
P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

P A R T

I

Requirements, Realities,
and Architecture

1

CO
PYRIG

HTED
 M

ATERIA
L

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

2

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

C H A P T E R

1
Surrounding the

Requirements

Ideally, you must start the design of your ETL system with one of the tough-
est challenges: surrounding the requirements. By this we mean gathering
in one place all the known requirements, realities, and constraints affecting
the ETL system. We’ll refer to this list as the requirements, for brevity.

The requirements are mostly things you must live with and adapt your
system to. Within the framework of your requirements, you will have many
places where you can make your own decisions, exercise your judgment,
and leverage your creativity, but the requirements are just what they are
named. They are required. The first section of this chapter is intended to
remind you of the relevant categories of requirements and give you a sense
of how important the requirements will be as you develop your ETL system.

Following the requirements, we identify a number of architectural deci-
sions you need to make at the beginning of your ETL project. These decisions
are major commitments because they drive everything you do as you move
forward with your implementation. The architecture affects your hardware,
software, coding practices, personnel, and operations.

The last section describes the mission of the data warehouse. We also
carefully define the main architectural components of the data warehouse,
including the back room, the staging area, the operational data store (ODS),
and the presentation area. We give a careful and precise definition of data
marts and the enterprise data warehouse (EDW). Please read this chap-
ter very carefully. The definitions and boundaries we describe here drive
the whole logic of this book. If you understand our assumptions, you will
see why our approach is more disciplined and more structured than any
other data warehouse design methodology. We conclude the chapter with
a succinct statement of the mission of the ETL team.

3

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

4 Chapter 1

P R O C E S S C H E C K
Planning & Design: Requirements/Realities ➔ Architecture ➔

Implementation ➔ Test/Release
Data Flow: Haven’t started tracing the data flow yet.

Requirements

In this book’s introduction, we list the major categories of requirements we
think important. Although every one of the requirements can be a show-
stopper, business needs have to be more fundamental and important.

Business Needs
Business needs are the information requirements of the end users of the
data warehouse. We use the term business needs somewhat narrowly here
to mean the information content that end users need to make informed
business decisions. Other requirements listed in a moment broaden the
definition of business needs, but this requirement is meant to identify the
extended set of information sources that the ETL team must introduce into
the data warehouse.

Taking, for the moment, the view that business needs directly drive the
choice of data sources, it is obvious that understanding and constantly ex-
amining business needs is a core activity of the ETL team.

In the Data Warehouse Lifecycle Toolkit, we describe the process for inter-
viewing end users and gathering business requirements. The result of this
process is a set of expectations that users have about what data will do for
them. In many cases, the original interviews with end users and the original
investigations of possible sources do not fully reveal the complexities and
limitations of data. The ETL team often makes significant discoveries that
affect whether the end user’s business needs can be addressed as originally
hoped for. And, of course, the ETL team often discovers additional capabili-
ties in the data sources that expand end users’ decision-making capabilities.
The lesson here is that even during the most technical back-room develop-
ment steps of building the ETL system, a dialog amongst the ETL team,
the data warehouse architects, and the end users should be maintained.
In a larger sense, business needs and the content of data sources are both
moving targets that constantly need to be re-examined and discussed.

Compliance Requirements
In recent years, especially with the passage of the Sarbanes-Oxley Act of
2002, organizations have been forced to seriously tighten up what they

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 5

report and provide proof that the reported numbers are accurate, complete,
and have not been tampered with. Of course, data warehouses in regulated
businesses like telecommunications have complied with regulatory report-
ing requirements for many years. But certainly the whole tenor of financial
reporting has become much more serious for everyone.

Several of the financial-reporting issues will be outside the scope of the
data warehouse, but many others will land squarely on the data warehouse.
Typical due diligence requirements for the data warehouse include:

Archived copies of data sources and subsequent stagings of data

Proof of the complete transaction flow that changed any data

Fully documented algorithms for allocations and adjustments

Proof of security of the data copies over time, both on-line and off-line

Data Profiling
As Jack Olson explains so clearly in his book Data Quality: The Accuracy
Dimension, data profiling is a necessary precursor to designing any kind of
system to use that data. As he puts it: “[Data profiling] employs analytic
methods for looking at data for the purpose of developing a thorough un-
derstanding of the content, structure, and quality of the data. A good data
profiling [system] can process very large amounts of data, and with the
skills of the analyst, uncover all sorts of issues that need to be addressed.”

This perspective is especially relevant to the ETL team who may be
handed a data source whose content has not really been vetted. For ex-
ample, Jack points out that a data source that perfectly suits the needs of
the production system, such as an order-taking system, may be a disaster for
the data warehouse, because the ancillary fields the data warehouse hoped
to use were not central to the success of the order-taking process and were
revealed to be unreliable and too incomplete for data warehouse analysis.

Data profiling is a systematic examination of the quality, scope, and con-
text of a data source to allow an ETL system to be built. At one extreme, a
very clean data source that has been well maintained before it arrives at the
data warehouse requires minimal transformation and human intervention
to load directly into final dimension tables and fact tables. But a dirty data
source may require:

Elimination of some input fields completely

Flagging of missing data and generation of special surrogate keys

Best-guess automatic replacement of corrupted values

Human intervention at the record level

Development of a full-blown normalized representation of the data

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

6 Chapter 1

And at the furthest extreme, if data profiling reveals that the source data
is deeply flawed and cannot support the business’ objectives, the data-
warehouse effort should be cancelled! The profiling step not only gives the
ETL team guidance as to how much data cleaning machinery to invoke but
protects the ETL team from missing major milestones in the project because
of the unexpected diversion to build a system to deal with dirty data. Do
the data profiling up front! Use the data-profiling results to prepare the
business sponsors for the realistic development schedules, the limitations
in the source data, and the need to invest in better data-capture practices
in the source systems. We dig into specific data- profiling and data-quality
algorithms in Chapter 4.

Security Requirements
The general level of security awareness has improved significantly in the
last few years across all IT areas, but security remains an afterthought and
an unwelcome additional burden to most data warehouse teams. The basic
rhythms of the data warehouse are at odds with the security mentality. The
data warehouse seeks to publish data widely to decision makers, whereas
the security interests assume that data should be restricted to those with a
need to know.

