Why “J2EE Without EJB”?

The traditional approach to J2EE architecture has often produced disappointing results: applica-
tions that are more complex than their business requirements warrant, show disappointing perfor-
mance, are hard to test, and cost too much to develop and maintain.

It doesn’t need to be so hard. There is a better way for most applications. In this book, we’ll
describe a simpler, yet powerful architectural approach, building on experience with J2EE and
newer technologies such as Inversion of Control and AOP. Replacing EJB with lighter-weight,
more flexible, infrastructure typically produces significant benefits. We and many others have
used this approach in many production applications, with better results than are usually produced
from traditional architectures.

Let’s begin with a quick tour of the topics we’ll examine in more detail in later chapters.

EJB Under the Spotlight

Like most of my colleagues, I was excited by the promise of EJB when it first appeared. I believed
it was the way forward for enterprise middleware. However, I've since revised my opinions, in the
light of my experiences and those of many colleagues.

Much has changed since the EJB specification was conceived:

Q Parts of the specification’s design now seem dated. For example, dynamic proxies, intro-
duced in J2SE 1.3, call into question the container code generation envisaged in the EJB
specification and the multiple source files needed to implement every EJB.

Q The traditional link between EJB and RMI remoting is looking dated, because of the emer-
gence of web services and the recognition that EJBs sometimes need only local interfaces.
EJB is a heavyweight model for objects that don’t need to offer remote access.

Chapter 1

Qa

Q

This is a special case of the fact that basing typical applications around distributed business
objects—the architectural choice EJB implements best—has proved problematic.

Usage of EJB indicates its strengths and weaknesses. Most developers and architects have
restricted their use of EJB to stateless session beans and (if asynchronous calls are needed)
message-driven beans. The relative simplicity of the services provided by the EJB container to
support SLSBs means that the overhead of an EJB container is hard to justify in such applications.

Although EJB has been around for five years, and its use is a given in many J2EE projects, it has
become apparent that its complexity means that many developers still don’t understand it. For
example, many developer candidates I interview can’t correctly describe how EJB containers
handle exceptions and how this relates to transaction management.

The EJB specification is becoming more and more complex in an attempt to address problems
with EJB. It’s now so long and complex that few developers or architects will have time to
read and understand it. With specifications, as with applications, the need for continual
workarounds and constantly growing complexity suggests fundamental problems.

The complexity of EJB means that productivity in EJB applications is relatively poor. A number
of tools try to address this, from “Enterprise” IDEs to XDoclet and other code generation tools,
but the complexity still lurks under the surface and imposes ongoing costs.

Rigorous unit testing and test driven development have become increasingly, and deservedly,
popular. It's become clear that applications making heavy use of EJB are hard to test.
Developing EJB applications test first requires a lot of fancy footwork; essentially, minimization
of the dependence of application code on the EJB container.

The emergence of Aspect Oriented Programming (AOP) points the way to more powerful—yet
potentially simpler—approaches to the middleware problems addressed by EJB. AOP can be
viewed in part as a more general application of the central EJB concepts, although of course it’s
much more than a potential replacement to EJB.

Source level metadata attributes, as used in .NET, suggest a superior alternative in many cases
to the verbose XML-based deployment descriptors used since EJB 1.1. E]JB 3.0 looks like it’s
heading down that road as well, but it’s a way off and will carry a lot of baggage.

Experience has also shown EJB to incur greater cost and deliver fewer benefits than were initially pre-
dicted. Developers have encountered intractable problems that weren’t apparent when EJB first
appeared. Experience has shown that EJB fails to deliver in several areas:

a
a
a

It doesn’t necessarily reduce complexity. It introduces a lot of complexity.
The entity bean experiment for persistence has largely failed.

Applications using EJB tend to be less portable between application servers than applications
using other J2EE technologies, such as servlets.

