
Introducing .NET Data
Management

We've looked at the basics of Microsoft's new .NET Framework and ASP.NET in particular. It
changes the way you program with ASP, adding a whole range of new techniques that make it
easier to create dynamic pages, web services, and web applications. However, there is one
fundamental aspect of almost all applications that we've not yet explored. This is how we access
and work with data that is stored in other applications or files. In general terms, these sources of
information are called data stores. This chapter looks at how the .NET Framework provides access
to the many different kinds of data store that you may have to interface with.

The .NET Framework includes a series of classes that implement a new data access technology
that is specifically designed for use in the .NET world. We'll look at why this has come about, and
how it relates to the techniques used in ASP. In fact, the new framework classes provide a whole
lot more than just a .NET version of ADO. Like the move from ASP to ASP.NET, they involve
fundamental changes in the approach to managing data in external data stores.

While data management is often assumed to relate to relational data sources such as databases, we
will also explore the other types of data that are increasingly encountered today. There is extended
support within .NET for working with Extensible Markup Language (XML) and its associated
technologies. Apart from comprehensive support for the existing XML standards, .NET provides
new ways to handle XML. These include integration between XML and traditional relational data
access methods.

So, the topics for this chapter are:

❑ The various types of data storage used today and into the future

❑ The need for another data access technology

❑ An overview of the new relational data access techniques in .NET

888

58900_ch08.qxp 19/02/2004 2:49 PM Page 333

❑ An overview of the new techniques for working with XML in .NET

❑ Choosing an appropriate data access technology and a data format

Let's start with a look at the way data is stored and accessed today.

Data Stores and Data Access
The term data store usually meant a database of some kind. Databases were usually file-based, often
using fixed-width records written to disk – rather like text files. A database program or data access
technology read the files into buffers as tables, and applied rules defined in other files to connect the
records from different tables together. As technologies matured, relational databases evolved to provide
better storage methods, such as variable-length records and more efficient access techniques.

However, the basic storage medium was still the database – a specialist program that managed the data
and exposed it to clients. Obvious examples are Oracle, Informix, Sybase, DB2, and Microsoft's own SQL
Server. All are enterprise-oriented applications for storing and managing data in a relational way.

At the same time, desktop database applications matured and became more powerful. In general, this
type of program provides its own interface for working with the data. For example, Microsoft Access can
be used to build forms and queries that can access and display data in very powerful ways. They often
allow the data to be separated from the interface over the network, so that it can reside on a central
server. But, again, we're still talking about relational databases.

Moving to a Distributed Environment
In recent years, the requirements and mode of operation of most businesses have changed. Without
consciously realizing it, we've moved away from relying on a central relational database to store all the
data that a company produces and needs to access. Now, data is stored in email servers, directory
services, Office documents, and other places – as well as the traditional relational database.

The move to a more distributed computing paradigm means that the central data store, running on a
huge computer in an air-conditioned IT department, is often only a part of the whole corporate data
environment. Modern data access technologies need to be able to work with a whole range of different
types of data store, as shown in Figure 8-1.

You can see that the range of storage techniques has become quite quite wide. It's easy to see why the
term database is no longer appropriate for describing the many different ways that data is often stored
today. Distributed computing means that we have to be able to extract data in a suitable format, move it
around across a range of different types of network, and change the format of the data to suit many
different types of client device.

334

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 334

Figure 8-1

The next section explores one of the areas where data storage and management is changing
completely – the growth in the use of XML.

XML – A Data Format for the Future?
One of the most far-reaching of the new ideas in computing is the evolution of XML. The World Wide
Web Consortium (W3C) issued proposals for XML some three years ago (at the time of writing), and these
have matured into standards that are being adopted by almost every sector of the industry.

XML scores when it comes to storing and transferring data – it is an accepted industry standard, and it is
just plain text. The former means that we have a way of transferring and exposing information in a
format that is independent of platform, operating system, and application. Compare this to, for example,
the MIME-encoded recordsets that Internet Explorer's Remote Data Service (RDS) uses. Instead, XML
means that you don't need a specific object to handle the data. Any manufacturer can build one that will
work with XML data, and developers can use one that suits their platform, operating system,
programming language, or application.

XML is just plain text, and so you no longer have to worry about how to store and transport it. It can be
sent as a text file over the Internet using HTTP (which is effectively a 7-bit only transport protocol). You

335

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 335

don't have to encode it into a MIME or UU-encoded form. You can also write it to a disk as a text file, or
store it in a database as text. OK, so it often produces a bigger file than the equivalent binary
representation, but compression and the availability of large cheap disk drives generally compensate for
this.

Applications have already started exposing data as XML in many ways. For example, Microsoft SQL
Server 2000 includes features that allow you to extract data directly as XML documents, and update the
source data using XML documents. Databases such as Oracle 8i and 9i are designed to manipulate XML
directly, and the most recent office applications like Word and Excel will save their data in XML format
either automatically or on demand.

XML is already directly ingrained into many applications. ASP.NET uses XML format configuration files,
and web services expose their interface and data using an implementation of XML called the Simple
Object Access Protocol (SOAP).

Other XML Technologies
As well as being a standard in itself, XML has also spawned other standards that are designed to
interoperate with it. Two common examples are XML Schemas, which define the structure and content of
XML documents, and the Extensible Stylesheet Language for Transformation (XSLT), which is used to
perform transformations of the data into new formats.

XML schemas also provide a way for data to be expressed in specific XML formats that can be
understood globally, or within specific industries such as pharmaceuticals or accountancy applications.
There are also several server applications that can transform and communicate XML data between
applications that expect different specific formats (or, in fact, other non-XML data formats). In the
Microsoft world, this is BizTalk Server, and there are others such as Oasis and Rosetta for other
platforms.

Just Another Data Access Technology?
To quote a colleague of mine, "Another year, another Microsoft data access technology". We've just got
used to ActiveX Data Objects (ADO), and it's all-change time again. Is this some fiendish plan on
Microsoft's behalf to keep us on our toes, or is there a reason why the technology that seemed to work
fine in previous versions of ASP is no longer suitable?

In fact, there are several reasons why we really need to move on from ADO to a new technology. We'll
examine these next, then later on take a high-level view of the changes that are involved in moving from
ADO to the new .NET Framework data access techniques.

.NET Means Disconnected Data
You've seen a bit about how relational databases have evolved over recent years. However, it's not just
the data store that has evolved – it's the whole computing environment. Most of the relational databases
still in use today were designed to provide a solid foundation for the client-server world. Here, each
client connects to the database server over some kind of permanent network connection, and remains
connected for the duration of their session.

336

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 336

For example, with Microsoft Access, the client opens a Form window (often defined within their client-
side interface program). This form fetches and caches some or all of the data that is required to populate
the controls on the form from the server-side database program, and displays it on the client. The user
can manipulate the data, and save changes back to the central database over their dedicated connection.

For this to work, the server-side database has to create explicit connections for each client, and maintain
these while the client is connected. As long as the database software and the hardware it is running on
are powerful enough for the anticipated number of clients, and the network has the bandwidth and
stability to cope with the anticipated number of client connections, it all works very well.

But when this is moved to the disconnected world of the Internet, it falls apart very quickly. The concept
of a stable and wide-band connection is hard enough to imagine, and the need to keep this connection
permanently open can quickly cause problems to appear. It's not so bad if you are operating in a limited-
user scenario, but for a public web site, it's obviously not going to work out.

In fact, there are several aspects to being disconnected. The nature of the HTTP protocol that is used on
the Web means that connections between client and server are only made during the transfer of data or
content. They aren't kept open after a page has been loaded or a recordset has been fetched.

On top of this, there is often a need to use the data extracted from a data store while not even connected
to the Internet at all. Maybe while the user is traveling with a laptop computer, or the client is on a dial-
up connection and needs to disconnect while working with the data then reconnect again later.

This means that we need to use data access technologies where the client can access, download, and
cache the data required, then disconnect from the database server or data store. Once the clients are
ready, they then need to be able to reconnect and update the original data store with the changes.

Disconnected Data in N-Tier Applications
Another aspect of working with disconnected data arises when you move from a client-server model
into the world of n-tier applications. A distributed environment implies that the client and the server are
separate, connected by a network. To build applications that work well in this environment, you can use
a design strategy that introduces more granular differentiation between the layers, or tiers, of an
application.

As Figure 8-2 shows, it's usual to create components that perform the data access in an application (the
data tier), rather than having the ASP code hit the data store directly. There is often a series of rules
(usually called business rules) that have to be followed, and these can be implemented within
components.

They might be part of the components that perform the data access, or they might be separate – forming
the business tier (or application logic tier). There may also be a separate set of components within the
client application (the presentation tier) that perform specific tasks for managing, formatting, or
presenting the data.

The benefits of designing applications along these lines are many, such as reusability of components,
easier testing, and faster development.

337

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 337

Figure 8-2

Let’s take a look at how this influences the process of handling data.Within an n-tier application, the
data must be passed between the tiers as each client request is processed. So, the data tier connects to the
data store to extract the data, perhaps performs some processing upon it, and then passes it to the next
tier. At this point, the data tier will usually disconnect from the data store, allowing another instance
(another client or a different application) to use the connection.

By disconnecting the retrieved data from the data store at the earliest possible moment, we improve the
efficiency of the application and allow it to handle more concurrent users. However, it again
demonstrates the need for data access technologies that can handle disconnected data in a useful and
easily manageable way – particularly when we need to update the original data in the data store.

The Evolution of ADO
Pre-ADO data access technologies, such as Data Access Objects (DAO) and Remote Data Objects (RDO)
were designed to provide open data access methods for the client-server world – and are very successful
in that environment. For example, if you build Visual Basic applications to access SQL Server over your
local network, they work well.

However, with the advent of ASP 1.0, it was obvious that something new was needed. It used only
active scripting (such as VBScript and JScript) within the pages, and for these a simplified ActiveX or
COM-based technology was required. The answer was ADO 1.0, included with the original ASP
installation. ADO allows you to connect to a database to extract recordsets, and perform updates using
the database tables, SQL statements, or stored procedures within the database.

However, ADO 1.0 was really only an evolution of the existing technologies, and offered no solution for
the disconnected problem. You opened a recordset while you had a connection to the data store, worked

338

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 338

with the recordset (maybe updating it or just displaying the contents), then closed it and destroyed the
connection. Once the connection was gone, there was no easy way to reconnect the recordset to the
original data.

To some extent, the disconnected issue was addressed in ADO 2.0. A new recordset object allowed you
to disconnect it from the data store, work with the contents, then reconnect and flush the changes back
to the data store. This worked well with relational databases such as SQL Server, but was not always an
ideal solution. It didn't provide the capabilities to store relationships and other details about the data –
basically all you stored was the rowset containing the values.

Another technique that came along with ADO 2.0 was the provision of a Data Source Object (DSO) and
Remote Data Services (RDS) that could be used in a client program such as Internet Explorer to cache data
on a client. A recordset can be encoded as a special MIME type and passed over HTTP to the client
where it is cached. The client can disconnect and then reconnect later and flush changes back to the data
store. However, despite offering several useful features such as client-side data binding, this non-
standard technique never really caught on – mainly due to the reliance on specific clients and concerns
over security.

To get around all these limitations, the .NET Framework data access classes have been designed from the
ground up to provide a reliable and efficient disconnected environment for working with data from a
whole range of data stores.

.NET Means XML Data
As you saw earlier in this chapter, the computing world is moving ever more towards the adoption of
XML as the fundamental data storage and transfer format. ADO 1.0 and 2.0 had no support for XML – it
wasn't around as anything other than vague proposals at that time. In fact, at Microsoft, it was left to the
Internet Explorer team to come up with the first tools for working with XML – the MSXML parser that
shipped with IE 5 and other applications.

Later, MSXML became part of the ADO team's responsibilities and surfaced in ADO 2.1 and later as an
integral part of Microsoft Data Access Components (MDAC). Along with it, the DSO used for remote data
management and caching had XML support added. Methods were also added to the integral ADO
objects.

The Recordset object gained methods that allowed it to load and save the content as XML. However, it
was never anything more than an add-on, and the MSXML parser remained distinct from the core ADO
objects.

Now, to bring data access up to date in the growing world of XML data, .NET includes a whole series of
objects that are specifically designed to manage and manipulate XML data. This includes native support
for XML formatted data within objects like the Dataset, as well as a whole range of objects that
integrate a new XML parsing engine within the framework as a whole.

.NET Means Managed Code
As mentioned before, the .NET Framework is not a new operating system. It's a series of classes and a
managed runtime environment within which code can be executed. The framework looks after all the

339

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 339

complexities of garbage collection, caching, memory management and so on – but only as long as you
use managed code. Once you step outside this cozy environment, the efficiency of your applications
reduces (the execution has to move across the process boundaries into unmanaged code and back).

The existing ADO libraries are all unmanaged code, and so we need a new technology that runs within
the .NET Framework. While Microsoft could just have added managed code wrappers to the existing
ADO libraries, this would not have provided an ideal or efficient solution.

Instead, the data access classes within .NET have been designed from the ground up as managed code.
They are integral to the framework and so provide maximum efficiency. They also include a series of
objects that are specifically designed to work with MS SQL Server, using the native Tabular Data Stream
(TDS) interface for maximum performance. Alternatively, managed code OLEDB, ODBC and Oracle
providers are included with the framework to allow connections to all kinds of other data stores.

.NET Means a New Programming Model
One of the main benefits of moving to .NET is the ability to get away from the mish-mash of HTML
content and script code that traditional ASP always seems to involve. Instead, there is a whole new
structured programming model and approach to follow. You should use server controls (and user
controls) to create output that is automatically tailored to each client, and react to events that these
controls raise on the server.

