
Automating with AppleScript
In This Chapter

Meet AppleScript • Using Scripts

Creating Your Own Scripts • Learning AppleScript: Resources • Scriptus Annotatus

One thing sets the Macintosh Power Users apart from the rest: their use of AppleScript. (And Unix.
But AppleScript is a lot easier to use and a lot more practical and a lot more fun.)

Oh, and Macintosh-themed body modifications as well. I have a friend who carves the Apple logo
into his hair for every Macworld Expo, and I can also testify that there are more Apple and Mac
OS-themed tattoos to be found at that show than liquor-themed tattoos at a Jerry Springer taping.
But again, AppleScript is a lot more practical than a tattoo or a piercing, it’ll disappoint your par-
ents a whole lot less, and it’s a lot more fun than having needles pierce your skin hundreds of time
a second.

The difference is people who gets things done in minutes, and people who get things done in
hours; people whose Macs are naturally efficient and organized, and people with files scattered all
over the place; people whose Macs do things that border on the sorcerous, and people whose Macs
do more or less no more than what they did when they were first taken out of the box.

AppleScript — Mac OS X’s built-in system-wide resource for automating routine processes and
writing simple software — is the difference between a Mac and your Mac. AppleScript helps to
build strong bodies nine different ways. If it were a person, it’d return its library books on time
and donate blood regularly.

02b_567942 c17.qxd 6/25/04 11:32 PM Page 305

CO
PYRIG

HTED
 M

ATERIA
L

I am, as you may guess, a rather enthusiastic evangelist of
AppleScript. I only have your interests at heart, though.
When you learn AppleScript, you take your first step into
a larger and more exciting world.

MEET APPLESCRIPT

The term “writing software” is instantly intimidating to
any sensible user. You didn’t lay out two grand to have the
wonderful opportunity to spend weeks building your own
apps. That’s why you support the (sometimes) fine work of
the Microsoft Corporation, after all.

Still, there are plenty of things you do with your Mac that
involve just repeating a simple task over and over and over
again. That’s fine when you’re working for The Man and
you get paid for a full day whether you actually think or
not. But when the goal is to finish a task as quickly and
efficiently as possible, you wish there were a way to harness
your computer’s endless capacity to shut up and do what
its told, no matter how dull.

I’ll give you a real-life example, torn from the pages of his-
tory itself. In the furious final weeks of producing this very
book, it was discovered that each of its hundreds of illus-
trations had been named improperly. The six-digit code
that began each filename was the wrong six-digit code. Do
you have any idea how long it takes to rename hundreds of
files by hand?

Well, neither do I. I wrote an AppleScript that told the
Finder to process each file and change each filename indi-
vidually. Days and days of tedious effort instead became an
hour of watching The Shield on my TiVO downstairs, and
then wondering if the script had finished its work, and
then coming back up and discovering that it had finished
the task before the second commercial break.

But AppleScript isn’t a standalone app or a utility. It’s a
fundamental part of Panther’s architecture, just as intimate
as the mechanism that prints files or draws windows and
menus. It’s a superhighway that allows every piece of soft-
ware running on your Mac — including the OS itself —
to interact with each other and work together. If Apple-
Script causes the Mail app to check for new mail, it doesn’t
do anything so unsophisticated as send a mouse click to
the Mailbox menu’s Get New Mail item. It actually com-
municates with the code lurking inside Mail.

� Note
So AppleScript is like the general contractor on a big
home-remodel project. It can do things on its own
without having to control other applications at all,
but in everyday use its typical function is to hand
tasks off to specialists, make sure they have what
they need to get the job done, and make sure that
all these individual tasks are done in the specified
sequence without any errors.

Part II: The Technical Bits

306

NIKE DIPLOMACY

If you don’t want to deface George
and Abraham, at least slap some Sal
stickers on a few lockers or some-
thing. If you walk into a typical Apple product man-
ager’s office and ask how influential Sal is in ensuring
that AppleScript remains an important and critical
part of the Macintosh experience, the manager will
silently clear a few papers from the desk and point to
a pattern of deep smudges in the wood.You see, there
once was a time when this manager’s product sup-
ported AppleScript in only the most basic, lame-o way,
and this surface was pristine and unmarred.Then Sal
burst in and kept jumping up and down on the per-
son’s desk until they agreed to improve things.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 306

Chapter 17: Automating with AppleScript

What makes AppleScript so

gosh-darned super?