Despite the promises that EJB would prove the key to scalability, E]B systems often perform
poorly and don’t necessarily scale up well. Although statistics are hard to come by, anecdotal
evidence suggests that the overhead of excessive use of EJB necessitates re-architecture or
causes outright failure in a significant number of projects.

EJB can make simple things hard. For example, the Singleton design pattern (or alternatives) is
hard to implement in EJB.

Why “J2EE Without EJB”?

All of these issues suggest that it’s wise to analyze exactly what the value proposition is before using
EJB. I hope to equip you with the tools to do this effectively and dispassionately.

In Chapter 5, we'll talk more about EJB and its problems. In the meantime, let’s look at where J2EE is
today, where I feel it’s going, and how this book will help you deliver real solutions on time and budget.

What’s Left of J2EE?

You may be wondering, “What'’s left of J2EE without EJB?”

The answer is: a great deal. J2EE is much more than EJB. Many J2EE developers believe otherwise, and
will tell you so when they see this book on your desk, but a dispassionate analysis of what EJB does, and
what J2EE does overall, shows that EJB is only a part of a much bigger and more important picture.

J2EE is essentially about standardizing a range of enterprise services, such as naming and directory ser-
vices (JNDI), transaction management offering a standard API potentially spanning disparate transac-
tional resources (JTS and JTA), connection to legacy systems (JCA), resource pooling, and thread
management. The true power of J2EE lies in these services, and this standardization has done great
service to the industry.

EJB, on the other hand, is merely one way of leveraging those valuable services, through a particular
component model.

We can still access JNDI, JTA, JCA, resource pooling, and other core J2EE services without using EJB. We
can do this by writing code that uses them directly (not as hair-raising as it may seem) or—better—using
proven libraries and frameworks that abstract their use without imposing the complexity of EJB.

Only a few EJB container services are unique to EJB, and there are good alternatives to those. For example:

Q Entity beans are the only dedicated data access components in J2EE. However, they’re also the
most questionable part of J2EE, and there are much better non-J2EE alternatives, such as
Hibernate and JDO. In some applications, JDBC is a better option.

Q Container Managed Transactions (CMT): E]Bs are the only part of J2EE to enjoy declarative
transaction management. This is a valuable service, but as we’ll see in Chapters 8 and 9 we can
also achieve declarative transaction management using AOP. CMT is a relatively thin layer over
the underlying J2EE JTA service. It would be hard (and foolhardy to attempt) to replace an
application server’s global transaction management, but it’s not so hard to access it to develop
an alternative form of CMT.

Q Thread pooling for business objects: We usually don’t need this if we’re supporting only web
clients (or web services clients going through a servlet engine), because a web container pro-
vides thread pooling and there’s no need to duplicate it in the business object tier. We do need
thread pooling to support remote clients over RMI/IIOP, one case in which EJB remains a good,
simple technology choice.

Chapter 1

QO (Related) Thread management for business objects: the ability to implement EJBs as though
they are single-threaded. In my experience this is overrated for stateless service objects (the
most useful kinds of EJB). EJB can’t eliminate all threading complexity anyway, as problems can
remain with objects used by EJB facades. There are good alternatives to EJB thread manage-
ment, discussed in Chapter 12.

Only in the area of remoting is EJB the only way to implement such functionality in standard J2EE. As
we'll see, only in RMI/IIOP remoting is EJB clearly an outstanding remoting technology; there are better
alternatives for web services remoting.

There’s a strong argument that EJB attempts to address a lot of issues it shouldn’t. Take O/R mapping.
This is a complex problem to which EJB provides a complex yet under-specified solution (entity beans)
that simply ignores some of the central problems, such as mapping objects with an inheritance hierarchy
to relational database tables. It would have been better for the designers of the EJB specification to leave
this problem to those with much more experience of the issues around object persistence.

J2EE is much more than EJB. Using J2EE without EJB, we don’t have to reinvent the
wheel. We don’t need to reimplement J2EE services, just consider alternative ways of
tapping into them.

