
Chapter 1

Starting with the Basics
In This Chapter
� Getting an overview of Jakarta Struts

� Creating the structure of a Web application

� Understanding the Model-View-Controller paradigm

Suppose that you’re a programmer and your job is creating Web applica-
tions. You know the basics of Web applications. You use the Java pro-

gramming language because of its power and flexibility. To make the Web
pages interactive, you create Java Servlets and JavaServer Pages (JSP).
You’re getting pretty good at what you do, so your Web applications are
becoming more complex.

You’ve heard the buzz about Jakarta Struts and how it can help structure
leaner, tighter Web applications. You want to know how you can make use
of this powerful programming framework to make your application program-
ming more systematic and consistent, while taking less time. In this chapter,
we explain what Jakarta Struts is all about and how it fits into the scheme of
a Web application.

What Is Jakarta Struts?
Jakarta Struts is incredibly useful in helping you create excellent Web appli-
cations. When you use Jakarta Struts, your applications should work more
effectively and have fewer bugs. Just as important (because your time is
important), Struts should save you hours and hours of programming and
debugging.

As we explain more fully later in this chapter, Struts is a framework that struc-
tures all the components of a Java-based Web application into a unified whole.
These components of a Web application are

� Java Servlets: Programs written in Java that reside on a Web server and
respond to user requests

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 9

� JavaServer Pages: A technology for generating Web pages with both
static and dynamic content

� JavaBeans: Components that follow specific rules, such as naming
conventions

� Business logic: The code that implements the functionality or rules of
your specific application

We provide an overview of the first three items in this chapter. (The business
logic varies with each application.)

Jakarta Struts uses a specific paradigm, or design pattern, to structure your
application. You simply fill in the pieces of the structure. The design pattern
is called Model-View-Controller (MVC). The MVC design pattern helps you
organize the various pieces of the application puzzle for maximum efficiency
and flexibility. We explain MVC later in this chapter and expand on the Model,
View, and Controller concepts in Chapters 4, 5, and 6.

Structuring a Web Application
We define a Web application as a program that resides on a Web server and
produces static and dynamically created pages in a markup language (most
commonly HTML) in response to a user’s request. The user makes the request
in a browser, usually by clicking a link on the Web page. Figure 1-1 shows a
high-level view of Web architecture. We explain the components of this figure
subsequently in this chapter.

To build Web applications, you use Java 2 Enterprise Edition (J2EE), which
provides support for Servlets, JSP, and Enterprise JavaBeans (EJB), a distrib-
uted, multi-tier, scalable component technology.

Web Server

Web Container

Java
Servlet

JSP
page

Browser
Database

Figure 1-1:
High-level

view of Web
architecture.

10 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 10

A Web container is a program that manages the components of a Web applica-
tion, in particular JSP pages and Java Servlets. A Web container provides a
number of services, such as

11Chapter 1: Starting with the Basics

Where does Jakarta Struts come from?
To understand what Jakarta Struts is all about,
you need to know something about the open-
source movement that is its heritage. Open-
source generally refers to software that the
distributor provides at no cost to the user and
that includes both the binary (compiled) code
and the source code.

You obtain open-source software under a spe-
cific license, and the license can vary from one
software provider to another. For example, the
GNU (www.gnu.org) license provides that you
must always include the source code if you
redistribute the software of the application,
whether or not you have made modifications
to the original source code. The Apache
(www.apache.org) license does not require
you to provide the source code when you redis-
tribute one of their applications. So open-
source software licenses vary — check the
license to be sure. For more information on
open-source software, take a look at www.
opensource.org.

Jakarta is one of many projects under the aus-
pices of the Apache Software Foundation (ASF)
(www.apache.org), formerly known as the
Apache Group. The Apache Group was formed
in 1995 by a number of individuals who worked
together to create one of the most successful
examples of an open-source project, the
Apache Web Server (used by 64% of the Web
sites on the Internet as of October, 2003). In
1999, the Apache Group became the non-profit
Apache Software Foundation, to better provide

support for its members and a legal presence to
protect its resources.

As the popularity of Apache grew, so did ideas
for other related open-source applications.
Currently 16 software projects are supported by
ASF. Actually, software projects is a bit of a mis-
nomer because many of these projects have
numerous subprojects that are really indepen-
dent projects in themselves. Creativity is unlim-
ited, so the ideas keep coming!