I would like to think that at this point, the mere fact that
I’m slobberingly enthusiastic about something should be
reason enough for you to march straight into your child’s
public school, tear down all those pictures of losers like
George Washington and Abraham Lincoln, and replace
them all with shots of Sal Soghoian and Chris Espinosa,
Apple’s Iron Man and Captain America of AppleScript,
respectively.

Some of you might have been skipping around the book
and haven’t developed the sense of blind, robotic faith in
me that causes everybody else to acquire that slightly
glazed look of contentment and buried individuality that’s
resulted in so much comment around the post office
recently. So here’s what makes AppleScript so special:

You can control every Mac OS X app through
AppleScript to one extent or another. (But more
on this later). It’s a fundamental system resource.

It’s powerful and flexible enough that it can do
most anything. Calculate the volume of a cone? Sure.
Take 40 documents from your local drive; download
20 more from eight other people scattered all over the
world; assemble all this content into a 100-page, full-
color report; transmit this report to a shop for print-
ing, binding and delivery; and email digital copies to
four department heads? A tad more ambitious, surely,
but well within AppleScript’s capabilities.

Writing AppleScript is a basic skill that you can
exploit elsewhere. Not only can you use AppleScript
in simple automation projects, but also, if you ever get
the itch to start writing software for real, most of the
popular Macintosh development systems (REALbasic,

Revolution, Apple’s XCode system) can use your
AppleScripts without any additional conversion or
transmogrification. So, if you’ve spent a month gradu-
ally turning a three-line convenience script into a
sophisticated productivity solution, you’re probably
about 80 percent of the way to turning it into a rock-
solid commercial app.

� Note
But hey! Don’t simply assume that you can’t build a
rock-solid commercial app solely using AppleScript!
XCode, Apple’s free, standardized environment for
developing professional, high-complexity apps, fully
supports AppleScript.There’s an entire environment
called AppleScript Studio that’s there specifically to
help you build for-real apps using nothing but
AppleScript. Ain’t no glass ceiling here.

With most programming languages, the code you
write is as simple to read and understand as one
of those customizable message signs that still sits
outside the gas station 7 years after the owner lost
the last vowel in the set. No programming language
is trivial to learn, but anybody can read a working
script and get an immediate sense of what it does
and how.

� Note
Just to leave you suitably agog, let’s say you wanted
your AppleScript to make a list of every file in a cho-
sen folder whose file type is JPEG Image.What would
the AppleScript for that be? Here it is:

every file in (choose folder) whose file type is “JPEG
Image.”

If that doesn’t leave you agog, then your agogulator
is long overdue for its scheduled periodic
maintenance.

307

02b_567942 c17.qxd 6/25/04 11:33 PM Page 307

But is there anything about AppleScript

that will make me want to drop my

mouse, stomp outside, and go chuck

rocks at birds?

I’m glad I ended that last section on a high note because in
the interests of fairness I need to point out that

Application support of AppleScript is spotty.
Making sure that AppleScripted instructions control
an application is the responsibility of the app’s
developers...and frankly, many of them feel that they
have enough on their hands ensuring that their new
fuzzy-logic search-and-replace routine doesn’t have the
ability to one day become self-aware and lead all the
machines in an uprising that will result in Humanity
becoming a slave race mining selenium and tungsten
under the emotionless, unpitying steel heels of emo-
tionless overlords. So, some apps (particularly those
published by Apple itself) support AppleScript with
all the zealotry of a member of alt.nerd.obsessive who’s
just read a public message claiming that the USS
Enterprise could probably beat the Millennium Falcon
in a battle. But others only support the four bare min-
imum AppleScript commands mandated by Apple:
run, open a document, print a document, and quit.

The documentation really stinks. Apple doesn’t do
enough to provide users with AppleScript tutorials.
And because every application supports AppleScript
in its own individual way, the fact that you’ve mas-
tered the AppleScript skill of creating a new docu-
ment in TextEdit doesn’t necessarily mean you’ve
picked up any of the skills you need to create a new
outgoing email in Mail.

Debugging stinks, too. At least in places. In plush,
cushy development systems like REALbasic, when
you make a mistake with your code, the system
clearly flags it, clearly and specifically explains the

nature of the problem, and might even suggest a solu-
tion. AppleScript tells you “TextEdit got an error:
NSCannotCreateScriptCommandError” and you
should feel lucky it doesn’t toss a derisive “Duh! ” at
you before hopping back on its skateboard and zip-
ping away.