J2EE at a Crossroads

J2EE is at a fascinating point in its evolution. In many respects it’s a great success. It has succeeded in
bringing standardization where none existed; it has introduced a welcome openness into enterprise soft-
ware. It has achieved fantastic industry and developer buy-in.

On the other hand, I feel it has come up short on a number of measures. J2EE applications are usually
too expensive to develop. J2EE application projects are at least as prone to failure as pre-J2EE projects.
(Which means that the failure rate is unacceptably high; developing software is far too hit-and-miss an
affair.) In the areas where J2EE has failed, EJB has usually played a significant part.

J2EE has significant issues with ease of development. As I've said, J2EE applications tend to be unneces-
sarily complex. This is especially true of J2EE web applications, which, like the Sun Java Pet Store, are
often absurdly over-engineered.

J2EE is still a relatively young technology. It’s not surprising that it’s imperfect. It’s time to take stock of
where it's worked, and where it hasn’t worked so well, so that we can eliminate the negatives and enjoy
the positives. Because J2EE contains a lot, this essentially means identifying the subset of J2EE that deliv-
ers most value, along with some supplementary infrastructure we need to harness it most effectively.

There is a growing movement in the J2EE community toward simpler solutions and less use of EJB. My
previous book, Expert One-on-One J2EE Design and Development (2002), was a step in the growth of that
movement, but was part of a broader trend. I believe this book represents the next step in defining and
popularizing such solutions, but it’s important to note that I'm by no means alone. Fellow pioneers
include Rickard Oberg and Jon Tirsen (of Nanning Aspects), who have helped to demonstrate the power

Why “J2EE Without EJB”?

and simplicity of AOP-based solutions. The revisions in the second edition of Core J2EE Patterns suggest
that even Sun is not immune; there is a new and welcome emphasis on use of plain Java objects.

Some of the problems with J2EE and EJB relate to its specification-driven origins. History shows that the
most successful standards evolve, rather than are created by a committee. The danger of a “specification-
first” approach is shown by the example of the OMG and CORBA. The OMG was founded to create a
distributed object standard. Over 300 vendors signed up; the result was the slow production of complex
specifications that never achieved widespread acceptance. As is often the case with committees, usability
by developers was barely a consideration; the result was a horribly complex programming model.

J2EE is partly an evolution of existing middleware, because many of the problems it addresses were
familiar when it was conceived in the late 1990s. For example, stateless session E]JBs are merely an EJB
take on a component type of proven value. Service objects with declarative transaction management
existed in Microsoft Transaction Server, for example, before the EJB 1.0 specification. It's arguable that
where J2EE has tried to innovate, through specifications being developed before any real applications
using them, it has often failed. Stateful session beans, for example, were a new and unproven component
type introduced in EJB. Five years on, they remain largely unproven. The tricky issue of state replication
remains problematic, and most architects avoid stateful session beans if at all possible.

I suspect that the specification-driven nature of J2EE is going to change in practice, and that this is a
good thing. I don’t envisage J2EE descending into anarchy, but I do think that developers aren’t auto-
matically going to adopt each new feature of the J2EE specifications without considering alternative
technologies, especially from the open source community.

This book represents part of that critical process: the recognition that end users of the technology—appli-
cation developers, project managers responsible for development projects, and those who end up using
applications—are the most important stakeholders, and that the reality at the coal face of application
development isn’t always obvious to those on specification committees.

The Way Forward

This book is not primarily about questioning EJB, but about mapping a path forward. This includes
architectural principles, working code, and practical advice you can use in your projects today.

The way forward that this book proposes is to focus on core values—I'll call them themes—that help lead
to project success, and to examine architectures and implementation choices that express them.

Themes

The central themes of this book are:

Q Simplicity
Q Productivity

Q The fundamental importance of object orientation

Chapter 1

Q The primacy of business requirements
QO The importance of empirical process

Q The importance of testability

Let’s briefly discuss these.

Simplicity

There are simple problems, and architecture and implementation should always be as simple as possible.

