
P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction
to Programming

Overview
A chapter covering the basics of VBScript is the best place to begin this book. Well, this is because of
the type of language VBScript is and the kind of people we see turning to it. In this chapter we are
going to try and give you a crash course in programming basics. You might not need this chapter
because you’ve come to VBScript with programming skills from another language (Visual Basic, C,
C++, Delphi, C#) and are already both familiar with and comfortable using programming
terminology. In that case, feel free to skip this chapter and move on to the next one. However, if you
come from a nonprogramming background then this chapter will give you the firm foundation you
need to begin using VBScript confidently.

If you’re still reading, chances are you fall into one of three distinct categories:

❑ You’re a Network/Systems administrator who probably wants to use VBScript and the
Windows Script Host to write logon scripts and automate administration tasks.

❑ You might be a Web designer who feels the need to branch out and increase their skill set,
perhaps in order to do some ASP work.

❑ You’re interested in programming (possibly Visual Basic) and want to check out programming
before getting too deeply involved.

Programming is a massive subject. Over the years countless volumes have been written about it,
both in print and on the Internet. In this chapter, in a single paragraph, we might end up
introducing several unfamiliar concepts. We’ll be moving pretty fast, but if you read along carefully,
trying out your hand at the examples along the way, you’ll be just fine.

Also, please bear in mind that there’s going to be a lot that we don’t cover here, such as:

❑ Architecture

❑ System design

❑ Database design

CO
PYRIG

HTED
 M

ATERIA
L



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

❑ Documenting code

❑ Advanced testing and rollout

Think of this chapter as a brief introduction to the important building blocks of programming. It certainly
won’t make you an expert programmer overnight, but what it hopefully will give you is the know-how
you’ll need in order to get the most out of the rest of the book.

Variables and Data Types
In this section, we’re going to be moving quickly through some of the most basic concepts of
programming. In particular:

❑ Variables

❑ Comments

❑ Using built-in VBScript functions

❑ Syntax issues

The first thing you need to know about is variables. Quite simply, a variable is a place in the computer
memory where your script holds a piece (or pieces) of information. Since computers work with data,
we’ll be using that word instead of information but the concept is the same. The data stored in a variable
can be pretty much anything. It may be something simple, like a small number, like 4. It can be more
complex, like a floating-point number such as 2.3. Or it could be a much bigger number like 981.12932134.
Or it might not be a number at all and could be a word or a combination of letters and numbers. In fact, a
variable can store pretty much anything you want it to store.

Behind the scenes, the variable is a reserved section of the computer’s memory, a temporary place to store
data. Memory is temporary—things stored there are not stored permanently. For permanent storage you
use the hard drive. Since memory is a temporary storage area, and since variables are stored in the
computer’s memory, they are therefore also temporary. Your script will use variables to store data
temporarily that the script needs to keep track of for later use. If your script needs to store that data
permanently, it would store it in a file or database on the computer’s hard disk.

In order to make it easier for the computer to keep track of the millions of bits of data that are stored in
memory at any given moment, the memory is broken up into chunks. Each of those chunks is exactly the
same size, and is given a unique address. Don’t worry about what the memory addresses are or how you
use them because you won’t need to know any of that to use VBScript, but it is useful to know that a
variable is a reserved set of one or more chunks. Also, different types of variables take up different
amounts of memory.

In your VBScript program, a variable usually begins its lifecycle by being declared (or dimensioned)
before use.

Note: It is not required that you have to declare all of the variables you use. VBScript by default allows you
to use undeclared variables. However, we strongly recommend that you get into the good habit of declaring
all of the variables you use in your scripts. Declaring variables before use makes code easier to read and to
debug later.

2



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

By declaring variables you also give them a name in the process. Here’s an example of a variable
declaration in VBScript.

Dim YourName

By doing this, what you in factdoing is giving the computer an instruction to reserve some memory space
for you and give that chunk the name YourName. From now on, the computer (or, more accurately, the
VBScript script engine) keeps track of that memory for you, and whenever you use the variable name
YourName, it will know what you’re talking about.

Variables are essential to programming. Without them you have no way to hold all the data that your
script will be handling. Every input into the script, output from the script, and process within the script
uses variables. They are the computer’s equivalent of the sticky notes that we leave all over the place with
little bits of information on them. All the notes are important (otherwise why write them?) but they are
also temporary. Some might become permanent (so you take a phone number and write it down in your
address book or PDA), while others are thrown away after use (say, after reminding you do something).
This is how it works with variables too. Some hold data that you might later want to keep, while others
are just used for general housekeeping and are disposed of as soon as they’re used.

In VBScript, whenever you have a piece of information that you need to work with, you declare a
variable using the exact same syntax that we showed you a moment ago. At some point in your script,
you’re going to need to do something with the memory space you’ve allocated yourself (otherwise, what
would be the point of declaring it?) And what you do with a variable is place a value in it. This is called
“initializing” the variable. Sometimes you initialize a variable with a default value. Other times, you
might ask the user for some information, and initialize the variable with whatever the user enters.
Alternatively, you might open a database and use a previously stored value to initialize the
variable.

Note: When we say “database”we don’t necessarily mean an actual database but any store or data—it
might be an Internet browser cookie or a text file that we get the data from.

Initializing the variable gives you a starting point. After it has been initialized, you can begin making use
of the variable in your script.

Here’s a very simple VBScript example.

Dim YourName
' Above we dimensioned the variable
YourName = InputBox("Hello! What is your name?")
' Above we ask for the user's name and initialize the variable
MsgBox "Hello " & YourName & "! Pleased to meet you."
' Above we display a greeting containing the user's name

Quite rightly, you’re now probably wondering what all this code means. Last time we showed you one
line and now it’s grown to six.

All of the examples in this chapter are designed so that you can run them using the Windows Script Host
(WSH). The WSH is a scripting host that allows you to run VBScript programs within Windows. WSH
will allow you to try out these example programs for yourself. You may already have WSH installed. To
find out, type the above example script into a text editor, save the file as TEST.VBS (it must have the

3



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

.VBS extension, and not a .TXT), and double-click the file in Windows Explorer. If the script runs, then
you’re all set. If Windows does not recognize the file, then you’ll need to download and install WSH from
http://msdn.microsoft.com/scripting.

You already know what the first line of code does. It declares a variable for use called YourName.

The second line in our code is a comment. In VBScript, any text that is preceded by the single quote
character (') is treated as a comment. What this means is that the VBScript script engine will completely
ignore the text. So, if the VBScript engine just ignores any text typed after the single quote character, why
bother typing it in at all? It doesn’t contribute to the execution of the script, right? This is absolutely
correct, but don’t forget one of the most important principles of programming: It is not just computers
that may have to read script. It is equally important to write a script with human readers in mind as it is
to write with the computer in mind.