Write in proper languages, and not script. Instead of VBScript, you can use Visual Basic, C#, as well as a
compiled version of the JScript language. And, if you prefer, you can use C++, COBOL, Active Perl, or
any one of the myriad other languages that are available or under development for the .NET platform.

This move to a structured programming model with server controls and event handlers provides
improvements over existing data handling techniques using traditional ADO. For example, in ADO you
need to iterate through a recordset to display the contents. However, the .NET Framework provides
extremely useful server controls such as the DataGrid, which look after displaying the data themselves
– all they need is a data source such as a set of records (a rowset).

So, instead of using Recordset-specific methods like MoveNext to iterate through a rowset, and access
each field in turn, you just bind the rowset to the server control. It carries out all the tasks required to
present that data, and even makes it available for editing. Yet, if required, you can still access data as a
read-only and forward-only rowset using the new DataReader object instead. Overall, the .NET data
access classes provide a series of objects that are better suited to working with data using server controls,
as well as manipulating it directly with code.

Introducing Data Management in .NET
Having seen why we need a new data access technology, let's look at what .NET actually provides. In
this section, you'll get a high-level overview of all of the .NET data management classes, and see how
each of the objects fits with the disconnected and structured programming environment that .NET
provides. The remainder of this chapter is divided into two sections; relational data management
(techniques such as those you used traditional ADO for) and XML data management (for which,
traditionally, you would use an XML parser such as MSXML).

340

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 340

System Namespaces for Data Management
The new relational data management classes are in a series of namespaces based on System.Data
within the class library. The combination of the classes from the namespaces in the following table is
generally referred to as ADO.NET:

Namespace Description

System.Data Contains the basic objects and public classes used for accessing and
storing relational data, such as DataSet, DataTable, and
DataRelation. Each of these is independent of the type of data source,
and independent of the connection type.

System.Data.
Common

Contains the base classes used by other public classes in the provider-
specific namespaces, in particular those used by the classes in the
OleDb, Odbc, OracleClient, and SqlClient namespaces. In general,
this namespace is not specifically imported into applications.

System.Data.
Odbc

Contains the public classes used to connect to and work with a data
source via an ODBC driver, such as OdbcConnection and
OdbcCommand. These objects inherit properties, methods, and events
from the base classes in the Common namespace.

System.Data.
OleDb

Contains the public classes used to connect to and work with a data
source via an OLE-DB provider, such as OleDbConnection and
OleDbCommand. These objects inherit properties, methods, and events
from the base classes in the Common namespace.

System.Data.
OracleClient

Contains the public classes used to connect to and work with an Oracle
database, such as OracleConnection and OracleCommand. These
objects inherit properties, methods, and events from the base classes in
the Common namespace, and add Oracle-specific features as well.

System.Data.
SqlClient

Contains the public classes used to connect to and work with a data
source via the TDS interface of Microsoft SQL Server (only), using
classes such as SqlConnection and SqlCommand. These classes
provide better performance by removing some of the intermediate
layers required by an OLEDB or ODBC provider. These objects inherit
properties, methods, and events from the base classes in the Common
namespace.

System.Data.
SqlServerCe

Contains the public classes used to connect to and work with a data
source running under Windows CE. These classes are not used or
discussed in this book.

System.Data.
SqlTypes

Contains public classes to implement the data types normally found in
relational databases such as SQL Server, and which are different to the
standard .NET data types. Examples are SqlMoney, SqlDateTime, and
SqlBinary. Using these can improve performance and avoid type
conversion errors.

341

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 341

There is also a separate series of namespaces containing the classes used to work with XML rather than
relational data. These namespaces are based on System.Xml:

Importing the Required Namespaces
Pages that use objects from the framework's class libraries must import the namespaces containing all
the classes that they explicitly create instances of. Many of the common namespaces are imported by
default, but this does not include the data management namespaces.

Importing the System.Data Namespaces
To access relational data, you need at least System.Data and either System.Data.OleDb,
System.Data.SqlClient, or System.Data.Odbc (depending on the way you're connecting to the data
source). In ASP.NET, the Import page directive is used:

<%@Import Namespace="System.Data" %>
<%@Import Namespace="System.Data.OleDb" %>

Or:

To use any type of data access code, you must import the appropriate namespace.

Namespace Description

System.Xml Contains the public classes required to create, read, store, write, and
manipulate XML documents in line with W3C recommendations.
Includes XmlDocument and a series of classes that represent the
various types of node in an XML document.

System.Xml.
Schema

Contains the public classes required to create, store, and manipulate
XML schemas, and the nodes that they contain.

System.Xml.
Serialization

Contains public classes that can be used to convert XML documents
to other persistence formats, such as SOAP, for streaming to disk or
across the wire.

System.Xml.
XPath

Contains the public classes required to implement reading, storing,
writing, and querying XML documents using a fast custom XPath-
based document. Includes XPathDocument, XPathNavigator, and
classes that represent XPath expressions.

System.Xml.
Xsl

Contains the public classes required to transform XML into other
formats using XSL or XSLT stylesheets. The main object is
XslTransform.

342

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 342

<%@Import Namespace="System.Data" %>
<%@Import Namespace="System.Data.SqlClient" %>

In Visual Basic .NET code inside a class or module, use the Imports statement:

Imports System.Data
Imports System.Data.OleDb

In C#, use the using statement:

using System.Data;
using System.Data.OleDb;

At times when you need to specifically import other System.Data namespaces. For example, to create a
new instance of a DataTableMapping class, you need to import the System.Data.Common namespace,
and to use an SQL-specific data type, you need to import the System.Data.SqlTypes namespace.

Importing the System.Xml Namespaces
To access XML data using the objects in the framework class library, you can often get away with
importing just the basic System.Xml namespace. However, to create an XPathDocument instance, you
have to import the System.Xml.XPath namespace as well. To use the XslTransform class to perform
server-side transformations of XML documents, you need to import the System.Xml.Xsl namespace.

The System.Xml.Schema namespace is usually only required when working with collections of
schemas. Most XML validation objects are in System.Xml, so you can create an XmlValidatingReader
(for example) without referencing the System.Xml.Schema namespace. But to create a new
SchemaCollection instance, you must import the System.Xml.Schema namespace.

Type-Not-Found Compilation Errors
If you forget to import any required namespace, you'll get an error as that shown in Figure 8-3. In this
case, it indicates that you have forgotten to import the namespace that contains the class for
OleDbConnection. To solve this particular error, you just need to import the namespace
System.Data.OleDb.

To find out which namespace contains a particular class, you can simply look in the .NET SDK Class
Library section within the Reference section, or search for the object/class name using the Index or Search
feature of the SDK. Alternatively, use the excellent WinCV (Windows Class Viewer) tool that comes with
the .NET installation.

For help on using the tools that come with .NET, check out the SDK section .NET Framework Tools
from within the Tools and Debugger section. The WinCV utility is described in detail in the subsection
Windows Forms Class Viewer (Wincv.exe).

343

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 343

Figure 8-3

The Fundamental ADO.NET Classes
Traditional data access with ADO revolves around one fundamental data storage object – the
Recordset. The technique used here is to create a connection to a data store using either an OLEDB
provider or an ODBC through OLEDB driver (depending on the data store and the availability of the
provider) and then execute commands against that connection to return a Recordset object containing
the appropriate data. This can be done using a Command object or directly against the Connection
object. Alternatively, to insert or update the data, just execute a SQL statement or a stored procedure
within the data store using the Connection object or Command object directly, without returning a
Recordset object.

Data access in .NET follows a broadly similar principle, but uses a different set of objects. So, switching
to .NET does not involve learning a completely different technique. However, the objects used are quite
different underneath, providing much better performance with more flexibility and usability.

The .NET data access object model is based around two fundamental objects – the DataReader and the
DataSet. Together, they replace the Recordset from traditional ADO, providing many new features
that make complex data access techniques much more efficient, while remaining as easy to use as the
Recordset object. The main differences are that a DataReader provides forward-only and read-only
access to data (like a firehose cursor in ADO), while the DataSet object can hold more than one table (in

344

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 344

other words, more than one rowset) from the same data source as well as the relationships between
them.

You can create a DataSet from existing data in a data store, or fill it directly with data one row at a time
using code. It also allows you to manipulate the data held in the DataSet's tables, and build as well as
modify the relationships between the tables within it.

Each table within a DataSet maintains details of the original values of the data as you work with it, and
any changes to the data can be pushed back into the data store at a later date.

The DataSet also contains metadata describing the table contents, such as the columns types, rules, and
keys. Remember that the whole ethos with a DataSet is to be able to work accurately and efficiently in a
disconnected environment.

The DataSet object can also persist its contents, including more than one data table or rowset, directly
as XML, and load data from an XML document that contains structured data in the correct format. In
fact, XML is the only persistence format for data in .NET – bringing it more into line with the needs of
disconnected and remote clients.

Comparison of Techniques in ADO and ADO.NET
As we expect most of our readers to be at least partly familiar with traditional ADO programming
techniques, we will start with a quick overview of how the new ADO.NET classes and techniques relate
to the traditional approach:

Traditional ADO approach ADO.NET equivalent

Connected access to data using a
Connection (and possibly a Command as
well) to fill a Recordset then iterate
through the Recordset.

Use a Connection and a Command to connect
a DataReader object to the data store and
read the results iteratively from the data
store.

Updating a data store using a Connection
and Command object to execute a SQL
statement or stored procedure.

Use a Connection and a Command to connect
to the data store and execute the SQL
statement or stored procedure.

Disconnected access to data using a
Connection (and possibly a Command as
well) to fill a Recordset then remove the
connection to the data source.

Use a Connection and a Command to connect
a DataAdapter to the data source and then
fill a DataSet with the results.

Updating a data store from a disconnected
Recordset by reconnecting and using the
Update or UpdateBatch method.

Use a Connection and a Command to connect
a DataAdapter and DataSet to the data
source and then call the Update method of
the DataAdapter.

345

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 345

The major differences are:

❑ There is no direct equivalent of a Recordset class. Depending on the task you want to achieve,
you use a DataReader or a DataSet instead.

❑ Client-side and server-side (database) cursors are not used in ADO.NET. The disconnected
model means that they are not applicable.

❑ Database locking is not supported or required. Again, due to the disconnected model, it is
not applicable.

❑ All data persistence is as XML. There are no MIME-encoded or binary representations of
rowsets or other data structures.

Let's look at the new ADO.NET classes in more detail.

The Connection Classes
These classes are similar to the ADO Connection class, with similar properties. They are used to
connect a data store to a Command instance.

❑ The OleDbConnection class is used with an OLE-DB provider

❑ The SqlConnection class uses Tabular Data Services (TDS) with MS SQL Server

❑ The OdbcConnection class is used with an ODBC driver

❑ The OracleConnection class is used to connect to an Oracle database

In traditional ADO, it was common to use the Connection to directly execute a SQL statement against
the data source or to open a Recordset. This cannot be done with the .NET Connection classes.
However, they do provide access to transactions that are in progress against a data store.

The Commonly Used Methods of the Connection Classes
The most commonly used methods for the OleDbConnection, OdbcConnection, OracleConnection,
and SqlConnection classes are shown in the following table:

Method Description

Open Opens a connection to the data source using the current settings
for the properties, such as ConnectionString that specifies the
connection information to use

Close Closes the connection to the data source

BeginTransaction Starts a data source transaction and returns a Transaction
instance that can be used to commit or abort the transaction.

346

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 346

An excellent reference to all the properties, methods, and events of the classes discussed here is included
within the .NET SDK that is provided with the framework. Simply open the Class Library topic within
the Reference section, or search for the class by name using the Index or Search feature of the SDK.
Many of the common ones have been demonstrated, including those shown in the preceding table.

Remember that there are at least two implementations of some of the .NET data access classes, each one
being specific to the data store you are connecting to.

Classes prefixed with OleDb or Odbc are used with a managed code OLEDB provider or ODBC driver
against any database that has a suitable provider or driver. The classes prefixed with Sql are used only
with Microsoft SQL Server (we'll concentrate on just these three types of data store connection).

Other than that, the classes are identical as far as programming with them is concerned. However, you
must use the appropriate one depending on which data store you connect to, so your code must be
rewritten to use the correct ones if you change from one set of classes to the other.

This is generally only a matter of changing the prefixes in the class declarations. For this reason, you
may prefer to avoid including the prefix in your variable and method names, and in comments within
your code.

As an aside, it is possible to use the .NET Activator class's CreateInstance method to create an
instance of a class using a variable to specify the class name. This would allow generic code routines to
be created that instantiate the correct class type (OleDb or Sql) depending on some external condition
you specify. The details of this topic can be found in the SDK.

The Command Classes
These classes are similar to the equivalent ADO Command, and have similar properties. They are used to
connect the Connection class to a DataReader or a DataAdapter instance:

❑ The OleDbCommand class is used with an OLE-DB provider.

❑ The SqlCommand class uses Tabular Data Services with MS SQL Server.

❑ The OdbcCommand class is used with an ODBC driver.

❑ The OracleCommand class is used to access an Oracle database.

The Command class allows you to execute a SQL statement or stored procedure against a data source.
This includes returning a rowset (in which case you use another class such as a DataReader or a
DataAdapter to access the data), returning a single value (a singleton), or returning a count of the
number of records affected for queries that do not return a rowset.

The Commonly Used Methods of the Command Classes
The most commonly used methods for the OleDbCommand, OdbcCommand, OracleCommand, and
SqlCommand classes are shown in the following table:

347

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 347

The DataAdapter Classes
Some classes in the framework connect one or more Command instances to a Dataset. They provide the
pipeline and logic that fetches the data from the data store and populates the tables in the DataSet, or
pushes the changes in the DataSet back into the data store.

