
Creating a Database
for an Application

An application is more than just a database. Anybody with Access can create a database, but a
database with a bunch of disconnected tables, queries, forms, and reports is not an application. An
application consists of a database—or possibly several databases—containing normalized tables
with appropriate relationships between them; queries that filter and sort data; forms to add and
edit data; reports to display the data; and possibly PivotTables or PivotCharts to analyze the data,
with all of these components connected into an efficiently functioning and coherent whole by
Visual Basic for Applications (VBA) code. This chapter covers preparation for creating an application
(getting and analyzing the information you need from the client), and creating tables to hold the
application’s data.

Most Access books give you lots of information about Access database tables (and other database
objects), but don’t necessarily tell you the stuff you really need to know: how to divide up the raw
data you receive from a client into separate tables, how to decide what field type to use for each
field in a table, and what relationships to set up between tables to create an efficient and well-
integrated application. Through a series of developer-client Q&A sessions, I’ll show you how to
extract the information you need to create the right tables for your application and link them into
appropriate relationships.

I have always found it easier to understand a process by watching somebody do it, as opposed to
reading abstract technical information about it, so in this chapter, I will explain what I am doing as
I walk you through the preparation for creating an application and then the creation of its tables.
Succeeding chapters will deal with creating the application’s forms, queries, and reports. Some
technical information is necessary, of course, but it will be interspersed with demonstrations of
what you need to do, and the explanations will tend to follow the actions, rather than precede
them. Sometimes, if you can see how something is done correctly, that is all you need to know in
order to do it right yourself, while an abstract technical explanation by itself is rarely adequate to
teach you how to do something correctly.

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 3

There won’t be lots of step-by-step walk-throughs illustrating how to create database objects in this
book, or long lists of properties and other attributes. I am assuming that you already know how to create
tables, forms, and other database objects (and if you need detailed information, you know how to get it
from Help), and that instead, what you need is help in making decisions on what kind of data goes into
which table, how the tables should be related, and what types of forms, queries, and reports are best for
working with the data in your application.

Although code is crucial to binding an application into a coherent whole, there won’t be any code in this
chapter, because in Access, code runs from event procedures, and tables don’t have event procedures.
Before writing event procedures, we need to create tables to hold the data, and that is what this chapter
covers.

Gathering Data
To start creating an Access application, you need two things: a clear idea of what tasks the application
should perform and the output it should produce, and an adequate quantity of realistic data. Rather
than just asking the client for a list of the tasks the application needs to perform, I usually ask a series of
questions designed to elicit the required information. A typical Q&A session is presented in the next sec-
tion of this chapter. However, if there is already a functioning database, printouts of its reports and
screen shots of its forms can be helpful as an indication of what tasks are currently being done.

For best results, there is no substitute for large quantities of real data, such as the ebook data in the sam-
ple EBook Companion database used in Chapter 9, Reworking an Existing Application. But if you have a
reasonable quantity of representative data and a client who is willing to answer your questions, that
should be sufficient to set up tables with the correct fields. With this information, you can create tables
with the necessary fields; set up relationships between them; and proceed to create the queries, forms,
reports, and VBA code that will let you create an application that does what the client wants.

Curiously, I’m often asked to start working on an application for a client without any data at all. It may
be difficult to convey this concept to a client, but it is important to get real-life data (either in electronic
or paper form) in order to set up tables and fields correctly. If you (the developer) have to create dummy
data to have something to work with when creating tables and other database objects, you will probably
end up having to make changes—possibly major changes—to tables later on, and find that further
changes are needed to other database components; so, it really helps to have a substantial amount of rep-
resentative data to work with.

However, realistically there are cases where you won’t be able to get data from the client. There are two
cases where data isn’t available: a brand-new business (or other enterprise) that doesn’t have any data yet,
and a business whose data is confidential. In these cases, you just have to do the best you can, creating
dummy data after questioning the client about what data needs to be stored in the application’s tables.

Once you have obtained the data in electronic or paper form, it’s best to just use it as raw material to help
you determine what fields you need when designing tables and other components, rather than as ready-
made components to plug into your application. Looking at real data, you can see (for example) whether
or not there are unique IDs for products. If there is a unique Product ID, that field should be the key field
of the Products table; otherwise, you will need to create an AutoNumber field. If you see multiple
addresses for customers or clients, you will need to create linked tables for address data, for purposes of
normalization; if there is only one address per customer or client, address data can be stored directly in
the Customers or Clients table. In most cases, even if you are given a database with Access tables, you will

4

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 4

need to make some modifications for purposes of normalization, and create a number of supporting
tables as well as lookup tables to use as the row sources of comboboxes used to select values or records.

Figuring Out Business Tasks and Objects
When designing an application for a client, after obtaining a reasonable quantity of representative data,
you need to discuss the processes to be modeled in the application—not just how they are done cur-
rently, but how they could be done better and more efficiently. For example, users may have been typing
data into textboxes; if the data is limited in nature (for example, sales regions or phone number types) a
combobox with a lookup table as its row source will ensure that users don’t mistype an entry, which
would cause problems when sorting or filtering data later on.

A client may give you piles of paper documentation, or descriptions of business processes, which again
may or may not be helpful, depending on how well thought out these processes are. Often, real-world
business practices develop bit by bit over the years, with new procedures not being integrated with
older processes as well as they might be. When designing an application, it’s a good idea to review the
existing procedures and consider whether they should be streamlined for greater efficiency when setting
up the database.

Don’t just attempt to duplicate existing business processes in your database—at least not without exam-
ining them closely. Upon examination, you will often find that there are serious gaps in procedures that
need to be remedied in the database. Just because users have been manually typing customer letters in
Word and typing the customer address off the screen from a database record doesn’t mean that you
shouldn’t generate Word letters automatically. (See Chapter 11, Working with Word, for information about
generating Word letters from an Access database.)