Of course, none of this means that we are for one moment forgetting that when we are writing our scripts,
we must write them with the computer (or, more specifically, the script engine) in mind. If we don’t type
the code correctly (that is, if we don’t use the proper syntax), the script engine won’t be able to execute
the script. However, humans are also involved in programming. Once you’ve written some useful scripts,
you’re probably going to have to go back to make some changes to a script you wrote six months or a
year ago. If you didn’t write that code with human readers in mind as well as a computer reader, it could
be pretty difficult to figure out what you were thinking and how you decided to solve the problems at the
time you wrote the script. Things can get worse. What happens when you or one of your coworkers has
to make some changes to a script you wrote many months ago? If you did not write that script to be both
readable and maintainable, others that useyour code will encounter difficulties deciphering thecode—no
matter how well written the actual computer part of the code is.

Adding comments to your code is just one part of making sure code is clear and readable. There are many
other things that you can do:

❑ Choosing clear, meaningful variable names

❑ Indenting code for clarity

❑ Making effective use of white space

❑ Organizing the code in a logical manner

All of these aid human-readability and we’ll be covering all of these later, but clear, concise comments are
by far the most important. However, too much of a good thing is never good and the same is true for
comments. Overburdening code with comments doesn’t help. Remember that if you are scripting for the
Web that all the code, including the comments, are downloaded to the browser and so unnecessary
comments may adversely affect download times.

We’ll discuss some good commenting principles later in this chapter, but for now just be aware of the fact
that the comment we have in line 2 of our script is not really a good comment for everyday use. This is
because, to any semi-experienced programmer, it is all too obvious that what we are doing is declaring
the YourName variable on the line above. However, throughout this book you will often see the code
commented in a similar way. This is because the point of our code is to instruct the reader in how a
particular aspect of VBScript programming works. The best way for us to do that is to add comments to
the code directly. It removes ambiguity and keeps the code and comments together.

4



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

Also worth noting is that comments don’t have to be on a separate line. Comments can also follow the
code, like so :

Dim YourName ' initialize the variable
YourName = InputBox("Hello! What is your name?") ' ask for the user's name
MsgBox "Hello " & YourName & "! Pleased to meet you." ' display a greeting

This works in theory but it isn’t as clear as keeping the comments on separate lines in the script.

OK, back to the script. Take a look at line 3.

YourName = InputBox("Hello! What is your name?")

Here we are doing two things at once. First, we’re initializing the variable. We could do it directly, like this:

YourName = "Fred"

However, the drawback with this is that we are making the arbitrary decision that everyone is called
Fred, which is ideal for some applications but not for others. If we wanted to assign a fixed value to a
variable, such as a tax rate, this would be fine.

Dim TaxRate
TaxRate = 17.5

However, we want to do something that gives the user a choice, which is why we employ the use of a
function, called InputBox. We’ll be looking at this function and all the others in later chapters, but for
now all you need to know is that InputBox is used to display a message in a dialog box, and it waits for
the user to input text or click a button. The InputBox generated is displayed in Figure 1-1.

Figure 1-1

The clever bit is what happens to the text that the user types into the input box displayed—it is stored in
the variable YourName.

Line is another comment. Line 5 is more code. Now that we’ve initialized this variable, we’re going to do
something useful with it. MsgBox is another built-in VBScript function that you will probably use quite a
lot during the course of your VBScript programming. Using the MsgBox function is a good way to
introduce the programming concept of passing function parameters, also known as arguments. Some
functions don’t require you to pass parameters to them while others do. This is because some functions
(take the Date function as an example—this returns the current date based on the system time) do not
need any additional information from you in order to do their job. The MsgBox function, on the other

5



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

hand, displays a piece of information to the user in the form of a dialog box, like the one shown in
Figure 1-2.

Figure 1-2

You have to pass MsgBox a parameter because on its own it doesn’t have anything useful to display (in
fact, it will just bring up a blank pop-up box). The MsgBox function actually has several parameters, but
for now we’re just going to look at one. All of the other parameters are optional parameters.

Take another look at line 5 and you’ll probably notice the ampersand (&). The ampersand is a VBScript
operator, and is used to concatenate (join) pieces of text together. To concatenate simply means to “string
together.” This text can take the form of either a literal or a variable. A literal is the opposite of a variable.
A variable is so named because it is exactly that—a variable—and can change throughout the lifetime of
the script (a script’s lifetime is the time from when it starts executing, to the time it stops executing).
Unlike a variable, a literal cannot change during the lifetime of the script. Here is line 5 of the script
again.

MsgBox "Hello " & YourName & "! Pleased to meet you."

An operator is a symbol or a word that you use within your code that is usually used to change or test a
value. Other operators include the standard mathematical operators (+, -, /, *), and the equals sign (=),
which can actually be used in either a comparison or an assignment. So far, we have used the equals sign
as an assignment operator. Later on you’ll find out more about operators.

Let’s now take a closer look at variables. Remember how we said that a variable is a piece of reserved
memory? One question you might have is how does the computer know how large to make that piece of
memory? Well, again, in VBScript this isn’t something that you need to worry about and it is all handled
automatically by the VBScript engine. You don’t have to worry in advance about how big or small you
need to make a variable. You can even change your mind and the VBScript engine will dynamically
change and reallocate the actual memory addresses that are used up by a variable. For example, take a
quick look at this VBScript program.

' First declare the variable
Dim SomeVariable

' Initialize it with a value
SomeVariable = "Hello, World!"
MsgBox SomeVariable

' Change the value of the variable to something larger
SomeVariable = "Let's take up more memory than the previous text"
MsgBox SomeVariable

6



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

' Change the value again
SomeVariable = "Bye!"
MsgBox SomeVariable

Each time the script engine comes across a variable, the engine assigns it the smallest chunk of memory it
needs. Initially the variable contains nothing at all so needs little space but as we initialize it with the
string "Hello, World!" the VBScript engine asks the computer for more memory to store the text. But
again it asks for just what it needs and no more. (Memory is a precious thing and not to be wasted.) Next,
when we assign more text to the same variable, the script engine must allocate even more memory, which
it again does automatically. Finally, when we assign the shorter string of text, the script engine reduces
the size of the variable in memory to conserve memory.

One final note about variables: Once you’ve assigned a value to a variable, you don’t have to throw it
away in order to assign something else to the variable as well. Take a look at this example.