AppleScript’s easygoing approach to English and
syntax can often be a double-edged sword. With a
language like C or even Basic, the code has either
been written correctly (the way that causes your proj-
ect to build and run successfully) or incorrectly (the
way that results in your computer doing nothing
except repeatedly reminding you of what a dipwad
you are, until you finally rewrite your code The Cor-
rect Way). In AppleScript, there are often several ways
to achieve the same results. This is great because pro-
grammers can develop a style that makes the most
sense to them, personally — but if you’re trying to
learn AppleScript by looking at other people’s scripts,
it can give you fits. You have to enter some parts of
the script verbatim. Other parts are a matter of per-
sonal preference. Your mission, Mr. Phelps, is to learn
to distinguish between the two.

� Note
For example, early on, the language’s architects real-
ized that without the word the, the line “set the title
of the window to ‘Utopia Limited’” reads like it’s
being spoken by Frankenstein’s monster. People
don’t like Frankenstein’s monster — misunderstood,
yes, but come on, the dude’s done some nasty
stuff — so they decided that the is optional in a
script. AppleScript will just bloop right over it.

USING SCRIPTS

“I’m sold,” you’re saying. “I’ll take a dozen in assorted fla-
vors.” So how do you use AppleScript in my day-to-day
life of home, work, and worship?

Part II: The Technical Bits

308

02b_567942 c17.qxd 6/25/04 11:33 PM Page 308

Chapter 17: Automating with AppleScript

You can get started by using AppleScripts that have been
thoughtfully written for you by Apple and by other users.
You’ll find a folder named AppleScript inside your Appli-
cations folder. It contains lots of useful sample scripts,
along with documentation and a couple of scripting
utilities.

� Tip
If you want to see what some non-Apple employees
have been doing with AppleScript, skip ahead to the
end of this chapter, wherein I list a number of online
scripting resources. Many of them have enormous
hoards of useful scripts available for free download.

There are three different kinds of script files. You can see
what their Finder icons look like in Figure 17-1.

Figure 17-1
Script files, applets, and droplets: The three faces of
AppleScript

Script files are akin to AppleScript documents. You
use this format for scripts that you’re still tweaking
because, while you can run them by double-clicking
them, they can’t run unless the Script Editor applica-
tion is running as well.

Applets are the standard, useful form of script. The
AppleScript code has been saved as a Macintosh
application — albeit one without a slick Macintosh
user interface — so this script can run all by itself
without any assistance from Script Editor.

Droplets are a special form of applet. You can run
them by double-clicking, but you can also drag and
drop a file or a folder of files onto them. Doing this
runs the droplet and tells it, “Whatever it is that you
do, I want you to do it to all of these files.”

Applets and droplets are examples of compiled scripts. That
is, for the purposes of speed and flexibility, the plain-text
AppleScript instructions have been transmogrified into
something considerably closer to the hobo’s stew of num-
bers and addresses that a CPU is used to working with.
You can still open them in Script Editor and edit their
AppleScript code — unless the author decided to keep the
code under wraps — but they’ll run considerably faster
than plain old Script files.

Launching scripts yourself

You can place applets and droplets anywhere you’d place an
application. Keep ’em in the Dock, where you can easily
launch them; put them on the Desktop or in the toolbar of
your Finder windows so you can drag files and folders onto
’em; and like any other app, you can even have Panther
launch them every time your Mac starts up by setting
them as Startup items.

Panther gives you another way of running scripts: the
Scripts menu. This is a menulet that you can install in
your menu bar by double-clicking the Install Script Menu
app found in your AppleScript folder. The Scripts menu
looks like Figure 17-2.

309

02b_567942 c17.qxd 6/25/04 11:33 PM Page 309

Figure 17-2
The Scripts menu

The Scripts menu
By default, the Scripts menu comes populated with the
dozens and dozens of utility scripts that were placed on
your hard drive when you installed Panther. Take a minute
or two to walk through all those submenus and see what’s
there. There are some real gems to be found, including a
whole collection of scripts that apply modifications to a
whole series of filenames in the Finder.

The Scripts menu is populated from two sources: the
Scripts folders located in your Home directory’s personal
Library folder, and your Mac’s system-wide Library folder.
Just drag in any applet, droplet, or script file. Scripts in
your personal folder are yours and yours alone; any scripts
you put in the system-wide folder become available to any
user. The scripts pop into the menu immediately (Figure
17-3) and sink to the bottom of the list.