You may also see that your application could do some tasks that aren’t being done at all, but that would
be very useful, such as generating email to clients, or analyzing data in PivotTables or PivotCharts. See
Chapter 12, Working with Outlook, for information on sending email messages from Access. But the appli-
cation first needs tables to store data, so the initial task is to set up the database’s tables.

Determining Your Entities
The first task in setting up a database is determining what things it works with and how they work with
each other. (The technical term often used in database literature is entity, but as far as I am concerned,
thing works just as well.) If you are developing an application for a client, there may be an existing
database. Depending on the skills of the person who created the database, this may be more of a prob-
lem than a helpful first step.

As an example of how to figure out the things your application needs to work with, following is a hypo-
thetical example of a client who wants an application to manage his business, called the Toy Workshop.
Let’s start by asking the client some basic questions:

Q: What does the business do?

A: We sell toys.

We need a Toys table.

5

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 5

Q: Do you have an ID or product number for each toy?

A: Yes, a combination of letters and numbers.

We need a text ToyID field as a key field in tblToys.

Q: Do you make the toys or purchase them from vendors and resell them?

A: Both.

We need a table of materials used in manufacturing toys. We might need two tables for toys—one for toys
purchased for resale and one for toys manufactured in-house. We need to determine whether the two types
of toys are different enough to require different tables or whether they can be stored in one table, with dif-
ferent values in a few fields, and a Materials table, for toy-making materials.

Q: What are the differences between manufactured and purchased toys?

A: For purchased toys we need to record the vendor name, vendor product number, purchase price
and purchase date; for manufactured toys we need to know how much of each component is
used, the labor costs, and when they were manufactured.

Sounds like we could use a single Toys table, with a Yes/No Purchased field to indicate whether the toy is
purchased or manufactured; that field could then be used to enable or disable various controls on forms.
We also need a Vendors table, to use when selecting a value for the VendorName field, and a Materials
table, for toy-making materials.

Q: Are raw materials purchased from different vendors than toys to resell, or could one vendor sell
you both materials and finished toys?

A: Most of the vendors we use sell only finished toys; some sell only materials, and just a few sell
both materials and finished toys.

Then all the vendors could be stored in one table, with Yes/No fields to indicate whether they sell finished
toys, materials, or both.

Q: When you make the toys, is this done in your own workshop or factory, or contracted out?

A: Done in our workshop.

No need for a Contractors table.

Q: Do you have just one workshop, or several?

A: Just one.

Don’t need a lookup table for workshops.

Q: Do you do anything else other than selling toys?

A: Yes, we also repair broken toys.

Need a Repairs table.

Q: Just the ones you sell, or others too?

A: Our own and other similar toys.

We can’t just identify the repaired toys by ToyID; we’ll need an AutoNumber field to uniquely identify
toys made or purchased elsewhere that come in for repair.

6

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 6

Q: Are the repairs done in-house, or contracted out?

A: In-house only.

We need a table of employees, with a field to identify those who do the repairs.

Q: Do you send out catalogs or other promotional materials?

A: Yes.

We need a table of customers, and also a table of potential customers or leads.

Q: By mail, email, or both?

A: Both.

The Mailing List table(s) should have both the mailing address and email address.

Q: Do you sell toys in a store, by mail, or over the Internet?

A: From a factory store and by mail or phone. No Internet sales yet, but maybe in the future that
will be added.

We need an Orders table, with a field for sale type. Customers should be selected from a Customers table,
with a provision for entering a new customer on the fly when taking an order. Since mail or phone orders
will require both a shipping and a billing address, we need a linked table of shipping addresses.

From these answers, we know that the application needs primary tables for the following things (these
are the application’s entities):

❑ Toys

❑ Categories

❑ Vendors

❑ Customers

❑ Shipping addresses

❑ Mailing list

❑ Materials

❑ Repairs

❑ Employees

❑ Orders

Additionally, a number of linked tables will be needed, to store data linked to records in the main
tables, and some lookup tables will be needed to store data for selection from comboboxes, to ensure
data accuracy.

Creating Tables for an Application
Now that you have some information from the client, you can start creating tables and setting up rela-
tionships between them, turning a mass of inchoate data into a set of normalized tables representing the

7

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 7

things (entities) the database works with. Using the list of tables obtained from the Q&A session with the
client, let’s start creating tables for the Toy Workshop application. First, though, a note on naming
objects: applying a naming convention right from the start when creating a database will make it much
easier to work with. I use the Leszynski Naming Convention (LNC), which is described more fully in
Chapter 9, Reworking an Existing Application. For tables, the LNC tag is tbl, so all table names will start
with that tag.

Table Creation Methods
To create a new table, click the New button in the Database window with the Tables object selected in the
object bar. You have several choices in the New Table dialog, as shown in Figure 1.1.

Figure 1.1

In many cases, it’s best to just select the Design view choice and go ahead with creating the table fields,
but some of the other choices are useful in certain cases. The primary consideration is whether your table
is a standard table type (in which case the Table Wizard is a useful shortcut) or not (Design view is best).
All the choices are discussed more fully in later sections:

❑ Datasheet view. This choice doesn’t have much to offer. The new table opens in Datasheet view,
and you can enter data into the first row. To name the fields in Datasheet view, you need to click
several times on the Fieldn field name (until it is highlighted), then type the new name over it—
much less convenient than just entering the field name on a new row in Design view. Access
guesses at the field data type according to the data entered into the first row, not always accu-
rately, so you will have to modify data types in Design view in any case. In the sample table
shown in Figures 1.2 and 1.3, for example, when you switch to Design view you will see that the
ToyID field is not identified as the key field, and the two price fields are Long Integer rather
than Currency.