Dim SomeVariable

SomeVariable = "Hello"
MsgBox SomeVariable

SomeVariable = SomeVariable & ", World!"
MsgBox SomeVariable

SomeVariable = SomeVariable & " Goodbye!"
MsgBox SomeVariable

Notice how in this script, we each time keep adding the original value of the variable and adding some
additional text to it. We tell the script engine that this is what we wanted to do by also using the name of
the SomeVariable variable on the right side of the equals sign, and then concatenating its existing value
with an additional value using the ampersand (&) operator. Adding onto the original value works with
numbers too (as opposed to numbers in strings) but you have to use the + operator instead of the &
operator.

Dim SomeNumber

SomeNumber = 999
MsgBox SomeNumber

SomeNumber = SomeNumber + 2
MsgBox SomeNumber

SomeNumber = SomeNumber + 999
MsgBox SomeNumber

Here are the resulting message boxes generated by this code. The first is shown in Figure 1-3.

Figure 1-3

7



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

The second message box is shown in Figure 1-4.

Figure 1-4

Figure 1-5 shows the final message box.

Figure 1-5

There are several different types of data that you can store in variables. These are called data types and so
far we’ve seen two:

❑ String

❑ Integer

Note: We’ve also seen a single-precision floating-point number too in the tax rate example.

We’ll be covering all of them later on in the book. For now, just be aware that there are different data types
and that they can be stored in variables.

Flow Control
When you run a script that you have written, the code executes in a certain order. This order of execution
is also known as flow. In simple scripts such as the ones we looked at so far, the statements simply execute
from the top to down. The script engine starts with the first statement in the script, executes this, then
moves on to the next one, then the next one, and so on until the script reaches the end. The execution
occurs this way because the simple programs we’ve written so far do not contain any branching or
looping code.

Branching
Take a look at a script that we used earlier.

Dim YourName
'Above we initialized the variable

8



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

YourName = InputBox("Hello! What is your name?")
'Above we ask for the user's name and initialize the variable
MsgBox "Hello " & YourName & "! Pleased to meet you."
'Above we display a greeting containing the user's name

If you save this script in a file with a .vbs file and then execute it using the Windows Script Host, all of
the statements will be executed in order from the first statement to the last.

Note that we say that all of the statements will be executed. However, this isn’t what you always want.
There are techniques that we can use to cause some statements to be executed, and some not, depending
on certain conditions. This technique is called branching.

VBScript supports a few different branching constructs, and we will cover all of them in detail in a later
chapter on flow control, but we’re only going to cover the simplest and most common one here, which is
the If...Else...End If construct.

Take a look at this modified code example.

Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

MsgBox Greeting

OK, let’s take a trip through the code.

Dim YourName
Dim Greeting

Here we declare the two variables that we are going to be using.

YourName = InputBox("Hello! What is your name?")

Here we ask the user for some input, again using the InputBox function. This function expects one
required parameter, the prompt text (the text that appears on the input box). It can also accept several
optional parameters. Here we’re only going to use the one required parameter.

Note that the parameter text that we passed "Hello! What is your name?" is displayed as a prompt
for the dialog box. The InputBox function returns the value that the user types in, if any. If the user does
not type anything in, or clicks the Cancel button (both do the same thing), then InputBox will return a
zero-length string, which is a strange kind of programming concept that basically means that it returns
text that doesn’t actually contain any text. Our script stores the result of the InputBox function in the
YourName variable.

9



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

Next we come to the actual loop we are going to use.

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

This code presents the VBScript engine with an option that is based on what the user typed (or didn’t
type) into the input box. The first line tests the input from the user. It tests to see if the input that is stored
in the variable YourName is a zero-length string. If it is, the next line of code is run and the variable
Greeting is assigned a string.

Figure 1-6 shows the message displayed if the user doesn’t type his or her name into the InputBox.

Figure 1-6

What happens if the user does (as we expect) type something into the input box? Well, this is where the
next line comes in.

Else

You can actually begin to read the code and in fact doing this helps it to make sense. What the whole loop
actually means is that if the value of variable YourName is a zero-length string then assign the variable
Greeting with one value; however, if it contains something else, do something else (assign Greeting a
different value).

The final line of the code uses the MsgBox function to display the value of the variable Greeting.

Notice that both lines of code assign a value to the Greeting variable. However, only one of these lines
will actually execute in any one running of the script. This is because our If...Else...End If block
makes an either/or decision. Either a given condition is True, or it is False. There’s no way it can be
neither (not a string that contains text nor a zero-length string) or both (a zero-length string that contains
text). If it is True, then the script engine will execute the code between the If and Else statements. If it
is False, then it will execute the code between the Else and End If statements.

So, what the complete script does is test the input, and then executes different code, depending on the
result of that test, and hence the term branching. Depending on the test of the input, the flow of execution
is either going to go one way, or the other. Using this allows your script to adapt to the unpredictable
nature of the input. Compare out intelligent script to this one, which by comparison looks pretty lame.

Dim YourName
Dim Greeting

10



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

YourName = InputBox("Hello! What is your name?")

Greeting = "Hello, " & YourName & ", great to meet you."

MsgBox Greeting

This script is just plain dumb because it does not contain any branching logic to test the input; so when
the user does something unpredictable, like clicking the Cancel button, or not entering any name at all,
the script does not have the ability to adapt. Compare this to our intelligent script, which is capable of
adapting to the unpredictability of input by testing it with If...Else...End If branching.

Before we move on to looping, we should mention a few other things about If...Else...End If.

First, the block of code containing the If...Else...End If is known as a block of code. A block is a
section of code that has a beginning and an end, and it usually contains keywords or statements at both
the beginning and the end. In the case of If...Else...End If, the If statement marks the beginning
of the block, while the End If marks the end of the block.

The script engine requires these beginning and ending statements, and if you omit them, the script engine
won’t understand your code and won’t allow your script to execute. Over the course of this book you will
encounter many different types of code blocks in VBScript.

Note: Sometimes, just to confuse matters, the term “block of code”is often used informally to describe any
group of lines of code.

Second, notice also that the lines of code that are inside the block itself are indented by 4spaces. This is an
extremely important concept but not for the reason you might think. This indenting has nothing
whatsoever to do with the script engine—it doesn’t care whether you add 4spaces, 44spaces, or none at
all. This indenting is for the benefit of any humans who might be reading your code. For example, the
following script is completely legal and will execute just fine.

Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

MsgBox Greeting

This code is, however, very difficult to read. As a general rule of thumb, you indent code by 4 spaces
whenever a line or series of lines is subordinate to the lines above and below it. For example, the lines
after the If clause and the Else clause belong inside the If...Else...End If block, so we indent
them to visually suggest this.