❑ The OleDbDataAdapter class is used with an OLE-DB provider.

❑ The SqlDataAdapter class uses Tabular Data Services with MS SQL Server.

❑ The OdbcDataAdapter class is used with an ODBC driver.

❑ The OracleDataAdapter class is used to access an Oracle database.

These classes provide four properties that define the commands used to manipulate the data in a data
store: SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand.

Each one of these properties is a reference to a Command instance (these Command instances can all share
the same Connection instance). Figure 8-4 shows how these classes are related:

Method Description

ExecuteNonQuery Executes the command defined in the CommandText property
against the connection defined in the Connection property for a
query that does not return any rows (an UPDATE, DELETE, or
INSERT). Returns an Integer indicating the number of rows
affected by the query.

ExecuteReader Executes the command defined in the CommandText property
against the connection defined in the Connection property.
Returns a "reader" instance that is connected to the resulting
rowset within the database, allowing the rows to be retrieved. The
derivative ExecuteXmlReader method can be used with the SQL
Server 7.0 SQLXML technology to return an XML document
fragment in an XmlReader instance. We look at the various
"reader" classes later.

ExecuteScalar Executes the command defined in the CommandText property
against the connection defined in the Connection property.
Returns only a single value (effectively the first column of the first
row of the resulting rowset). Any other returned columns and
rows are discarded. Fast and efficient when only a "singleton"
value is required.

348

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 348

Figure 8-4

The Commonly Used Methods of the DataAdapter Classes
The OleDbDataAdapter, OdbcDataAdapter, OracleDataAdapter, and SqlDataAdapter classes
provide a series of methods for working with the DataSet that they apply to. The three most commonly
used methods are shown in the following table:

Table continued on following page

Method Description

Fill Executes the SelectCommand to fill the DataSet with data from the data
source. Can also be used to update (refresh) an existing table in a
DataSet with changes made to the data in the original data source if
there is a primary key in the table in the DataSet.

FillSchema Uses the SelectCommand to extract just the schema for a table from the
data source, and creates an empty table in the DataSet with all the
corresponding constraints.

349

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 349

The DataSet Class
The DataSet provides the basis for disconnected storage and manipulation of relational data. You can
fill it from a data store, work with it while disconnected from that data store, then reconnect and flush
changes back to the data store as required. The main differences between a DataSet and the ADO
Recordset are:

❑ The DataSet class can hold more than one table (more than one rowset in other words), as well
as the relationships between them.

❑ The DataSet class automatically provides disconnected access to data.

Consider the following schematic:

Figure 8-5

Method Description

Update Calls the respective InsertCommand, UpdateCommand, or
DeleteCommand for each inserted, updated, or deleted row in the
DataSet so as to update the original data source with the changes made
to the content of the DataSet. This is a little like the UpdateBatch
method provided by the ADO Recordset, but in the DataSet it can be
used to update more than one table.

350

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 350

Figure 8-5 shows a schematic view of the relationship between all the classes discuss now. Each table in a
DataSet is a DataTable instance within the Tables collection. Each DataTable contains a collection of
DataRow instances and a collection of DataColumn instances. There are also collections for the primary
keys, constraints, and default values used in this table (the Constraints collection), and the parent and
child relationships between the tables.

There is also a DefaultView instance for each table. This is used to create a DataView based on the
table, so that the data can be searched, filtered or otherwise manipulated – or bound to a control for
display (we look at the DataTable and DataView classes later).

The Commonly Used Methods of the DataSet Class
The DataSet class exposes a series of methods that can be used to work with the contents of the tables,
or the relationships between them. For example, you can clear the DataSet, or merge data from a
separate DataSet into this one. The following table summarizes the methods available:

We mentioned earlier that the default persistence format in .NET is XML. The following table shows the
methods provided by the DataSet class for reading and writing this XML data.

The DataSet class, together with all the DataTable instances it contains, keeps a record of the values
for the content when it was originally created and loaded (filled with data). This is a fundamental
requirement to allow the changes to be pushed back into the original data store in a multi-user scenario.

Methods Description

ReadXml and
ReadXmlSchema

Takes an XML document or an XML schema and reads it into the
DataSet.

GetXml and
GetXmlSchema

Returns a String containing an XML document or an XML schema
that represents the data in the DataSet.

WriteXml and
WriteXmlSchema

Writes the XML document or XML schema that represents the data in
the DataSet to a disk file, to a "reader/writer" instance, or to a
Stream. We look at the "reader/writer" classes later.

Method Description

Clear Removes all data stored in the DataSet by emptying all of the tables it
contains. However, it is often more efficient to destroy the instance and create
a new one unless you need to hold a reference to the existing one.

Merge Takes the contents of a DataSet and merges it with another DataSet so that it
contains all the data from both of the source DataSet instances.

351

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 351

There are four methods provided that allow you to control when and how the original values are stored,
as shown in the following table:

The DataTable Class
Each of the tables or rowsets stored within a DataSet class is exposed through a DataTable class
instance, as was shown in Figure 8-5. Each DataTable has a Rows property that references a
DataRowCollection class instance. This is a collection of DataRow class instances.

The Commonly Used Methods of the DataTable Class
The DataTable class exposes a series of properties and methods that allow you to interact with each
table individually while it is stored in the DataSet. The most commonly used methods are Clear,
AcceptChanges, and RejectChanges. These are fundamentally the same as the methods just described
for the DataSet class, but operate only on the specific table to which the DataTable class refers.

The following methods allow you to manipulate the contents of the table:

Method Description

NewRow Creates a new row for the table. The values can then be inserted into it using
code, and the new row added to the table.

Select Returns the set of rows that match a filter, in the order specified. Used to
create subsets of rows.

Method Description

AcceptChanges Commits all the changes made to the tables or relations within the
DataSet since it was loaded, or since the last time AcceptChanges
was executed.

GetChanges Returns a DataSet containing some or all of the changes made
since it was loaded, or since the last time AcceptChanges was
executed.

HasChanges Indicates if any changes have been made to the contents of the
DataSet since it was loaded, or since the last time AcceptChanges
was executed.

RejectChanges Abandons all the changes made to values in the tables within the
DataSet since it was loaded, or since the last time AcceptChanges
was executed. Returns it to the original state and removes all stored
changes information.

352

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 352

The Commonly Used Methods of the DataRowCollection Class
This is a collection of all the rows in a DataTable, as referenced by the Rows property of the table. It
provides methods to add and remove rows, and to find a row based on a value for the primary key (or
more than one value for a multiple-column primary key). These methods are summarized in the
following table:

The Commonly Used Methods of the DataRow Class
This class represents the row itself within the table, and within the DataRowCollection. It has the
AcceptChanges and RejectChanges methods, which work the same way as for the DataTable class.

The DataRow class also has methods that are used to manipulate individual rows in a table, as shown in
the following table:

Methods Description

BeginEdit, EndEdit, and
CancelEdit

Used to switch the row into "edit mode" and save or
abandon the changes made in this mode.

Delete Marks the row as being deleted, though it is not removed
from the table until the Update or AcceptChanges method
is executed.

GetChildRows Returns a collection of rows from another table that is related
to this row as child rows.

SetColumnError and
GetColumnsInError

Used to set and return the error status for this row. In
conjunction with the HasErrors and RowError properties,
this allows bulk edit errors to be reported separately
afterwards.

Method Description

Add Adds a new row created with the NewRow method of the DataTable to the
table

Remove Permanently removes the specified DataRow class from the table

RemoveAt Permanently removes a row specified by its index position from the table

Find Takes an array of primary key values and returns the matching row as a
DataRow instance

353

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 353

The DataView Class
As shown in the earlier schematic, you can retrieve a DataView containing the data from a table within a
DataSet. The DataView class exposes a complete table or a subset of the rows from a table. It can be
created using the DefaultView of the table, or from a DataTable instance that selects a subset of rows
from a table.

The Commonly Used Methods of the DataView Class
In general, to manipulate the contents of a table within a DataSet, it's best to create a DataView from
the table and use the methods it provides. The most commonly used methods are shown in the
following table:

The DataReader Classes
While the DataSet provides a comprehensive platform for disconnected data access, there are many
occasions when you just want a fast and efficient way to access a data store without actually extracting
data that will be remoted (disconnected). This might be to extract one or a few records or specific field
values, or to execute a simple INSERT, UPDATE, or DELETE SQL statement. Or, it might be where there is
too much data to fit into a DataSet and to remote sensibly. It's also the ideal solution for server-side
data binding in most cases, as mentioned in the previous chapter. For all these tasks you can use a
DataReader class.

❑ The OleDbDataReader class is used with an OLEDB provider.

❑ The SqlDataReader class uses Tabular Data Services with MS SQL Server.

❑ The OdbcDataReader class is used with an ODBC driver.

❑ The OracleDataReader class is used to access an Oracle database.

As Figure 8-6 suggests, the DataReader provides the equivalent of a firehose cursor for direct connected
access and retrieval of data from a data store. It's somewhat like the way an ADO Recordset is used to
extract data and then iterate through it.

Method Description

AddNew Adds a new row to the DataView. The values can then be inserted into it
using code.

Delete Removes the current or specified row from the DataView.

Find Takes a single value or an array of values, and returns the index of the
row that matches these value(s).

FindRows Takes a single value or an array of values, and returns a collection of
DataRow instances that match these value(s).

354

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 354

We execute a SQL statement or stored procedure to get a set of data rows that are referenced by a
DataReader, and then iterate through them – while all the time remaining connected to the data store.

Figure 8-6

The important points to bear in mind with the DataReader are:

❑ It provides a partial equivalent of a cursor against a data store, using a SQL statement or stored
procedure to extract a rowset.

❑ It provides the ability to execute a SQL statement or stored procedure to update the data store
content.

❑ It does not provide disconnected access to data.

❑ Access to the rowset referenced by a DataReader is read-only and forward-only.

You can extract XML formatted data fragments directly from MS SQL Server 2000 using a reader
instance (in this case an XmlReader) together with the in-built SQL-XML technology.

The Commonly Used Methods and Properties of the DataReader Classes
To use a DataReader class, create a Command class and then use this to execute your SQL statement or
stored procedure and return a DataReader. You can then iterate through the rows and columns, using
the DataReader to extract the results from the data store.

The following table shows the most commonly used methods exposed by the DataReader classes:

355

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 355

The DataReader classes also expose some useful properties that allow you to discover details about the
rowset that it is referencing, as shown in the following table:

Method Description

FieldCount Returns the number of columns (fields) in the rowset returned by
the query or stored procedure.

HasRows Returns a Boolean value of True if the execution of the query or
stored procedure returned any rows, and False if there are no
rows in the resulting rowset. This method was added in version
1.1.

IsClosed Returns a Boolean value that is True if the DataReader has
been closed, or False if it is still open following execution of the
query or stored procedure.

Method Description

Read Advances the current row pointer to the next row so that the values of the
columns can be accessed using the column name or ordinal position.
Returns False when there are no more rows to read.

GetValue Returns one value from the current row in its native format (as the native
data type in the data source) by specifying the integer column index. The
simpler but less efficient alternative to using the column index is to
specify the column name directly as: value = DataReader("column-
name").

GetValues Gets one or more values from the current row in their native format (as
the native data type in the data source) into an array.

Getxxxxxx Returns a value from the current row as the data type specific to each
method, by specifying the integer column index. Examples are
GetBoolean, GetInt16, and GetChars.

NextResult Moves the current row pointer to the next set of results when the
statement is a SQL stored procedure or a batch SQL statement that returns
more than one result set. Note that this is not a MoveNext operation like
that of an ADO Recordset – it moves the current row pointer from one
rowset to the first row in the next rowset.

Close Closes the DataReader and releases the reference to the rowset.

356

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 356

Should I Use a DataReader or a DataSet?
When you start building applications that access a data store, think about what kind of access you
actually need, and how the data will be used. It should be obvious from the descriptions of the classes
that the DataSet carries a noticeable overhead in terms of complexity when compared to a DataReader,
with the corresponding negative effect on performance and memory usage.

So, wherever it's possible, aim to use a DataReader rather than a DataSet. The kinds of occasions that
require a DataSet are:

❑ When you need to remote the data (disconnect from the data store and pass the data to another
tier in the application) to a client application, store it ready for use in a process, edit the data, or
in some similar scenario.

❑ When you need to store, transport, or access more than one table (more than one DataTable
instance), and optionally the relationships between these tables.

❑ When you need to update data in the source database using the in-built methods of the
DataSet and DataAdapter rather than executing individual SQL UPDATE statements or stored
procedures. The DataSet also stores the original (as well as the current) values of each column
in each row, so it better manages a situation where multiple users are concurrently updating the
data.

❑ When you need to take advantage of the synchronization between an XML document and the
equivalent "relational" rowset. This topic is discussed in Chapter 11.

❑ In certain data binding scenarios, such as binding the same data to several controls or using
automatic record paging in a DataGrid control, you cannot use a DataReader as the data
source. In such cases, it's usual to use a DataView created from a table in a DataSet.

❑ If you are iterating through the data rows, and need the freedom to be able to move backwards
and forwards in the rowset. You can't use a DataReader for this, as it is a forward-only data
source.

Relational Data Providers for .NET
.NET uses managed code data providers to connect to a data store. The following table shows the .NET
Data Providers that ship with version 1.1 of the .NET Framework:

Method Description

RecordsAffected Returns an Integer value that is the number of rows in the result
set referenced by the DataReader. Only valid after all the rows
have been read from the DataReader by a server control such as
a DataGrid, or after iterating through until the Read method
returns False.