Figure 1.2

8

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 8

When creating a new table in Datasheet view, if you enter text into a field, a Text field is created;
if you enter a number alone, a Long Integer field is created; if you enter a number with a dollar
sign, a Currency field is created; and if you enter a recognizable date, a Date field is created. If
you need any other data types (such as a Double numeric field, a Yes/No field, a Memo field, or
an OLE Object field), you will have to create them in Design view.

Figure 1.3

❑ Design view. The best choice for nonstandard tables you need to create from scratch. The table
opens in Design view, letting you enter each field name on its own row and select the appropri-
ate data type from the Data Type drop-down list (see Figure 1.4).

❑ Table Wizard. Useful as a shortcut when creating standard tables, such as a table of customer
name and address data. However, these tables should be used with caution, because they are
not always normalized. For example, the Contacts table shown in Figure 1.5 has a number of
phone number fields (perhaps to match Outlook contacts), which (depending on the contact)
could either provide too many or too few phone fields. With rare exceptions, phone and ID data
should be stored in a linked table, which lets you enter exactly as many items as are needed for
each contact.

❑ ImportTable. Lets you import data from an external source into an Access table. If you import
outside data as a starter, you will need to examine the fields to make sure that they have the cor-
rect data type, and possibly break up the table into several linked, normalized tables.

❑ LinkTable. Links an Access table to data in another program, such as Excel. Linked tables aren’t
as useful as other tables because you can’t modify their structure; use linked tables only when
you need a quick view of current data maintained in an outside program.

9

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 9

Figure 1.4

In the Database window, linked tables have an arrow to the left of the table name, and a distinc-
tive icon for each data type, as shown in Figure 1.6, where you can see three linked tables—one
a comma-delimited text file, one a dBASE file, and one an Excel worksheet. I use the tag tcsv for
a linked comma-delimited text file, tdbf for a linked dBASE file, and txls for a linked Excel work-
sheet, so that I will know what type of linked file I am dealing with when I can’t see the icons in
the Database window.

Figure 1.5

10

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 10

Figure 1.6

Creating the Tables
I’ll start with tblToys, which is the database’s main table, containing information about the toys sold
(and in some cases, manufactured) by the client. Since the Table Wizard offers a Products table, let’s start
with that, and modify it as needed. Figure 1.7 shows the Products table in the Table Wizard; I selected
most of the standard fields to get a head start on creating tblToys.

Figure 1.7

A native table is a table that contains data within Access; the great majority of tables
you will work with in Access are native tables. When you create a table in Access, it is
a native table, and when you import data from an outside program, the imported data
is placed into a native table. In addition to native tables, you can also work with linked
tables, which let you work with data in other programs, such as Excel or dBASE.

11

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 11

There is a button on the Table Wizard screen that lets you rename a field; you can either rename fields as
desired in the wizard, or wait until the table opens in Design view and rename fields as needed there.
After selecting and (optionally) renaming fields as desired, click the Next button to go to the next page
of the wizard, where you give the table a name (tblToys in this case), and select the option to have Access
set the primary key, or do it yourself; select No, I’ll set the primary key, because you want to have control
over the selection of the key field.

After clicking Next again, the wizard correctly assumes that the ToyID field should be the key field, and
gives you three choices (shown in Figure 1.8). Select the third, because in this case the ToyID field con-
tains a combination of letters and numbers. (If you need an AutoNumber ID, select the first option; for a
numeric ID, the second option is appropriate.)

Figure 1.8

After clicking Next again, you are asked if you want to link the new table to any other tables in the
database; because this is a new table, just click Next again. On the final screen, select Modify the table
design to open the new table in Design view, where you can finalize its structure.

If you don’t set table relationships in the Table Wizard, you can always set them later in the
Relationships window—in fact, you may prefer to create all your relationships there, using its more
intuitive visual interface.

The first step is to set up an input mask for the ToyID key field, to ensure that data entry into this field
meets the client’s specifications for this field. To create the input mask, you can either click the Build
button to the right of the Input Mask property for the ToyID field to open the Input Mask Wizard, or
just type in the input mask. Since the Input Mask Wizard doesn’t have a standard selection of the
appropriate type, we’ll need to type it directly. The table below lists the characters you can use in input
masks, to restrict data entry into the field.

12

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 12

Mask Character Entries Allowed.

0 Required digit from 0 through 9; plus and minus signs not allowed.

9 Optional digit from 9 through 9, or space; plus and minus signs not allowed.

Optional digit or space; blanks converted to spaces; plus and minus signs
allowed.

L Required letter A through Z or a through z.

? Optional letter A through Z or a through z.

A Required letter or digit.

a Optional letter or digit.

& Required character or space.

C Optional character or space.

. , : ; - / Decimal placeholder and thousands, date, and time separators—the character
used depends on the Regional settings in the Control Panel.

< Converts following characters to lowercase.

> Converts following characters to uppercase.

! Causes the input mask to be displayed from right to left, instead of the stan-
dard left to right. In some versions of Office, this switch does not work cor-
rectly. See the Microsoft Knowledge Base (KB) article 209049, Input Mask
Character (!) Does Not Work as Expected” for a discussion of the problem in
Access 2000. KB articles can be viewed or downloaded from the Microsoft
support Web site at http://support.microsoft.com/

\ Marks the next character as a literal character.

Password Creates a password entry textbox—characters typed into the textbox are
stored as entered, but displayed as asterisks, for security.

For the sample table’s key field, the client says that the ToyID consists of two uppercase letters and three
numbers, so we’ll need the > character to make entered letters uppercase, then two L’s and three zeroes
entered into the InputMask property of this field:

>LL000

In addition to the standard fields from the Table Wizard, we’ll need a few more fields to hold data
related to manufactured toys. Figure 1.9 shows the table with the extra fields. There is another product
ID field in the table, VendorProductID, but I won’t put an input mask on this field, because vendors
have their own ID formats.

13

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 13

Figure 1.9

Information on materials isn’t stored in this table, but in another table that will be created later.

