldn’t have to worry about hard drive space or RAM, unless you are working on a very old
system, or one that is overloaded. PHP doesn’t take up much room, and runs very efficiently.

You can run all of the software listed here on the same computer, for development purposes. If
you have access to several networked computers, you may want to install all of your server
software on one (typically either a UNIX or Windows NT/2000 computer), and use another networked
computer as your client machine. For the purposes of this book, we will generally assume you are
running all of the software on a single computer. This is the configuration used by most
Web developers.

php.ini, the PHP Configuration File
There are two examples of PHP configuration files that come with PHP when you download it:
php.ini-dist and php.ini-recommended. After you download and install PHP, there will be one
file named php.ini strategically placed on your system, and each time PHP starts it will read this file
and set itself up accordingly. The php.ini file can be written out by hand, but of course most of us just
modify either the dist or recommended file to suit our needs, and then copy and rename it into the
appropriate folder.

However, you should note the following lines in the top of the dist file:

; This is the default settings file for new PHP installations.
; By default, PHP installs itself with a configuration suitable for
; development purposes, and *NOT* for production purposes.

The settings in the dist file are used for nearly all of the examples in this book and we’ll let you know
whenever the configuration settings are changed. But you will want to use the recommended file when
you complete your applications and copy them over to your production server, and you should be aware

3

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

that you may need to rewrite your code a little bit to work properly with the recommended file’s
configuration settings. We’ll discuss this more as we go along.

Setting Up a Test Machine
In this chapter, we’ll walk through setting up PHP5 on a Red Hat Linux machine running the Apache
Web server, as well as on a Windows 2000 machine running Internet Information Server (IIS). You can run
PHP5 with many other operating systems and Web servers, so see the PHP5 documentation for
installation and configuration on other servers. And there are a variety of installation methods you can
use. For example, there is an automatic installer for the Windows version, whereas you can install the
Linux version using RPMs (for some versions of Linux), and you can also download and compile the
Linux versions from the original source code if you like. None of the installations are all that difficult if
you follow procedures correctly, and the examples we provide are a good starting point for many of the
installations available.

There are some third-party installers (often open-source and free) out there, if you want to look for them.
For instance, you might try PHPTriad or Foxserv in Google.

Network Connections
If you don’t already know, a computer doesn’t need to be attached to the Internet, or even to a network,
to run Web server software. If you install a Web server on a computer, it’s always possible to access that
Web server from a Web browser running on the same machine, even if it doesn’t have a network card or
modem. Of course, to download and install the software you need, you have to have access to an Internet
connection. But you don’t need it to be active just because you’re running your Web server.

Once you have a Web server installed and running, you’ll install PHP5 alongside it. There’s some
configuration required to tell the Web server how to run PHP programs, and we’ll walk through that
process before we start PHP. There is an automatic installer to be found with most distributions of PHP;
we’ll use a primarily manual process to illustrate what’s happening during installation.

What if it goes wrong? The README and INSTALL files that are included in most PHP
downloads, as well as the PHP manual at www.php.net/manual/, provide detailed
information which may be more up-to-date than the information here, which covers
the PHP5.0.2 release.

Where Do You Start?
There are two main installation paths from which to choose, and each simply depends on which
operating system you’re using:

❑ Installing PHP5 with the Apache Web Server on Linux (we use Red Hat Fedora Linux)

❑ Installing PHP5 with Microsoft Internet Information Server on Windows (we use Windows 2000)

4

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

PHP5 can be installed on a great variety of Web server/operating system combinations, including
under Apache on Windows. The two systems we’re using are the easiest to get working. If neither of
them suits you, of course you can install whatever other configuration you want—you should still
be able to run all of the examples in the book. Refer to the PHP5 manual for more general installation
instructions.

Running PHP5
One of the basic choices to make when installing PHP5 with your Web server is whether to run it as a CGI
binary or as a separate static or dynamic module. CGI (Common Gateway Interface) is a very useful way
to run interpreters such as PHP5. Because of security risks (see the “Running as a CGI” section later in this
chapter for more information), compiling PHP5 as a static or dynamic module is recommended under
most circumstances. Our installations (on Linux and on Windows) load PHP as a separate SAPI (Server
Application Programming Interface) module. On Windows, the ISAPI filter was used to run PHP as a
SAPI module.

Although it is most common to run PHP in conjunction with a Web server, so that Web pages with a file
extension such as .php are processed through the PHP interpreter before the finished page is sent back to
the browser, there is also a command line utility that enables you to run PHP code from the command
line. It is present from any of the installation types we demonstrate. You can find plenty of documentation
about it on the PHP site (www.php.net).