Throughout the Toolkit series of books we have recommended a role-
based approach to security where the ability to access the results from a
data warehouse is controlled at the final applications delivery point. This
means that security for end users is not controlled with grants and revokes
to individual users at the physical table level but is controlled through
roles defined and enforced on an LDAP-based network resource called a
directory server. It is then incumbent on the end users’ applications to sort
out what the authenticated role of a requesting end user is and whether
that role permits the end user to view the particular screen being requested.
This view of security is spelled out in detail in Data Warehouse Lifecycle
Toolkit.

The good news about the role-based enforcement of security is that the
ETL team should not be directly concerned with designing or managing
end user security. However, the ETL team needs to work in a special en-
vironment, since they have full read/write access to the physical tables of
the data warehouse. The ETL team’s workstations should be on a separate
subnet behind a packet-filtering gateway. If the ETL team’s workstations
are on the regular company intranet, any malicious individual on that in-
tranet can quietly install a packet sniffer that will reveal the administrative
passwords to all the databases. A large percentage, if not the majority, of
malicious attacks on IT infrastructure comes from individuals who have
legitimate physical access to company facilities.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 7

Additionally, security must be extended to physical backups. If a tape or
disk pack can easily be removed from the backup vault, security has been
compromised as effectively as if the on-line passwords were compromised.

Data Integration
Data integration is a huge topic for IT because ultimately IT aims to make all
systems work together seamlessly. The 360 degree view of the business is the
business name for data integration. In many cases, serious data integration
must take place among the primary transaction systems of the organization
before any of that data arrives at the data warehouse. But rarely is that
data integration complete, unless the organization has settled on a single
enterprise resource planning (ERP) system, and even then it is likely that
other important transaction-processing systems exist outside the main ERP
system.

In this book, data integration takes the form of conforming dimensions
and conforming facts. Conforming dimensions means establishing common
dimensional attributes (often textual labels and standard units of measure-
ment) across separate databases so that drill across reports can be generated
using these attributes. This process is described in detail in Chapters 5
and 6.

Conforming facts means agreeing on common business metrics such as
key performance indicators (KPIs) across separate databases so that these
numbers can be compared mathematically by calculating differences and
ratios.

In the ETL system, data integration is a separate step identified in our
data flow thread as the conform step. Physically, this step involves enforcing
common names of conformed dimension attributes and facts, as well as
enforcing common domain contents and common units of measurement.

Data Latency
The data latency requirement describes how quickly the data must be de-
livered to end users. Data latency obviously has a huge effect on the ar-
chitecture and the system implementation. Up to a point, most of the tra-
ditional batch-oriented data flows described in this book can be sped up
by more clever processing algorithms, parallel processing, and more potent
hardware. But at some point, if the data latency requirement is sufficiently
urgent, the architecture of the ETL system must convert from batch oriented
to streaming oriented. This switch is not a gradual or evolutionary change;
it is a major paradigm shift in which almost every step of the data-delivery
pipeline must be reimplemented. We describe such streaming-oriented real
time systems in Chapter 11.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

8 Chapter 1

Archiving and Lineage
We hint at these requirements in the preceding compliance and security
sections. But even without the legal requirements for saving data, every
data warehouse needs various copies of old data, either for comparisons
with new data to generate change capture records or for reprocessing.

In this book, we recommend staging the data at each point where a major
transformation has occurred. In our basic data flow thread, these staging
points occur after all four steps: extract, clean, conform, and deliver. So,
when does staging (writing data to disk) turn into archiving (keeping data
indefinitely on permanent media)?

Our simple answer is conservative. All staged data should be archived
unless a conscious decision is made that specific data sets will never be
recovered. It is almost always less of a headache to read data back in from
permanent media than it is to reprocess data through the ETL system at a
later time. And, of course, it may be impossible to reprocess data according
to the old processing algorithms if enough time has passed.

And, while you are at it, each staged/archived data set should have
accompanying metadata describing the origins and processing steps that
produced the data. Again, the tracking of this lineage is explicitly required
by certain compliance requirements but should be part of every archiving
situation.

End User Delivery Interfaces
The final step for the ETL system is the handoff to end user applications. We
take a strong and disciplined position on this handoff. We believe the ETL
team, working closely with the modeling team, must take responsibility
for the content and the structure of data, making the end user applica-
tions simple and fast. This attitude is much more than a vague motherhood
statement. We believe it is irresponsible to hand data off to the end user ap-
plication in such a way as to increase the complexity of the application, slow
down the final query or report creation, or make data seem unnecessarily
complex to end users. The most elementary and serious error is to hand
across a full-blown normalized physical model and to walk away from the
job. This is why Chapters 5 and 6 go to such length to build dimensional
physical structures that comprise the actual final handoff.

In general, the ETL team and the data modelers need to work closely with
the end user application developers to determine the exact requirements for
the final data handoff. Each end user tool has certain sensitivities that should
be avoided, and certain features that can be exploited, if the physical data
is in the right format. The same considerations apply to data prepared for
OLAP cubes, which we describe in Chapter 6.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 9

Available Skills
Some of the big design decisions when building an ETL system must be
made on the basis of who builds and manages the system. You shouldn’t
build a system that depends on critical C++ processing modules if those
programming skills are not in house, and you cannot reasonably acquire
and keep those skills. You may be much more confident in building your
ETL system around a major vendor’s ETL tool if you already have those
skills in house and you know how to manage such a project.

In the next section, we look in depth at the big decision of whether to
hand code your ETL system or use a vendor’s package. Our point here
is that technical issues and license costs aside, you should not go off in
a direction that your employees and managers find unfamiliar without
seriously considering the implications of doing so.

Legacy Licenses
Finally, in many cases, major design decisions will be made for you implic-
itly by senior management’s insistence that you use existing legacy licenses.
In many cases, this requirement is one you can live with and for which the
advantages in your environment are pretty clear to everyone. But in a few
cases, the use of a legacy system for your ETL development is a mistake.
This is a difficult position to be in, and if you feel strongly enough about
it, you may need to bet your job. If you must approach senior management
and challenge the use of an existing legacy system, be well prepared in
making your case, and be man enough (or woman enough) to accept the
final decision or possibly seek employment elsewhere.