As I've already mentioned, J2EE projects are often over-engineered, partly because of an assumption that
J2EE applications are necessarily complex. This isn’t always true. Areas in which J2EE architects often
assume requirements to be more complex than they are include:

Q Database distribution. Many applications use only a single database. This means that they
don’t need JTA, two-phase commit, or XA transactions. All these high-end features incur cost in
performance and complexity.

QO Assumption of multiple client types. An application may have a requirement for a web inter-
face. But J2EE architects are also likely to assume that it must also be able to support remote
Swing clients. The assumption that all J2EE applications should be able to support multiple
client types is deeply ingrained. (Indeed, I only realized that it’s actually not that common when
a reviewer on one of my previous books pointed it out, prompting me to reflect on real projects
I'd been involved with.)

J2EE orthodoxy in both cases is that the user isn’t allowed to have such simple requirements. We J2EE
architects, in our wisdom, know that the client’s business will get complicated enough to justify the com-
plexity we’re going to make him pay for up front.

There are two problems here. Firstly, including this complexity isn’t our choice as architects and devel-
opers, as we don’t write the checks. Secondly, even if the more complex requirements do ultimately
emerge, how do we know it’s cheaper to factor them in from day one? It may well be cheaper to wait
until these requirements come up. It’s quite likely they won't; if they do, we can cross that bridge when
we come to it. For example, the eventual remote client choice might be C# or VB.NET on Windows; an
EJB-based remoting architecture might not be the best choice to support this. One of the key lessons of
XP is that it is often more cost-effective, and more likely to produce a quality implementation, not to try
to solve all conceivable problems up front.

We should minimize complexity up front to what’s necessary to support actual (and
reasonably foreseeable) requirements. However, it is necessary to design a simple
architecture that allows for architectural refactoring to scale up. Refactoring an
architecture is not as simple as refactoring code; clearly we don’t want to have to
scrap much of our code to meet additional requirements.

It’s important to have a simple architecture that can scale up. It’s not so good to have a complex architec-
ture, such as an EJB architecture, that can’t scale down to meet simple requirements.

Why “J2EE Without EJB”?

In my experience, the keys to enabling architectural refactoring in J2EE projects are:
Q To follow good OO design practice and program to interfaces rather than classes. This is a
fundamental teaching of the classic Design Patterns text, and too often neglected.
Q To conceal technologies such as EJB behind plain Java interfaces.
The architectural approach and frameworks discussed in this book make it easy to practice these
principles.
Productivity
Productivity is an immensely important consideration, too often ignored in J2EE.
J2EE has a poor productivity record. J2EE developers typically spend too much of their time wrestling
with API and deployment complexity when they should really be concentrating on business logic. The

relative proportions are better than in the CORBA days, but still not good enough. Much of this inciden-
tal time is associated with EJB.

The approaches advocated in this book are highly productive, partly because they’re comparatively sim-
ple and dispense with a lot of unnecessary crud.

00

Surely, since Java is a rather good OO language, object orientation is a given for J2EE applications?
While it should be, in fact many J2EE applications are really “EJB” or “J2EE” applications more than OO
applications. Many common J2EE practices and patterns sacrifice object orientation too easily.

OO design is more important than specific technologies, such as J2EE. We should try
to avoid letting our technology choices, such as J2EE, constrain our ability to use
true OO design.

Let’s consider two examples of how many J2EE applications sacrifice OO:

0 The use of EJBs with remote interfaces to distribute business objects. Designing an applica-
tion in terms of distributed business objects with remote interfaces can deliver a fatal blow to
OO0. Components with remote interfaces must offer interfaces designed to avoid the need for
“chatty” calling for performance reasons, and raise the tricky problem of marshaling input and
output parameters in terms of transfer or value objects. There are applications that must offer
distributed business objects, but most shouldn’t and are much better off staying away from this
particular minefield. The use of distributed objects is not unique to E]JB: EJB wasn't the first dis-
tributed object technology and won't be the last. The reason that this problem is linked to EJB is
that distributing components is the one thing that EJB makes easy: arguably, too easy.