Jakarta (jakarta.apache.org) is one of the
principal 16 ASF projects. To quote from their
Web site, “Jakarta is a Project of the Apache
Software Foundation, charged with the cre-
ation and maintenance of commercial-quality,
open-source, server-side solutions for the Java
Platform, based on software licensed to the
Foundation, for distribution at no charge to the
public.” Struts is one of the 22 subprojects cur-
rently listed. Yes, this entire book is about one
subproject.

Struts was created by Craig R. McClanahan and
donated to ASF in May, 2000. Craig is an
employee of Sun Microsystems and is the pri-
mary developer of both Struts and Tomcat 4. You
can read about Craig and many other Struts
contributors at jakarta.apache.org/
struts/volunteers.html. The Struts 1.0
release had 17 contributors. With release 1.1
that number has jumped to 50. The project was
named Struts as a reference to the architectural
structures in buildings and homes that provide
the internal support. The present version of
Struts is 1.1.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 11

� Security: Restricted access to components, such as password protection

� Concurrency: The capability to process more than one action at a time

� Life-cycle management: The process of starting up and shutting down a
component

Some people use the term JSP/Servlet container, which means the same thing
as Web container. We favor Web container — it’s shorter and easier to type.

Apache Tomcat is an example of a Web container — an open-source imple-
mentation of the J2EE Java Servlet and JavaServer Pages (JSP) specifications.
A specification is a document that describes all the details of a technology.
The implementation is the actual program that functions according to its
specification. In fact, Apache Tomcat is the official reference implementation
for the J2EE Java Servlet and JSP specifications. As a result, Apache Tomcat
is a popular Web container for Web applications that use JSP and Servlets,
including applications that use Struts. We use Tomcat in all the examples in
this book. However, many other commercial and open-source Web containers
are available.

Typically, a Web container also functions as a Web server, providing basic
HTTP (Hypertext Transfer Protocol) support for users who want to access
information on the site. When requests are for static content, the Web server
handles the request directly, without involving Servlets or JSP pages.

However, you may want your Web pages to adapt in response to a user’s
request, in which the response is dynamic. To generate dynamic responses,
the Servlet and JSP portion of the container gets involved. Tomcat has the
capability to act as both a Web server and a Web container. However, it also
can interact with a standard Web server, such as Apache Web Server, letting
it handle all static requests and getting involved only when requests require
Servlet and JSP service.

Using Java Servlets
Java Servlets extend the functionality of a Web server and handle requests
for something other than a static Web page. They are Java’s answer to CGI
(Common Gateway Interface) scripts of olden times (5 to 6 years ago). As
their name implies, you write Java Servlets in Java and usually extend the
HttpServlet class, which is the base class from which you create all
Servlets. As such, Java Servlets have at their disposal the full functionality
of the Java language, which give them a lot of power.

Servlets need to run in a Web container, an application that adheres to the
Java Servlet Specification. In most cases, the container will support also the
JavaServer Pages Specification. You can find a list of products supporting the

12 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 12

Java Servlet and JSP specifications at java.sun.com/products/servlet/
industry.html. The latest Java Servlet Specification is 2.3, and the latest
JavaServer Pages Specification is 1.2.

Creating JavaServer Pages
You use JavaServer Pages to present dynamic information to the user in a
Web page. A JSP page has a structure like any static HTML page, but it also
includes various JSP tags, or embedded Java scriptlets (short Java code frag-
ments), or both. These special tags and scriptlets are executed on the server
side to create the dynamic part of the presentation, so that the page can
modify its output to reflect the user’s request.

What really happens behind the scenes is that the JSP container translates
the JSP page into a Java Servlet and then compiles the Servlet source code
into runnable byte code. This translation process happens only the first time
a user accesses the JSP page. The resulting Servlet is then responsible for
generating the Web page to send back to the user.

Each time the JSP page is changed, the Web container translates the JSP page
into a Servlet.

Listing 1-1 shows an example of a JSP page, with the JSP-specific tags in bold.