Creating and running PHP Web applications in a satisfactory way implies that you are running (or have
access to) a Web server upon which PHP is (or can be) installed, and that the installation has been tested
and runs properly. It also implies that PHP has been (or can be) configured to support the needs of your
PHP programs. There are a couple scenarios under which these requirements can be achieved:

❑ You are running a desktop or server machine, operating system, and Web server compatible with
PHP, and PHP has been installed and configured.

❑ You are running a desktop or server machine connected to the Internet, with access to a Web
hosting account supported by a Web server with which PHP has been installed and configured.

The vast majority of desktop machines run Windows 98, NT, 2000, 2003, and XP. In many cases you can
get a free copy of Personal Web Server (PWS) and install it on a machine running one of these operating
systems. PHP is compatible with PWS, so you can install and configure PHP on desktop machines
running basic operating systems such as Windows 98. Server operating systems such as Windows NT,
2000, and 200, come with Internet Information Server (IIS). PHP is compatible with IIS, and you can install
and configure PHP on these machines. Our Windows 2000 installation of PHP5 uses IIS as a Web server.

The majority of Web-hosting computers run some version of Linux, such as Debian, RedHat, FreeBSD,
and so on. The Web server of choice for these machines is Apache. PHP is compatible with Linux and
Apache, and you can install and configure PHP on these systems, but if you are not in charge of the
Web-hosting computer (and many times you won’t be) you’ll probably have little control over the
installation and configuration. If you find yourself in this position (for example, if you’ve been hired to
work on an existing Web site running on someone else’s server), you can simply verify the operating
system, Web server software, and PHP version so you can cope with whatever you’ve have to work with
as you develop your PHP programs.

5

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Installing PHP5 with Linux and Apache
At the time of this writing, the very first release candidate of PHP5 was available, and that’s the one we’re
using. But you may want to check the PHP site for more recent versions, and any notes about changes.

The combination of Linux, Apache, MySQL, and PHP is probably the most common production
environment for running PHP Web servers. This combination of open-source software has been referred
to by the acronym LAMP. If you run the same combination of software, you can benefit from the
experiences of the many other people who’ve used this setup.

The PHP developers work very closely with the Apache and MySQL teams to ensure that advances in the
three server systems are fully supported by the other components. However, at the time of this writing
PHP5 is being distributed with SQLite rather than MySQL, because there is some concern about whether
MySQL is still open source. This may not be a concern when you read this and begin developing, but it’s
worth noting.

Choosing Your Installation Method
As with other open-source software, you have the option of downloading the PHP and Apache source
code (which, in both cases, is written in the C programming language) and compiling the programs
yourself. If that sounds daunting (it’s not actually as scary as it sounds), you can obtain precompiled
versions in one of two forms: binary downloads, which are precompiled versions of the software that
typically come with installation scripts to put all the required pieces into the necessary parts of your file
system, and binary packages, which are available for systems that have a software package management
system, such as the Red Hat Package Manager (RPM) for Linux, and are the easiest to install.

Here’s a quick overview of the three methods:

Installation Method Advantages Disadvantages

Source Most flexible solution for
custom installations. Additional
tests and examples are included
in the source distribution

Needs to be compiled. Slightly
more difficult than the other
options. Harder to remove once
it’s been done

Binary (compiled) No need to mess around with
trying to compile the server.
Takes less time to install

Less flexible than doing an
installation from source

Binary RPMs Fastest and easiest installation
method. Very easy to uninstall
or upgrade later

Must be using an RPM-based
Linux distribution such as Red
Hat. Least flexible installation
method

An RPM Installation of PHP4
The version of Red Hat we’re using is actually called Fedora, because Red Hat has split off development
into two parts: Fedora and the enterprise version of Red Hat Linux. Currently, the Fedora site doesn’t

6

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

have an RPM for PHP5, so we’ll provide the instructions for getting and installing the RPM for PHP4
here, and then show how to download and compile PHP5 for Fedora later. By the time you read this, in
all likelihood there will be an RPM available for PHP5 for your Linux distribution, so the RPM
installation presented here should provide good guidance for installing PHP5 via the RPM method.

A number of popular Linux distributions use the Red Hat Package Manager, including Red Hat, SuSE,
Mandrake, Definite, TurboLinux, Caldera, and Yellow Dog. If your system uses an alternative package
management system, such as Debian’s deb packages, refer to your distribution’s manual for installation
instructions.

Obtaining RPMs
The best place to get RPMs is almost always the disks from which you installed your Linux system. Red
Hat 7 and SuSE 7 both include PHP4 (although it isn’t installed by default)—by the time you read this,
the same should be true of most current Linux distribution versions.

If your distribution doesn’t include PHP4, or it doesn’t include all the required functionality or support
RPMs, then the next place to check is your Linux distribution vendor’s Web site, which should have a
download area or FTP site from which you can obtain the latest RPMs.