Presentation, while having no bearing whatsoever on how the computer or script engine handles your
code, is very important when it comes to how humans read it. The presentation of your code should

11



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

visually suggest its logical structure. In other words, without even reading it, we can look at the code and
get a sense for how it is organized and how it works. By seeing the indentations inside the
If...Else...End If block, we cannot just read the code but “see” the branching logic at that point in
the code. Indenting is only one element of programming style, but learning and following proper style
and layout is essential for any programmer who wants to be taken seriously.

Third, the Else part of the block is optional. Sometimes you want to test for a certain condition, and if
that condition is True, execute some code, but if it’s False, there’s no code to execute. For example, we
could add another If...End If block to our script.

Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

If YourName = "Fred" Then
Greeting = Greeting & " Nice to see you Fred."

End If

MsgBox Greeting

Fourth, If...Else...End If can be extended through the use of the ElseIf clause, and through
nesting. Nesting is the technique of placing a block of code inside of another block of code of the same type.

The following variation on our script illustrates both concepts.

Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

ElseIf YourName = "abc" Then
Greeting = "That's not a real name."

ElseIf YourName = "xxx" Then
Greeting = "That's not a real name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

If YourName = "Fred" Then
Greeting = Greeting & " Nice to see you Fred."

End If

End If

MsgBox Greeting

12



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

Once again, see how the way that the code has been indented helps us to identify which lines of code are
subordinate to the lines above them. As code gets more and more complex, proper indenting of the code
becomes vital as it will become harder to follow.

Finally (and this may seem obvious by now), even though the branching logic you are adding to the code
tells the script to execute certain lines of code while not executing others, all the code must still be
interpreted by the script engine (including the code that’s not executed). If any of the code that’s not
executed contains any syntax errors, the script engine will still produce an error message to let you know.

Looping
Branching allows you to tell the script to execute some lines of code, but not others. Looping, on the other
hand, allows you to tell the script to execute some lines of code over and over again. This is particularly
useful in two situations:

❑ When you want to repeat a block of code until a condition is True or False

❑ When you want to repeat a block of code a finite number of times

There are many different looping constructs, but here we’re going to focus on only two of them:

❑ The basic Do...Loop While loop

❑ The basic For...Next loop

We’ll being by taking a look at the Do...Loop While construct and how it can be used to repeatedly
execute a block of code until a certain condition is met. Take a look at this modification of our example
script:

Dim Greeting
Dim YourName
Dim TryAgain

Do
TryAgain = "No"

YourName = InputBox("Please enter your name:")

If YourName = "" Then
MsgBox "You must enter your name to continue."
TryAgain = "Yes"

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

Loop While TryAgain = "Yes"

MsgBox Greeting

Notice the block of code that starts with the word Do and ends with the line that starts with the word
Loop. The indentation should make this code block easy to identify. This is the definition of our loop. The

13



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

code inside the loop will keep being executed until at the end of the loop the TryAgain variable equals
"No".

We are using the TryAgain variable to control the loop. The loop starts at the word Do. At the end of the
loop, if the TryAgain variable equals "Yes", then all the code, starting at the word Do, will execute again.

Notice that at the top of the loop we initialize the TryAgain variable to "No". It is absolutely essential
that this initialization take place inside the loop (that is, between the Do and Loop statements). This way,
the variable is reinitialized every time a loop occurs. If you didn’t do this, you would end up with what’s
called an infinite loop. They are always bad. At best, the user is going to have to exit out of the program in
an untimely (and inelegant) way because, as the name suggests, the loop is infinite. At worse, it can crash
the system. You want neither and you want to try to avoid both in your code.

It’s time to take a look at why the TryAgain = "No" line is essential to preventing an infinite loop. We’ll
go through the script line by line.

Do

This first line starts the loop. This tells the script engine that we are starting a block of code that will
define a loop. The script engine will expect to find a Loop statement somewhere further down in the
script. This is similar to the If...End If code block because the script engine expects the block to be
defined with beginning and ending statements. The Do statement on a line all by itself means that the
loop will execute at least once. Even if the Loop While statement at the end of the block does not result in
a loop around back to the Do line, the code inside this block is going to be executed at least one time.

Do
TryAgain = "No"

Let’s move on to the second line of code. Here we are initializing our “control” variable. We call it the
“control” variable because this variable will ultimately control whether or not the loop loops around
again. We want to initialize this variable to "No" so that, by default, the loop will not loop around again.
Only if a certain condition is met inside the loop will we set TryAgain to "Yes". This is yet another
strategy in our ever-vigilant desire to expect the unexpected.

Do
TryAgain = "No"

YourName = InputBox("Please enter your name:")

This line of code should look familiar. We are using the InputBox function to ask the user to enter a
name. We store the return value from the function in the YourName variable. Whatever the user types in,
unless they type nothing, will be stored in this variable. Put another way, our script is receiving some
external input—and remember that we said input is always unpredictable.

Do
TryAgain = "No"

YourName = InputBox("Please enter your name:")

If YourName = "" Then
MsgBox "You must enter your name to continue."

14



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

TryAgain = "Yes"
Else

Greeting = "Hello, " & YourName & ", great to meet you."
End If

Now we are testing our input. The line If YourName = "" Then tests to see if the user typed in their
name (or at least some text). If they typed something in, the code immediately after the Else line will
execute. If they didn’t type in anything (or if they clicked the Cancel button), then the YourName
variable will be empty, and the code after the If line will execute instead.

If the user didn’t type anything into the input box, we will display a message informing them that they
have done something we didn’t want them to. We then set the TryAgain variable (our control variable)
to "Yes" and send them around the loop once more and ask the users for their name again (wherein this
time they will hopefully type something into the input box).

If the user did type in their name, then we initialize our familiar Greeting variable. Note that in this
case, we do not change the value of the TryAgain variable. This is because there is no need to loop
around again because the user has entered a name. The value of TryAgain is already equal to "No", so
there’s no need to change it.

Do
TryAgain = "No"

YourName = InputBox("Please enter your name:")

If YourName = "" Then
MsgBox "You must enter your name to continue."
TryAgain = "Yes"

Else
Greeting = "Hello, " & YourName & ", great to meet you."

End If

Loop While TryAgain = "Yes"

MsgBox Greeting

Now we encounter the end of our loop block. What this Loop line is essentially telling the script engine is
“If the TryAgain variable equals "Yes" at this point, then go back up to the Do line and execute all that
code over again.” If the user entered his or her name, then the TryAgain variable will be equal to "No".
Therefore, the code will not loop again, and will continue onto the last line.