Listing 1-1 Sample JSP Page

1 <%@ page contentType=”text/html;charset=UTF-
8”language=”java” %>

2 <%-- JSTL tag libs --%>
3 <%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>
4 <%-- Struts provided Taglibs --%>
5 <%@ taglib uri=”/WEB-INF/struts-html-el.tld”

prefix=”html” %>
6 <html:html locale=”true”/>
7 <head>
8 <fmt:setBundle basename=”ApplicationResources” />
9 <title><fmt:message key=”loggedin.title”/></title>
10 </head>
11 <body>
12 <jsp:useBean id=”polBean”

class=”com.othenos.purchasing.struts.POListBean”/>
13 <H2>
14 <fmt:message key=”loggedin.msg”>
15 <fmt:param value=’${polBean.userName}’ />
16 </fmt:message>
17 </H2>
18 </body>
19 </html>

13Chapter 1: Starting with the Basics

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 13

JSP defines six types of tag elements:

� Action: Follows the XML (eXtended Markup Language) format and always
begins with <jsp:some action/>. It provides a way to add more func-
tionality to JSP, such as finding or instantiating (creating) a JavaBean for
use later. You see one example of an action tag in line 12 of the code in
Listing 1-1.

� Directive: A message to the Web container describing page properties,
specifying tag libraries, or substituting text or code at translation time.
The form is <%@ the directive %>. Listing 1-1 has directives on lines
1, 3, and 5.

� Declaration: Declares one or more Java variables or methods that you
can use later in your page. The tag has this form <%! declaration %>.

� Expression: Defines a Java expression that is evaluated to a String. Its
form is <%= expression %>.

� Scriptlet: Inserts Java code into the page to perform some function not
available with the other tag elements. Its form is <% java code %>.

� Comment: A brief explanation of a line or lines of code by the developer.
Comments have the form <%-- the comment --%>. Lines 2 and 4 in
Listing 1-1 are examples of comments.

Because a JSP file is just a text file, you can create it in just about any kind of
text editor. Note that some editors understand JSP syntax and can provide
nice features such as formatting and color coding. A few of the bigger ones are
Macromedia Dreamweaver (www.macromedia.com/software/dreamweaver/),
NetBeans (www.netbeans.org), and Eclipse (www.eclipse.org); the last two
are complete Java development environments.

Like Java Servlets, JSP pages must be run in a Web container that provides
support for JSP technology, as we explained in the preceding section, “Using
Java Servlets.”

Using JavaBeans
When you program in Java, you define or use classes that function as a tem-
plate for objects that you create. A JavaBean is a special form of Java class
that follows certain rules, including the methods it uses and its naming
conventions.

Beans are so useful because they are portable, reusable, and platform indepen-
dent. Beans are components because they function as small, independent pro-
grams. JavaBeans component architecture defines how Beans are constructed
and how they interact with the program in which they are used.

14 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 14

You can call a JavaBean a Bean and everyone will know what you’re talking
about, as long as you’re not discussing coffee.

The JavaBean documentation refers to the rules as design patterns. However,
this term is more generally used to refer to design patterns such as the
Model-View-Controller design pattern. Naming conventions is a more appro-
priate term.

As an example of the special Bean rules, let’s look at properties. A Bean’s prop-
erties that are exposed (public) are available only through the getter and setter
methods, because the actual property definition is typically private (available
to only the defining class). The properties follow the naming convention that
the first letter of the property must be lowercase and any subsequent word
in the name should start with a capital letter, such as mailingAddress. (We
explain getters and setters after Listing 1-2.) Listing 1-2 is an example of a
simple Bean.

Listing 1-2 Example of a Simple JavaBean

public class SimpleBean implements java.io.Serializable
{

private String name;

// public no-parameter constructor
public SimpleBean()

15Chapter 1: Starting with the Basics

Scope
Scope refers to an area in which an object
(such as a Bean or any Java class) can be
stored. Scopes differ based on the length of
time stored objects are available for reference,
as well as where the objects can be referenced
from.

In JSP and Struts, scope can be one of four
values:

� Page: Objects in the page scope are avail-
able only while the page is responding to
the current request. After control leaves the
current page, all objects stored in the page
scope are destroyed.

� Request: Objects in the request scope are
available as long as the current request is

being serviced. A request can be serviced
from more than one page.

� Session: The objects in the session scope
last as long as the session exists. This could
be until the user logs out and the session is
destroyed or until the session times out due
to inactivity. Each client using the Web
application has a unique session.