Finally, www.rpmfind.net provides a comprehensive search service for RPMs. When you download
RPMs, though, make certain that they are compatible with your Linux distribution and your computer
hardware. Different distributions put important files in different places, and this can lead to RPMs from
different vendors not working on other systems. Most RPMs are available compiled to run on the
different hardware systems that Linux supports. The following table shows the most common
abbreviations used in RPM names (you need the abbreviation to search on the rpmfind site):

Abbreviation Compatible with

i386 PCs based on Intel and 100% compatible processors: Intel 80386, 486,
Pentium, Pentium II, Pentium III, and Celeron; AMD 5x86, K-series, and
Athlon; and Cyrix 6x86

i586 PCs based on Intel Pentium and 100% compatible processors: Intel Pentium
II, III, and Celeron; AMD K-Series and Athlon; and Cyrix 6x86

PPC Computers built around Motorola PowerPC (and compatible) chips, such
as Apple’s Power Macs, G3s, G4s, and iMacs. You can still only use the
RPMs on Macintosh hardware with Linux installed, though

alpha Servers and workstations running the Compaq Digital 64-bit Alpha
processor

sparc Servers and workstations running the processors which use the 64-bit
SPARC architecture, such as Sun Microsystems’ UltraSPARC

m68k Computers built around Motorola’s older 68000 series processors, such as
Amigas, and older Apple Macintoshes, for which various Linux ports exist

Refer to your distribution’s manual if you want to use the graphical installation tools that come with your
specific distribution. These differ widely, so they can’t all be covered here. However, any RPM-based

7

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

system can be controlled using the rpm command-line tool, and you’ll see how to install the required
components using this interface.

Which RPM Packages Do You Need?
The RPM packages you will need are:

❑ zlib

❑ libpng

❑ libjpeg

❑ gd

❑ gd-devel

❑ apache

❑ mod_php4

You can find out which of them are already installed on your system by typing the following at a
command prompt, substituting in the name of each of these packages in turn:

> rpm -q zlib
zlib-1.1.3-6-i386
> rpm -q libng
Package libpng is not installed

As you can see, if the package is installed, it gives you a random-looking string. If it isn’t installed, you
get a helpful error message. The string actually tells you which version of the software you installed
using the package (1.1.3 in this case), which release of the package it is (this example has the sixth public
release installed), and the architecture for which the RPM was compiled (Intel 386 compatible, which is
just as well, because the package is installed on a Pentium III for this book).

Note which of the packages you already have, and which versions they are (the version number is more
important than the release number).

Apache is at version 1.3.29 if you want to remain at the old versions of GD, or 2.0.48 if you want to be
current with the latest version of GD. Of course, if you are installing PHP5, GD is now bundled with PHP
and is up to version 2.0.17

Then locate suitably up-to-date versions of all the packages that you don’t have already, or have old
versions for. As suggested, try your install CDs, your distributor’s Web site, and www.rpmfind.net.

Once you have current versions of all the packages you need, you can install them. The command for
upgrading an existing installation or installing a package for the first time is exactly the same. Navigate
your command prompt to the location of the files on the CD or the directory into which you downloaded
the RPMs. As root, type:

> rpm -Uh libpng-1.0.5-3-i386.rpm
##################

For each package you need to upgrade or install, just substitute the name of the package file you
downloaded. The line of # signs extends across the screen as each installation progresses.

8

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

If you install the packages in the order listed previously, you should find that all the prerequisite files are
installed in the necessary order.

Installing PHP5 by Compiling from Source Files
The installation method we’ll use for installing PHP5 on Red Hat Fedora running Apache is downloading
the source files and compiling them. You use command-line commands in Linux, but also make use of
some of the visual tools (such as Konqueror) included in your Red Hat installation. If you are running
Linux visually (for example, with KDE), you get to the command prompt by going to the Red Hat button,
and then choosing System Tools ➪ Terminal. Figure 1-1 shows the terminal window you’ll see.

Figure 1-1

You must have a compiler installed (an ANSI C compiler). Sometimes such a compiler is installed as part
of your Linux installation, but if you need one, a good one (and free), named gnugcc, can be found at
www.gnu.org. Figure 1-2 shows the GNU Web site.

And Figure 1-3 shows a bit of the documentation for GCC.

With your compiler installed, download the source file from www.php.net. This file is archived as a tar
file and compressed with gzip, so you will need to uncompress it. There is also a .bz2 file you can
download, but you need only one of these files—either the gzip or a .bz2 file.

9

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-2

You can use the Konquerer file-management tool to view the contents of the compressed file. Figure 1-4
shows some of the contents in the tar file.