If you don’t give a toss for any of those utility scripts, just
select Hide Library Scripts and the menu only shows your
personal stash.

Figure 17-3
A few custom scripts in the Scripts menu

Attaching scripts to Mail rules

A great many apps (including many of Panther’s built-in
apps) take advantage of AppleScript to increase their flexi-
bility and power. The folks who wrote the Mail app, for
example, couldn’t possibly have thought of everything that
everybody would ever want to do with Mail. Even if they
did, they all work in California. It’s usually way too nice
outside to stay cooped up inside bashing out code all day.

Mail can be scripted like any other Mac app, but it also
can run scripts as part of its automatic mail filtering system
(Figure 17-4).

Part II: The Technical Bits

310

02b_567942 c17.qxd 6/25/04 11:33 PM Page 310

I’ve written a script that takes a specified message, converts
it to text, and then installs it in my iPod’s Notes folder so I
can read it while I’m sitting in my doctor’s office waiting
for my weekly injection of sheep collagen. By attaching
this script to a Mail rule, any time Mail receives an email
from the Tony Danza Fanscene Message Board that I
belong to, it’s automatically slurped onto the iPod.

Figure 17-4
A Mail filter rule that triggers an AppleScript

That’s just a single example of an app that can run an
AppleScript automatically whenever a certain condition is
met. They’re all over the place. Go to System Preferences
and click on the CDs & DVDs panel. It lets you dictate
what Panther should do whenever a disc is inserted. There
are obvious things you’d want to do when you insert a disc
of a certain type (audio CDs are opened in iTunes, photo
CDs get handed off to iPhoto), but you can also tell Pan-
ther to run an AppleScript. That’s handy for customizing
Panther’s response. I wish iTunes could display editorial
information about a CD, as other players can. If it bugs
me that much, I can write a script that opens the disc in
iTunes, gets the name of the album, and then opens a
Google page on it.

It’s just another way of turning Just Any Mac into a Mac
that’s specifically been dialed into your personal needs and
preferences.

Chapter 17: Automating with AppleScript

311

LET’S SEE AOL’S MAIL APP DO THIS

I’ve just reread the example about the script I wrote to place mail on my iPod. It’s possible that you
might come away thinking I’m not the harbinger of intense, brooding super-cool that even would pro-
voke comment among Sean Penn or Johnny Depp. So I will confess that the Mail script I really wrote is
one that takes advantage of both Mail’s scripting features and that of an app called XTension (www.shed.com).This app
works with cheap, home-automation hardware and allows the Mac to both turn lights and appliances on and off and
accept input from motion and temperature sensors.

Because I live the life of the sensitive artiste (and, again, I have that whole brooding thing going on), I often leave the office
for a few hours to breathe a little fresh air. Depending on what I’ve got cooking, I may or may not check my email immedi-
ately when I get back, which can have serious repercussions if something important has come in when I had no idea that
anything important might be coming in.

So here’s what I did: I got my disco strobe light (it was a gift. It was a gift.) out of the closet, plugged it into a home-automation
box, and wrote a three-line AppleScript for XTension so that any app could turn it on. I attached this script to a Mail rule so
that the strobe activates whenever an email arrives from one of my editors, and voilà! when I pull into the driveway and see
through the windows that there’s a full-on rave in progress in my office, I head straight upstairs and check my mail. Or, admit-
tedly, I pull back out of the driveway again and hope that my assistant (either one of the two goldfish; doesn’t matter) handles
it. Either way, attaching scripts to mail actions is a useful feature.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 311

Attaching scripts to folders

One of AppleScript’s ginchiest features, Folder Actions,
went away temporarily during the transition to Mac OS X,
but now it’s back. Just as Mail can run a script whenever a
Mail rule senses that a specific condition has been met,
Folder Actions allows you to attach a script to a specific
folder and have it run whenever any or all of the following
things happen:

The folder is opened.

The folder is closed.

An item is added.

An item is removed.

The folder’s window is moved or resized.

And here I encourage you to just lean back in your chair —
get out of bed first and move to your desk if need be
because I like the visual of someone leaning back with
hands folded behind their head, staring thoughtfully at the
ceiling; work with me here — and consider the implica-
tions of this. This is why AppleScript skills elevate you into
a Power User. For example, why bother to manually organ-
ize your Documents folder? Attach a script to the folder
that leaps into action whenever a new item is added and
moves it into the proper subfolder automagically.