Q The assumption that persistent objects should contain no behavior. This has long been an article
of faith among J2EE developers. I used to subscribe to it myself—this is one area in which my
thinking has changed somewhat since I published Expert One-on-One J2EE. In fact, this assump-
tion in a J2EE context owes more to the severe limitations of entity beans as a technology than
sound design principles. Objects that expose only getters and setters (for example, to expose

Chapter 1

persistent data) are not really objects. A true object should encapsulate behavior acting upon its
state. The use of entity beans encouraged developers to accept this limitation as the norm,
because business logic in entity beans couldn’t easily be tested, and was fatally tied to a particu-
lar persistence strategy. (For example, if a significant amount of business logic is coded in entity
beans, and it becomes apparent that the only way to achieve adequate performance is to per-
form relational data access using SQL and JDBC, a major refactoring exercise is required.) A bet-
ter solution is to use a transparent persistence technology, such as JDO or Hibernate, which
allows persistent objects to be true objects, with little or no dependence on how they’re actually
persisted.

Whenever you find yourself writing an object that’s not really an object—such as an
object that contains only methods exposing its data—think hard about why you're
doing this, and whether there’s a better alternative.

And there is real value in practicing OO. Applied effectively, OO can deliver very high code reuse and
elegant design.

In this book we won't forget the value of OO. We'll try to show how J2EE applications can be object
oriented.

Primacy of Requirements

It should be obvious, but application architecture should be driven by business requirements, not target
technology.

Unfortunately this is not always the case in J2EE. Developers often assume phantom requirements,
such as:

0O 0 0O O

Providing support for multiple databases in the one application, already discussed
The ability to port to another application server at zero cost

The ability to port to another database easily

Supporting multiple client types

All of these are potential business requirements, but whether they are actual requirements should be eval-
uated for each application. Developers with other technologies, such as .NET, often don’t need to worry
about such phantom requirements, meaning that sometimes J2EE developers are expending effort only
because of their technology choice, not because of client requirements.

It’s a great bonus of J2EE that it makes a whole range of things possible that aren’t possible with other
technologies, but it’s also a potential danger when it causes us to forget that all these things have a cost
and that we shouldn’t incur each cost without good reason.

Empirical Process

My wife is a doctor. In recent years, medical practice has been influenced by the rise of Evidence-Based
Medicine: a model in which treatment decisions are strongly influenced by the evidence from medical

Why “J2EE Without EJB”?

research. Treatment decisions are typically made on the basis of the known outcomes of various choices
for the patient’s condition.

While the influence of EBM on medical practice may not be wholly positive, this kind of empirical
approach definitely has lessons for software development.

The IT industry is strongly driven by fashion and emotion. I seldom pass a day without hearing some-
one repeat an orthodox opinion they can’t justify (such as “EJB applications are inherently more scalable
than applications without EJB”), or repeat a religious conviction that’s backed up by no real evidence
(such as “.NET is not a credible enterprise platform”).

Too often this means that people architect enterprise systems based on their own particular bigotry, and
without hard evidence backing up the approaches they propose. They just know which way is best.

One of the best comments I've heard about this situation is “Ask the computer” (from fellow author
Randy Stafford). We should always “ask the computer” what it thinks of our proposed architecture
before we spend too much money and effort on it.

This approach is formalized in iterative methodologies in the form of an executable architecture (RUP)
or vertical slice or spike solution (XP). In each case the aim is to minimize risk by building an end-to-
end executable as soon as possible. In the case of RUP this aims to tackle the trickiest architectural issues
as the best means to mitigate risks; in XP it is driven by key user stories. In all cases, it must be relevant to
actual requirements. An agile development process can naturally tend toward the creation of a vertical
slice, making a distinct activity unnecessary. Once the vertical slice is built, it can be used as the basis for
metrics that serve to validate the architectural choices. Important metrics include:

Q Performance. Can non-functional requirements be met? This is the most likely sticking point in
J2EE, where many projects that don’t do an early vertical slice end up grappling with intractable
performance problems at the last minute.