357

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 357

Only the first three of the providers listed were included with.NET Framework version 1.0. A managed
provider for ODBC was developed as a beta product during the version 1.0 timeframe, and can still be
obtained from the Microsoft Data web site at http://www.microsoft.com/data/. More managed providers are
planned, such as those for Microsoft Exchange, Active Directory, and other data stores. The existing
unmanaged OLEDB providers for these data stores cannot be used in .NET.

The beta version of the ODBC driver installs in a different namespace from the driver included in
version 1.1 of the .NET Framework. The current namespace is System.Data.Odbc, whereas the beta
version was installed as Microsoft.Data.Odbc.

Common Data Access Tasks with .NET
To demonstrate the basics of working with relational data in .NET, we've put together a series of sample
pages that show the various objects in action. Figure 8-7 shows the default.htm main menu page for
the samples:

Figure 8-7

Provider Name Description

SQLOLEDB OLEDB provider SQL Server

MSDAORA OLEDB provider for Oracle

Microsoft.Jet.OLEDB.4.0 OLEDB provider for Access and other Jet data sources

SQL Server ODBC driver for SQL Server

Microsoft ODBC for Oracle ODBC driver for Oracle

Microsoft Access Driver
(*.mdb)

ODBC driver for Microsoft Access

Oracle Microsoft provider for Oracle (requires the Oracle client
software version 8.1.7 or later to be installed)

358

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 358

You can download the samples to run on your own server at http://www.daveandal.net/books/8900/. You
can also run many of them online at the same URL. The samples are available in both VB and C#, and
you can choose which to install – or install both sets.

The examples for this chapter are in the Introduction to Relational Data Access in .NET section, and this
link displays the default.htm page for these sample pages, as shown in Figure 8-8.

Figure 8-8

The first three groups of links show the three basic techniques for accessing relational data. Each group
demonstrates four different connection types: an OLEDB provider for SQL Server, a direct SQL Server
TDS connection, a connection through the .NET ODBC driver, and a connection to an Access database
file through the Jet provider for Microsoft Access. There is also an example of using a user control that
returns a DataSet. We'll be examining all these sample pages.

Setting Up the Samples on Your System
The downloadable sample files contain a WroxBooks.mdb Access database, which you can use with the
Jet examples, and a set of SQL scripts that you can use to create the sample WroxBooks database on your
own local SQL Server. Instructions for using the scripts are in the readme.txt file located within the
database folder of the samples.

You'll also need to edit the connection strings in the web.config file that is installed in the root folder of
the examples to suit your setup. The <appSettings> section of the web.config file contains
declarations of the connection strings for all of the examples for this book, but the ones that are relevant
to this chapter are highlighted in the following code. Notice that there are four, one for each of the
providers/drivers used in the example pages:

359

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 359

<configuration>
... other settings here ...

<appSettings>
<add key="DsnWroxBooksSql"

value="server=delmonte; database=WroxBooks; user id=sa; password=" />
<add key="DsnWroxBooksOleDb"

value="provider=SQLOLEDB.1; data source=delmonte;
initial catalog=WroxBooks; uid=sa; pw=" />

<add key="DsnWroxBooksJet"
value="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" />

<add key="DsnWroxBooksOdbc"
value="DRIVER={SQL Server}; SERVER=delmonte;

DATABASE=WroxBooks; uid=sa; pw=;" />
... other settings here ...

</appSettings>
</configuration>

Any page within the samples can access and use these connection strings by using:

strSQLConnect = ConfigurationSettings.AppSettings("DsnWroxBooksSql")
strOLEDBConnect = ConfigurationSettings.AppSettings("DsnWroxBooksOleDb")
strJetConnect = ConfigurationSettings.AppSettings("DsnWroxBooksJet")
strOdbcConnect = ConfigurationSettings.AppSettings("DsnWroxBooksOdbc")

Setting Up the Required File Access Permissions
Some of the examples files require write access to the server's wwwroot folder and subfolders below this.
By default in Windows NT, Windows 2000, and Windows XP, ASP.NET runs under the context of the
ASPNET account that is created by the installation and setup of the .NET Framework. This is a relatively
unprivileged account that has similar permissions by default as the IUSR_machinename account that is
used by Internet Information Services.

To give folders on your test server write access for ASP.NET, right-click on the wwwroot folder in
Windows Explorer and open the Properties dialog. In the Security tab, select the ASPNET account and
give it Write permission or Full Control. Then click Advanced and tick the checkbox at the bottom of this
page (Reset permissions on all child objects…).

Alternatively, configure ASP.NET to run under the context of the local System account by editing the
machine.config file located in the config directory of the installation root. By default, this is the
C:\WINNT\Microsoft.NET\Framework\[version]\CONFIG\ directory. Change just the userName
attribute in the <processModel> element within the <system.web> section of this file to:

<processModel userName="system" password="autogenerate" ... />

Do this only while experimenting and only on a development server. For production
servers, set up only the minimal permissions required for your applications to run.

360

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 360

ASP.NET with IIS 6.0 and Windows Server 2003
While all the this is true for IIS 4.0 and IIS 5.0, as installed with Windows NT, Windows 2000, and
Windows XP, the new version of IIS supplied with Windows Server 2003 (IIS 6.0) works in a slightly
different way. Security and account permissions are discussed in Chapter 14. However, to enable the
example pages to run on Windows Server 2003 you only need to know the basics here.

By default, in Windows Server 2003, web sites run within Application Pools and the worker processes
used for accessing resources run under the context of an account named NETWORK SERVICE. Windows
Server 2003 creates an account group called IIS_WPG, of which the IWAM_machinename, LOCAL
SERVICE, NETWORK SERVICE and SYSTEM accounts are automatically members.

It means that you can use this group to configure access to resources for ASP.NET running under the
default IIS 6.0 configuration. Alternatively, you can just assign the necessary Write permission directly to
the NETWORK SERVICE account if you prefer more fine-grained control.

You can also configure IIS 6.0 to run in a special compatibility mode called IIS 5.0 Isolation Mode (in the
Service tab of the Properties dialog for the Web Sites entry in the IIS Manager). In this case, IIS 6.0 runs
ASP.NET just like it does under IIS 5.0, and the accounts used and permission settings you make are the
same as in IIS 5.0.

So, the ASPNET account is used for ASP.NET resources, and the IWAM_machinename account is used for
other resources. And an account named IWAM_machinename is used for out-of-process execution of
components in this mode, just as in IIS 5.0.

For more information of the IIS and ASP.NET security model in Windows Server 2003, open the Help
file from IIS Manager and navigate to the Server Administration Guide | Security | Access Control |
Web Site Permissions section.

Using a DataReader Object
The first group of links in the relational data access menu shows the DataReader in action. This is the
nearest equivalent to the Connection/Recordset data access technique used in traditional ADO.
Figure 8-9 shows the result of running the OLEDB example. The others from the same group (the SQL
TDS, ODBC and Jet provider examples) provide identical output, but with different connection strings.

The code in the page (datareader-oledb.aspx) is placed within the Page_Load event handler. So, it
runs when the page loads. The code inserts the connection string, SQL SELECT statement, and the results
into <div> elements within page. All the code is fully commented, and we've included elementary error
handling to display any errors. However, only the relevant data access code has been shown here. You
can examine the entire source code for any of the pages by clicking the [view source] link at the bottom.

361

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 361

Figure 8-9

The DataReader Example Code
The following code has been used in this example:

'get connection string from web.config file and display it
strConnect = ConfigurationSettings.AppSettings("DsnWroxBooksOleDb")
outConnect.InnerText = strConnect

'specify the SELECT statement to extract the data and display it
strSelect = "SELECT * FROM BookList WHERE ISBN LIKE '07645437%'"
outSelect.InnerText = strSelect

'create a new Connection object using the connection string
Dim objConnect As New OleDbConnection(strConnect)

'open the connection to the database
objConnect.Open()

'create a new Command using the connection object and select statement
Dim objCommand As New OleDbCommand(strSelect, objConnect)

'declare a variable to hold a DataReader object
Dim objDataReader As OleDbDataReader

'execute the SQL statement against the command to fill the DataReader
objDataReader = objCommand.ExecuteReader()

The first step is to get the connection string from the web.config file, and then specify the SQL
statement. These are displayed as the code runs in <div> elements named outConnect and outSelect
(located within the HTML of the page). Then, we create a new instance of an OleDbConnection object,
specifying the connection string as the single parameter of its constructor.

362

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 362

After opening the connection by calling the Open method, you need an OleDbCommand object. This will
be used to execute the statement and return a new OleDbDataReader object through which you can
access the results of the query. The SQL statement and the active Connection object are specified as the
parameters to the OleDbCommand object constructor: You can then call the ExecuteReader method of
the OleDbCommand object. This returns an OleDbDataReader object that is connected to the result
rowset.

Displaying the Results
A DataReader allows you to iterate through the results of a SQL query, much like you do with a
traditional ADO Recordset object. However, unlike in the ADO Recordset, in a DataReader you
must call the Read method first to be able to access the first row of the results. Afterwards, just call the
Read method repeatedly to get the next row of the results until it returns False (which indicates that the
end of the results set has been reached).

We no longer have a MoveNext method. Forgetting to include this statement was found by testers to be
the most common reason for problems when working with the Recordset object in ADO.

As was common practice in ASP 3.0 and earlier, you can build up an HTML <table> to display the data.
However, as you're working with ASP.NET now, this example actually creates the definition of the table
as a string and then inserts it into a <div> element elsewhere in the page (rather than the ASP-style
technique of using Response.Write directly). The following code was used to create the output shown
in Figure 8-9:

Dim strResult As String = "<table>"

'iterate through the records in the DataReader getting field values
'the Read method returns False when there are no more records
Do While objDataReader.Read()

strResult += "<tr><td>" & objDataReader("ISBN") & "</td><td> " _
& objDataReader("Title") & "</td><td> " _
& objDataReader("PublicationDate") & "</td><td></tr>"

Loop

'close the DataReader and Connection
objDataReader.Close()
objConnect.Close()

'add closing table tag and display the results
strResult += "</table>"
outResult.InnerHtml = strResult

You could, of course, simply declare an ASP.NET list control such as a DataGrid in the page, and then
bind the DataReader to the control to display the results. However, the technique used here to display
the data demonstrates how we can iterate through the rowset.

Closing the DataReader and the Connection
You have to explicitly close the DataReader. You also have to explicitly close the connection by calling
the Connection object's Close method. Although the garbage collection process will close the
DataReader when it destroys the object in memory after the page ends, it's good practice to always
close reader objects connections as soon as you are finished with them.

363

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 363

It's even more important to close the connection after you finish with it. Database connections are a
precious resource, and the number available is usually limited. For this reason, as you'll see in the next
section, ADO.NET provides a useful method that will close a connection automatically.

The CommandBehavior Enumeration

One useful technique to bear in mind when using a DataReader is to take advantage of the optional
parameter for the Command object's ExecuteReader method. It can be used to force the connection to be
closed automatically as soon as we call the Close method of the DataReader object:

objDataReader = objCommand.ExecuteReader(CommandBehavior.CloseConnection)

This is particularly useful if you pass a reference to the DataReader to another routine, say if you return
it from a method. By using the CommandBehavior.CloseConnection option, you can be sure that the
connection will be closed automatically when the routine using the DataReader destroys the object
reference.

Other values in the CommandBehavior enumeration that you can use with the ExecuteReader method
(multiple values can be used with And or +) are:

❑ SchemaOnly: The execution of the query will only return the schema (column information) for
the results set, and not any data. It can be used, for example, to find the number of columns in
the results set.

❑ SequentialAccess: Can be used to allow the DataReader to access large volumes of binary
data from a column. The data is accessed as a stream rather than as individual rows and
columns, and is retrieved using the GetBytes or GetChars methods of the DataReader.

❑ SingleResult: Useful if the query is only expected to return a single value, and can help the
database to fine-tune the query execution for maximum efficiency. Alternatively, use the
ExecuteScalar method of the Command object.

❑ SingleRow: Useful if the query is only expected to return one row, and can help the database to
fine-tune the query execution for maximum efficiency.

Overall, the techniques used in this example are not that far removed from working with traditional
ADO in ASP. However, there are far more opportunities available in .NET for accessing and using
relational data. These revolve around the DataSet rather than the DataReader.

A Simple DataSet Example
A DataSet is a disconnected read/write container for holding one or more tables of data, and the
relationships between these tables. In this example, we just extract a single table from the database and
display the contents.

Figure 8-10 shows what the Simple DataSet object example using an OLEDB Provider (simple-dataset-
oledb.aspx) sample looks like when it's run:

364

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 364

Figure 8-10

The Simple DataSet Example Code
We've used the same connection string and SQL statement as in the DataReader example. We also
create a new OleDbConnection object using this connection string as before:

Dim objConnect As New OleDbConnection(strConnect)

To execute the SQL statement for the OleDbDataReader object in the previous example, we used the
ExecuteReader method of the OleDbCommand object. In this example, to fill a DataSet object with
data, we use an alternative object to specify the SQL statement – an OleDbDataAdapter object. Again,
we provide the SQL statement and the active Connection object as the parameters to the object
constructor:

Dim objDataAdapter As New OleDbDataAdapter(strSelect, objConnect)

This technique still creates and uses a Command object. When you create a DataAdapter, a suitable
Command instance is created automatically behind the scenes, and assigned to the SelectCommand
property of your DataAdapter. You could do this yourself, but it would mean writing the extra code,
and there is no advantage in doing so.