You also could use Konquerer to copy all of the compressed file’s contents directly to another folder, but
doing so will make your compilation fail cryptically (meaning you’ll get strange error messages that
won’t help you figure out what’s wrong). Instead, make sure to use the following command from the
terminal (see Figure 1-5) to uncompress the files:

tar -xvzf php-5.0(insert the rest of the version number here).tar.gz

Next, use the cd command to change to the PHP5 distribution directory:

cd php-5.0(insert the rest of the version number here)

10

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-3

Now that you’ve cd’d to the php-5.0.0RC1 folder, you’ll see quite a few folders and files there. Open
the INSTALL text file (see Figure 1-6) to find many of the instructions related to your installation.

Folder and directory are equivalent terms and can be used interchangeably.

For this book, PHP is installed as a Dynamic Shared Object (DSO), and that’s what you’ll also do, so that
the entire Apache Server won’t need to be recompiled.

The latest versions of Apache support DSOs, and shared objects can be used by other programs, such as
PostGreSQL. Although you could compile PHP5 as a static module, that isn’t recommended. If PHP is
statically linked to, say, Apache or PostGreSQL, each of those programs would need to be recompiled
before they would recognize PHP. The programs’ configuration files can be easily changed in shared
objects (DSOs) without any recompiling.

11

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-4

Figure 1-5

12

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-6

Checking Apache for DSO installation
You must have Apache installed and set up for dynamic modules before compiling PHP5 as a DSO. Use
the following command from the terminal to make sure Apache is ready:

httpd -l

You see a terminal window like the one shown in Figure 1-7.

As long as mod_so.c is present, you’re OK to proceed.

13

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-7

Running the configure Script
Within your PHP5 directory (probably named something like php-5.0.0RC1.), you’ll find a shell script
named configure. This script accepts arguments to control the features that PHP will support. You’ll
need to run this script to configure compilation, not PHP5 itself (PHP configuration with php.ini will
come later).

Commands Available for the configure Script
The default configure is to compile PHP5 as a CGI binary. Use the –with-apache option to compile
PHP5 as a static module; use the –with-apxs option to compile PHP5 as a DSO. For this installation, use
the –with_apxs option (actually –with_apxs2 because you’re running Apache 2).

Here are some of the command line arguments that you may use when you compile PHP5. The configure
command is ./configure (the ./ lets it run) followed by a single space and then as many of the
following options as you like:

❑ –enable-track-vars: Automatically populates associative arrays with values submitted as
part of GET and POST requests or provided in a cookie.

❑ –with-gd = /path/to/directory: Enables support for the GD library that allows you to
create dynamic GIF and PNG images from your scripts. You’ll either want to compile with this or
add this module later to do the graphics work in Chapter 16.

❑ –with-mysql = /path/to/directory: With MySQL support.

❑ –with-pgsql = /path/to/directory: With PostgreSQL support.

14

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

For your quick install use only –with-mysql and –with-apxs2. If you get any error messages telling
you something couldn’t be found, provide the full path to the folder in which the appropriate files can be
found. For example, our configure command found the path to mysql. If it hadn’t we would have
provided the full path to mysql as part of the command to run the configure script.

Other Configure Options
There are many more command line arguments that you can use as well. For example, type in the
command

./configure --help

and you’ll see the complete range of arguments that you can use, along with their descriptions.

Performing the QUICK INSTALL (DSO)
The quick installation in the PHP INSTALL text file recommends starting with just two commands:
–with-mysql and –with-apxs. Run the configure script like this for quick installation:

./configure --with-mysql --with-apxs2

You need to use –with-apxs2 rather than –with-apxs because you’re running a later version of
Apache. The script actually came back and informed me of this when it ran, which was very helpful. If
you read through the commands that appear in your terminal as the script runs, you’ll see that it does
quite a few such checks as it gets ready for the make command.

After the configure script has run, you need to enter two more commands:

make
make install

Install makes a directory in /user/local/lib named php where it places a copy of PEAR (php Extension
Add-on Repository) and the php.ini file. The Location bar on the screen in Figure 1-8 shows that the
main panel’s contents are in the php directory.

Running Additional Configure Options
You may use some of the other options of the configure script to compile PHP5 with
enable_track_vars, with-gd, and with_pgsql. But if you’d like to use the configure options for gd
(the graphics module) and pgsql (the database) you must make sure these programs are also loaded for
everything to work properly, and you must provide the full path to the installations as required.