Architecture

The choice of architecture is a fundamental and early decision in the de-
sign of the ETL system. The choice of architecture affects everything, and
a change in architecture almost always means implementing the entire
system over again from the very start. The key to applying an architec-
tural decision effectively is to apply it consistently. You should read each
of the following subsections with the aim of first making a specific ar-
chitectural choice and then applying it everywhere in your ETL system.
Again, while each one of the categories in this section can be a showstop-
per, the most important early architectural choice is whether to build the
ETL system around a vendor’s ETL tool or to hand code the system yourself.
Almost every detail of the design of your ETL system will depend on this
choice.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

10 Chapter 1

P R O C E S S C H E C K
Planning & Design: Requirements/Realities ➔ Architecture ➔

Implementation ➔ Test/Release
Data Flow: Haven’t started tracing the data flow yet.

ETL Tool versus Hand Coding (Buy a Tool Suite
or Roll Your Own?)
The answer is, “It depends.” In an excellent Intelligent Enterprise magazine
article (May 31, 2003, edited by Ralph Kimball), Gary Nissen sums up the
tradeoffs. We have augmented and extended some of Gary’s points.

Tool-Based ETL Advantages

A quote from an ETL tool vendor: “The goal of a valuable tool is not
to make trivial problems mundane, but to make impossible problems
possible.”
Simpler, faster, cheaper development. The tool cost will make up for
itself in projects large enough or sophisticated enough.

Technical people with broad business skills who are otherwise not
professional programmers can use ETL tools effectively.
Many ETL tools have integrated metadata repositories that can
synchronize metadata from source systems, target databases, and
other BI tools.
Most ETL tools automatically generate metadata at every step of the
process and enforce a consistent metadata-driven methodology that
all developers must follow.
Most ETL tools have a comprehensive built-in scheduler aiding in
documentation, ease of creation, and management change. The ETL
tool should handle all of the complex dependency and error
handling that might be required if things go wrong.
The metadata repository of most ETL tools can automatically
produce data lineage (looking backward) and data dependency
analysis (looking forward).
ETL tools have connectors prebuilt for most source and target
systems. At a more technical level, ETL tools should be able to
handle all sorts of complex data type conversions.
ETL tools typically offer in-line encryption and compression
capabilities.
Most ETL tools deliver good performance even for very large data
sets. Consider a tool if your ETL data volume is very large or if it will
be in a couple of years.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 11

An ETL tool can often manage complex load-balancing scenarios
across servers, avoiding server deadlock.

Most ETL tools will perform an automatic change-impact analysis for
downstream processes and applications that are affected by a
proposed schema change.

An ETL-tool approach can be augmented with selected processing
modules hand coded in an underlying programming language. For
example, a custom CRC (cyclic redundancy checksum) algorithm
could be introduced into an ETL vendor’s data flow if the vendor-
supplied module did not have the right statistical performance. Or a
custom seasonalization algorithm could be programmed as part of a
data-quality step to determine if an observed value is reasonable.

Hand-Coded ETL Advantages

Automated unit testing tools are available in a hand-coded system
but not with a tool-based approach. For example, the JUnit library
(www.junit.org) is a highly regarded and well-supported tool for
unit testing Java programs. There are similar packages for other
languages. You can also use a scripting language, such as Tcl or
Python, to set up test data, run an ETL process, and verify the results.
Automating the testing process through one of these methods will
significantly improve the productivity of your QA staff and the
quality of your deliverables.

Object-oriented programming techniques help you make all your
transformations consistent for error reporting, validation, and
metadata updates.

You can more directly manage metadata in hand-coded systems,
although at the same time you must create all your own metadata
interfaces.

A brief requirements analysis of an ETL system quickly points you
toward file-based processing, not database-stored procedures.
File-based processes are more direct. They’re simply coded, easily
tested, and well understood.

Existing legacy routines should probably be left as-is.

In-house programmers may be available.

A tool-based approach will limit you to the tool vendor’s abilities
and their unique scripting language. But you can develop a hand-
coded system in a common and well-known language. (In fairness,
all the ETL tools allow escapes to standard programming languages in
isolated modules.)

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

12 Chapter 1

Hand-coded ETL provides unlimited flexibility, if that is indeed what
you need. You can literally do anything you want. In many instances,
a unique approach or a different language can provide a big
advantage.

We would add one more advantage to the ETL Tool suite list: It is likely
that the ETL tool suite will be more self-documenting and maintainable over
a period of years, especially if you have a typical IT staff churn. The counter
argument to this is that if your ETL development staff has a strong software-
development tradition and good management, documentation and main-
tenance will not be as big a problem.

Using Proven Technology

When it comes to building a data warehouse, many initial costs are
involved. You have to buy dedicated servers: at least one database server, a
business intelligence server, and typically a dedicated ETL server. You need
database licenses, and you have to pay for the ability of your users to access
your business intelligence tool. You have to pay consultants and various
other costs of starting up a new project. All of these costs are mandatory if
you want to build a data warehouse. However, one cost is often not recog-
nized as mandatory and is often avoided in an effort to reduce costs of the
project—the cost of acquiring a dedicated ETL tool. It is possible to imple-
ment a data warehouse without a dedicated tool, and this book does not
assume you will or won’t buy one. However, it is advised that you do real-
ize in the long run that purchasing an ETL tool actually reduces the cost of
building and maintaining your data warehouse. Some additional benefits
of using proven ETL technology are as follows:

Define once, apply many. Share and reuse business rules and
structured routines, keeping your data consistent throughout the
data warehouse.

Impact analysis. Determine which tables, columns, and processes are
affected by proposed changes.

Metadata repository. Easily create, maintain, and publish data
lineage; inherit business definitions from a data-modeling tool, and
present capture metadata in your BI tool.

Incremental aggregation. Dynamically update summary tables by
applying only new and changed data without the need to rebuild
aggregates with each load process.