Now create an instance of a DataSet object and then fill it with data from the data source by calling the
Fill method of the DataAdapter object. Specify as parameters the DataSet object and the name of the
source table in the database:

Dim objDataSet As New DataSet()
objDataAdapter.Fill(objDataSet, "Books")

Filling the Schema in a DataSet
The Fill method of the DataAdapter object that was used here creates the table in the DataSet, and
then creates the appropriate columns and sets the data type and certain constraints such as the column

365

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 365

width (the number of characters). It doesn't automatically set the primary keys, unique constraints, read-
only values, and defaults. However, you can call the FillSchema method first (before you call Fill) to
copy these settings from the data source into the table:

objDataAdapter.FillSchema(objDataSet, SchemaType.Mapped)

After all this, you've now got a disconnected DataSet object that contains the results of the SQL query.
The next step is to display that data.

Displaying the Results
In this and many of the other examples, we're using an ASP DataGrid control to display the data in the
DataSet object. You saw how the DataGrid control works in Chapter 7:

<asp:datagrid id="dgrResult" runat="server" />

However, you can't simply bind the DataSet object directly to a DataGrid and have the correct rows
displayed, as a DataSet can contain multiple tables. One solution is to create a DataView based on the
table you want to display, and bind the DataView object to the DataGrid. You get the default DataView
object for a table by accessing the Tables collection of the DataSet and specifying the table name:

Dim objDataView As New DataView(objDataSet.Tables("Books"))

Then, assign the DataView to the DataSource property of the DataGrid, and call the DataBind
method to display the data:

dgrResult.DataSource = objDataView
dgrResult.DataBind()

However, it's actually better performance-wise, though not as clear when you read the code, to perform
the complete property assignment in one statement:

dgrResult.DataSource = objDataSet.Tables("Books").DefaultView

There is also a third option, as the ASP.NET Server Controls provide a DataMember property that defines
which table or other item in the data source will supply the data. So you could use:

dgrResult.DataSource = objDataSet
dgrResult.DataMember = "Books"

We use a mixture of techniques in our examples.

A Multiple Tables DataSet Example
Having seen how to use a DataSet to hold one results table, you'll now see how to add multiple tables to
a DataSet object. The Multiple tables DataSet object example using an OLEDB Provider (multiple-
dataset-oledb.aspx) example creates a DataSet object and fills it with three tables. It also creates
relationships between these tables.

366

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 366

As you can see in Figure 8-11, the page displays the connection string and the three SQL statements that
extract the data from three tables in the database. Following this are two DataGrid controls showing the
contents of the DataSet object's Tables collection and Relations collection. Further down the page
(not visible here) are two more DataGrid controls, which show the related data that is contained in the
Authors and Prices tables within the DataSet.

Figure 8-11

The Multiple Tables DataSet Example Code
While the principle for this example is similar to the previous Simple DataSet example, the way we've
coded it is subtly different. We've demonstrated another way of using the Command and DataAdapter
objects.

As before, first create a Connection object using your connection string, shown in the following code.
However, this time create a Command object next using the default constructor with no parameters, and
then set the properties of the Command object in a way similar to that used in traditional ADO.

Specify the connection string, the command type (in this case Text, as a SQL statement is being used),
and the SQL statement itself for the CommandText property. By doing it this way, you can change the
SQL statement later to get a different set of rows from the database without having to create a new
Command object.

'create a new Connection object using the connection string
Dim objConnect As New OleDbConnection(strConnect)
'create a new Command object
Dim objCommand As New OleDbCommand()

367

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 367

'set the properties
objCommand.Connection = objConnect
objCommand.CommandType = CommandType.Text
objCommand.CommandText = strSelectBooks

Once you have a Command object, you can use it within a DataAdapter. You need a DataAdapter to
extract the data from the database and squirt it into your DataSet object. After creating the
DataAdapter, assign the Command object to its SelectCommand property. This Command will then be
used when you call the Fill method to get the data:

So, you've got a valid DataAdapter object, and you can set about filling your DataSet. Call the Fill
method three times, once for each table you want to insert into it. In between, you have to change the
CommandText property of the active Command object to the appropriate SQL statement, as shown in the
following code:

'create a new DataAdapter object
Dim objDataAdapter As New OleDbDataAdapter()
'and assign the Command object to it
objDataAdapter.SelectCommand = objCommand

'get the data from the "BookList" table in the database and
'put it into a table named "Books" in the DataSet object
objDataAdapter.Fill(objDataSet, "Books")

'change the SELECT statement in the Command object
objCommand.CommandText = strSelectAuthors
'then get data from "BookAuthors" table into the DataSet
objDataAdapter.Fill(objDataSet, "Authors")

'and do the same again to get the "BookPrices" data
objCommand.CommandText = strSelectPrices
objDataAdapter.Fill(objDataSet, "Prices")

Opening and Closing Connections with the DataAdapter
In the examples that use a DataAdapter, we haven't explicitly opened or closed the connection. This is
because the DataAdapter looks after this automatically. If the connection is closed when the Fill
method is called, it is opened, the rows are extracted from the data source and pushed into the DataSet,
and the connection is automatically closed again.

However, if the connection is open when the Fill method is called, the DataAdapter will leave it open
after the method has completed. This provides you with a useful opportunity to maximize performance
by preventing the connection being opened and closed each time you call Fill (if you are loading more
than one table in the DataSet). Just open the connection explicitly before the first call, and close it again
after the last one, as shown by the highlighted lines in the following code:

Dim objDataSet As New DataSet()
objCommand.CommandText = strSelectBooks
objConnect.Open()
objDataAdapter.Fill(objDataSet, "Books")
objCommand.CommandText = strSelectAuthors
objDataAdapter.Fill(objDataSet, "Authors")

368

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 368

objCommand.CommandText = strSelectPrices
objDataAdapter.Fill(objDataSet, "Prices")
objConnect.Close()

Adding Relationships to the DataSet
You've got three tables in your DataSet, and can now create the relationships between them. Define a
variable to hold a DataRelation object and create a new DataRelation by specifying the name you
want for the relation (BookAuthors), the name of the primary key field (ISBN) in the parent table named
Books, and the name of the foreign key field (ISBN) in the Authors child table.

Then add the new relation to the DataSet object's Relations collection, and do the same to create the
relation between the Books and Prices tables in the DataSet. As the relations are added to the
DataSet, an integrity check is carried out automatically. If, for example, there is a child record that has
no matching parent record, an error is raised and the relation is not added to the DataSet.

'declare a variable to hold a DataRelation object
Dim objRelation As DataRelation

'create a Relation object to link Books and Authors
objRelation = New DataRelation("BookAuthors", _

objDataSet.Tables("Books").Columns("ISBN"), _
objDataSet.Tables("Authors").Columns("ISBN"))

'and add it to the DataSet object's Relations collection
objDataSet.Relations.Add(objRelation)

'now do the same to link Books and Prices
objRelation = New DataRelation("BookPrices", _

objDataSet.Tables("Books").Columns("ISBN"), _
objDataSet.Tables("Prices").Columns("ISBN"))

objDataSet.Relations.Add(objRelation)

Displaying the Results
Having filled the DataSet with three tables and two relations, you can now display the results. You use
five DataGrid controls to do this, as shown in the following code listing. The DataSet object's Tables
and Relations collections are bound directly to the first two DataGrid controls, and for the tables
within the DataSet, we assign the DataView returned by the DefaultView property of the tables to the
remaining three DataGrid controls.

'bind the collection of Tables to the first DataGrid on the page
dgrTables.DataSource = objDataSet.Tables
dgrTables.DataBind()

'bind the collection of Relations to the second DataGrid on the page
dgrRelations.DataSource = objDataSet.Relations
dgrRelations.DataBind()

'create a DataView object to use with the tables in the DataSet
Dim objDataView As New DataView()

'get the default view of the Books table into the DataView object
objDataView = objDataSet.Tables("Books").DefaultView

369

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 369

'and bind it to the third DataGrid on the page
dgrBooksData.DataSource = objDataView
dgrBooksData.DataBind()

'then do the same for the Authors table
objDataView = objDataSet.Tables("Authors").DefaultView
dgrAuthorsData.DataSource = objDataView
dgrAuthorsData.DataBind()

'and finally do the same for the Prices table
objDataView = objDataSet.Tables("Prices").DefaultView
dgrPricesData.DataSource = objDataView
dgrPricesData.DataBind()

A User Control That Returns a DataSet Object
The preceding code is used in several examples in this and subsequent chapters, and to make it easier
we've encapsulated it as a user control that returns a fully populated DataSet. Change the page's file
extension to .ascx and change the Page directive to a Control directive:

<%@Control Language="VB"%>

Then, instead of placing the code in the Page_Load event handler, place it in a Public Function to
which you provide the connection string and the WHERE clause for the SQL statement as parameters. The
function returns a DataSet object, as shown in the following code. Note that the parameters passed to
this function allow you to select a different set of books by varying the strWhere parameter value when
you use the control.

Public Function BooksDataSet(strConnect As String, _
strWhere As String) _
As DataSet

...
strSelectBooks = "SELECT * FROM BookList WHERE " & strWhere
strSelectAuthors = "SELECT * FROM BookAuthors WHERE " & strWhere
strSelectPrices = "SELECT * FROM BookPrices WHERE " & strWhere
Dim objDataSet As New DataSet()
...
... code to fill DataSet as before ...
...
Return objDataSet

End Function

The Using a control that creates and returns a DataSet object (use-dataset-control.aspx) example
page contains the Register directive and matching element to insert the user control containing the
function just described into the page. Then, to get a DataSet from the control, just create a variable of
the correct type and set it to the result of the BooksDataSet method – specifying the values for the
connection string and WHERE clause parameters when you make the call.

<%@ Register TagPrefix="wrox" TagName="getdataset"
Src="..\global\get-dataset-control.ascx" %>

...
<wrox:getdataset id="ctlDataSet" runat="server"/>
Dim objDataSet As DataSet
objDataSet = ctlDataSet.BooksDataSet(strConnect, "ISBN LIKE '0764544%'")

370

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 370

The investigation of the DataSet object will be continued in Chapters 9 and 10. You'll see how to use
more complex data sets, and update and edit data using the ADO.NET relational data access classes.
We'll also explore the ways that .NET combines the traditional relational database access techniques
with the more recent developments in XML-based data storage and management.

An Introduction to XML in .NET
The previous section described the features of .NET that are aimed at accessing relational data, and how
they relate to the way you work with data compared to the traditional techniques used in previous
versions of ADO. However, there is another technique for working with data within the .NET
Framework.

XML is fast becoming the lingua franca of the Web, and is being adopted within many other application
areas as well. We discussed the reasons for this earlier, and now look at how XML is supported within
.NET. This relates to the .NET support for relational data, as XML is the standard persistence format for
data within the .NET data access classes. However, there are also several other techniques for reading,
writing, and manipulating XML data and the associated XML-based data formats.

In this book, we're assuming that the reader is familiar with XML as a data storage mechanism, and how
it is used through an XML parser and with the associated technologies such as XSLT. Our aim is to show
the way that the .NET Framework and ASP.NET can be used with XML data.

For a primer and other reference materials covering XML and the associated standards and technologies,
check out the Wrox Press list of XML books at http://www.wrox.com/.

The Fundamental XML Objects
The W3C (at http://www.w3.org/) provides standards that define the structure and interfaces that should
be provided by applications used for accessing XML documents. This is referred to as the XML Document
Object Model (DOM), and is supported under .NET by the XmlDocument and XmlDataDocument objects,
as shown in Figure 8-12. They provide full support for the XML DOM Level 2 Core. Within their
implementation are the node types and objects that are required for the DOM interfaces, such as the
XmlElement and XmlAttribute objects:

Figure 8-12

371

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 371

However, .NET extends the support for XML to provide much more in the way of techniques for
manipulating XML documents, XML Schemas, and stylesheets. Figure 8-13 shows the main classes that
are used when working with XML documents within .NET applications, and how they are related by
showing the kinds of paths that you can follow when working with XML data:

Figure 8-13

Basically, the classes shown in Figure 8-13 fall into three categories:

❑ Reading, writing, and transforming XML: The XmlTextReader, XmlNodeReader, and
XmlTextWriter – plus the XslTransform object for creating files in a different format to the
original XML document.

❑ Storing and manipulating XML: The function of the XmlDocument, XmlDataDocument, and
XPathDocument objects.

❑ Querying XML: The function of XPathNavigator object.

There is some overlap between these functions, of course. To validate an XML document while reading
it, you can use an XmlValidatingReader, and there are other objects for creating and editing XML

372

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 372

Schemas that aren't covered in this book. You can also use the XslTransform object to perform querying
of a document as well as transforming it into different formats.

In this section, we'll briefly overview the objects and their commonly used methods, and then to show
some simple examples. We'll come back to XML again in Chapter 11 and see some more advanced
techniques.

The Document Objects
There are three implementations of the document object for storing and working with XML:

❑ The XmlDocument object is the .NET implementation of the standard DOM Level 2
XMLDocument interface. The properties and methods it exposes include those defined by W3C
for manipulating XML documents, plus some extensions to make common operations easier.

❑ The XmlDataDocument object is an extension of the XmlDocument object, providing the same
set of properties and methods. However, it also acts as a "bridge" between XML and relational
data access methods. Once loaded with an XML document, it can expose it as a DataSet object.
This allows you to use relational data programming techniques to work with the data, as well as
the same XML DOM techniques that are used with an XmlDocument object.

❑ The XPathDocument object is a fast and compact implementation of an XML storage object that
is designed for access via an XPathNavigator object, using only XPath queries or navigation
element-by-element using the "pull" technique.