Running as a CGI
PHP5 is compiled as a module if you used the configure script with the –with-apache or
—with-apxs2 options. It’s compiled as a CGI executable binary file if you used the configure script
without any reference to Apache or apxs. And if you compiled PHP5 as a CGI, then when you installed
PHP5, it most likely put the actual binary in /usr/local/bin. Copy the CGI executable binary to your
cgi-bin directory using:

cp /usr/local/bin/php /usr/local/apache/cgi-bin/php.cgi

This enables Apache users to run different PHP-enabled pages under different user-ids. However, CERT
advisory CA-96.11 recommends against placing any interpreters (such as PHP5) into cgi-bin because

15

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-8

attacks such as accessing system files and Web documents can be launched against your server. When
you compile PHP5 with the –with-apache option, you will have a Server Application Programming
Interface (SAPI), which provides a higher level of performance and security over the CGI method.

Setting up Apache for PHP
To install Apache, use RPMs or download and compile the source code. But Apache probably comes with
your Linux distribution, and may already be properly installed. On my Red Hat Fedora installation,
Apache was already installed, and all that was needed to verify this was go to the Red Hat button, choose
System Settings ➪ Server Settings ➪ Services, and look for httpd, as shown in Figure 1-9.

Httpd (all lowercase) means HTTP daemon, and daemon is the name of services running in the
background on Linux machines. So httpd means the HTTP daemon running in the background, for
example, the Web server.

If you’re using Linux visually (running KDE, for example), click the httpd service to see whether it’s
running. If it isn’t, start it, and then open your browser and enter http://localhost. You should see a
Web page such as the one shown in Figure 1-10.

16

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-9

If Apache is not already installed and running, you can use these commands for installing it from the
Terminal:

lynx http://httpd.apache.org/download.cgi
gzip -d httpd-2_0_NN.tar.gz
tar xvf httpd-2_0_NN.tar
./configure --prefix=PREFIX
make
make install
vi PREFIX/conf/httpd.conf
PREFIX/bin/apachectl start

You must replace the NN with the minor version number, and PREFIX with the correct path in which
you’d like to install Apache (the default is /usr/local/apache2).

Configuring Apache to Run PHP5
If PHP5 is installed as a DSO (as the example installation was), you need to check the Apache
configuration file (named httpd.conf) to make sure it has several entries. In the Fedora installation,
you can find the httpd.conf file in the /etc/httpd/conf folder. Open any text editor and let’s modify
the httpd.conf file.

First, ensure that PHP is enabled on your Apache server. Look for a lot of lines that begin with the word
LoadModule. Among them you should find a line like this:

LoadModule php5_module /usr/local/apache/lib/libphp5.so

17

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-10

If there isn’t such a line, you need to add one; or if the path is wrong, you need to correct it. Find out
where the PHP compile put your libphp5.so file. Open Konqueror and choose Tools ➪ Find file. My
installation put the libphp5.so file in

/usr/lib/httpd/modules

You need this information to tell Apache how to run PHP scripts. In the Apache configuration file
httpd.conf, add the LoadModule instruction to load PHP5. Put it after any of the other LoadModule
lines, using the path you just obtained:

LoadModule php5_module /usr/lib/httpd/modules/libphp5.so

Now that Apache knows how to load PHP5, you need to activate PHP5 in Apache. There’s a section
farther down the file consisting of a lot of lines beginning with AddModule. If you find a

18

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

ClearModulesList line in the file, you need to add the following line to the file. Although it doesn’t
matter where you put it, it makes sense to locate it near other AddModule lines for easy access in the
future:

AddModule mod_php5.c

The AddModule line is not required unless you have a ClearModulesList line.

Finally, you tell Apache how to recognize a PHP program file by its extension. Further down the
document are some directives that begin AddType. To the end of these, add the following line:

AddType application/x-httpd-php .php

This tells Apache that all files that end in.php are PHP programs. Now you’re done, so save the file.

Starting or Restarting Apache
Check to see if Apache is running by going into Services once again and checking the httpd service. If it’s
not running, start it. Verify that it’s running by opening the http://localhost test page. If everything
seems to be working OK (and you’re not also installing on Windows), move on to the “Testing Your
Installation” section to test that PHP is working properly.

The majority of Web hosting computers runs some version of Linux, such as Debian, RedHat, FreeBSD,
and so on. The Web server of choice for these machines is Apache. PHP is compatible with Linux and
Apache, so you can install and configure PHP on these systems. However, if you are not in charge of the
Web hosting computer (and many times you won’t be) you’ll probably have little control over the
installation and configuration. If you find yourself in this position (for example, if you’ve been hired to
work on an existing Web site running on someone else’s server) you can simply verify the operating
system, Web server software, and PHP version so you can cope with whatever you’ve got as you develop
your PHP programs.