Next, we need to create tblVendors and tblCategories, which will be linked to tblToys. After selecting the
standard Categories table in the Table Wizard, click the Relationships button to set up a relationship
with the CategoryID field in tblToys, as shown in Figure 1.10.

Figure 1.10

14

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 14

Select the middle choice on the next wizard screen (shown in Figure 1.11), because one toy category will
be selected for many records in tblToys.

Figure 1.11

Now the wizard screen shows that tblCategories is related to tblToys (see Figure 1.12).

Figure 1.12

There is now a relationship between tblToys and tblCategories, which you can see in the Relationships
window in Figure 1.13.

Note that although we selected One record in the ‘tblCategories’ table will match many records in the ‘tblToys’
table, in the Relationships page of the Table Wizard, the relationship between these two tables is not set
up as a one-to-many relationship—although it should be one (another reason you may prefer to not cre-
ate relationships in the wizard, and just set up all relationships in the Relationships window). See the
Relationships section later in this chapter for information on modifying the relation types set up by the
Table Wizard.

15

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 15

Figure 1.13

Continuing with table creation, tblVendors can be created using the Table Wizard, selecting the standard
Suppliers table as the source, and linking it to tblToys on the VendorID field. The Table Wizard doesn’t
do all you need to link these tables, though. If you want to set up tblCategories or tblVendors as the row
source of a lookup field, so the value can be selected from the linked table, you will need to do this your-
self (see the lookup field information in the “Table Field Data Types” section in this chapter).

Table Field Data Types
When creating table fields, it’s important to select the correct data type for each field, so that you can
enter data into the field (you can’t enter text into a numeric field!), and also use the data for sorting and
filtering as needed. The table below lists the field data types available in Access tables, with comments.
The primary data type is what you see in the drop-down Data Type list when creating or editing a field;
some fields (Numeric and AutoNumber) also have subtypes, which are selected from the Field Size
property in the field properties sheet.

Primary
Data Type Subtypes Description Comments

Text Text data up to 255 characters Use for text data, and numbers
in length. (such as IDs) that are not used

for calculations.

Memo Blocks of text up to 65,535 Use for long text; only limited
characters in length. sorting is available on this field

(just the first 255 characters are
used).

Number Byte Whole numbers from 0 Small numbers with no decimal
through 255. points.

Integer Whole numbers from –32,768 Medium-sized numbers with no
through 32,767. decimal points.

16

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 16

Primary
Data Type Subtypes Description Comments

Long Integer Whole numbers from Long numbers with no decimal
–2,147,483,648 through points. This is the default value.
2,147,483,647. Matches AutoNumber fields

when linking tables.

Single Numbers from –3.402823E38 Accurate to 7 decimal points.
through –1.401298E–45 for
negative values and from
1.401298E–45 to 3.402823E38
for positive values.

Double Numbers from Accurate to 15 decimal points.
–1.79769313486231E308 through
–4.94065645841247E–324 for

negative values and from
4.94065645841247E–324 through
1.79769313486231E308 for
positive values.

Replication ID Globally unique identifier Only used in replicated
(GUID), a 16-byte field used databases.
as a unique identifier for
database replication.

Decimal Numbers from –10^28–1 Accurate to 28 decimal points.
through 10^28–1.

Date/Time Dates or times. Always store dates in a Date/
Time field, so you can do date
and time calculations on them.

Currency Currency values, or numbers Use a Currency field to prevent
that need great accuracy in rounding off during calculations.
calculations. A Currency field is accurate to 15

digits to the left of the decimal
point and 4 digits to the right.

AutoNumber Long Integer Incrementing sequential Same data type as Long Integer
numbers used as unique for linking purposes. There may
record IDs. be gaps in the numbering

sequence, if records are created
and later deleted.

Replication ID Random numbers used as This is a very long and strange
unique record IDs. looking string.

Yes/No Data that is either True or False. Null values are not allowed.

Table continued on following page

17

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 17

Primary
Data Type Subtypes Description Comments

OLE Object Documents created in programs You can’t see the object in the
that support OLE (such as Word table; use a form or report con-
or Excel). trol to display it. Can’t sort or

index on this field.

Hyperlink URLs or UNC paths. You can click on a value in this
field to open a Web site (if it is a
valid link).

Lookup Wizard Not a separate field type, but a Once a field is set up as a lookup
wizard that lets you select a table field, you won’t see the value
or value list for selecting a value stored in the field in table
for a field. Datasheet view.

Whether they are created by the Table Wizard or manually in Design view, I prefer not to use lookup
fields in tables, but instead select the lookup table in a combobox or listbox’s RowSource property on a
form. The reason for this is that if you set up a field (such as VendorID) as a lookup field, then you won’t
see the VendorID when you look at the table in Datasheet view—just the vendor name from the lookup
table. If you need to see the actual VendorID, you will have to convert the field back to a standard field.
Also, a lookup field will always be placed on a form as a combobox, while you may prefer to have the
field displayed in a textbox, for example on a read-only form.

The tblVendors table as created by the Table Wizard is shown in Figure 1.14.

Figure 1.1418

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 18

Because the client said that vendors could sell either finished toys or raw materials, the table needs two
Yes/No fields to indicate whether the vendor sells finished toys, materials, or both, so I added these
fields, setting the default value of the SellsToys field to True (since the client said that the majority of his
vendors sell toys), and the default value of the SellsMaterials field to False.

Although Access lets you use spaces (and most punctuation marks) in field names—note the slash in
the Country/Region field in tblVendors—I prefer not to use spaces or punctuation marks other than
underscores in field names, to prevent problems when referencing fields in code and SQL statements, or
when exporting table data to other applications that may not support spaces or punctuation marks.