The Commonly Used XML Document Methods

The XPathDocument object has no really useful public methods other than CreateNavigator, as it is
designed solely to work with an XPathNavigator object. However, the other two document objects
expose the full set of properties and methods specified in the W3C XML DOM Level 2 Core. The
extensions to these properties and methods include several very useful methods regularly used to work
with XML documents.

The following table shows the extensions for creating specific types of node, and accessing existing
nodes in the XmlDocument and XmlDataDocument objects:

Method Description

Createxxxxxx Creates a node in the XML document depending on the
actual method name. Examples are CreateElement,
CreateComment, and CreateTextNode.

CloneNode Creates a duplicate of an XML node (for example, a copy of
an element).

GetElementById Returns the single node with the specified value for its ID
attribute.

GetElementsByTagname Returns a collection of nodes that contains all the elements
with the specified element name.

373

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 373

The following table shows the series of useful methods that are available for loading and saving XML to
and from the XmlDocument and XmlDataDocument objects:

To use an XPathNavigator with any of the three types of XML document object, create it using the
CreateNavigator method as shown in the following table:

The XmlDataDocument adds a single property to those exposed by the XmlDocument class, as shown in
the following table:

The XmlDataDocument also adds methods that provide extra access to the contents of the document,
treating it more like a rowset or data table, as shown in the following table:

Property Description

DataSet Returns the contents of the XML document as an ADO.NET DataSet.

Method Description

CreateNavigator Creates and returns an XPathNavigator based on the currently
loaded document. Applies to all three document objects.
Optionally, for the XmlDocument and XmlDataDocument only,
accepts a parameter that is a reference to a node within the
document that will act as the start location for the navigator.

Method Description

Load Loads an XML document from a disk file, a Stream, or an
XmlTextReader

LoadXml Loads an XML document from a String

Save Saves the entire XML document to a disk file, a Stream, or an
XmlTextWriter

ReadNode Loads a node from an XML document that is referenced by an
XmlTextReader or XmlNodeReader

WriteTo Writes a node to another XML document that is referenced by an
XmlTextWriter

WriteContentTo Writes a node and all its descendents to another XML document
that is referenced by an XmlTextWriter

374

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 374

The XPathNavigator Class
In order to make working with XML documents easier, the System.Xml namespace classes include the
XPathNavigator, which can be used to navigate within an XML document or to query the content of
the document using an XPath expression. Note that an XPathNavigator can be used with any of the
XML document objects – not just an XPathDocument. You can create an XPathNavigator based on an
XmlDocument or an XmlDataDocument as well.

❑ The XPathNavigator provides methods and properties that allow cursor-style navigation
through the XML document; for example, by stepping through the nodes (elements and
attributes) in order, or by skipping to the next node of a specific type.

❑ The XPathNavigator provides methods that accept an XPath expression, the name of a node or
a node type, and return one or more matching nodes. You can then iterate through these nodes.

An XPathNavigator can only be created from an existing document object. This is done using the
CreateNavigator method:

Dim objNav1 As XPathNavigator = objXMLDoc.CreateNavigator()
Dim objNav2 As XPathNavigator = objXMLDataDoc.CreateNavigator()
Dim objNav3 As XPathNavigator = objXPathDoc.CreateNavigator()

The Commonly Used XPathNavigator Methods
The XPathNavigator is designed to act as a pull model interface for an XML document. It allows you to
navigate across a document, and select and access nodes within that document. You can also create two
(or more) navigator objects against the same document, and compare their positions.

To edit the XML document(s), you can use the reference to the current node exposed by the navigator, or
an XPathNodeIterator that contains a collection of nodes, and call the methods of that node or
collection. At the same time, the XPathNavigator exposes details about the current node directly, so
there are two ways to get information about each node.

The table that follows shows methods used to move around within the document, making different
nodes current in the navigator, and to create a new navigator:

Method Description

GetRowFromElement Returns a DataRow representing the element in the
document.

GetElementFromRow Returns an XmlElement representing a DataRow in a
table within a DataSet.

375

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 375

The following table shows the methods used to access and select parts of the content of the document:

The XmlTextWriter Class
When using an XmlDocument to create a new XML document, you must create document fragments and
insert them into the document in a specific way – a technique that can be error-prone and complex. The
XmlTextWriter can be used to create an XML document node by node in serial fashion by simply
writing the tags and content to the output stream using the comprehensive range of methods that it
provides.

❑ The XmlTextWriter takes as its source either a TextWriter that refers to a disk file, the path
and name of a disk file, or a Stream that will contain the new XML document. It exposes a

Method Description

GetAttribute Returns the value of a specified attribute from the current node
in the navigator

Select Returns an XPathNodeIterator (a NodeList) containing a
collection of nodes that match the specified XPath expression

SelectAncestors Returns an XPathNodeIterator (a NodeList) containing a
collection of all the ancestor nodes in the document of a specific
type or which have a specific name

SelectDescendants Returns an XPathNodeIterator (a NodeList) containing a
collection of all the descendant nodes in the document of a
specific type or which have a specific name

SelectChildren Returns an XPathNodeIterator (a NodeList) containing a
collection of all the child nodes in the document of a specific
type or which have a specific name

Method Description

MoveToxxxxxx Moves the current navigator position. Examples are MoveToFirst,
MoveToFirstChild, MoveToParent, MoveToAttribute, and
MoveToRoot.

Clone Creates a new XPathNavigator that is automatically located at the
same position in the document as the current navigator.

IsSamePosition Indicates if two navigators are at the same position within the
document.

376

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 376

series of properties and methods that can be used to create XML nodes and other content, and
output them to the disk file or stream directly.

❑ The XmlTextWriter can also be specified as the output device for methods in several other
objects, where it automatically streams the content to a disk file, a TextWriter, or a Stream.

The TextReader, TextWriter, and Stream classes are discussed in Chapter 16.

The Commonly Used XmlTextWriter Methods
The most commonly used methods of the XmlTextWriter are listed in the following table:

The XmlReader Classes
You need to be able to read documents from other sources, rather than creating them from scratch. The
XmlReader class is a base class from which two public classes, XmlTextReader and XmlNodeReader,
inherit.

❑ The XmlTextReader takes as its source either a TextReader that refers to an XML disk file, the
path and name of an XML disk file, or a Stream containing an XML document. The contents of
the document can be read one node at a time, and the object provides information about each
node and its value as it is read.

❑ The XmlNodeReader takes a reference to an XmlNode instance (usually from within an
XmlDocument) as its source, allowing you to read specific portions of an XML document rather
than having to read all of it, if you only want to access a specific node and its children.

Method Description

WriteStartDocument Starts a new document by writing the XML declaration to
the output.

WriteEndDocument Ends the document by closing all un-closed elements, and
flushing the content to disk.

WriteStartElement Writes an opening tag for the specified element. The
equivalent method for creating attributes is
WriteStartAttribute.

WriteEndElement Writes a closing tag for the current element. The equivalent
method for completing an attribute is WriteEndAttribute.

WriteElementString Writes a complete element (including opening and closing
tags) with the specified string as the value. The equivalent
method for writing a complete attribute is
WriteAttributeString.

Close Closes the stream or disk file and releases any references
held.

377

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 377

❑ The XmlTextReader and XmlNodeReader can be used standalone to provide simple and
efficient access to XML documents or as the source for another object whereby they
automatically read the document and pass it to the parent object.

Like the XPathNavigator, the XmlTextReader provides a pull model for accessing XML documents
node-by-node, rather than parsing them into a tree in memory as is done in an XML parser. This allows
larger documents to be accessed without impacting on memory usage, and can also make coding easier,
depending on the task you need to accomplish.

Furthermore, if you are just searching for a specific value, you won't always have to read the whole
document. Taking a broad average, you will reach the specific node you want after reading only half the
document. This is considerably faster and more efficient than reading and parsing the whole document
every time.

The Commonly Used XmlReader Methods
The XmlTextReader and the XmlNodeReader objects have almost identical sets of properties and
methods. The most commonly used methods are shown in the following table:

Method Description

Read Reads the next node into the reader object where it can be accessed.
Returns False if there are no more nodes to read.

ReadInnerXml Reads and returns the complete content of the current node as a string,
containing all the markup and text of the child nodes.

ReadOuterXml Reads and returns the markup of the current node and the complete
content as a string, containing all the markup and text of the child
nodes as well.

ReadString Returns the string value of the current node.

GetAttribute Returns the value of a specified attribute from the current node in the
reader.

GetRemainder Reads and returns the remaining XML in the source document as a
string. Useful if you are copying XML from one document to another.

MoveToxxxxxx Moves the current reader position. Examples are MoveToAttribute,
MoveToContent, and MoveToElement.

Skip Skips the current node in the reader and moves to the next one.

Close Closes the stream or disk file.

378

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 378

The XmlValidatingReader Class
There is another object based on the XmlReader base class – the XmlValidatingReader. You can think
of this as an XmlTextReader that does document validation against a schema or DTD. You can create an
XmlValidatingReader from an existing XmlReader (an XmlTextReader or XmlNodeReader), from a
Stream, or from a String that contains the XML to be validated.

Once the XmlValidatingReader is created, it can be used just like any other XmlReader. However, it
raises an event when a schema validation error occurs, allowing you to ensure that the XML document is
valid against one or more specific schemas.

The XslTransform Class
One common requirement when working with XML is the need to transform a document using XML
Stylesheet Language (XSL or XSLT). The .NET Framework classes provide the XslTransform object,
which is specially designed to perform either XSL or XSLT transformations.

The Commonly Used XslTransform Methods
The XslTransform class has two methods that are used for working with XML documents and
XSL/XSLT stylesheets, as shown in the following table:

Let's look at some of the common tasks that need to be carried out using XML documents.

Common XML Tasks in .NET
The default page for the samples contains a link Introduction to XML Data Access in .NET. The menu page
that this opens, shown in Figure 8-14, contains links to several examples of the basic .NET Framework
XML data access techniques.

The first two pairs of links show how to access XML data stored in a document object in two distinct
ways – using the methods and properties provided by the XML DOM, and through the new .NET
XPathNavigator class. The next pair of links demonstrates use of the XmlTextWriter and
XmlTextReader classes, and the final one shows a simple example of using the XslTransform class. We
look at all of these classes in Chapter 11.

Method Description

Load Loads the specified XSL stylesheet and any stylesheets referenced within
it by xsl:include elements

Transform Transforms the specified XML data using the currently loaded XSL or
XSLT stylesheet, and outputs the results

379

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 379

Figure 8-14

XML Document Access via the DOM
The .NET XML classes provide an XML parser object named XmlDocument that is W3C DOM-compliant.
This is the core object for most XML-based activities carried out in .NET. You can use it to access an XML
document using the same kind of code as you would with (say) the MSXML parser object. The first
example page, Accessing XML documents using the DOM (xml-via-dom.aspx), is shown in Figure 8-15:

Figure 8-15

380

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 380

This screenshot displays the results of recursively parsing a simple XML document using DOM
methods. As with all the examples in this chapter, you can use the [view source] link at the bottom of any
of the sample pages to see the entire code

The XML DOM Example Code
This example, like the earlier relational data access examples, uses code in the Page_Load event handler
to access the data and present the results within <div> elements located in the page. It first creates a
string containing the path to the XML document, which is located in the same folder as the ASP.NET
page, and then creates a new XmlDocument object and loads the XML file. The example contains some
elementary error-handling code that we've removed here for clarity.

Now you can display the contents of the XML document by calling a custom function that recursively
extracts details of each element. A function named GetChildNodes used here accepts a parameter an
XmlNodeList object containing the collection of the child nodes of the current node – in this case, all the
children of the document node.

An XML document has a single document node that has as its children the XML declaration node (such
as <?xml version="1.0"?>), the root node of the XML (in this case <BookList>) and any
comment nodes or processing instructions.

The function also accepts an integer that indicates the nesting level. This is used to create the indentation
of the output to show the structure more clearly. So, by calling this function initially with
objXMLDoc.ChildNodes and 0 as the parameters, we'll start the process with the XML declaration and
the root element of the document:

'create physical path to booklist.xml sample file (in same folder as ASPX page)
Dim strCurrentPath As String = Request.PhysicalPath
Dim strXMLPath As String = Left(strCurrentPath, InStrRev(strCurrentPath, "\")) _

& "booklist.xml"

'create a new XmlDocument object
Dim objXMLDoc As New XMLDocument()

'load the XML file into the XmlDocument object
objXMLDoc.Load(strXMLPath)
outDocURL.innerHTML = "Loaded file: " & strXMLPath & ""

The Custom GetChildNodes Function
The complete listing of the GetChildNodes function is shown in the following code. The techniques are
standard W3C DOM coding practice. The principle is to iterate through all the nodes in the current
NodeList, displaying information about each one. There are different properties available for different
types of node – check the NodeType first, and then access the appropriate properties.

Next, if it is an Element-type node, iterate through all the attributes adding information about these.
Finally, check if this node has any child nodes, and if so, iterate through these recursively calling the
same GetChildNodes function.