But that’s productive. Brrrrr! How about something stupid.
Get a load of Figure 17-5.

There was a folder on my office’s publicly used Mac that
my visitors were told not to mess with, but they insisted on
messing with it all the same. I had to write a whole bunch
of scripts and attach them to the folder to prevent folks
from creating problems, but in the end, I was unsatisfied
with having AppleScript just throw up a little error mes-
sage politely asking them not to do that again.

Figure 17-5
AppleScript applies a corrective action

So I bought a repeating-action suction-cup gun at the toy
store, fitted it with the door-lock actuator from an old car,
gave it 12 volts of battery power, and wired it into a little
interface box that allows a Mac to interact with electronics.
And yes, the box is AppleScriptable.

The first time a visitor tried to monkey with the folder,
he got a polite warning. The second time he received three
darts to the back of the head fired from concealment
behind a potted plant placed there for that specific purpose.

I haven’t worked as a system administrator in quite some
time. I think it’s because I was just so dashed effective at my
job that I set an impossibly high standard for others to fol-
low. Plus, I kept stealing photocopiers, and if I’d known that
was the boss’s daughter, I sure wouldn’t have encouraged
her to drop out of law school and start a pottery business.
Hindsight is 20-20, you know.

You can attach a script to a folder through the folder’s
contextual menu. Folder Actions is a system-wide service
that’s disabled by default, so your first job is to turn it on.
Control+click the folder to open its contextual menu and
select Enable Folder Actions from the bottom of the list.

Part II: The Technical Bits

312

02b_567942 c17.qxd 6/25/04 11:33 PM Page 312

� Note
I admit that Apple could have chosen a more logical
mechanism for turning that feature on. Enable Folder
Actions doesn’t just affect this one folder; conceivably,
it affects every single folder that has actions associ-
ated with it. If you’ve already assigned actions to a
half-dozen folders, doing this will cause all of those
scripts to become live, so to speak. Apple really ought
to have put this into System Preferences instead.

Select the folder’s contextual menu a second time and
you’ll notice that a few new items have been added
(Figure 17-6).

Selecting Attach a Folder Action opens a standard Choose
File dialog. You can select any script anywhere on your
hard drive, but by default, it points to Scripts ➜ Folder
Action Scripts located in your Mac’s system-wide Library
folder. There, you’ll find a number of useful built-ins.
Select add – new item alert.scpt.

� Tip
If you want to create a Folder Action Script that’s
available to all users of this Mac and not just to you,
be sure to copy it into the default folder.

This script is a useful thing to attach to your Drop Box.
Every time someone on the network puts a file in your
Drop Box, the script activates and alerts you (Figure 17-7).

Figure 17-6
Setting up Folder Actions via a contextual menu

Figure 17-7
Hail, Folder Actions! For now I know that Lenny
has sent me the file he promised.

You can attach multiple scripts to a folder. Removing
scripts is just as straightforward: Activate the folder’s con-
textual menu, go to Remove a Folder Action, and select
the script from the submenu.

Apple, which loves you and only wants what’s best for you
and your siblings, has also provided you with the Folder
Actions Setup utility (Figure 17-8).

Figure 17-8
The Folder Actions setup utility

As you add more and more scripts to more and more fold-
ers, a management utility like this becomes more and more
necessary. At a glance, it shows you which folders have
scripts attached to them, and allows you to temporarily
disable or enable them with a handy click.

Chapter 17: Automating with AppleScript

313

02b_567942 c17.qxd 6/25/04 11:33 PM Page 313

CREATING YOUR OWN SCRIPTS

When Apple first announced AppleScript back in 1993, it
was truly going to be the miracle of the Zeppelin age. Not
only was every Mac application going to be scriptable, but
there were going to be three different increasingly ambi-
tious levels of scriptability:

Scriptable. Users can write AppleScripts that exploit
this app’s features. Sounds good, but how about

Recordable. Users don’t even have to write any Apple-
Scripts. They can run the Script Editor application,
create a new script file, click a Record button, and
then go back to the app and perform whatever action
he or she would like to automate. Return to Script
Editor, click Stop, and hey-presto! An AppleScript to
repeat that same action magically appears! But don’t
order yet! Because some apps are also