MsgBox Greeting

If the user did not enter his or her name, then TryAgain would be equal to "Yes", which would mean
that the code would again jump back to the Do line. This is where the reinitialization of the TryAgain
variable to "No" is essential because if it wasn’t done then there’s no way for TryAgain to ever equal
anything but "Yes". And if TryAgain always equals "Yes", then the loop will keep going around and
around forever. This results in total disaster for your script, and for the user.

15



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

Next we’ll take a quick look at the For...Next loop. In this kind of loop, we don’t need to worry about
infinite loops because the loop is predefined to execute only a certain number of times.

Here’s a simple (if not very useful) example.

Dim Counter

MsgBox "Let's count to ten. Ready?"

For Counter = 1 to 10
MsgBox Counter

Next

MsgBox "Wasn't that fun?"

This loop is similar to the previous loop. The beginning loop block is defined by the For statement, and
the end is defined by the Next statement. This loop is different because you can predetermine how many
times it will run; in this case, it will go around exactly ten times. The line For Counter = 1 to 10
essentially tells the script engine, “Execute this block of code as many times as it takes to count from 1 to
10, and use the Counter variable to keep track of your counting. When we’ve gone through this loop ten
times, stop looping and move on.”

Notice that every time the loop goes around (including the first time through), the Counter variable
holds the value of the current count. The first time through, Counter equals 1, the second time through it
equals 2, and so on up to 10. It’s important to note that after the loop is finished, the value of the Counter
variable will be 11, one number higher than the highest value in our For statement. The reason for this is
that the Counter variable is incremented at the end of the loop, after which the For statement tests the
value of index to see if it is necessary to loop again.

Giving you a meaningful example of how to make use of the For...Next loop isn’t easy because you
haven’t been exposed to much VBScript just yet, but here’s an example that shows you don’t need to
know how many times the loop needs to run before you run it.

Dim Counter
Dim WordLength
Dim WordBuilder

WordLength = Len("VBScript is great!")

For Counter = 1 to WordLength
MsgBox Mid("VBScript is great!", Counter, 1)
WordBuilder = WordBuilder & Mid("VBScript is great!", Counter, 1)

Next

MsgBox WordBuilder

For example, the phrase "VBScript is great!" has exactly 18 letters. If you first calculated the number
of letters in the phrase, you could use that number to drive a For...Next loop. However, this code uses
the VBScript Len() function to calculate the length of the phrase used. Inside the loop, it uses the Mid()
function to pull one letter out of the phrase one at a time and display them separately. The position of that

16



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

letter is controlled by the counter variable, while the number of letters extracted is defined by the length
argument at the end. It also populates the WordBuilder variable with each loop, adding each new letter
to the previous letter or letters, rebuilding the phrase.

Here’s a variation of the last example: here giving the user the opportunity to type in a word or phrase to
use, proving that there’s nothing up our sleeve when it comes to knowing how many times to loop the
code.

Dim Counter
Dim WordLength
Dim InputWord
Dim WordBuilder

InputWord = InputBox ("Type in a word of phrase to use")

WordLength = Len(InputWord)

For Counter = 1 to WordLength
MsgBox Mid(InputWord, Counter, 1)
WordBuilder = WordBuilder & Mid(InputWord, Counter, 1)

Next

MsgBox WordBuilder & " contains " & WordLength & " characters."

Figure 1-7 shows the final summary message generated by the code. Notice how well the information is
integrated.

Figure 1-7

Operators
An operator acts on one or more operands when comparing, assigning, concatenating, calculating, and
performing logical operations.

Say you want to calculate the difference between two variables X and Y and save the result in variable Z.
These variables are the operands and to find the difference you use the subtraction operator like this:

Z = X - Y

Here we used the assignment operator (=) to assign the difference between X and Y, which was found by
using the subtraction operator (-).

17



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

Operators are one of the single-most important parts of any programming language. Without them, you
would not be able to assign values to variables or perform calculations or comparisons. In fact, you
wouldn’t be able to do much at all.

There are different types of operators and they each serve a specific purpose:

❑ The assignment (=) operator is the most obvious and is simply used for assigning a value to a
variable or property.

❑ The arithmetic operators are all used to calculate a numeric value, and are normally used in
conjunction with the assignment operator and/or one of the comparison operators.

❑ The concatenation operators are used to concatenate (“join together”) expressions.

❑ The comparison operators are used for comparing variables and expressions against other
variables, constants, or expressions.

❑ The logical operators are used for performing logical operations on expressions; all logical
operators can also be used as bitwise operators.

❑ The bitwise operators are used for comparing binary values bit –by bit; all bitwise operators can
also be used as logical operators.

Operator Precedence
When you have a situation where more than one operation occurs in an expression, the operations are
normally performed from left to right. However, there are several rules.

Operators from the arithmetic group are evaluated first, then concatenation, comparison, and finally
logical operators. This is the set order in which operations occur (operators in brackets have the same
precedence):

❑ ∩,−, (*, /), \, Mod, (+, −)

❑ &

❑ =, <>, <, >, <=, >=, Is

❑ Not, And, Or, Xor, Eqv, Imp

This order can be overridden by using parentheses. Operations in parentheses are evaluated before
operations outside the parentheses, but inside the parentheses, the normal precedence rules still apply.

Take a look at the following two statements.

A = 5 + 6 * 7 + 8
A = (5 + 6) * (7 + 8)

They look the same but they’re not. According to operator precedence, multiplication is performed before
addition, so the top line gives A the value 55 (6 * 7 = 42 + 5 + 8 = 55). By adding parentheses, we force
the additions to be evaluated first and A becomes equal to 165.

18



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

Organizing and Reusing Code
So far, the scripts we’ve worked with have been fairly simple in structure. The code has been all together
in one unit. We haven’t been doing anything all that complicated, so it has been easy to see all the code
right there in front of us, in just a few lines. The execution of the code is easy to follow because it starts at
the top of the file, with the first line, and then continues downward until it reaches the last line.
Sometimes, at certain points, choices made will have redirected the code using branching, or sections of
code will have been repeated using loops.

However, when you come to writing a script that will actually do something useful, it is likely your code
is going to get quite a bit more complex. As you add more and more code to the script, it will become
harder and harder to read it all in one chunk. If printed on paper, your scripts would probably stretch
across multiple pages. As the code gets more and more complex, it becomes easier for bugs and errors to
creep-in, and the poor layout of the code will make these harder to find and fix. The most common
technique programmers use to manage complexity is called modularization. This is a big, fancy word, but
the concept behind it is really quite simple.