As is often the case, on examining the table I realized that I needed to ask the client some more questions.
It is rare to find all of the information you need to create tables at one time, right at the beginning. You
will need to confer with your client from time to time while creating the application, asking more specific
questions in order to refine table structure as needed. The question here is whether the vendors are all in
the United States, or if there are some non-U.S. ones. If all the vendors are in the United States, we can
eliminate the Country/Region field, and put input masks for U.S. state abbreviations or zip codes on the
PostalCode and StateOrProvince fields; otherwise, the CountryRegion field is needed (I removed the slash
in the field name), and we have to either leave the PostalCode and StateOrProvince fields without input
masks, or take care of formatting by swapping input masks on a form or running event procedures to
check that the correct data is entered into these fields.

Q: Are the vendors are all in the United States, or are there some non-U.S. ones?

A: There are some vendors outside of the United States.

Leave the table’s fields as they are.

Now some more questions arise:

Q: Do you need just one phone number and one fax number, or could vendors have more than one
phone number? Also, is one email address enough?

A: Some vendors have cell phone numbers too, and multiple email addresses.

We need to remove the phone and email fields from tblVendors, and create separate linked tables to hold
this data.

Q: Do you need to send Word letters to vendor contacts?

A: No, the name is just so we know whom to ask for when we call the vendor.

Then we don’t need to break up the contact name into its components, as would be required if we were
going to create letters to them.

Figure 1.15 shows the final tblVendors.

You can use the F6 function key as a shortcut for moving between a field in table
Design view, and its properties sheet. This hot key is especially handy when setting
the FieldSize property of numeric fields.

19

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 19

Figure 1.15

The linked tables require only the VendorID field and fields for (respectively) phone descriptions and
numbers, and email addresses; the VendorID field in the linked tables is a Long Integer, to match the
AutoNumber VendorID in tblVendors. When saving the new tables, don’t create a key field; VendorID is
a foreign key in tblVendorPhones and tblVendorEMails. (See the “Relationships” section later in this
chapter for a definition of foreign key.) Since the vendors could be outside the United States, there is no
need to create an input mask for the VendorPhone field. Figure 1.16 shows the two tables of vendor
phone and email data; they will be linked to tblVendors in the Relationships window later in this chap-
ter. tblVendorPhones has a phone number field and another field for the description (work, home, fax,
and so forth), which allows you to enter as many different phone numbers as are needed for each ven-
dor, each with its own description.

Continuing with table creation for the Toy Workshop application, tblCustomers can be created
using the Table Wizard Customers table template, using all the fields to start with (just changing
CompanyOrDepartment to Department), and setting up no relationships. The starter tblCustomers is
shown in Figure 1.17.

20

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 20

Figure 1.16

Figure 1.17

21

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 21

As with tblVendors, we have a few questions for the client:

Q: Do you need just one phone number and one fax number for customers, or could customers
have more phone numbers? Also, is one email address enough?

A: Some customers have cell phone numbers too, and multiple email addresses. Come to think of
it, some of them have Web sites, too.

We need to remove the phone and email fields from tblCustomers, and create separate linked tables to hold
this data. And we need to add a WebSite Hyperlink field.

Q: Are the customers all in the United States, or do you have foreign customers too?

A: The customers are all in the United States.

We can remove the Country/Region field, and put appropriate input masks on the StateOrProvince and
PostalCode fields.

The finished tblCustomers is shown in Figure 1.18.

Figure 1.18

tblCustomerPhones and tblCustomerEmails are similar to tblVendorPhones and tblVendorEmails. We
also need another linked table, to hold shipping addresses (this was determined in the initial Q&A

22

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 22

session). The billing address can be stored directly in tblCustomers, because there is only one billing
address per customer, although there could be multiple shipping addresses. tblShippingAddresses has
an AutoNumber ShipAddressID field, the linking CustomerID field, an address identifier field (for
selecting a shipping address from a combobox on a form), and a set of address fields. Although the
address fields could have the same names as the corresponding fields in tblCustomers, I like to prefix
their names with “Shipping” or “Ship” so that if the billing and shipping addresses are combined in a
query, we won’t need to use the table name prefix to distinguish between them. tblShippingAddresses is
shown in Figure 1.19.

Figure 1.19

The next table is tblMailingList, which is created from the Mailing List template in the Table Wizard,
omitting all fields except name, address, and email fields, plus DateUpdated and Notes. The
tblMailingList table is shown in Figure 1.20.

On examining the initial version of this table, it occurs to me that the mailing list could contain several
persons at the same company, so the company information should be broken out into a separate table,
linked by CompanyID. However, some people on the mailing list might not be affiliated with compa-
nies, so we’ll leave the address fields in the table, for entering personal address data, and add a
CompanyID field to link to a separate tblMailingListCompanies table, for records that need it. The modi-
fied tblMailingList and tblMailingListCompanies tables are shown in Figure 1.21. When a mailing list
record is entered on a form, the tblMailingList address fields will be enabled only if no company is
selected for the CompanyID field; if a company is selected, its address will be used for mailings to that
person.

23

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 23

Figure 1.20

Customers will presumably get mailings too, but this doesn’t mean that the whole mailing list needs to
be in the tblCustomers table—we can combine data from tblCustomers and tblMailingList with a union
query, when sending out mailings (See Chapter 4, Sorting and Filtering Data with Queries, for information
on union queries.)

For date fields, I recommend selecting a date format that will display four digits for years, to avoid
twentieth century/twenty-first century confusion. For an individual field, you can either select one of
the standard formats from the Format property of a date field, or enter a format directly, such as
m/d/yyyy. See the Format Property—Date/Time Data Type Help topic for full information on date and
time formatting (you can locate this Help topic by entering date format in the Answer Box or Answer
Wizard). Additionally, you can turn on 4-digit date formatting globally, overriding the Format property
of fields and controls, by opening the Options dialog box from the Tools menu to the General page, and
checking one of the checkboxes in the Use four-digit year formatting section, as shown in Figure 1.22.
While you are on this page, take the opportunity to turn off Name AutoCorrect, which is nothing but
trouble, because it doesn’t make all the changes needed and sometimes makes changes when it shouldn’t.
Chapter 9, Reworking an Existing Application, lists better ways to rename database objects, using my LNC
Rename add-in.