Managed batch loading. Reduce shell scripts and enable conditional
loading, load statistics, automated e-mail notification, and so on.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 13

Simpler connectivity to a wide variety of complex sources such as
SAP and mainframes.

Parallel pipe-lined multithreaded operation.

Vendor experience, including success with dimensional models and
a proven track record of supporting data warehouses.

More important than taking advantage of advanced functionality is that
investing in a proven ETL tool can help you avoid reinventing the wheel.
These tools are designed for one purpose: to do exactly what you are try-
ing to do—load a data warehouse. Most have evolved into stable, robust
ETL engines that have embedded capabilities to extract data from various
heterogeneous sources, handle complex data transformations, and load a
dimensional data warehouse.

Don’t add new and untested products to your ETL configuration. The
dashboard-of-the-month approach, which has a certain charm in the end user
environment, is too reckless in the back room. Be conservative and wait for ETL
technologies to mature. Work with vendors who have significant track record and
who are likely to support your products five years down the road.

Batch versus Streaming Data Flow

The standard architecture for an ETL system is based on periodic batch ex-
tracts from the source data, which then flows through the system, resulting
in a batch update of the final end user tables. This book is mostly organized
around this architecture. But as we describe in Chapter 11, when the real-
time nature of the data-warehouse load becomes sufficiently urgent, the
batch approach breaks down. The alternative is a streaming data flow in
which the data at a record level continuously flows from the source system
to users’ databases and screens.

Changing from a batch to a streaming data flow changes everything.
Although we must still support the fundamental data flow steps of ex-
tract, clean, conform, and deliver, each of these steps must be modified
for record-at-a-time processing. And especially with the fastest streaming
flows, many of the usual assumptions about the arrival of data and even
referential integrity have to be revisited. For instance, the basic numeric
measures of a sales transaction with a new customer can arrive before the
description of the customer arrives. Even after the customer is identified,
an enhanced/cleaned/deduplicated version of the customer record may be
introduced hours or even days after the original event. All of this requires
logic and database updating that is probably avoided with batch-oriented
data flow.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

14 Chapter 1

At the beginning of this section, we advise applying each architectural
decision uniformly across the entire data warehouse. Obviously, in the case
of choosing a batch or streaming approach, the choice should be made on
an application-by-application basis. In Chapter 11, we discuss the points of
commonality between the two approaches and show where the results of
the batch approach can be used in the streaming context.

Horizontal versus Vertical Task Dependency

A horizontally organized task flow allows each final database load to run
to completion independently. Thus, if you have both orders and shipments,
these two database loads run independently, and either or both can be
released on time or be late. This usually means that the steps of extract,
clean, conform, and deliver are not synchronized between these two job
flows.

A vertically oriented task flow synchronizes two or more separate job
flows so that, above all, the final database loads occur simultaneously. Usu-
ally, the earlier steps are synchronized as well, especially if conformed di-
mensions like customer or vendor are used by more than one system. Either
all the job streams reach the conform step and the delivery step or none of
them do.

Scheduler Automation

A related architectural decision is how deeply to control your overall ETL
system with automated scheduler technology. At one extreme, all jobs are
kicked off by a human typing at a command line or starting an icon. At the
other extreme, a master scheduler tool manages all the jobs, understands
whether jobs have run successfully, waits for various system statuses to
be satisfied, and handles communication with human supervisors such as
emergency alerts and job flow status reporting.

Exception Handling

Exception handling should not be a random series of little ad-hoc alerts
and comments placed in files but rather should be a system-wide, uni-
form mechanism for reporting all instances of exceptions thrown by ETL
processes into a single database, with the name of the process, the time
of the exception, its initially diagnosed severity, the action subsequently
taken, and the ultimate resolution status of the exception. Thus, every job
needs to be architected to write these exception-reporting records into the
database.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 15

Quality Handling

Similarly, you should decide on a common response to quality issues that
arise while processing the data. In addition to triggering an exception-
reporting record, all quality problems need to generate an audit record at-
tached to the final dimension or fact data. Corrupted or suspected data
needs to be handled with a small number of uniform responses, such as
filling in missing text data with a question mark or supplying least biased
estimators of numeric values that exist but were corrupted before delivery
to the data warehouse. These topics are further developed in Chapter 4.

Recovery and Restart

From the start, you need to build your ETL system around the ability to
recover from abnormal ending of a job and restart. ETL jobs need to be re-
entrant, otherwise impervious to incorrect multiple updating. For instance,
a job that subtracts a particular brand sales result from an overall product
category should not be allowed to run twice. This kind of thinking needs
to underlie every ETL job because sooner or later these jobs will either
terminate abnormally or be mistakenly run more than once. Somewhere,
somehow, you must keep this from happening.

Metadata

Metadata from DBMS system tables and from schema design tools is easy
to capture but probably composes 25 percent of the metadata you need to
understand and control your system. Another 25 percent of the metadata is
generated by the cleaning step. But the biggest metadata challenge for the
ETL team is where and how to store process-flow information. An impor-
tant but unglamorous advantage of ETL tool suites is that they maintain
this process-flow metadata automatically. If you are hand coding your ETL
system, you need to implement your own central repository of process flow
metadata. See Chapter 9.

Security

Earlier in this chapter, we describe our recommended architecture for role-
based security for end users. Security in the ETL environment is less gran-
ular than in the end user environment; nevertheless, a systematic approach
to security demands that physical and administrative safeguards surround
every on-line table and every backup tape in the ETL environment. The
most sensitive and important data sets need to be instrumented with oper-
ating system printed reports listing every access and every command per-
formed by all administrators against these data sets. The print log should

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

16 Chapter 1

be produced on a dedicated impact printer locked in a room that cannot be
opened by any of the normal IT staff. Archived data sets should be stored
with checksums to demonstrate that they have not been altered in any way.

The Back Room – Preparing the Data

P R O C E S S C H E C K
Planning & Design: Requirements ➔ Architecture ➔ Implementation ➔ Release
Data Flow: Extract ➔ Clean ➔ Conform ➔ Deliver.