QO How hard was it to get here? Were the development time and costs involved proportionate to
the requirements implemented? Is the complexity of the result proportionate to the require-
ments? Was magic involved or is the process repeatable?

0 Maintainability. How hard is it to add features to the vertical slice? How quickly can a new devel-
oper understand the application’s architecture and implementation and become productive?

Unfortunately many projects don’t do this kind of risk mitigation. Worse still, many proposed J2EE archi-
tectures are specification-driven or vendor-driven rather than proven in production, so we shouldn’t be
too trusting.

Don’t trust us, or anyone else. Build a vertical slice of your application, and apply
metrics based on your critical requirements. “Ask the computer” which architecture
meets your requirements.

Your requirements just may be unique. However, the architecture described in this
book has been used in many successful projects, and proven to deliver very good
results.

Chapter 1

Testability

Test first development has become much more popular in the last few years, and usually produces
impressive results. Writing effective unit tests for an application isn’t just a question of putting in the
time and effort; it can be severely constrained by high-level architecture. In this book I'll stress architec-
tures that make it easy to write effective unit tests. This is one of the biggest frustrations with EJB. Due to
its heavy dependence on the EJB container, business logic coded in EJB is very hard to test.

Code that is hard to test is usually also hard to re-engineer, reuse in different contexts, and refactor.
Testability is an essential characteristic of agile projects. The approach to J2EE architecture expounded

in this book is ideal for agile projects, and we’ll talk about agility throughout.

We'll discuss testability in detail in Chapter 14.

Lightweight Frameworks and Containers

Applications need infrastructure. Rejecting the use of EJB doesn’t mean rejecting the need for an infras-
tructural solution to many of the concerns EJB addresses. We don’t want to return to the pre-EJB era of
the late 1990s when the first complex Java enterprise applications were developed, each with its own
resource pooling, thread management, service lookup, data access layer, and other infrastructure.

This book will look at existing frameworks that provide such alternatives. We believe that such alterna-
tive infrastructure is essential to successful J2EE projects. Thus describing the capabilities and use of
lightweight frameworks is a central part of this book.

In 2003 there seemed to be a flowering of such “lightweight” frameworks, which provide management
of business objects and enterprise services without the heavyweight infrastructure of EJB. This reflects
the movement toward simpler, lighter J2EE solutions that I've already mentioned. Many of these frame-
works, such as Spring, PicoContainer, and Nanning Aspects, come out of Java’s thriving open source
community. I'll say more about this in Chapter 5.

There are also commercial products, such as The Mind Electric’s GLUE web services product, that pro-
vide lighter-weight solutions than EJB in some of the areas that EJB addresses, such as remoting.

The Spring Framework

10

We couldn’t have written this book without working code that illustrates the approaches we advocate,
and that has been proved through use in production applications.

The Spring Framework (www . springframework.org) is a popular open source product dedicated to
providing simple, effective solutions for common problems in J2EE. This project developed in early 2003
from the source code published with Expert One-on-One J2EE Design and Development, which was
unusual in presenting an integrated and ambitious application framework. Spring has since acquired a
thriving developer and user community and become much more full-featured and bulletproof than any-
thing I could have developed alone. (My co-author, Juergen Hoeller, has made an invaluable contribu-
tion to making this happen as co-lead of Spring.) The basic framework design predated even Expert
One-on-One J2EE, being the result of my experience over several commercial projects.

Spring wasn’t conceived as an alternative to EJB, but it provides powerful, tested, implementations of
features, such as declarative transaction management for plain Java objects, that enable users to dispense
with EJB in many projects.

Why “J2EE Without EJB”?