24

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 24

Figure 1.21

Figure 1.22

25

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 25

The next table to create is tblMaterials, which lists the materials used to make toys. The Table Wizard
Products template is a good starter, omitting the fields that aren’t needed and changing a few field
names. The table is related to tblVendors on VendorID. tblMaterials is shown in Figure 1.23.

Figure 1.23

Since a material could be used for many toys, and a toy could use many materials, we need a many-to-
many relationship between tblToys and tblMaterials; this is done by means of a linking table containing
just the key fields; this linking table (tblToyMaterials) is shown in Figure 1.24.

Figure 1.24

26

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 26

There is no suitable table template for tblRepairs, so I created this table directly in Design view, with just
a few fields, as shown in Figure 1.25.

Figure 1.25

Because repairs also use materials, we need a linked table, tblRepairMaterials, which lists the materials
used to do repairs, and the quantity of each material. This table is shown in Figure 1.26.

The tblEmployees table is based on the default Employees table in the Table Wizard, with some unneces-
sary fields deleted. The client’s company uses a numeric Employee ID, but since employees in this com-
pany already have IDs, we can’t use an AutoNumber field; instead, EmployeeID is a text field, and it
will be filled with existing employee numbers, with an incrementing number for new employees created
by a procedure run from a form. tblEmployees is shown in Figure 1.27.

Following are some names you shouldn’t use for fields: Name, Date, Month, Year,
Value, Number, Sub. In general, any word that is a built-in Access function, prop-
erty, or key word should be avoided, because it is highly likely to cause problems in
VBA code and elsewhere. Just add another word to the field name (CustomerName,
OrderDate), and you can avoid these problems.

27

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 27

Figure 1.26

The last main table is tblOrders; it is also based on a template (Orders) in the Table Wizard,
skipping the shipping address fields, and replacing them with a field (ShipAddressID) that links to
tblShippingAddresses. We also need to add ToyID, to identify the toy that was purchased, and
ToyQuantity (a curious omission from the Orders table template). tblOrders is shown in Figure 1.29.

The SupervisorID field takes an EmployeeID value that will be picked from a combobox on a form.

Some employee information should remain confidential, so the Social Security number (SSN) and salary
are stored in a separate table, tblEmployeesConfidential, which is shown in Figure 1.28. (The input mask
on the SSN field is one of the standard input masks, selected from the Input Mask Wizard.) Placing this
information in a separate table lets you restrict its use to certain employees, using Access object-level
permissions in a secured database. Even if you don’t want to secure your database, there is a certain
measure of confidentiality in just placing the information in another table so that it isn’t visible when
doing routine work on the main Employees form.

One default field in this table (ShippingMethodID) requires a lookup table of shipping methods; I cre-
ated this table manually, and tblShippingMethods is shown in Figure 1.30.

Using an AutoNumber ShippingMethodID lets you select the shipper from an option group on a form
(Access option group buttons have Integer values), and the selected value links to the shipper name in
tblShippingMethods.

28

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 28

Figure 1.27

Figure 1.28

29

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 29

Figure 1.29

Figure 1.30

30

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 30

Normalization
Up to this point in the chapter, we have been normalizing tables—though without using that term.
Database normalization can be (and often is) discussed in a very complex and opaque manner, bristling
with technical terms, but this isn’t necessary. When designing Access databases, normalization boils
down to eliminating duplication of data in different tables, and using key fields to link tables so you can
get the data you need from other tables through the links. There are five levels of database normalization
(first normal form through the fifth normal form); generally, only the first three are used in Access
databases. I define the five normal forms below, first in technospeak, then in regular English.

First Normal Form: Eliminate Repeating Groups
This means that you shouldn’t have multiple fields for the same type of information in a table, such as
multiple phone numbers or addresses for a customer. In some cases (generally only in tables imported
from flat-file databases) the repeating data may be in a single field, such as a list of graduate degrees for
faculty members, separated by commas. The problem with putting separate bits of information into a
single field is obvious: If you wanted to create a query to view all the faculty with Ph.Ds, this would be a
difficult task, requiring the creation of complex expressions to extract the different degrees for each fac-
ulty member, and you would probably not get all the records you need, because of differences in punc-
tuation when the data was entered.

Several of the table templates in the Table Wizard violate the first normal form, such as the Contacts
table with its multiple phone numbers. Instead of keeping multiple phone fields in tblVendors and
tblCustomers, I created separate tables to hold phone numbers and email addresses for vendors and cus-
tomers: tblCustomerPhones, tblCustomerEmails, tblVendorPhones, and tblVendorEmails. Breaking out
this information into separate tables serves two practical purposes: It guarantees that you will always be
able to enter another phone number or email address for a client (if you have just phone and fax fields,
how are you going to enter the customer’s cell phone number?), and it also makes it easier to use the
information elsewhere in the database—you can pick up the phone numbers belonging to a customer
by linking to tblCustomerPhones by CustomerID, instead of having to reference each of a set of named
phone fields separately.

Repeating data in a single field (as in the faculty degrees example mentioned previously) should also be
broken out into a separate table, both for accuracy of data entry (users should select degrees from a
lookup table, rather than typing them into a field), and to allow entry of as many degrees as are needed
for a faculty member.

Second Normal Form: Eliminate Redundant Data
There are two ways that redundant data can get into a database: One is by entering the same data into
different records of a table. This could happen if you use the Table Wizard’s Orders table template, with
its address fields, and enter several orders from the same customer. If you enter that customer’s ship-
ping address into three different records, that is duplicate data. I avoided this situation by breaking out
shipping address data into its own table, tblShippingAddresses, and placing a ShipAddressID field in
tblOrders. This field links to the key field of the same name in tblShippingAddresses, which avoids the
need to enter the same data into many records, and also guarantees that if there is a change in the ship-
ping address, it needs to be made only once, not in every order record using that address.