� Application: The longest lasting scope
is the application scope. As long as the
application is running, the objects exist.
Furthermore, objects in the application
scope are available to all clients using the
application.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 15

{
}
// getter method for name property
public String getName()
{

return name;
}
// setter method for name property
public void setName(String aName)
{

name = aName;
}

}

In this example, String is the type of property and name is the property.

Methods that access or set a property are public (available to anyone using
the Bean) and also use a certain naming convention. You name these meth-
ods as follows:

� To get a property’s value, the method must begin with get followed by
the property name with the first letter capitalized, as in public String
getName();.These methods are called getters.

� To set a property’s value, the method must begin with set followed by
the property name with the first letter capitalized and the value to set the
property to, as in public void setName(String theName);. These
methods are called setters.

You should also be familiar with special naming conventions for Boolean and
indexed properties. Many additional requirements exist, but they are less
important for our situation. See java.sun.com/docs/books/tutorial/
javabeans/index.html for more information on JavaBean requirements.

You should follow the JavaBean conventions when creating Beans to ensure
that the user of the Bean knows how to get information in and out of the com-
ponent. Classes that use the Beans know that if it’s really a Bean, it follows
the proper conventions; therefore, the class can easily discover the proper-
ties, methods, and events that make up the Bean.

In Struts, you commonly use Beans in Web applications and specifically in a
more restricted manner than in the component architecture we just described.
You use Beans more often as temporary holding containers for data. For exam-
ple, suppose that a user requests to see a purchase order. The Web application
then does the following:

1. Retrieves a copy of the requested purchase order information from the
backend database

16 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 16

2. Builds a PurchaseOrder Bean

3. Populates the Bean with the retrieved data

4. Uses the Bean in the JSP page to display the data.

Because the Web application has transferred the data from the backend data-
base to the Web page or for access by the business logic, the Bean is called a
Data Transfer Object (DTO). A DTO is a design pattern.

Understanding the Model-View-
Controller Design Pattern

Although Struts is not a complete application, it can be customized through
extension to satisfy your programming needs. By using Struts, you can save
hundreds, if not thousands, of hours of programming time and be confident
that the underlying foundation is efficient, robust, and pretty much bug-free.
When implemented properly, Struts is definitely a boon.

An application framework is a skeleton of an application that can be cus-
tomized by the application developer. Struts is an application framework that
unifies the interaction of the various components of a J2EE Web application —
namely Servlets, JSP pages, JavaBeans, and business logic — into one consis-
tent whole. Struts provides this unification by implementing the Model-View-
Controller (MVC) design pattern. Struts provides an implementation of the
MVC design pattern for Web applications. To understand why this is so impor-
tant, you need to see why MVC is such a useful architecture when dealing with
user interactions.

The MVC pattern is the grand-daddy of object-orientated design patterns.
Originally used to build user interfaces (UI) in Smalltalk-80, an early object-
oriented programming system, it has proved useful everywhere UI’s are pre-
sent. The MVC pattern separates responsibilities into three layers of
functionality:

� Model: The data and business logic

� View: The presentation

� Controller: The flow control

Each of these layers is loosely coupled to provide maximum flexibility with
minimum effect on the other layers.

17Chapter 1: Starting with the Basics

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 17

What is a design pattern?
The expression “Don’t reinvent the wheel” means that you shouldn’t try to
solve a common problem that many bright people have already faced and
solved in a clever and elegant way. For many years, other disciplines (for
example, architecture) have recognized that repeating patterns of solutions
exist for common problems. In 1995, an often-quoted book called Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides (published by Addison-Wesley Publishing Co.) used
the same technique to formalize problem-solving patterns in the field of
object-orientated design.

A design pattern is a blueprint for constructing a time-tested solution to a
given problem. It’s not a concrete implementation; rather, it’s a high-level
design of how to solve a problem. Because design patterns are more general
than concrete implementations, they are consequently more useful because
they have broader applications.

The MVC design pattern
In the MVC design pattern, the Model provides access to the necessary busi-
ness data as well as the business logic needed to manipulate that data. The
Model typically has some means to interact with persistent storage — such
as a database — to retrieve, add, and update the data.