Modularization is the process of organizing your code into modules, which we can also think of as
building blocks. You can apply the principles of modularity to create your own personal set of
programming building blocks, which you can then use to build programs that are more powerful, more
reliable, easier to debug, and easier for you and your fellow programmers to maintain and reuse. When
you take your code and divide it up into modules, your ultimate goal is to create what are known as black
boxes. A black box is any kind of device that has a simple, well-defined interface and that performs some
discrete, well-defined function. A black box is so called because you don’t need to see what’s going on
inside it. All you need to know is what it does, what its inputs are, and (sometimes) what its outputs are.

A wristwatch is a good example of a black box. It has inputs (buttons) and outputs (time) and does a
simple function well while at the same time you don’t need to worry about how the innards of the watch
work in order to be able to tell the time.

The most basic kind of black box programmers use to achieve modularity is the procedure. A procedure is
a set of code that (ideally) performs a single function. Good examples of procedures are:

❑ Code that adds two numbers together

❑ Code that processes a string input

❑ Code that handles saving to a file

Bad examples include:

❑ Code that takes an input, processes it, and also handles saving to a file

❑ Code that handles file access and database access

We have been using procedures throughout this chapter, but they have been procedures that VBScript
provides for us. Some of these procedures require input, some don’t. Some of these procedures return a
value, some don’t. But all of the procedures we have used so far (MsgBox(), InputBox(), and so on)
are black boxes. They perform one single well-defined function, and they perform it without you having
to worry about how they perform their respective functions. In just a moment, we’re going to see how to
extend the VBScript language by writing our own procedures.

19



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

Before we begin though, it’s time to get some of the terminology cleared up. Procedure is a generic term
that can be used to describe either a function or a subprocedure. We touched on some of this confusing
terminology earlier, but a function is simply a procedure that returns a value. Len() is a function. You
pass it some text, and it returns the number of characters in the string (or the number of bytes required to
store a variable) back to you. Functions do not always require input, but they often do.

A subprocedure is a procedure that does not return a value. We have been using MsgBox() as a
subprocedure. We pass it some text, and it displays a message on the screen comprising of that text. It
does not return any kind of value to our code. All we need to know is that it did what we asked it to do.
Just like functions, procedure may or may not require input.

Some of the code that follows will look familiar to you—that’s because we’ve already shown it to you
earlier. Here’s how to turn code into a function.

Function PromptUserName

' This Function prompts the user for their name.
' If the user enters nothing it returns a zero-length string.
' It incorporates various greetings depending on input by the user.
Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

ElseIf YourName = "abc" Then
Greeting = "That's not a real name."

ElseIf YourName = "xxx" Then
Greeting = "That's not a real name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

If YourName = "Fred" Then
Greeting = Greeting & " Nice to see you Fred."

End If

End If

MsgBox Greeting

PromptUserName = YourName

End Function

The first thing to take note of in the code is the first and last lines. While not groundbreaking, the first and
last lines are what defines a function. The first line defines the beginning of the function and gives it a
name while the last line defines the end of the function. Based on our earlier discussion of code blocks,
this should be a familiar convention by now. Looking at this now you should begin to realize that a
procedure is nothing but a special kind of code block. The code has to tell the script engine where it
begins, and where it ends. Notice also that we have given the function a clear, useful name that precisely

20



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

describes what this function does. Giving your procedures good names is one of the keys to writing
programs that are easy to read and maintain.

Notice also how we added a comment to the beginning of the procedure to describe what it does. Notice
that the comment does not describe how the function does what it does, only what it does. The code that
uses this function does not care how the function accomplishes its task; it only cares about inputs,
outputs, and predictability. It is vitally important that you add clear, informative comments such as this
to the beginning of your procedures, since they make it easy to determine what the function does. The
comment also performs one other valuable service to you and any other developer who wants to call this
function—it says that the function may return a zero-length string if the user does not enter his name.

Finally, notice how, in the second to last line, we treat the function name PromptUserName as if it were a
variable. When using functions (as opposed to subprocedures, which do not return a value), this is how
you give the function its return value. In a sense, what happens is that the function name itself is a
variable within the procedure.

Here is some code that uses the PromptUserName function.

Dim Greeting
Dim VisitorName

VisitorName = PromptUserName

If VisitorName <> "" Then
Greeting = "Goodbye, " & VisitorName & ". Nice to have met you."

Else
Greeting = "I'm glad to have met you, but I wish I knew your name."

End If

MsgBox Greeting

If you are using Windows Script Host as the host for this code, bear in mind that this code and the
PromptUserName function itself must be in the same .vbs script file.

Dim PartingGreeting
Dim VisitorName

VisitorName = PromptUserName

If VisitorName <> "" Then
PartingGreeting = "Goodbye, " & VisitorName & ". Nice to have met you."

Else
PartingGreeting = "I'm glad to have met you, but I wish I knew your name."

End If

MsgBox PartingGreeting

Function PromptUserName

' This Function prompts the user for their name.

21



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

' It incorporates various greetings depending on input by the user.
Dim YourName
Dim Greeting

YourName = InputBox("Hello! What is your name?")

If YourName = "" Then
Greeting = "OK. You don't want to tell me your name."

ElseIf YourName = "abc" Then
Greeting = "That's not a real name."

ElseIf YourName = "xxx" Then
Greeting = "That's not a real name."

Else
Greeting = "Hello, " & YourName & ", great to meet you."

If YourName = "Fred" Then
Greeting = Greeting & " Nice to see you Fred."

End If

End If

MsgBox Greeting

PromptUserName = YourName

End Function

As you can see, calling the PromptUserName function is pretty straightforward. Once you have written
a procedure, calling it is no different than calling a built-in VBScript procedure.

Procedures afford several key advantages that are beyond the scope of this discussion. However, here are
a few of the most important ones:

❑ Code such as the code we put in the PromptUserName function can be thought of as “generic,”
meaning that it can be applied to a variety of uses. Once you have created a discreet, well-defined,
generic function such as PromptUserName, you are free to reuse it any time you wish to prompt
the user for their name. Once you’ve written a well-tested procedure, you never have to write
that code again. Any time you need it, you just call the procedure. This is known as code reuse.

❑ When you call a procedure to perform a task rather than writing the code “in-line,” it makes that
code much easier to read and maintain. Increasing the readability, and therefore the
manageability and maintainability, of your code is a good enough reason by itself to break a block
of code out into its own procedure.

❑ When code is isolated into its own procedure, it greatly reduces the effects of changes to that
code. This goes back to the idea of the black box. As long as the procedure itself maintains its
predictable inputs and outputs, changes to the code inside of a procedure are insulated from
harming the code that calls the procedure. You can make significant changes to the procedure, but
as long as the inputs and outputs are predictable and remain unchanged, the code will work just
fine.