31

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 31

You can also have redundant data when the same information is entered into two different tables. For
example, if you have a Customers table and an Orders table, you should not put customer billing
address fields in both tables. Either place the billing address fields in a separate table, linked one-to-one
with tblCustomers by CustomerID, or place them in the Customers table and remove them from the
Orders table. Shipping address fields should also not be duplicated in two tables; in this case, they
should definitely be moved to a separate table (as I do in the sample database), because there can be
multiple shipping addresses per customer.

In some cases, for recordkeeping purposes, it might be desirable to keep a record of the shipping address
used at the time an order is shipped—even if that address changes later on. In that case, the shipping
address fields could be retained in tblOrders, along with the ShipAddressID field, and when a shipping
address is selected on a form, data from the selected shipping address could be pulled from
tblShippingAddresses and written to the shipping address fields in tblOrders. This method eliminates
the need to type the shipping address into every record, but preserves the shipping address data for each
order even if the customer’s shipping address is changed later on.

Third Normal Form: Eliminate Columns
Not Dependent on Key

This means that any fields that don’t belong to the record should be moved into a separate table. For
example, the initial version of tblMailingList, made from the Table Wizard Mailing List table template,
contains both information about the person receiving the mailings (name information, title, and so forth)
and information about the company (company name and address). Because the company information
doesn’t belong to the person, I created a separate tblMailingListCompanies table linked by a CompanyID
field to store mailing list company data. However, I left the address fields in tblMailingList, so they
could be used for personal addresses for persons on the mailing list who are using their own addresses
rather than company addresses.

Fourth Normal Form: Isolate Independent
Multiple Relationships

In a database with many-to-many relationships, don’t add irrelevant fields to the linking table that con-
nects the two “many” tables. In a student records database, for example, using a many-to-many relation-
ship between Students and Classes, with a linking table tblStudentClasses, you might have a Semester
and Year field, indicating that a particular student took a particular class in a specific semester and year.
That would be appropriate, but if you were to add a phone number field to the linking table, that would
violate the fourth normal form because that field doesn’t belong to the combined student-class record,
but to the student record, so it should be placed in the Student table.

In the Toy Workshop sample database, there is a many-to-many relationship between Toys and
Materials. For example, a toy can use multiple materials, and a material can be used for multiple toys.
tblToyMaterials is the linking table for this many-to-many relationship. As is typical of such tables, it
contains only the two foreign key fields that link to the key fields in the two “many” tables. If you add
any extra fields other than the two key fields to such a table, they should be related to the combination
of the two linked records, to avoid violation of the fourth normal form.

It is unlikely that you will have to worry about violating the fourth normal form because (unlike the
first through third normal forms) it isn’t likely that you’ll be inclined to set up tables that violate it, or
even have to rework tables that violate this form.

32

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 32

Fifth Normal Form: Isolate Semantically
Related Multiple Relationships

Violation of this normal form requires a complex and unlikely scenario, and frankly there is a minimal
chance that you will ever have to worry about it. In some circumstances, this form requires the separa-
tion of even related fields into a separate table. For example, in a many-to-many Students-Classes
relationship, although semester and year information could appropriately be added to the linking
tblStudentsClasses table, in some cases it would be preferable to maintain that information in a separate
table, with information linking classes to specific Semester-Year combinations.

Setting Up Relationships
The Table Wizard gives you a start at setting up relationships between tables, but it doesn’t do all
the work. Even though you specify that a record in one table can match many records in another
table, the relationship is not set up as a one-to-many relationship; you need to do this manually, in the
Relationships window. I’ll describe the three types of relationships you can create in an Access database,
and show you how to set them up in the Relationships window.

Let’s start with some definitions of terms used in creating relationships between tables:

❑ Primary key. A field (or, less commonly, a set of fields) with a different value (or value combina-
tion) for each record in a table. The key field must be unique and can’t be Null.

❑ Foreign key. A nonunique field in a table that links to the primary key field in another table. In
a one-to-many relationships, the primary key is in the “one” table, and the foreign key in the
“many” table.

❑ Cascading update. When referential integrity is enforced, if you change the primary key value
in a record in the primary table (for example, EmployeeID in tblEmployees), that value will be
changed to match in all the matching records in any related tables. This is generally a good idea.

❑ Cascading delete. When referential integrity is enforced, if you delete a field in a primary table,
all matching records in any related tables are also deleted. This is dangerous, and generally
should be avoided.

❑ Inner join. There must be a matching value in the linked fields of both tables. With an inner join
between tblCustomers and tblOrders, for example, you will see only records for customers with
orders.

❑ Left outer join. All records from the left side of the LEFT JOIN operation in a query’s SQL state-
ment are included in the results, even if there are no matching records in the other table. A left
outer join between tblCustomers and tblOrders includes all the Customer records, even those
with no orders.

❑ Right outer join. All records from the right side of the RIGHT JOIN operation in a query’s SQL
statement are included in the results, even if there are no matching records in the other table. A
right outer join between tblMailingListCompanies and tblMailingList includes all the
tblMailingList records, even those with no company selected (they won’t have matching records
in tblMailingListCompanies).

33

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 33

❑ Referential integrity. A set of rules that ensures that relationships between records in linked
tables are valid and that related data isn’t changed or deleted inappropriately. Setting referential
integrity on a link between tblCustomers and tblOrders (on the CustomerID field) would
ensure, for example, that you can’t enter a new order without selecting a customer. With refer-
ential integrity set, you can’t delete a record from the primary table if there are matching records
in the related table (unless you also choose to turn on cascading deletes), and you can’t change
the primary key value if there are matching records (unless you also choose to turn on cascad-
ing updates).