Installing PHP5 on Windows 2000/Internet
Information Server (IIS) 5

Before beginning the installation process, let’s take a look at IIS. If it’s been properly installed using the
default settings, it should already be running. Select Start ➪ Programs ➪ Administrative Tools ➪ Services
and scroll down to World Wide Web Publishing Service to see if IIS is currently running. If it isn’t, start it up

If you need to install IIS, go to Settings ➪ Control Panel and open Add/Remove Programs. Then click the
Components button to find the list of components that can be installed in Windows 2000, including
Internet Information Server. Select IIS and then click the Details button to see all the services (such as FTP,
SMTP, and so on) that can be installed. Choose any you’d like, but be sure to include World Wide Web
Publishing, and click the Finish button. IIS should be installed and running.

You can examine the installation of IIS by opening its documentation from your browser, using
http://localhost/iisHelp as the URL. You should see something like Figure 1-11, which shows IIS
5.0 running on Windows 2000.

19

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-11

Now let’s take a look at the Internet Service Manager, a console application for managing IIS, to see how
IIS has been configured. Select Start ➪ Programs ➪ Administrative Tools ➪ Internet Services Manager.
The IIS snap-in displays in Microsoft Management Console (MMC), as Figure 1-12 shows.

The MMC provides an easy way to examine and manage the services provided by IIS, as well as the Web
sites and FTP sites set up under IIS. Figure 1-13 shows the hierarchical view of the default installation of
IIS:

To do the installation of PHP you need to turn off Internet Information Services and then restart it after
you’re done making some changes. Right-click on the Default Web site and chose Stop from the short-cut
menu. When you’ve got your installation of PHP files complete, you’ll turn the Web server back on. For
now, close the Internet Services Manager.

Downloading PHP5
To get the most recent version of PHP5, go to www.php.net and find the downloads section, as shown in
Figure 1-14 (it may look a bit different by the time you read this).

Download the Windows binary file (it’s zipped) and set it aside. Create a folder (such as C:\PHP5RC01)
on your hard drive, put the downloaded file in the folder, and then unzip the file. You should end up with
something like Figure 1-15 (as seen in Windows Explorer).

The filenames are current at the time of this writing, but of course may change by the time this book is
published and in your hands. But the version of PHP5 that this book is using is very nearly ready for final
release, so don’t despair—your PHP5 installation should work just the same as the book’s does. And
while your installation of Windows may be on your C: drive, the book’s is on the D: drive. You may have
to change some of the path names to reflect your C: drive (or whatever drive Windows is loaded on) to
make your installation work.

20

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-12

Figure 1-13

21

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-14

Now, the directory you created (such as PHPRC01) contains several subdirectories, and a few text files. It
also contains a program file called php.exe, which you won’t actually be using, and a library file called
php5ts.dll (in the dev folder). Copy this .dll to your D:\WINNT\System32 directory (using the
correct drive letter for your machine). Now copy the rest of the .dll files from here to your
D:\WINNT\System32 directory as well. If Windows complains that you’ve already got a file by one or
other of these names, then keep your old one—don’t overwrite it with the newly downloaded files.

If you prefer not to copy all your.dlls into your System32 directory and you are installing PHP as an
SAPI (like this book does), you may create another folder for them and make a change to your PATH
environment variable so that they can be found. (A PATH environment variable contains a list of
directories—paths—in which Windows will look for things, such as your .dlls. If, for example, you
have a C:\php5\dlls directory, you’d add the string C:\php5\dlls to your variable, and then anything
in that folder could be used by your Windows environment. To set the variable, select Start ➪ Control
Panel ➪ System ➪ Advanced ➪ Environment Variables, and locate and set the PATH variable.)

php.ini and Extensions
As mentioned earlier, the php.ini file contains instructions to PHP such that, when it is running, certain
configuration settings are in place and certain extensions to PHP are running. Configuration settings are

22

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-15

like switches, turning a variety of PHP behaviors on and off. Extensions provide added or enhanced
built-in capabilities to PHP.

At the top of your PHP directory should be files called php.ini-dist and php.ini-recommended.
Copy the php.ini-dist file to D:\WINNT (using the appropriate drive letter), rename it php.ini, and
open it up with Notepad. Scroll down the document until you find a line that looks like:

extension_dir = C:\php\extensions ; directory in which the loadable extensions
(modules) reside

Make sure that this path is the correct path to the extensions directory of the unzipped PHP5 installation.
If it isn’t, change it to point to the right place (look for an ext folder under your unzipped PHP folder).
The extensions directory is the one that contains a large number of files whose names begin with php_
and end with .dll.

The next section in your php.ini file tells PHP which extensions to load. There are semicolons at the
beginning of all the lines that load extensions you don’t need—a semicolon means that PHP will ignore
the directive on that line. Remove the semicolon from extension=php_gd.dll, so that you have text
like this:

;extension=php-filepro.dll
extension=php-gd.dll
;extension=php_mssql.dll

23

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

This gives you access to the functionality of the GD library, which enables you to generate images using
PHP programs (you’ll see how in Chapter 16, “Generating Graphics”). Save your modified php.ini file.