The back room and the front room of the data warehouse are physically,
logically, and administratively separate. In other words, in most cases the
back room and front room are on different machines, depend on different
data structures, and are managed by different IT personnel.

Figure 1.1 shows the two distinct components of a typical data warehouse.
Preparing the data, often called data management, involves acquiring data

and transforming it into information, ultimately delivering that information
to the query-friendly front room. No query services are provided in the back
room. Read that sentence again! Our approach to data warehousing assumes
that data access is prohibited in the back room, and therefore the front room
is dedicated to just this one purpose.

Processes for
Extracting,
Cleaning,

Conforming,
and

Delivering

The Back Room:
Data Management

Staging
Schemas in

DBMS

Staging Area Storage

Flat Files on
File System

Dimensional
Tables Ready for

Delivery
(Atomic &

Aggregate)

Relational
Database Systems

Misc. Flat Files

Mainframe
tapes

(VSAM)

Source Systems
(examples)

The Staging Area

The Front Room:
Data Access

BI App Servers
& Query Tools

 * Browsing and Analysis
 * Standard Reports
 * Ad hoc Queries & Reports

User Community

The Presentation Area

Figure 1.1 The back room and front room of a data warehouse.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 17

Think of a restaurant. Imagine that patrons of the restaurant are end users
and the food is data. When food is offered to patrons in the dining room, it is
served and situated exactly as they expect: clean, organized, and presented
in a way that each piece can be easily identified and consumed.

Meanwhile, before the food enters the dining room, it is prepared in the
kitchen under the supervision of an experienced chef. In the kitchen the
food is selected, cleaned, sliced, cooked, and prepared for presentation.
The kitchen is a working area, off limits to the patrons of the restaurant. In
the best restaurants, the kitchen is completely hidden from its customers—
exposure to the kitchen, where their food is still a work-in-progress, spoils
the customer’s ultimate dining experience. If a customer requests infor-
mation about the preparation of food, the chef must come out from the
kitchen to meet the customer in the dining room—a safe, clean environ-
ment where the customer is comfortable—to explain the food preparation
process.

The staging area is the kitchen of the data warehouse. It is a place acces-
sible only to experienced data integration professionals. It is a back-room
facility, completely off limits to end users, where the data is placed after it
is extracted from the source systems, cleansed, manipulated, and prepared
to be loaded to the presentation layer of the data warehouse. Any metadata
generated by the ETL process that is useful to end users must come out of
the back room and be offered in the presentation area of the data warehouse.

Prohibiting data access in the back room kitchen relieves the ETL team
from:

Providing detailed security at a row, column, or applications level

Building query performance-enhancing indexes and aggregations

Providing continuous up-time under service-level agreements

Guaranteeing that all data sets are consistent with each other

We need to do all these things, but in the front room, not the back room.
In fact, the issue of data access is really the crucial distinction between the
back room and the front room. If you make a few exceptions and allow end
user clients to access the back room structures directly, you have, in our
opinion, fatally compromised the data warehouse.

Returning to the kitchen, we often use the word staging to describe dis-
crete steps in the back room. Staging almost always implies a temporary or
permanent physical snapshot of data. There are four staging steps found
in almost every data warehouse, as shown in Figure 1.2, which is the same
four-step data flow thread we introduce in the this book’s introduction, but
with the staging step explicitly shown. Throughout this book, we assume
that every ETL system supporting the data warehouse is structured with
these four steps and that data is staged (written to the disk) in parallel with

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

18 Chapter 1

Extract Clean Conform Deliver

Operations: Scheduling, Exception Handling, Recovery, Restart, Quality Check, Release, Support

End User ApplicationsMainframe

latigid

Production
Source

Extracted
Data Staging
(general data

structures)

Cleaned
Data Staging
(general data

structures)

Conformed
Data Staging
(general data

structures)

Delivered
Data Staging
(dimensional

tables)

Figure 1.2 The Four Staging Steps of a Data Warehouse.

the data being transferred to the next stage. The central chapters of this
book are organized around these steps. The four steps are:

1. Extracting. The raw data coming from the source systems is usually
written directly to disk with some minimal restructuring but before
significant content transformation takes place. Data from structured
source systems (such as IMS databases, or XML data sets) often is
written to flat files or relational tables in this step. This allows the
original extract to be as simple and as fast as possible and allows
greater flexibility to restart the extract if there is an interruption.
Initially captured data can then be read multiple times as necessary
to support the succeeding steps. In some cases, initially captured
data is discarded after the cleaning step is completed, and in other
cases data is kept as a long-term archival backup. The initially
captured data may also be saved for at least one capture cycle so that
the differences between successive extracts can be computed.

We save the serious content transformations for the cleaning and
conforming steps, but the best place to resolve certain legacy data format
issues is in the extract step. These format issues include resolving repeating
groups, REDEFINEs, and overloaded columns and performing low-level data
conversions, including converting bit encoding to character, EBCDIC to ASCII,
and packed decimal to integer. We discuss these steps in detail in Chapter 3.

2. Cleaning. In most cases, the level of data quality acceptable for the
source systems is different from the quality required by the data
warehouse. Data quality processing may involve many discrete steps,
including checking for valid values (is the zip code present and is it
in the range of valid values?), ensuring consistency across values (are
the zip code and the city consistent?), removing duplicates (does the
same customer appear twice with slightly different attributes?), and
checking whether complex business rules and procedures have been
enforced (does the Platinum customer have the associated extended

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 19

credit status?). Data-cleaning transformations may even involve
human intervention and the exercise of judgment. The results
of the data-cleaning step are often saved semipermanently because
the transformations required are difficult and irreversible. It is an
interesting question in any environment whether the cleaned data can
be fed back to the sources systems to improve their data and reduce
the need to process the same data problems over and over with each
extract. Even if the cleaned data cannot be physically fed back to the
source systems, the data exceptions should be reported to build a
case for improvements in the source system. These data issues are
also important for the final business intelligence (BI) user community.