Spring is not the only project in this space. Little of what we say about design is unique to Spring. For
example, we advocate the use of AOP to solve some common enterprise problems; there are several
other open source AOP frameworks.

The use of a production-quality open source code base is a real differentiator of this book. Most J2EE
books come with code examples. Unfortunately the value of the code is often limited, as it represents a
simplification of the problems necessary for the pedagogical purpose, which rapidly becomes a problem
when trying to apply the code in real applications. Thus illustrating points using a specific, proven
framework—even if not all readers will work with that framework—is preferable to presenting unrealis-
tically simple solutions that can be wholly contained in the text.

Spring has excellent support for architectural refactoring. For example, it’s possible to add E]JBs with
local interfaces or AOP to business objects without modifying a line of calling code, so long as we follow
the essential discipline of programming to interfaces rather than classes.

Should We Ever Use EJB?

There is a place for EJB. This book describes approaches that offer a simpler, more productive, alterna-
tive to EJB for the great majority of J2EE applications. However, we don’t claim that this approach is the
best solution to all problems.

In Expert One-on-One J2EE Design and Development, 1 repeatedly invoked the “Pareto
Principle.” Often referred to as the 80/20 (or 90/10) rule, this states that a small num-
ber of causes (10-20%) are responsible for most (80-90%) of the effect. In the archi-
tectural context, this emphasizes the value of finding good solutions to common
problems, rather than always living with the complexity of solutions to rarer, more
complex problems.

EJB stands on the wrong side of the Pareto Principle. It imposes undue complexity on the majority of
cases to support the special requirements of the minority. For example, perhaps 10% of applications need
distributed business objects; EJB is an infrastructure closely associated with distribution. EJB 2.1 and ear-
lier entity beans are designed to be independent of the data store; the great majority of J2EE applications
use relational databases, and gain no benefit from this. (While it offers a portability between data stores
that’s of more theoretical interest than practical value, it doesn’t shine with object databases either. They
are best accessed using their own rich APIs, or using a solution such as JDO.)

EJB remains the best choice for applications that genuinely need object distribution, especially if they are
implemented wholly in Java or need to use IIOP as the communication protocol. This type of application

is rarer than might be imagined.

EJB is also a pretty good solution for applications that are heavily based around messaging, as message
driven beans are relatively simple and effective components.

One of the best examples of an application type to which EJB may add real value is financial middle-
ware. Financial applications can involve processing that is so costly in time and computing power that

11

Chapter 1

the cost of remote invocation is (atypically) less than the cost of processing. For such applications, object
distribution makes sense, and EJB is a good way of implementing it. Financial middleware is also heav-
ily message-oriented, and suited to use of MDBs.

I believe that such applications are part of the 10%.

Of course there may be strong political, rather than technical, reasons that dictate the use of EJB. This is
outside the scope of this book. In my experience, political battles can be much harder to win than techni-
cal battles, and you'll need Machiavelli rather than me as your guide.

I believe that EJB is a declining technology, and within three years it will be relegated to legacy status,
despite attempts to make it more relevant with EJB 3.0. But this book focuses on what you can do right
now to build enterprise applications. So if you have a requirement that’s currently best addressed by
EJB, I would advise you to use EJB—for now.

Summary

12

This chapter has provided a quick tour of the topics we'll discuss in the rest of this book.

Since the inception of J2EE, EJB has been promoted as the core of the J2EE platform. We believe that
this is a misconception. EJB has a place, but most applications do better without it. J2EE is much more
than EJB; EJB is just one way to tap into J2EE services. Thus, dispensing with EJB does not mean aban-
doning J2EE.

We believe that lightweight containers, such as the Spring Framework, provide a better way of structur-
ing application code and a better model for leveraging J2EE and other services. We'll look at this archi-
tectural approach in detail throughout this book.

We believe that business requirements and basic OO values, not implementation technology, should
drive projects and architectures.

In the next chapter, we’ll look at the goals identified here in more detail, before moving on to application
architecture and specific technologies in the remainder of the book.