Again, select Start ➪ Programs ➪ Administrative Tools ➪ Internet Services Manager, and open the
hierarchy of services. Right-click Default Web Site, and bring up its Properties (see Figure 1-16).

Figure 1-16

There are two changes to make. First, you need to register the PHP5 ISAPI filter, because you want to
install PHP with its own SAPI rather than as a CGI binary. Click the ISAPI Filters tab. Click the Add
button, and create a new filter called PHP. The folder of PHP files you downloaded contains
php5isapi.dll, a PHP ISAPI filter, in the sapi directory. Put in the correct path for your
php5isapi.dll file, as shown in Figure 1-17.

And second, you need to tell IIS which files to apply the PHP5 filter to. You want it to treat all files that
end with .php as PHP programs. On the Home Directory tab, click the Configuration button. Click the
Add button in the next dialog box, and the Add/Edit Application Extension Mapping dialog box opens
(see Figure 1-18).

Click the Browse button and specify the path to php5isapi.dll. Tell IIS to apply it to.php files by
entering .php in the Extension text box. Click OK, and then click OK again. Now you need to restart IIS.
Close the Properties box, right-click the Default Web site, and choose Start from the shortcut menu.

24

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-17

Provided the message in the MMC reports that the World Wide Web Publishing service was started
successfully, you now have PHP5 installed. Remember the name of your Web site’s root directory
(the book’s is D:\Inetpub\wwwroot).

Create a folder in the wwwroot folder. Name it anything you want (but something helpful, like
php_files), and place files in it with a .php extension. These files will be processed through the PHP
scripting engine when requested by a browser.

Now open your text editor and create a text file with the following code in it:

<?php
phpinfo();
?>

Save this file as test01.php (or something like that, so long as the filename extension is .php) in the
folder you just created under the wwwroot folder. Open the file in your browser, using
http://localhost plus the name of your new folder and the filename (for example,
http://localhost/php_file/myfile.php). You should now see something like Figure 1-19 in your
browser (although your PHP version number might be a bit different if you have a more recent release):

Assuming it works, you’re now in business. If not, check out the following section.

25

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

Figure 1-18

Testing and Troubleshooting
Testing your installation of PHP is really as simple as writing a small PHP program and running it. Create
a small PHP file to use for tests. Write the following code in it:

<?php
echo "Hey, it worked";
?>

Save the file as test02.php in any folder within wwwroot (or an appropriate folder if you happen to be
running some other OS/Web server combination than Windows 2000/IIS).

Open the file in your browser. You should see the words “Hey, it worked” in your browser. If you see
“Page cannot be displayed,” there’s a problem with your PHP installation or with finding the file, or with
the Web server. If you see something that talks about a parse error, you may have made a mistake in
entering the code. Coding errors are discussed in more detail in the next few chapters, but in the next
section you’ll explore some ways you can troubleshoot your basic installation of PHP.

26

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

Figure 1-19

Did the file you tested work? Or are you reading this section right now because the file didn’t
work? Don’t worry; it’s very common for problems to occur anytime you try something new,
especially when it comes to computers and programming. In fact, consider yourself lucky if it didn’t
work because you’ll learn a lot more about PHP and programming from your mistakes than from your
successes.

So let’s start at the beginning. Troubleshooting and debugging comprise the process of
identifying problems, deducing possible causes, logically isolating those causes until you’ve identified
the most likely culprit, and then trying solutions. The end result is that the problem is fixed and if you’ve
done a good job, you’ll have fixed the problem (in an elegant, robust way) without causing other
problems.

Chapter 5 covers debugging in more detail; for now, though, let’s look at the steps for troubleshooting
your installation of PHP:

1. Check that the Web server is on and running properly. In Windows 2000, do this by checking
Services (Start ➪ Programs ➪ Administrative Tools ➪ Services), specifically Internet Admin
Services and World Wide Web Publishing Service. Just because these are set to Automatic

27

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

within Services doesn’t mean they are on. Stop and restart them if you need to reassure yourself.
You can also check to make sure the Web server is running on the default Web site in Internet
Services Manager. For Apache on Linux, check the httpd service (you can also test it by entering
http://localhost in your browser).

2. Place a simple HTML Web page in the wwwroot folder, making sure that it has .htm or .html
as the extension for the filename (such as test01.htm), and bring the page up in your browser.
Make sure you are using http://localhost/test01.htm to bring up the file, not the file
location (such as D:\inetpub\wwwroot\test01.htm).

3. If the HTML Web page displays properly, you can be sure your Web server is functioning. This
implies (assuming your PHP page cannot be displayed) that something is wrong with your PHP
installation. Of course, if you see other messages (such as 404 Page Not Found) you may simply
not be finding the file properly, so you’d need to take a second look at the file name you chose,
the name of your Web folder, and so on.