381

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 381

Function GetChildNodes(objNodeList As XMLNodeList, intLevel As Integer) _
As String

Dim strNodes As String = ""
Dim objNode As XmlNode
Dim objAttr As XmlAttribute

'iterate through all the child nodes for the current node
For Each objNode In objNodeList

'display information about this node
strNodes = strNodes & GetIndent(intLevel) _

& GetNodeType(objNode.NodeType) & ": " & objNode.Name

'if it is an XML Declaration node, display the 'special' properties
If objNode.NodeType = XMLNodeType.XmlDeclaration Then

'cast the XMLNode object to an XmlDeclaration object
Dim objXMLDec = CType(objNode, XmlDeclaration)
strNodes = strNodes & " version=" _

& objXMLDec.Version & " standalone=" _
& objXMLDec.Standalone & "
"

Else

'just display the generic 'value' property
strNodes = strNodes & " value=" _

& objNode.Value & "
"

End If

'if it is an Element node, iterate through the Attributes
'collection displaying information about each attribute
If objNode.NodeType = XMLNodeType.Element Then

'display the attribute information for each attribute
For Each objAttr In objNode.Attributes

strNodes = strNodes & GetIndent(intLevel + 1) _
& GetNodeType(objAttr.NodeType) & ": " _
& objAttr.Name & " value=" _
& objAttr.Value & "
"

Next

End If

'if this node has child nodes, call the same function recursively
'to display the information for it and each of its child node

If objNode.HasChildNodes Then
strNodes = strNodes & GetChildNodes(objNode.childNodes, intLevel + 1)
End If

Next 'go to next node

Return strNodes 'pass the result back to the caller
End Function

382

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 382

There are a couple of other minor functions that the preceding code uses. The GetIndent function
simply takes an integer representing the current indent level and returns a string containing a suitable
number of non-breaking space characters. The GetNodeType function looks up the numeric
node type value returned from the NodeType property of each node, and returns a text description of the
node type. Remember that you can view the code for these functions in the sample page using the [view
source] link at the bottom of the page.

XML Document Access with an XPathNavigator
The second example, shown in Figure 8-16, demonstrates how you can achieve the same results as the
previous example, by using the XPathNavigator object. The Accessing XML documents using an
XPathNavigator (xml-via-navigator.aspx) sample page produces output that is fundamentally
similar to the previous example. Notice, however, that now you get the complete content of all the child
elements for the value of an element (all the #text child nodes of all the children concatenated
together):

Figure 8-16

The XPathNavigator Example Code
As in the previous example, start out by locating and loading the XML document into an XmlDocument
object (see the code that follows). If there is no error, you know that the document is well formed and

383

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 383

loaded successfully. However, here the code differs considerably – you create an XPathNavigator
object based on the XmlDocument object (shown highlighted in the code).

To display the output, first move the current position (pointer) of the XPathNavigator to the document
itself. Then you can call a custom recursive function named GetXMLDocFragment that iterates through
all the nodes in the document and inserts the result into your <div> element elsewhere in the page. Note
that this time you are calling your custom function with the new XPathNavigator object as the first
parameter (the second is the same indent level parameter as used in the previous example):

'create physical path to booklist.xml sample file (in same folder as ASPX page)
Dim strCurrentPath As String = Request.PhysicalPath
Dim strXMLPath As String = Left(strCurrentPath, _

InStrRev(strCurrentPath, "\")) & "booklist.xml"

'create a new XmlDocument object and load the XML file
Dim objXMLDoc As New XmlDocument
objXMLDoc.Load(strXMLPath)
outDocURL.innerHTML = "Loaded file: " & strXMLPath & ""
'now ready to parse the XML document
'it must be well-formed to have loaded without error
'create a new XPathNavigator object using the XMLDocument object
Dim objXPNav As XPathNavigator = objXMLDoc.CreateNavigator()

'move the current position to the root #document node
objXPNav.MoveToRoot()

'call a recursive function to iterate through all the nodes in the
'XPathNavigator, creating a string that is placed in the <div> above
outResults.innerHTML = GetXMLDocFragment(objXPNav, 0)

The Custom GetXMLDocFragment Function
The XPathNavigator object exposes a series of properties, methods, and collections that make it easy to
navigate an XML document. We use a range of these in our custom function, shown in the following
code. The first step, after declaring a couple of necessary local variables, is to get the information about
the current node. Notice that you use the same GetNodeType function as in the previous example to
convert the numeric NodeType value into a text description of the node type.

Function GetXMLDocFragment(objXPNav As XPathNavigator, intLevel As Integer) _
As String

Dim strNodes As String = ""
Dim intLoop As Integer

'display information about this node
strNodes = strNodes & GetIndent(intLevel) _

& GetNodeType(objXPNav.NodeType) & ": " & objXPNav.Name _
& " value=" & objXPNav.Value & "
"

In the previous XML DOM example, you extracted the value of the node through the XmlNode object's
Value property, which returned just the value of this node. In this example, the content of the XML
document is being accessed through an XPathNavigator, and not by using the XML DOM methods.
For example, to get the value of the node, we are using the Value property of our objXPNav object – an

384

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 384

XPathNavigator that is currently pointing to the node being queried. The Value property of a node
returned by an XPathNavigator is a concatenation of all the child node values.

Reading the Attributes of a Node

Now you can check if this node has any attributes. If it does, iterate through them collecting information
about each one. You can see in the following code how this is different from using the DOM methods,
where you could iterate through the Attributes collection. Using an XPathNavigator is
predominantly a forward-only pull technique. You need to extract the nodes from the document in the
order that they appear. So, for a node that does have attributes, we move to the first attribute, process it,
move to the next attribute until there are no more to process, and then move back to the previous
position using the MoveToParent method:

'see if this node has any Attributes
If objXPNav.HasAttributes Then

'move to the first attribute
objXPNav.MoveToFirstAttribute()
Do
'display the information about it
strNodes = strNodes & GetIndent(intLevel + 1) _

& GetNodeType(objXPNav.NodeType) & ": " & objXPNav.Name _
& " value=" & objXPNav.Value & "
"

Loop While objXPNav.MoveToNextAttribute()

'then move back to the parent node (that is the element itself)
objXPNav.MoveToParent()

End If

Reading the Child Nodes for a Node

You can see if the current node has any child nodes by checking the HasChildren property. If it does,
you need to move to the first child node and recursively call the function for that node – incrementing
the level parameter to get the correct indenting of the results. Then you can move back to the previous
position (the parent) and continue, as shown:

'see if this node has any child nodes
If objXPNav.HasChildren Then

'move to the first child node of the current node
objXPNav.MoveToFirstChild()
Do
'recursively call this function to display the child node fragment
strNodes = strNodes & GetXMLDocFragment(objXPNav, intLevel + 1)

Loop While objXPNav.MoveToNext()

'move back to the parent node - the node we started from when we
'moved to the first child node - could have used Push and Pop instead
objXPNav.MoveToParent()

End If

385

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 385

Reading the Sibling Nodes for a Node

So far you've only processed the current node, its attributes, and its child nodes (if any). You need to
repeat the process for all the following sibling (element) nodes as well. This is achieved using the
MoveToNext method, and by calling the recursive function again for each one, as shown:

Do While objXPNav.MoveToNext()

'recursively call this function to display this sibling node
'and its attributes and child nodes
strNodes = strNodes & GetXMLDocFragment(objXPNav, intLevel)

Loop

Return strNodes 'pass the result back to the caller

End Function

Searching an XML Document
The second pair of links in the menu page opens two examples that search for specific element values
within an XML document, rather than displaying the entire document. The two examples are Searching
an XML document using the DOM (search-dom.aspx) and Searching an XML document with an
XPathNavigator (search-navigator.aspx). The task is to retrieve the values of all the <AuthorName>
elements within the document. You can run these samples to see the results. Figure 8-17 shows the XML
DOM version:

Figure 8-17

Using the DOM Methods
Using the DOM methods, you can take advantage of the very useful GetElementsByTagname method
that the XmlDocument object exposes. This method can be used to create a collection of matching
elements as an XmlNodeList, as shown in the following code, and then iterate through the collection
displaying the values of the #text child node for each one.

386

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 386

Dim strResults As String = "List of authors:
"

'create a NodeList collection of all matching child nodes
Dim colElements As XmlNodeList
colElements = objXMLDoc.GetElementsByTagname("AuthorName")

'iterate through collection getting values of child #text nodes for each one
For Each objNode In colElements
strResults += objNode.FirstChild().Value & "
"

Next
'then display the result
outResults.innerHTML = strResults

Remember that an element's value is stored in a #text-type child node of the element node – it's not
the value of the element node itself. You can clearly see this in the previous examples that displayed all
the nodes in the document.

Using an XPathNavigator
You've already seen how to create an XPathNavigator for an XmlDocument and use it to traverse the
document. The XPathNavigator also provides the Select method, which takes an XPath expression
and selects all matching nodes or fragments within the document. You can then traverse the set of
selected nodes and extract the values you want.

You can also improve performance by using the lighter and faster XPathDocument object to hold your
XML document rather than the W3C-compliant XmlDocument object.

Creating an XPathDocument and XPathNavigator Object

The following code in the Page_Load event handler first creates an XPathDocument instance and loads
the XML document into it. However, in this case, you must use the constructor for the XPathDocument
to load the XML, because there is no Load method for this class. While you can create an
XPathDocument from a Stream, a TextReader or an XmlReader, the easiest way when you have an
XML disk file is to specify the path and name of that file. The code then creates an XPathNavigator
object for this document.

'declare a variable to hold an XPathDocument instance
Dim objXPathDoc As XPathDocument

'create XPathDocument object and load the XML file
objXPathDoc = New XPathDocument(strXMLPath)

'create an XPathNavigator based on this document
Dim objXPNav As XPathNavigator = objXPathDoc.CreateNavigator()

Selecting the Nodes and Displaying the Results

Now you can execute the Select method of the XPathNavigator with an appropriate XPath
expression. The result will be an XPathNodeIterator object that contains the matching node(s). Then,
as shown in the following code, it's simply a matter of iterating through the selected nodes collecting
their values. Each node in the XPathNodeIterator is itself an XPathNavigator based on this node

387

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 387

within the document. This new XPathNavigator has Name and Value properties that reflect the values
for the current node.

Dim strResults As String = "List of authors:
"
'select all AuthorName nodes into XPathNodeIterator object
'using an appropriate XPath expression

Dim objXPIter As XPathNodeIterator
objXPIter = objXPNav.Select("descendant::AuthorName")

Do While objXPIter.MoveNext()
'get the value and add to the 'results' string
strResults += objXPIter.Current.Value & "
"

Loop

outResults.innerHTML = strResults 'display the result

You need to consider the task you want to achieve quite carefully when deciding whether to use an
XPathNavigator object or the XML DOM methods. Of course, as you can create an XPathNavigator
based on an existing XmlDocument object (as well as on an XPathDocument), you can use both where
this is appropriate. Also remember to choose the lighter and faster XPathDocument if you don't need to
access the XML DOM (in other words when you can perform all the tasks you require using an
XPathNavigator).

An XML TextWriter Object Example
The Creating an XML document with an XMLTextWriter object (xml-via-textwriter.aspx) example
demonstrates how to use the XmlTextWriter object to quickly create a new XML document as a disk
file. It writes to the file a series of elements and attributes that make up the document, and then reads
the document back from disk and displays it, as shown in Figure 8-18:

Figure 8-18

388

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 388

The XMLTextWriter Example Code
To create the new XML document, first create a suitable path and filename so that the new file will be
placed in the same folder as the ASP page, as shown in the following code. Then create the
XmlTextWriter object instance. Specify the path to the new file as the first parameter to the constructor,
and Nothing (null in C#)for the second. The second parameter is the encoding required for the file,
defined as an Encoding object. If you set this parameter to Nothing, the default encoding UTF-8 is
used.

Next, set the properties of the XmlTextWriter. In the example, we want the document to be indented
(to show the structure more clearly), with each level of indent being three space characters. Then we're
ready to start writing the new document. The WriteStartDocument method creates the opening XML
declaration, and this is followed with a comment indicating the date and time that the document was
created:

'create physical path for the new file (in same folder as ASPX page)
Dim strCurrentPath As String = Request.PhysicalPath
Dim strXMLPath As String = Left(strCurrentPath, InStrRev(strCurrentPath, "\")) _

& "newbooklist.xml"

'declare a variable to hold an XmlTextWriter object
Dim objXMLWriter As XmlTextWriter

'create a new objXMLWriter object for the XML file
objXMLWriter = New XmlTextWriter(strXMLPath, Nothing)
outDocURL.innerHTML = "Writing to file: " & strXMLPath & ""

'now ready to write (or "push") the nodes for the new XML document
'turn on indented formatting and set indent to 3 chararcters
objXMLWriter.Formatting = Formatting.Indented
objXMLWriter.Indentation = 3

'start the document with the XML declaration tag
objXMLWriter.WriteStartDocument()

'write a comment element including the current date/time
objXMLWriter.WriteComment("Created using an XMLTextWriter - " & Now())

Writing Elements and Attributes
The next step is to write the opening tag of the <BookList> root element. The WriteStartElement
does this for you; follow it with the opening <Book> element tag, as shown in the following code. We
also want to add two attributes to the <Book> element. For these, use the WriteAttributeString
method to create an attribute from a text string. Where the value for the attribute is a numeric (or other
non-String) data type, you must convert it to a string first:

objXMLWriter.WriteStartElement("BookList")
objXMLWriter.WriteStartElement("Book")

'add two attributes to this element's opening tag
objXMLWriter.WriteAttributeString("Category", "Technology")
Dim intPageCount As Integer = 1248 'numeric value to convert
objXMLWriter.WriteAttributeString("Pagecount", intPageCount.ToString("G"))

389

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 389

The next step is to write the four elements that form the content of the <Book> element that's already
opened. Use the WriteElementString method, which writes a complete element (not just the opening
tag like the WriteStartElement method we used earlier does). Note that the actual content of the
element in the final document is always text (XML documents are plain text). Therefore, you have to
convert non-String type values to a string first, as shown:

'write four elements, using different source data types

objXMLWriter.WriteElementString("Title", _
"Professional Video Recorder Programming")

Dim datReleaseDate As DateTime = #02/02/2002#
objXMLWriter.WriteElementString("ReleaseDate", _

datReleaseDate.ToString("yyyy-MM-dd"))
Dim intSales As Integer = 17492
objXMLWriter.WriteElementString("Sales", intSales.ToString("G"))
Dim blnHardback As Boolean = True
objXMLWriter.WriteElementString("Hardback", blnHardback.ToString())

Next, as shown in the following code, we want to write the <AuthorList> element and its child
<Author> elements. You need to open the <AuthorList> element and then write the child elements.
Afterwards, you can create the closing </AuthorList> tag simply by calling the WriteEndElement
method. This automatically closes the most recently opened element.