22



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

Top-Down versus Event-Driven
Before we leave this introduction to programming, it will be helpful to you if we shed light on the fact
that you will encounter two different models of programming in this book:

❑ Top-down programs

❑ Event-driven programs

The differences between top-down and event-driven have to do with both the way you organize your
code and how and when that code gets executed at runtime. As you get deeper into programming in
general, and VBScript in particular, this will become clearer, so don’t be alarmed if it seems a little vague
and doesn’t completely sink-in right now.

What we have been doing so far in this chapter is writing very simple top-down style programs. The
process is simple to follow:

❑ We write some code.

❑ The code is saved it in a script file.

❑ Windows Script Host is used to execute the script.

❑ The Script Host starts executing at the first line and continues to the last line.

❑ If a script file contains some procedure definitions (such as our PromptUserName function), then
the Script Host will only execute those procedures if some other code calls them.

❑ Once the Script Host reaches the last line of code, the lifetime of the script ends.

Top-down programs are very useful for task-oriented scripts. For example, you might write a script to
search your hard drive for all the files with the extension .HTM and copy all the names and file locations
to a file, formatted in HTML to act as a sitemap. Or you might write a script that gets executed every time
Windows starts and which randomly chooses a different desktop wallpaper bitmap file for that session of
Windows. Top-down programming is perfect for these kinds of scripts.

Event-driven code is different, and is useful in different contexts. As the name implies, event-driven code
only gets executed when a certain “event” occurs. Until the event occurs, the code won’t get executed. If a
given event does not occur during the lifetime of the script, the code associated with that event won’t be
executed at all. If an event occurs, and there’s no code associated with that event, then the event is
essentially ignored.

Event-driven programming is the predominant paradigm in Windows programming. Most of the
Windows programs you use every day were written in the event-driven model. This is because of the
graphical nature of Windows programs. In a graphical user interface (GUI), you have all sorts of buttons,
drop-down lists, fields in which to type text, and so on. For example, the word processor program
Microsoft Word is totally jam-packed with these. Every time a user clicks a button, chooses an item in a
list, or types some text into a field, an event is “raised” within the code. The person who wrote the
program may or may not have decided to write code in response to that event. However, if the program is
well written, an item such as a button for saving a file, which the user expects to have code behind it, will
indeed have code behind it (for example, code to save the file).

23



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

When a GUI-based program starts, there is almost always some top-down style code that executes first.
This code might be used to read a setting stored in the registry, prompt the user for a name and password,
load a particular file at startup or prompt to take the user through the setting up stages if this is the first
time the application has been run, and so on. Then a “form” typically comes up. The form contains all the
menus, buttons, lists, and fields that make up the user interface of the program. At that point, the
top-down style coding is done, and the program enters what is known as a wait state. No code is
executing at this point and the program just waits for the user to do something. From here on , it’s pretty
much all about events.

When the user begins to do something, the program comes to life again. Say the user clicks on a button.
The program raises the Click event for the button that the user clicked. The code attached to that event
starts to execute, performs some operations, and when it’s finished, the program returns to its wait state.
In-between event occurrences, the program just sits there, doing nothing.

As far as VBScript is concerned, the event-driven model is used heavily in scripting for the Web. Scripts
that run inside of HTML Web pages are all based on events. One script may execute when the page is
loaded, while another script might execute when the user clicks on a link or graphic. These “mini scripts”
are embedded in the HTML file, and are blocked-out in a syntax very similar to the one we used to define
the PromptUserName function in the previous section.

As you progress through the second half of this book, the finer points of event-driven programming will
become much clearer to you. However, just so you can see an example at this point, type the code below
into your text editor, save the file with a .HTM extension, and then select Open from the File menu in
Internet Explorer 5.0 or higher to open the file.

<html>
<head>
<title>Simple VBScript Example</title>
<script language="vbscript">

Sub ButtonClicked
window.alert("You clicked on the button!")

End Sub
</script>
</head>
<body>
<button name="Button1" type=BUTTON onclick="ButtonClicked">
Click Me If You Can!!!
</button>

</body>
</html>

Figure 1-8 shows the result of clicking on the button on the page. In this case it’s only a message box but it
could be much more.

Coding Guidelines
It’s a really good idea to get into healthy programming habits right from the beginning. As you continue
to hone your programming skills and possibly learn multiple languages, these habits will serve you well.
Your programs will be easier for you and your fellow developers to read, understand, and modify, and
they will also contain fewer bugs.

24



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

Figure 1-8

When you first get started writing code, you have to concentrate so hard on just getting the syntax correct
for the computer that it will be easy for you to forget about all the things you need to do in order to make
sure your code is human friendly as well. However, attentiveness early on will pay huge dividends in the
long run.

Expect the Unexpected
Always remember that anything that can happen probably will happen. The idea here is to code
defensively—preparing for the unexpected. You don’t need to become totally fixated on preparing for all
contingencies and remote possibilities, but you can’t ignore them either. You especially have to worry
about the unexpected when receiving input from the user, from a database, or from a file. Whenever
you’re about to perform an action on something, ask yourself questions: What could go wrong here?
What happens if the file is flagged Read Only? What happens if the file isn’t there? What happens if the
user doesn’t run the program from the right folder? What happens if the database table doesn’t have any
records? What happens if the registry keys I was expecting aren’t there? What happens if the user doesn’t
have the proper permission to carry out the operation? If you don’t know what might go wrong with a
given operation, find out through research or trial and error. Get others to try out your code and get their
feedback on how it worked for them, on their system configuration, and operating system. Don’t leave it
up to your users to discover how well (or not) your script reacts to something unexpected. A huge part of
properly preparing for the unexpected is the implementation of proper error handling, which we discuss
in detail later.

Always Favor the Explicit over the Implicit
When you are writing code, constantly ask yourself Is my intent clear to someone reading this code? Does
the code speak for itself? Is there anything mysterious here? Are there any hidden meanings? Are the
variable names too similar to be confusing? Even though something is obvious in your mind at the
moment you are typing in the code, it doesn’t mean it will be obvious to you six months or a year from
now—or to someone else tomorrow. Always endeavor to make your code as self-documenting as

25



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

possible, and where you fall short of that goal (which even the best programmers do—self-documenting
code can be an elusive goal), use good comments to make things more clear. Be wary of using too many
generics in code, such as x, y, and z as variable names and Function1, Function2, and Function3 as
function names. Instead, make them explicit. Use variable names such as UserName and TaxRate. When
naming a variable, use a name that will make it clear what that variable is used for. Be careful using
abbreviations. Don’t make variable names too short, but don’t make them too long either (10–16
characters is a good length, but ideal length is largely a matter of preference). Even though VBScript is not
case-sensitive, use mixed case to make it easier to distinguish multiple words within the variable name
(for example, UserName is easier to read than username).