4. If you think that something is wrong with your PHP installation, reexamine the installation
process you used, going carefully through each step, and make sure you placed all the PHP files
in the places they belong. Pay particular attention to the names of Windows and System folders
because these may differ depending upon your installation of Windows or Linux.

5. Check file permissions. File permissions are very important in Linux systems, and to a lesser
degree in Windows 2000 or desktop Windows operating systems. You should be logged in as
root or administrator on Linux and Windows systems, and should be able to change permissions
as necessary to run scripts from within Web server folders. For external hosting accounts any
good FTP utility can modify file permissions on Linux systems.

It’s likely that following these steps will isolate the problem so that you can fix it.

Configuring PHP
During installation you modified the php.ini file to affect the way PHP runs and what features it
includes. Appendix F, “Configuring PHP5,” at the end of the book discusses the major settings in the
php.ini file, as well as some of the extensions currently available for PHP, but in this section we’ll go
over a few of the most important PHP configurations settings and extensions.

php.ini
The php.ini file is parsed when PHP is first loaded and executed, so that PHP behaves (for any script
running on that Web server) in a particular way. All lines that are not preceded by a semicolon are
working commands; think of everything else in the file as a comment. Following is the text of several
sections of the php.ini-recommended file. The settings shown are important because they have a
direct effect on how PHP behaves (under common operating circumstances), will affect your code, or
may affect the security of your applications:

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

28

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Getting Up and Running

max_execution_time = 30 ; Maximum execution time of each script, in seconds
max_input_time = 60 ; Maximum amount of time each script may spend parsing
request data
memory_limit = 8M ; Maximum amount of memory a script may consume (8MB)

; Whether or not to register the EGPCS variables as global variables. You may
; want to turn this off if you don't want to clutter your scripts' global scope
; with user data. This makes most sense when coupled with track_vars - in which
; case you can access all of the GPC variables through the $HTTP_*_VARS[],
; variables.
;
; You should do your best to write your scripts so that they do not require
; register_globals to be on; Using form variables as globals can easily lead
; to possible security problems, if the code is not very well thought of.
register_globals = Off

There’s much more information regarding the settings in php.ini in Appendix F.

PHP Extensions
PHP extensions are programmatic capabilities that add to or enhance PHP’s built-in capabilities for
performing useful work in your PHP programs. Although no special extensions are used in the early
chapters of this book, you’ll run across some later. Meanwhile, Appendix F covers all of the available
extensions.

Caching
Caching is a method by which some results are stored temporarily, so that all processing does not have to
be repeated each time a new request is made to the server. One potential disadvantage of running all your
code on the server is that if the client (or some machine in between the end user and your site) has a cache
going, the user may not get the most recently processed page To work around caching (at least for most
browsers and servers), you can place the following code in your programs:

<?php
header("Cache-Control: no-cache, must-revalidate");
header("Pragma: no-cache");
header("Expires: Mon,26 Jul 1997 05:00:00 GMT");
?>

The first line works well with HTTP 1.1, the second line with HTTP 1.0, and the third works by specifying
a date in the past (more about HTTP in Chapter 2).

Summary
This chapter covered a bit of the history of PHP and several ways to install PHP alongside common Web
server software.

You learned how to install PHP on both Windows and Linux platforms, some of the differences about
installing PHP as a CGI or as a separate module, the basic meaning of some PHP settings, where PHP

29

P1: KTX

WY027-01 WY027-Mercer WY027-v2.cls June 5, 2004 0:44

Chapter 1

files go upon installation, and how to test your installation. The basic definition of troubleshooting and
debugging was covered, as well as a series of steps to take if your installation of PHP isn’t working.

Exercise
You’re not really ready to begin programming exercises at this point, so let’s do a different type of
exercise that you’ll find handy whenever you have to install with or work with PHP on a new platform.
To complete this exercise, do the following:

Create a document that summarizes all of the following:

❑ What are the hardware capabilities of the computer on which PHP is running? Describe the CPU,
hard drive, RAM, and so on, and any particular limitations you perceive.

❑ What operating system is running on the hardware? List the version, as well as any current
patches and known bugs.

❑ What Web server software is running on the machine? List the version, patches, and known bugs.
Also, list how the Web server is configured, the root folder, how PHP is set up to work with the
Web server, and any file permissions you’ve set.

❑ What version of PHP was installed? List the version, the files installed, the folders in which they
were installed, and any Registry settings that were set or created to support the PHP installation.

❑ What configuration settings were set or changed (from the default) to install PHP? List them.

❑ What extensions were enabled? List them all, and why you enabled them.

30