3. Conforming. Data conformation is required whenever two or more
data sources are merged in the data warehouse. Separate data
sources cannot be queried together unless some or all of the textual
labels in these sources have been made identical and unless similar
numeric measures have been mathematically rationalized so that
differences and ratios between these measures make sense. Data
conformation is a significant step that is more than simple data
cleaning. Data conformation requires an enterprise-wide agreement
to use standardized domains and measures. We discuss this step
extensively in the book when we talk about conformed dimensions
and conformed facts in Chapters 5 and 6.

4. Delivering. The whole point of the back room is to make the data
ready for querying. The final and crucial back-room step is physically
structuring the data into a set of simple, symmetric schemas known
as dimensional models, or equivalently, star schemas. These schemas
significantly reduce query times and simplify application
development. Dimensional schemas are required by many query
tools, and these schemas are a necessary basis for constructing OLAP
cubes. We take the strong view in this book that dimensionally
modeled tables should be the target of every data warehouse back
room. In Chapter 5 we carefully describe the structures of
dimensional tables, and we give a fairly complete justification for
building the data warehouse around these structures. For a more
comprehensive treatment of dimensional modeling, please refer to
the other Toolkit books, especially the Data Warehouse Toolkit, Second
Edition (Wiley, 2002).

Figure 1.2 makes it look like you must do all the extracting, cleaning,
conforming and delivering serially with well-defined boundaries between
each pair of steps. In practice, there will multiple simultaneous flows of data
in the ETL system, and frequently some of the cleaning steps are embedded
in the logic that performs extraction.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

20 Chapter 1

The ODS has been absorbed by the data warehouse.
Ten years ago, the operational data store (ODS) was a separate system

that sat between the source transactional systems and the data warehouse.
It was a hot extract that was made available to end users to answer a narrow
range of urgent operational questions, such as “was the order shipped?” or
“was the payment made?” The ODS was particularly valuable when the ETL
processes of the main data warehouse delayed the availability of the data or
aggregated the data so that these narrow questions could not be asked.

In most cases, no attempt was made to transform a particular ODS’s
content to work with other systems. The ODS was a hot query extract from a
single source.

The ODS also served as a source of data for the data warehouse itself
because the ODS was an extraction from the transactional systems. In some
cases, the ODS served only this function and was not used for querying. This
is why the ODS has always had two personalities: one for querying and
one for being a source for the data warehouse.

The ODS as a separate system outside the data warehouse is no longer
necessary. Modern data warehouses now routinely extract data on a daily
basis, and some of the new real-time techniques allow the data warehouse
to always be completely current. Data warehouses in general have become
far more operationally oriented than in the past. The footprints of the
conventional data warehouse and the ODS now overlap so completely
that it is not fruitful to make a distinction between the two kinds of
systems.

Finally, both the early ODSs and modern data warehouses frequently
include an interface that allows end users to modify production data directly.

The Front Room – Data Access
Accessing data in the presentation area of the data warehouse is a client, or
follow-on, project that must be closely coordinated with the building and
managing of the ETL system. The whole purpose of the ETL system is to
feed the presentation layer of dimensionally modeled tables that are directly
accessed by query tools, report writers, dashboards, and OLAP cubes. The
data in the front room is what end users actually see.

Data marts are an important component of the front room. A data mart
is a set of dimensional tables supporting a business process. Some authors
refer to business processes as subject areas. Subject area is a fuzzy phrase
with multiple meanings. For example, we’ve heard people refer to sub-
ject areas as products, customers, and orders. But we believe there is a big
difference between product and customer entities and true measurement-
intensive processes such as orders. In our view, data marts are always

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 21

measurement-intensive subject areas (like orders), and they are surrounded
by descriptive entities like products and customers.

Although this book is not about using data marts, we need to make some
strong statements about them.

1. Data marts are based on the source of data, not on a department’s
view of data. In other words, there is only one orders data mart in a
product-oriented company. All the end user query tools and
applications in various departments access this data mart to have a
single, consistently labeled version of orders.

2. Data marts contain all atomic detail needed to support drilling
down to the lowest level. The view that data marts consist only of
aggregated data is one of the most fundamental mistakes a data
warehouse designer can make. Aggregated data in the absence of the
lowest-level atomic data presupposes the business question and makes
drilling down impossible. We will see that a data mart should consist
of a continuous pyramid of identically structured dimensional tables,
always beginning with the atomic data as the foundation.

3. Data marts can be centrally controlled or decentralized. In other
words, an enterprise data warehouse can be physically centralized on
a single machine and the deployment of data marts can wait until a
certain level of integration takes place in the ETL staging areas, or the
data marts can be developed separately and asynchronously while at
the same time participating in the enterprise’s conformed dimensions
and facts. We believe that the extreme of a fully centralized and fully
prebuilt data warehouse is an ideal that is interesting to talk about but
is not realistic. A much more realistic scenario is the incrementally
developed and partially decentralized data warehouse environment.
After all, organizations are constantly changing, acquiring new data
sources, and needing new perspectives. So in a real environment, we
must focus on incremental and adaptable strategies for building data
warehouses, rather than on idealistic visions of controlling all
information before a data warehouse is implemented.

There are many tasks and responsibilities in the front room that are out-
side the scope of this book. Just so there is no confusion, we do not talk in
this book about:

Indexing dimensional tables in the presentation area for query
performance

Choosing front-end tools, including query tools, report writers, and
dashboards

Writing SQL to solve end user queries

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

22 Chapter 1

Data-mining techniques

Forecasting, behavior scoring, and calculating allocations

Security on the tables and applications accessible by end users

Metadata supporting end user tools

End user training and documentation

This book is about the ETL systems for getting data out of its original
source system and delivering it to the front room.

The Mission of the Data Warehouse

The mission of the data warehouse is to publish the organization’s data
assets to most effectively support decision making. The key word in this
mission statement is publish. Just as the success of a conventional publica-
tion like a magazine begins and ends with its readers, the success of a data
warehouse begins and ends with its end users. Since the data warehouse is
a decision support system, our main criterion of success is whether the data
warehouse effectively contributes to the most important decision-making
processes in the organization. Although the costs of hardware, software,
labor, consulting services, and maintenance have to be managed carefully,
the hidden costs of failing to support the important decisions of an organi-
zation are potentially much larger. The tangible costs of a data warehouse,
managed by IT, are tactical, but the more important costs and benefits of
decision support are strategic.