The View is responsible for displaying data from the Model to the user. This
layer also sends user data to the Controller. In the case of a Web application,
this means that both the request and the response are in the domain of the
View.

The Controller handles all requests from the user and selects the view to
return. When the Controller receives a request, the Controller forwards the
request to the appropriate handler, which interprets what action to take based
on the request. The Controller calls on the Model to perform the desired func-
tion. After the Model has performed the function, the Controller selects the
View to send back to the user based on the state of the Model’s data.

Figure 1-2 shows the relationships among the three layers.

To get an idea of why the MVC pattern is so useful, imagine a Web application
without it. Our fictional application consists of just JSP pages, with no Servlets.
All the business logic necessary to service a user’s request and present the
user with the desired results is in those JSP pages. Although this scheme is
simpler than an implementation using MVC, it is also difficult to work with for
anything but the most trivial application, due to the intermixing of Model, View,
and Controller elements.

18 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 18

To illustrate the difference between Web applications that don’t use MVC
and those that do, think about the difference between Rocky Road and
Neapolitan ice cream. Both may be delicious, but if you want to make any
changes to Rocky Road, think about how much trouble it would be to switch
the almonds for walnuts. The almonds are too deeply embedded in the ice
cream to do the switch without affecting everything else. On the other hand,
because Neapolitan is cleanly separated into layers, switching one flavor for
another is an easy task. Think of Neapolitan as MVC compliant, and Rocky
Road as not.

Using the MVC pattern gives you many advantages:

� Greater flexibility: It’s easy to add different View types (HTML, WML,
XML) and interchange varying data stores of the Model because of the
clear separation of layers in the pattern.

� Best use of different skill sets: Designers can work on the View, program-
mers more familiar with data access can work on the Model, and others
skilled in application development can work on the Controller. Differ-
entiation of work is easier to accomplish because the layers are distinct.
Collaboration is through clearly defined interfaces.

� Ease of maintenance: The structure and flow of the application are clearly
defined, making them easier to understand and modify. Parts are loosely
coupled with each other.

How Struts enforces the MVC pattern
The architecture of Struts provides a wonderful mechanism that, when fol-
lowed, ensures that the MVC pattern remains intact. Although Struts provides
a concrete implementation of the Controller part of the pattern, as well as pro-
viding the connections between the Controller and Model layers and between
the Controller and View layers, it doesn’t insist on any particular View para-
digm or require that you construct the Model in a particular way.

View selection

User request Requests state change

View

Controller

Model

Query Model State

Figure 1-2:
The Model-

View-
Controller

pattern.

19Chapter 1: Starting with the Basics

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 19

The Struts Controller
Although Struts does not provide or require any particular Model or View
components of the MVC pattern, it does implement the Controller as well as
the mechanisms that bind the three layers and allow them to communicate
with each other. The primary controller class is a Java Servlet called the
ActionServlet. This class handles all user requests for Struts-managed
URLs. Using information in the configuration files, the ActionServlet class
then gets the appropriate RequestProcessor class that collects the data
that is part of the request and puts it into an ActionForm, a Bean that con-
tains the data sent from or to the user’s form. The final step of the Controller
is to delegate control to the specific handler of this request type. This han-
dler is always a subclass of the Action class. Figure 1-3 shows how Struts
uses the MVC pattern.

The Action subclass is the workhorse of the Controller. It looks at the data
in the user’s request (now residing in an ActionForm) and determines what
action needs to be taken. It may call on the business logic of the Model to
perform the action, or it may forward the request to some other View. The
business logic may include interacting with a database or objects across the
network or may simply involve extracting some data from an existing
JavaBean.

After the necessary action has been performed, the Action subclass then
chooses the correct View to send back to the user. The View is determined by
the current state of the Model’s data (the model state) and the specifications
you defined in the Struts configuration file. (For an explanation of the configu-
ration file, see the “The Struts configuration file” section later in this chap-
ter). Figure 1-4 shows the principal classes of the Struts Controller.

JSP
page

ActionServlet

Action

Action

Action

Action

JavaBean

JavaBean

JavaBean

JavaBean

JSP
page

ControllerView Model

Figure 1-3:
The Struts
use of the

MVC
pattern.