'write the opening tag for the <AuthorList> child element
objXMLWriter.WriteStartElement("AuthorList")

'add two <Author> elements
objXMLWriter.WriteElementString("Author", "Francesca Unix")
objXMLWriter.WriteElementString("Author", "William Soft")

'close the <AuthorList> element
objXMLWriter.WriteEndElement()

To finish the document, just close the <Book> element and the root <BookList> element. Then flush the
output to the disk file and close the XmlTextWriter, as shown in the following code. Always remember
to call the Close method; otherwise the disk file will remain locked. You don't actually have to call the
Flush method here, as closing the XmlTextWriter has the same effect, but you can call Flush to force
the part-formed document to be written to disk whenever you wish:

'close the <Book> element
objXMLWriter.WriteEndElement()

'close the root <BookList> element
objXMLWriter.WriteEndElement()
objXMLWriter.Flush()
objXMLWriter.Close()

Displaying the New XML Document
Now that you've got your new XML document written to a disk file, you can read it back and display it.
To do this, use a StreamReader object, as shown in the following code. Open the file, read the entire
content into a string variable, and close the file. Then you can insert the string into a <div> element

390

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 390

elsewhere on the page to display it. Add <pre> elements (you could use <xmp> instead) to maintain the
indentation and line breaks in the document when displayed in the browser.

Dim strXMLResult As String
Dim objSR As StreamReader = File.OpenText(strXMLPath)
strXMLResult = objSR.ReadToEnd()
objSR.Close
objSR = Nothing
outResults.innerHTML = "<pre>" & Server.HtmlEncode(strXMLResult) & "</pre>"

An XML TextReader Object Example
OK, so you can create an XML document as a disk file with an XmlTextWriter. The obvious next step is
to read a disk file back using an XmlTextReader object. The Accessing an XML document with an
XMLTextReader object (xml-via-textreader.aspx) example does just that (though with a different
XML document).

Figure 8-19 shows a list of the nodes found in the sample booklist.xml document. For each node, the
page shows the type of node, and the node name and value (if applicable – some types of node have no
name and some types have no value):

Figure 8-19

391

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 391

The XMLTextReader Example Code
As in the previous example, the first step is to build the path to the file that'll be opened – in this case,
booklist.xml in the same folder as the ASP page. Next, as shown in the following code, you can
declare an XmlTextReader object, passing the path to the file that you want to open as the parameter to
the constructor.

Reading the XML document is just a matter of calling the Read method to return each node. This returns
False if there are no more nodes to read. For each node you find, examine the NodeType property to see
what kind of node it is. Depending on the node type, there are different properties available that you can
access to build your results string.

'create physical path to booklist.xml sample file (in same folder as ASPX page)
Dim strCurrentPath As String = Request.PhysicalPath
Dim strXMLPath As String = Left(strCurrentPath, InStrRev(strCurrentPath, "\")) _

& "booklist.xml"

'declare a variable to hold an XmlTextReader object
Dim objXMLReader As XmlTextReader

'create a new XmlTextReader object for the XML file
objXMLReader = New XmlTextReader(strXMLPath)
outDocURL.innerHTML = "Opened file: " & strXMLPath & ""

'now ready to read (or "pull") the nodes of the XML document
Dim strNodeResult As String = ""
Dim objNodeType As XmlNodeType

'read each node in turn - returns False if no more nodes to read
Do While objXMLReader.Read()

'select on the type of the node (these are only some of the types)
objNodeType = objXMLReader.NodeType

Select Case objNodeType

Case XmlNodeType.XmlDeclaration:
'get the name and value
strNodeResult += "XML Declaration: " & objXMLReader.Name _

& " " & objXMLReader.Value & "
"

Case XmlNodeType.Element:
'just get the name, any value will be in next (#text) node
strNodeResult += "Element: " & objXMLReader.Name & "
"

Case XmlNodeType.Text:
'just display the value, node name is "#text" in this case
strNodeResult += " - Value: " & objXMLReader.Value _

& "
"

End Select

The XmlTextReader returns the document node-by-node when you call the Read method. However, an
element-type node that has attributes is returned as a complete entity during a single Read method call,

392

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 392

and so you have to examine each node as you read it to see if it is an element that has attributes. If it
does, as shown in the following code, iterate through these by using the MoveToFirstAttribute or the
MoveToNextAttribute methods. After processing the current node, you go back and handle the next
one. And after the Do loop is complete (in other words, after you've processed all the nodes returned by
successive Read method calls), close the XmlTextReader object and display the results in a <div>
element elsewhere in the page:

'see if this node has any attributes
If objXMLReader.AttributeCount > 0 Then
'iterate through the attributes by moving to the next one
'could use MoveToFirstAttribute but MoveToNextAttribute does
'the same when the current node is an element-type node
Do While objXMLReader.MoveToNextAttribute()

'get the attribute name and value
strNodeResult += "- Attribute: " & objXMLReader.Name _

& " Value: " & objXMLReader.Value & "
"
Loop

End If

Loop 'and read the next node
objXMLReader.Close() 'finished with the reader so close it
outResults.innerHTML = strNodeResult 'display the results in the page

An XSL Transform Object Example
The final example in this chapter shows one other task that is regularly required when working with
XML data, and which .NET makes easy. You can use XML stylesheets written in XSL or XSLT to
transform an XML document into another format, or to change its structure or content.

The Transforming an XML document using the XSLTransform object (xsl-transform.aspx) example page
demonstrates a simple transformation using the booklist.xml file from the previous example and an
XSLT stylesheet named booklist.xsl. The result of the transformation is written to disk as
booklist.html. As shown in Figure 8-20, you can use the links in the page to open the XML document,
the stylesheet, and the final HTML page:

Figure 8-20

You must run this page in a browser running on the same machine as the web server to be able to open
the linked files using the absolute physical paths.

393

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 393

The XSLTransform Example Code
There is surprisingly little code required to perform the transformation (you can view the code in the
example using the [view source] link at the bottom of the page). First, create an XslTransform object and
load the XSL stylesheet into it from disk. Then you can perform the transformation directly using the
XSL file in the XslTransform object and the XML file path held in a variable named strXMLPath, as
shown in the following code:

'create a new XslTransform object
Dim objTransform As New XslTransform()

'load the XSL stylesheet into the XslTransform object
objTransform.Load(strXSLPath)

'perform the transformation
objTransform.Transform(strXMLPath, strHTMLPath)

The result is sent to the disk file specified by the variable named strHTMLPath. Figure 8-21 shows the
resulting HTML page:

Figure 8-21

This is just one way to use the XslTransform object (in fact, the simplest way) and you'll see a more
complex example at the end of Chapter 11, where XML data management techniques are discussed.

This section was a basic introduction to working with XML in the .NET environment. The next two
chapters look at relational data management, but we'll see how the relational and XML data models are
quite thoroughly integrated under .NET. Then, in Chapter 11, we'll come back to XML and look in more
depth at some of the other techniques that .NET provides to make even the most complex tasks much
easier that ever before. Let's try to make some sense of the whole relational versus XML issue.

394

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 394

Choosing a Data Storage Methodology
Having seen both relational and XML data access in action within the .NET Framework (albeit in a fairly
basic way), how do you decide on a data storage methodology? The simple answer is that, with the
advent of .NET, you really don't need to worry about this anymore.

Years ago, one of the main directions in data storage and access was the construction of huge data
depositaries or data warehouses where all the data your organization required was stored in a massive
central database. While this might still suit some situations (such as a government tax office) it has
become clear that it is not a generally practical approach in today's distributed and disconnected
computing world.

In fact, there has been even less centralization of data over recent years, and the drive now is far more
towards the provision of access through common methods to all kinds of remote and non-centralized
data. As an example, the Internet contains vast quantities of data in myriad different formats, but we
increasingly need to be able to get at this data in a structured and standard way.

Likewise, in an office environment, the promised takeover of thin client computing has not really taken
place yet. People like to store information locally as they work, and use it when disconnected from the
corporate network. In some cases, such as the traveling salesperson with a laptop computer, this is the
prime requirement when working with corporate data.

Access and Manipulation Is the Key
In fact, it's obvious that where and (to some extent) how we store data is not important. The crux of the
matter is how we can access and manipulate that data – in whatever format it's stored and wherever it
resides. As you saw at the start of this chapter, this is what has been the driving force behind the
adoption of XML, and the design of the .NET data access libraries.

So, what issues should one consider when implementing a data store, and which data access technique
is most appropriate for that data? The answer lies more in the nature of the data, and the way we need to
use it. For example, highly structured data, such as stock lists or customer details, is well suited to
storage in a relational database such as SQL Server or Oracle, or MS Access on the desktop. However,
unstructured data, such as reports, data sheets, email messages, family trees, and other common
everyday scenarios, is more suited to storage using the tree-like metaphor of XML.

Likewise, if we regularly need to access parts of the data in specific ways, or all the data on a very
regular basis, the relational database is probably the most efficient. It is optimized to provide indexing
and other features to give the best performance. But if we usually access the entire data entity in one go,
or access it only rarely, an XML-based approach is probably the best choice. And, being basically just text
files, XML documents are easy to archive and retrieve.

Of course, in some cases, you don't actually get to choose the data storage format. For example, your
email server and your fax server probably have dedicated storage mechanisms that can't be changed. In
such cases, you have to make do with what's there, or change to another product.

395

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 395

A New Approach to Querying
Another point to be aware of is that you should not base your data format decision on current querying
technologies. One of the major issues at the moment is that each data storage format has its own specific
techniques for querying and extracting data; for example, SQL for relational data and XSLT for XML
data. If you want to perform a query across different types of data, you generally have to convert the all
to the same type first.

However, this is set to change with the growing realization that a new querying technology, called XML
Query Language or XQuery, will be able to integrate different types of data under a universal query
mechanism. XQuery has been called SQL querying for XML data because it uses a syntax that is similar to
the widely accepted SQL standards, and yet can be applied to XML documents.

And as relational data stores such as SQL Server become increasingly XML-capable, and the tools to
access and manage XML data inside a relational database improve, XQuery can also be used with
suitable relational databases. In future releases of .NET, this scenario will become a core part of the way
you query data in mixed environments.

There is a preview of the way Microsoft are approaching XQuery, at least as far as working with XML is
concerned, on the special Web site they have set up at http://xqueryservices.com. You can experiment with
XQuery online, or download the Microsoft XQuery demo to run on your server.

Transport Protocols Are the Future
Once you've decided on the storage mechanism for your data, the next important decision comes when
you consider how you will transport this data from one place to another. Here, there is probably only
one good solution that matches the requirements of the future. There's no doubt that we'll face
increasing needs to interface with other systems and other organizations as time goes by, and for this, a
standard data interchange format will be an absolute necessity.

The only obvious choice today is XML (and the associated standards such as SOAP and other industry-
specific implementations of XML). XML is independent of the platform, application, and operating
system, and so it provides the best chance for interoperability.

In fact, Microsoft BizTalk Server and similar systems can handle the transmission and guaranteed
delivery of data in XML format over almost any kind of network, as well as the conversion to and from
other formats. Using the tools available today and in the near future, you can transform an XML
document into almost any other document type on demand – and often transform any non-XML
document or data into XML as well.

And .NET Is a Great Solution
So, if the transport protocol and transmission format for data are going to be XML-based, and the data
storage and manipulation could be through any existing or new technology, what you really need is a
solid, reliable, and wide-ranging technique to connect to any kind of data store, and work with any kind
of data.

This is where the combination of the relational and XML data access techniques provided by the .NET
Framework comes in. As you've seen (and will see), you can use the .NET data access classes to connect

396

Chapter 8

58900_ch08.qxp 19/02/2004 2:49 PM Page 396

to almost any kind of data store – be it a mail server, a relational database, an office application
document, an XML document, or whatever. Then, once you have extracted data, you can convert it
between XML and traditional relational rowsets at will – and update the data store or save it to disk in
almost any format you need.

Summary
In this chapter, we've started to explore the possibilities for working with data within the .NET
Framework, based on ASP.NET, the .NET data access classes, and the extended XML technologies that
they provide. We overviewed the two main topic areas, relational and XML data access, then examined
in more depth the core objects that are provided within these topic areas.

One of the problems with learning to use the new techniques is the complexity that can arise from the
huge number of properties, methods, and events that these new objects expose. Many are rarely used,
and so we've tried to make it easier by just concentrating on the commonly used techniques rather than
trying to document each one in minute detail.

An excellent reference to all the properties, methods, and events of all the .NET Framework objects is
included within the SDK that is provided with the framework. Simply open the Class Library within the
Reference section, or search for the object or class name using the Index or Search feature of the SDK.

What you should have gained by now is an understanding of the core objects and the basic techniques
we use when working with them. We'll continue this in the next three chapters as well.

The next chapter looks specifically at relational data access within .NET, and how to use more advanced
techniques – in particular working with relational data sets and tables, editing them, and displaying the
data they contain.

397

Introducing .NET Data Management

58900_ch08.qxp 19/02/2004 2:49 PM Page 397

58900_ch08.qxp 19/02/2004 2:49 PM Page 398