One-to-Many Relationships
Although Access doesn’t require that linked fields have the same names (only the same data type), to
make it easier to match up corresponding fields when setting up relationships, I recommend using the
same name for linked primary and foreign key fields.

A one-to-many relationship (by far the most common type of relationship) is needed when a single
record in one table can match several records in another table. In the Toy Workshop database, a number
of one-to-many relationships are needed; they are listed below, with the “one” (or primary) table on the
left and the “many” (or related) table on the right. Some of these relationships are also part of many-to-
many relationships, covered below:

❑ tblCategories—tblToys

❑ tblCustomers—tblCustomerEmails

❑ tblCustomers—tblCustomerPhones

❑ tblCustomers—tblOrders

❑ tblEmployees—tblRepairs

❑ tblMailingListCompanies—tblMailingList

❑ tblMaterials—tblRepairMaterials

❑ tblMaterials—tblToyMaterials

❑ tblRepairs—tblRepairMaterials

❑ tblShippingAddresses—tblOrders

❑ tblShippingMethods—tblOrders

❑ tblToys—tblToyMaterials

❑ tblVendors—tblMaterials

❑ tblVendors—tblToys

❑ tblVendors—tblVendorEMails

❑ tblVendors—tblVendorPhones

34

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 34

If you get an error message “Toy Workshop can’t create this relationship and enforce referential
integrity” when trying to create a relationship, this indicates that data in one of the tables violates refer-
ential integrity (for example, you might have a tblOrders record without a value in the CustomerID
field); fix the data, and you will be able to create the relationship.

Similarly, an error message that says, “Relationship must be on the same number of fields with the same
data types” most likely indicates that the fields to be linked are of different data types; change the data
type of one field so that it matches the other field (with AutoNumber matching Long Integer), and you
should be able to set up the relationship.

As an example of how to set up a one-to-many relationship in the Relationships window (all the others
are done similarly), let’s set up the relationship between tblCustomers and tblCustomerPhones. Start by
opening the Relationships window and dragging tblCustomers and tblCustomer Phones to it from the
Database window (or alternately, selecting them using the Show Table dialog opened from the similarly
named toolbar button). Note that the CustomerID field in tblCustomers is bold; that indicates that it is
the primary key of this table. The matching CustomerID field in tblOrders is not bold, because it is a for-
eign key field in that table. To create the join, drag the CustomerID field in tblCustomers to the same-
named field in tblOrders, as shown in Figure 1.31.

Figure 1.31

When you release the mouse, the Edit Relationships dialog opens. The Relationship Type box at the
bottom of the screen displays the relationship that Access thinks is right; it is usually correct.

If the relationship type you intend to set up isn’t shown in the Relationship Type box in the Edit
Relationships dialog—for example, you want to set up a one-to-many relationship, and the box says
Indeterminate—the most likely reason is that you have tried to link the wrong fields, or you linked the
right fields, but they aren’t of matching data types. Correct the problem and you should see the correct
relationship type in the dialog.

In this case, the relationship type is correctly identified as one-to-many, so all you have to do is check
Enforce Referential Integrity and Cascade Update Related Fields, and click the Create button, as shown in
Figure 1.32.

35

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 35

Figure 1.32

You can now see a line connecting the CustomerID field in tblCustomers to the matching field in
tblOrders, as shown in Figure 1.33; note that it has a 1 on the left side (indicating that tblCustomers is the
primary or “one” table), and an ∞ sign on the right side (the related or “many” table).

Figure 1.33

One-to-One Relationships
A one-to-one relationship (comparatively rare) is needed when a record in one table can only match a single
record in another table. The linking field is the primary key field in both tables. Typically, such a relationship
is created to limit access to certain data, such as confidential employee data. In the Toy Workshop sample
database, there is a single one-to-one relationship, between tblEmployees and tblEmployeesConfidential. To
set up this relationship, drag EmployeeID from tblEmployees to the same field in tblEmployeesConfidential;
the Edit Relationships dialog will say One-to-One, as shown in Figure 1.34.

If the Edit Relationships dialog says One-to-Many instead of One-to-One, this indicates that the linking
field is not the key field in both tables; change it to the key field in both, and you should be able to set up
a one-to-one link.

In the Relationships window, the line representing a one-to-one relationship has a 1 at both ends, as you
might expect.

36

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 36

Figure 1.34

Many-to-Many Relationships
A many-to-many relationship is actually a set of two one-to-many relationships. There are two primary
tables and a linking table; the linking table has two foreign key fields, one matching the primary key
field of each of the primary tables. It may also (but usually doesn’t) contain a few other fields that hold
information related to that specific combination of records from the primary tables. In the Toy Workshop
database, two many-to-many relationships are needed (the linking table is in the middle of each set):

❑ tblToys—tblToyMaterials—tblMaterials

❑ tblRepairs—tblRepairMaterials—tblMaterials

Once you have set up the two one-to-many relationships, you have a many-to-many relationship; Figure
1.35 shows the two many-to-many relationships in the Relationships window. You can see the two sets of
primary tables with a linking table in between; tblMaterials serves as the primary table in two many-to-
many relationships.

Figure 1.35

If you use a convention of naming all primary and foreign key fields with a suffix of ID, you can easily
identify the fields that need to be linked to other tables in the Relationships window. However, not all
key fields need to be linked to other tables—MailingListID in tblMailingList doesn’t need any links
because there are no tables with multiple records matching one record in tblMailingList.

37

Creating a Database for an Application

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 37

Summary
Now that we have created the necessary tables for the Toy Workshop database, with appropriate rela-
tionships set up between them, we can proceed to create forms for entering and editing data, and
queries for sorting and filtering.

38

Chapter 1

03 559044 Ch01.qxd 3/29/04 11:57 AM Page 38