When naming procedures, try to choose a name that describes exactly what the procedure does. If the
procedure is a function that returns a value, indicate what the return value is in the function name (for
example, PromptUserName). Try to use good verb–noun combinations to describe first, what action the
procedure performs, and second, what the action is performed on (for example, SearchFolders,
MakeUniqueRegistryKey, or LoadSettings). Good procedure names tend to be longer than good
variable names. Don’t go out of your way to make them longer, but don’t be afraid to either. Fifteen to
thirty characters for a procedure name are perfectly acceptable (they can be a bit longer since you
generally don’t type them nearly as much). If you are having trouble giving your procedure a good name,
that might be an indication that the procedure is not narrow enough—a good procedure does one thing,
and does it well.

That said, if you are writing scripts for Web pages that will be downloaded to a user’s browser, it is
sometimes necessary to use shorter variable and procedure names. Longer names mean larger files to
download. Even if you sacrifice some readability in order to make the file smaller, you can still make an
effort to make the names as descriptive as possible. There may, however, be times with Web scripts where
you might not want the code to be clear and easy to understand (at least for others). We’ll look at
techniques that you can employ to make scripts harder to follow for “script snoopers” while still allowing
you to work with them and modify them later.

Modularize Your Code into Procedures, Modules,
Classes, and Components

When you are writing code, you should constantly evaluate whether any given block of code might be
better if you moved it to its own function or subprocedure. Is the code you’re working on rather
complex? If so, break it into procedures. Are you using lots of And's and Or's in an If...End If
statement? Consider moving the evaluation to its own procedure. Are you writing a block of code that
you think you might need again in some other part of the script, or in another script? Move it to its own
procedure. Are you writing some code that you think someone else might find useful? Move it. This isn’t
a science and there are no hard and fast rules for code—after all, only you know what you want it to do.
Only you know if parts are going to be reused later. Only you know how complex something will turn
out. However, always keep an eye out for possible modularization.

Use the “Hungarian” Variable Naming Convention
You might hear programmers (especially C++ programmers) mention this quite a bit. While this is a bit
out of scope of this introductory discussion, it is still worth mentioning nonetheless. The Hungarian
naming convention involves giving variable names a prefix that indicates what the scope and data type of

26



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

A Quick Introduction to Programming

the variable are intended to be. So as not to confuse matters, we have not been using the Hungarian
convention in this chapter, but you will find that most programmers prefer this convention. Properly
used, it makes your programs much clearer and easier to write and read. We will list the standard prefixes
for scope and data type in Appendix B.

Don’t Use One Variable for More Than One Job
This is a big no-no and a common mistake of both beginner and experienced programmers alike (but the
fact that experienced programmers might have a bad habit does not make it any less bad). Each variable
in your script should have just one purpose. It might be very tempting to just declare a bunch of generic
variables with fuzzy names at the beginning of your script and then use them for multiple purposes
throughout your script—but don’t do it. This is one of the best ways to introduce very strange, hard to
track down bugs into your scripts. Giving a variable a good name that clearly defines its purpose will
help prevent you from using it for multiple purposes. The moral here is that while reusing variables
might seem like a total timesaver, it isn’t and can lead to hours of frustration and wasted time looking for
the problem.

Always Lay Out Your Code Properly
Always remember that good code layout adds greatly to readability later. Don’t be tempted to save time
early on by writing messy, hard to follow code because as sure as day turns to night, you will suffer if
you do.

Without reading a single word, you should be able to look at the indentations of the lines to see which
ones are subordinate to others. Keep related code together by keeping them on consecutive lines. Also,
don’t be frightened of white space in your code. Separate blocks of unrelated code by putting a blank line
between them. Even though the script engine will let you, avoid putting multiple statements on the same
line.

Also, remember to use the line continuation character (_) to break long lines into multiple shorter lines.

The importance of a clean layout that visually suggests the logic of the underlying code cannot be
overemphasized.

Use Comments To Make Your Code More Clear and
Readable, but Don’t Overuse Them

When writing code, strive to make it as self-documenting as possible. You can do this by following the
guidelines set out earlier. However, self-documenting code is hard to achieve and no one is capable of
100% self-documenting code. Everyone writes code that can benefit from a few little scribbles to serve as
reminders in the margins. The coding equivalents of these scribbles are comments. But how can you tell a
good comment from a bad comment?

Generally speaking, a good comment operates at the level of intent. A good comment answers the
questions What was the programmer trying to achieve with the code? Where does this code block fit in
with the overall script? Why did the programmer write this code? The answers to these questions fill in

27



P1: IML/FFX P2: KPE/FFX QC: IML/FFX T1: IML

WYO12-01 WY012-Kingsley WY012-Kingsley-v1.cls May 15, 2004 12:18

Chapter 1

the blanks that can never be filled by even the best, most pedantic self-documenting code. Good
comments are also generally “paragraph-level” comments. Your code should be clear enough that you do
not need a comment for each and every line of code it contains, but a comment that quickly and clearly
describes the purpose for a block of code allows a reader to scan through the comments rather than
reading every line of code. The idea is to keep the person who might be reading your code from having to
pore over every line to try and figure out why the code exists. Commenting every line (as you probably
noticed with the earlier examples) makes the code hard to follow and breaks up the flow too much.

Bad comments are generally redundant comments, meaning they repeat what the code itself already tells
you. Try to make your code as clear as possible so that you don’t need to repeat yourself with comments.
Redundant comments tend to add clutter and do more harm than good. Reading the code tells you the
how; reading the comments should tell you the why.

Finally, it’s a good idea to get into the habit of adding “tombstone” or “flower box” comments at the top
of each script file, module, class, and procedure. These comments typically describe the purpose of the
code, the date it was written, the original author, and a log of modifications.

' Adrian Kingsley-Hughes
' 27 Oct 2003
' This script prompts the user for their name.
' It incorporates various greetings depending on input by the user.
'
' Added alternative greeting
' Changed variable names to make them more readable

Summary
In this chapter we’ve taken a really fast-paced journey through the basics of programming. We’ve tried to
distill a whole subject (at least a book) into one chapter. We’ve covered an awful lot of ground but we’ve
also skimmed over or totally passed by a lot of stuff too. However, the information in this chapter will
have given you the basics you need to get started programming with VBScript and the knowledge and
confidence you need to be able to talk about programming with other programmers in a language they
understand.

28