Transaction database applications have been penetrating the corporate
world for over 30 years. Although we have entered data into dedicated
transaction applications for decades, it has become apparent that getting
the data out of these systems for analytic purposes is too difficult. Billions of
dollars have been spent on database applications, and their data is kept pris-
oner within them. An immeasurable amount of time is spent trying to get
data from transaction systems, but like navigating through a labyrinth, most
of that time is spent hitting dead ends. The ETL system must play a major
role in handing the data to the final end user applications in a usable form.

Building a comprehensive, reliable data warehouse is a significant task
that revolves around a set of standard components. The most important and
fundamental components of the data warehouse are the back room and the
front room. This book is about the back room.

What the Data Warehouse Is
Data warehousing is the process of taking data from legacy and transac-
tion database systems and transforming it into organized information in a

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 23

user-friendly format to encourage data analysis and support fact-based
business decision making. The process that involves transforming data
from its original format to a dimensional data store accounts for at least
70 percent of the time, effort, and expense of most data warehouse projects.
After implementing many data warehouses, we’ve determined that a data
warehouse should have the following definition:

A data warehouse is a system that extracts, cleans, conforms, and delivers
source data into a dimensional data store and then supports and implements
querying and analysis for the purpose of decision making.

We’ve come up with this definition to alleviate confusion about data-
warehouse implementation costs. Historically, the most visible part of a
data warehouse project is the data access portion—usually in the form of
products—and some attention is brought to the dimensional model. But by
spotlighting only those portions, a gaping hole is left out of the data ware-
house lifecycle. When it comes time to make the data warehouse a reality, the
data access tool can be in place, and the dimensional model can be created,
but then it takes many months from that point until the data warehouse is
actually usable because the ETL process still needs to be completed.

By bringing attention to building the back room data management com-
ponent, data warehouse sponsors are better positioned to envision the
real value of the data warehouse—to support decision making by the end
users—and allot realistic budgets to building data warehouses.

Unanticipated delays can make the data warehouse project appear to be a
failure, but building the ETL process should not be an unanticipated delay. The
data warehouse team usually knows that the ETL process consumes the majority
of the time to build the data warehouse. The perception of delays can be avoided
if the data warehouse sponsors are aware that the deployment of the data
warehouse is dependent on the completion of the ETL process. The biggest risk to
the timely completion of the ETL system comes from encountering unexpected
data-quality problems. This risk can be mitigated with the data-profiling
techniques discussed in Chapter 4.

What the Data Warehouse Is Not
What constitutes a data warehouse is often misunderstood. To this day, you
can ask ten experts to define a data warehouse, and you are likely to get ten
different responses. The biggest disparity usually falls in describing exactly
what components are considered to be part of the data warehouse project. To
clear up any misconceptions, anyone who is going to be part of a data ware-
house team, especially on the ETL team, must know his or her boundaries.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

24 Chapter 1

The environment of a data warehouse includes several components, each
with its own suite of designs, techniques, tools, and products. The most im-
portant thing to remember is that none of these things alone constitutes a
data warehouse. The ETL system is a major component of the data ware-
house, but many other components are required for a complete implementa-
tion. Throughout our experiences of implementing data warehouses, we’ve
seen team members struggling with the same misconceptions over and
over again. The top five things the data warehouse is mistaken to be are as
follows:

1. A product. Contrary to many vendor claims, you cannot buy a data
warehouse. A data warehouse includes system analysis, data
manipulation and cleansing, data movement, and finally
dimensional modeling and data access. No single product can
achieve all of the tasks involved in building a data warehouse.

2. A language. One cannot learn to code a data warehouse in the way
you learn to implement XML, SQL, VB, or any other programming
language. The data warehouse is composed of several components,
each likely to require one or more programming or data-specification
languages.

3. A project. A properly deployed data warehouse consists of many
projects (and phases of projects). Any attempt to deploy a data
warehouse as a single project will almost certainly fail. Successful
data warehouses plan at the enterprise level yet deploy manageable
dimensional data marts. Each data mart is typically considered a
separate project with its own timeline and budget. A crucial factor is
that each data mart contains conformed dimensions and
standardized facts so that each integrates into a single cohesive
unit—the enterprise data warehouse. The enterprise data
warehouse evolves and grows as each data mart project is completed.
A better way to think of a data warehouse is as a process, not as a
project.

4. A data model. A data model alone does not make a data warehouse.
Recall that the data warehouse is a comprehensive process that, by
definition, must include the ETL process. After all, without data,
even the best-designed data model is useless.

5. A copy of your transaction system. A common mistake is to believe
copying your operational system into a separate reporting system
creates a data warehouse. Just as the data model alone does not
create a data warehouse, neither does executing the data movement
process without restructuring the data store.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 25

Industry Terms Not Used Consistently
In this section, we call out industry terms that are given different meanings
by different writers. There is probably no realistic hope of getting the in-
dustry to settle on uniform definitions of these terms, but at least we can
take a clear stand on how we use the terms in this book.

Data Mart

Other authors frequently define a data mart as an aggregated set of data pre-
built to answer specific business questions for a given department. Of course, this
definition contains its own criticism! In this book and in our writings for the
last decade, we have consistently defined a data mart as a process-oriented
subset of the overall organization’s data based on a foundation of atomic
data, and that depends only on the physics of the data-measurement events,
not on the anticipated user’s questions. Note the differences among data
mart definitions:

CORRECT DEFINITION MISGUIDED DEFINITION

Process Based Department Based

Atomic Data Foundation Aggregated Data Only

Data Measurement Based User Question Based

Our data marts (call them dimensional data marts) look the same to all
observers and would be implemented identically by anyone with access
to the underlying measurement events. Furthermore, since dimensional
data marts are always based on the most atomic data, these data marts are
impervious to changes in application focus; by definition, they contain all
the detail that is possible from the original sources. Data marts constructed
according to the misguided definitions will be unable to handle changing
business requirements because the details have been presummarized.