20 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 20

The Struts View
As mentioned, Struts does not provide, nor is it dependent on, a specific pre-
sentation technology. Many Struts applications use JSP (JavaServer Pages)
along with the Struts tag library (Struts and Struts-EL), JSTL (JSP Standard
Tag Library), and JSF (Java Server Faces). Some other possibilities are

� Apache Cocoon (cocoon.apache.org/)

� Jakarta Velocity templates (jakarta.apache.org/velocity/
index.html)

� XSLT (eXtensible Stylesheet Language Transformation) (www.w3.org/
TR/xslt)

The JSP specification provides for the creation of HTML-like tags that extend
the functionality of JSP. These custom tags are bundled by their creators into
custom tag libraries and are accompanied by a descriptor file called a Tag
Library Descriptor (tld). The Struts and Struts-EL tag libraries are examples
of this extended functionality.

Our examples throughout the book use JSP along with Struts-EL, JSTL, and
other tag libraries. (For more on tag libraries, see Chapter 10.)

For new projects, the recommendation from the Struts Web site is to use not
the standard Struts tag libraries, but instead the Struts-EL tag library along
with JSTL. The Struts-EL tags library is really a reimplementation of the stan-
dard Struts tag library to make it compatible with JSTL’s method of evaluat-
ing values. However, when a JSTL tag implemented the same functionality,
the Struts tag was not reimplemented in the Struts-EL library. See jakarta.
apache.org/struts/faqs/struts-el.html for full details on the Struts-EL
tag library.

ActionServlet

RequestProcessor

Action

ActionForm

ActionMapping

ActionForwardFigure 1-4:
Principal

Struts
classes of
the Struts
Controller.

21Chapter 1: Starting with the Basics

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 21

The Struts Model
Nothing in Struts dictates how to construct the Model. However, the best
practice is to encapsulate the business data and operations on that data into
JavaBeans, as we described previously when discussing Data Transfer Objects
(in the “Using JavaBeans” section). The data and operations may reside in the
same class or in different classes, depending on your application.

The operations represent the business logic that your application is defining.
Operations may be the rules that should operate on a particular business entity.
For example, if you’re writing a purchasing system, part of the business data
might be an entity called a Purchase Order. You may encapsulate this data into a
class called PurchaseOrder as a way of representing the Purchase Order entity.
Furthermore, you may choose to place your business rules directly into this
class, or you may choose to put the rules into a different class.

The connection between the Controller and Model rests in the code that you
write in the Action subclasses. The Action subclasses contain the analysis
of the user’s request that determines the interaction (if any) with the Model.
Some examples of that interaction are

� Creating a JavaBean (like the PurchaseOrder class example above) that
in turn accesses a database to populate itself and then makes it available
to subsequent Views.

� Referencing a business logic object and asking it to perform some opera-
tion based on incoming data from the user.

The Action subclass initiates any action required to handle a user’s request,
thereby creating the connection with the Model.

When formulating a response, the Controller may pass some or all of the
Model data to the View through the use of the ActionForm Bean. Although
this Bean is a data container, it should not be considered part of the Model
but rather just a transport mechanism between the Model and the View. Just
as often, the View may directly reference the Model’s data by referencing one
or more of the Beans that belong to the Model.

The standard MVC pattern describes an interaction between the Model and
the View so that when the Model’s data changes, it can immediately push
those changes out to the View so the user sees them. However, this is more
difficult to achieve in the Web application architecture. Consequently, the
View is commonly updated by the user requesting it.

22 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 22

The Struts configuration file
The Struts configuration file performs an important role in structuring your
Struts application. Although it is not really part of the Model, View, or
Controller, it does affect the functioning of the three layers. The configuration
file allows you to define exactly which of your Action subclasses should be
used under what circumstances and which ActionForm should be given to
that Action subclass. So you specify part of the Controller interaction in the
configuration file.

In addition, when the Controller decides which View to return to the user, it
chooses the particular View according to specifications in the configuration
file. Thus the configuration file actually defines many of the connections
between the MVC components. The beauty of the configuration file is that
you can change the connections without having to modify your code. The
configuration file does much more than defining connections, which is why
we devote all of Chapter 7 to the configuration file.

23Chapter 1: Starting with the Basics

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 23

24 Part I: Getting to Know Jakarta Struts

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 24