Enterprise Data Warehouse (EDW)

EDW is sometimes used as the name the name for a specific design approach
(as contrasted with the uncapitalized enterprise data warehouse, which refers
generically to the data warehouse assets of a large organization). Many peo-
ple also refer to the EDW as the CIF, or Corporate Information Factory. The
EDW approach differs materially from the Data Warehouse Bus Architec-
ture approach described in our Toolkit books. EDW embodies a number of
related themes that need to be contrasted individually with the DW Bus
approach. It may be helpful to separate logical issues from physical issues
for a moment.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

26 Chapter 1

Logically, both approaches advocate a consistent set of definitions that
rationalize the different data sources scattered around the organization. In
the case of the DW Bus, the consistent set of definitions takes the form of
conformed dimensions and conformed facts. With the EDW approach, the
consistency seems much more amorphous. You must take it on faith that
if you have a single, highly normalized ER model of all the enterprise’s
information, you then know how to administer hundreds or thousands of
tables consistently. But, overlooking this lack of precision, one might argue
that the two approaches are in agreement up to this point. Both approaches
strive to apply a unifying coherence to all the distributed data sources.

Even if we have a tenuous agreement that both approaches have the same
goal of creating a consistent representation of an organization’s data, as soon
as you move into physical design and deployment issues, the differences
between the EDW and the DW Bus become really glaring.

Conformed dimensions and conformed facts take on specific forms in the
DW Bus architecture. Conformed dimensions have common fields, and the
respective domains of the values in these fields are the same. That guaran-
tees that you can perform separate queries on remote fact tables connected
to these dimensions and you will be able to merge the columns into a fi-
nal result. This is, of course, drill across. We have written extensively on
the steps required to administer conformed dimensions and conformed
facts in a distributed data warehouse environment. We have never seen a
comparable set of specific guidelines for the EDW approach. We find that
interesting because even in a physically centralized EDW, you have to store
data in physically distinct table spaces, and that necessitates going through
the same logic as the replication of conformed dimensions. But we have
never seen systematic procedures described by EDW advocates for doing
this. Which tables do you synchronously replicate between table spaces and
when? The DW Bus procedures describe this in great detail.

The denormalized nature of the dimensions in the DW Bus design allows
us to administer the natural time variance of a dimension in a predictable
way (SCD types 1, 2, and 3). Again, in the highly normalized EDW world,
we have not seen a comparable description of how to build and administer
the equivalent of slowly changing dimensions. But it would seem to require
copious use of time stamps on all the entities, together with a lot more key
administration than the dimensional approach requires. By the way, the
surrogate key approach we have described for administering SCDs actually
has nothing to do with dimensional modeling. In an EDW, the root table
of a normalized, snowflaked dimension would have to undergo exactly the
same key administration (using either a surrogate key or a natural key plus
a date) with the same number of repeated records if it tracked the same
slowly changing time variance as the DW Bus version.

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

Surrounding the Requirements 27

The denormalized nature of dimensions in the DW Bus design allows a
systematic approach to defining aggregates, the single most powerful and
cost effective way to increase the performance of a large data warehouse.
The science of dimensional aggregation techniques is intimately linked to
the use of conformed dimensions. The shrunken dimensions of an aggre-
gate fact table are perfectly conformed subsets of the base dimensions in
the DW Bus architecture. The EDW approach, again, has no systematic and
documented approach for handling aggregates in the normalized environ-
ment or giving guidance to query tools and report writers for how to use
aggregates. This issue interacts with drilling down, described in a moment.

Most important, a key assumption built into most EDW architectures is
that the centralized data warehouse releases data marts. These data marts
are often described as built to answer a business question, as described in the
previous subsection on data-mart definitions. A final, unworkable assump-
tion of the EDW is that if the user wants to ask a precise question involving
atomic data, he or she must leave the aggregated dimensional data mart
and descend into the 3NF atomic data located in the back room. EVERY-
THING is wrong with this view in our opinion. All of the leverage we
developed in the DW Bus is defeated by this two level architecture: drilling
down through conformed dimensions to atomic data; uniform encoding
of slowly changing dimensions; the use of performance-enhancing aggre-
gates; and the sanctity of keeping the back room data-staging area off limits
to query services.

Resolving Architectural Conflict: The Hybrid
Bus Approach
Is it possible to reconcile the two architectural approaches? We think so.
Throughout this book, we support the judicious use of normalized data
structures for data cleaning. A really dirty data source benefits from the
discipline of enforcing the many-to-1 relationships brought to the surface
by the process of normalization. THEN we urge the ETL team to convert
any such normalized structures into simple dimensional structures for the
conforming and final handoff steps. This includes the atomic base layer of
data. At this point, an IT organization that has already invested in normal-
ized physical structures can leverage that investment. We can call this the
Hybrid Bus Approach.

How the Data Warehouse Is Changing
As we write this book, the data warehouse is undergoing a significant
change, perhaps the most significant change since the beginning of data

P1: FMK
WY046-01 WY046-Kimball-v4.cls August 18, 2004 11:22

28 Chapter 1

warehousing. Everything we have said in this chapter about the data ware-
house supporting decision making remains true, but the focus of new devel-
opment in the data warehouse is in many cases drastically more operational
and real time. Although the basic front room and back room components of
the data warehouse are still very necessary for these real-time applications,
the traditional batch-file-oriented ETL processing is giving way to stream-
ing ETL processing, and the traditional user-driven query and reporting
tools are giving way to data-driven and event-driven dashboards. We de-
scribe these new developments and how they extend the central concepts
of the data warehouse in Chapter 11.

The Mission of the ETL Team

We are finally in a position to succinctly describe the mission of the ETL
team, using the vocabulary of this chapter. The mission of the ETL team at the
highest level is to build the back room of the data warehouse. More specifically,
the ETL system must:

Deliver data most effectively to end user tools

Add value to data in the cleaning and conforming steps

Protect and document the lineage of data

We will see that in almost every data warehouse the back room must
support four keys steps:

Extracting data from the original sources

Quality assuring and cleaning data

Conforming the labels and measures in the data to achieve
consistency across the original sources

Delivering data in a physical format that can be used by query tools,
report writers, and dashboards.

This book deals with each of these steps in great detail.