Attachable. Wish you could change some of your
apps’ fundamental behaviors? Wouldn’t it be useful if
every time you pressed Ô+S in your word processor, it
would only save the file after giving it a quick scan to
make sure you weren’t using more than two of George
Carlin’s Seven Dirty Words in the church newsletter?
Well, you no longer need to hit the bottle because you
can customize an Attachable application into such an
unholy perversion of what its creators intended that
even the professionals who groom teacup poodles
would point and say, “Dude...too far! ”

Oh, what a Xanadu that would be! But Apple was only
setting us up for heartbreak. Scripting features are
determined by the app’s developers, and very few compa-
nies are truly committed to AppleScript.

Recordable apps and attachable apps don’t exist. “Don’t
exist?” you huff, racing to your mail client to roundly jump
up and down on my head for making such a baldly incor-
rect statement and to provide me with a long list of apps
that are too recordable and attachable, thank you very much.

But yeah, as a practical matter, they don’t exist. Recordable
apps are rare, and attachable apps are rarer. Even when you
do joyously happen upon one in the wild, throw it in a
bag, and haul it back to the States in hopes that you can
get it to breed, you’ll ultimately be disappointed with what
it can do. Only some functions can be recorded, and only a
few menu options are attachable.

As for basic scriptability, nearly every app supports at least
four basic AppleScript commands:

Run. Launches the app.

Open. Opens an item, typically a document file.

Print. Prints an item, again, typically a document.

Quit. Fold. Pack it in. Give up hope. Take your ball
and go home. You know...Quit.

Part II: The Technical Bits

314

BECOME A BIG
PICTURE MAN

And here I say Thank The Great Gor
Of Ranxeron-9. I’m what you’d call a
Power User, which means that I’ve customized my
Mac’s operations to such an extent that I barely have
half an idea of what’s going on three-quarters of the
time. I kept losing files in my Pictures folder once. It
turned out that I had attached a script a week earlier
to automatically process hundreds of photos that
were coming in across the network, and I’d forgotten
to turn that script off when I was done.

I choose to see this as a sign of my power and pres-
tige. Do you think Donald Trump has half a clue what
goes on inside his offices? Of course not.We’re Big
Picture men, too busy steering empires — his: an inter-
national real-estate and entertainment conglomerate;
mine: a dual-processor G4 tower with “Babylon 5”
stickers on it — to waste time on trivial details.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 314

Anything above and beyond that is up to the ambition and
commitment of the developer. It’s a crapshoot of delight
and disappointment. It’s the good apps that keep you com-
mitted to AppleScript. Some apps are so script-happy that
it almost seems like a waste to work with the user interface
at all.

� Note
This includes most of Apple’s own apps. I recently fin-
ished ripping every single CD I’ve ever bought in my
life into a single iTunes library. I think I’ve spent more
time writing scripts to manipulate the library and
analyze my music tastes than I’ve spent listening to it.

Script Editor

Script Editor is the app you use to record scripts, edit
existing ones, write brand-new scripts of your own, and
crack open your applications to see just how scriptable

they are. You find it inside your AppleScript folder, which
awaits you inside Applications. Figure 17-9 shows you a
typical script-editing window.

This is Script Editor’s entire interface, or near enough.
Apart from Saves, Opens, and Prints, you’ll never touch
the menu bar at all. Here, give it a shot:

1. Create a new script by pressing Ô+N. Alternatively,
you can click File ➜ New.

2. Type the following code into the editing window:

say “Greetings, Professor Falken.”
delay 1
say “How about a nice game of chess?”

3. Click the Run button.

Figure 17-9
The Script Editor, with a simple script up on the lift
so we can finally do something about those brake
pads

There you go; you’re now a programmer. I bet your skin’s
half a shade paler already.

Chapter 17: Automating with AppleScript

315

RECORDABLE APPLE-
SCRIPTS: NICE WORK
IF YOU CAN GET IT

Why are there so few recordable and attachable apps
available? Because AppleScript never won the grass-
roots support that it deserved.To the point of view of
the app’s developers, anyone who’s savvy enough to
want to record a script is probably savvy enough to
write one on his or her own. So why waste time
adding recordability?

They sort of have a point, though maybe it’s a self-
fulfilling one. I don’t count on an app being record-
able, so I just go ahead and write my scripts from
scratch.The only time I take advantage of an app’s
recordability is when I’m writing a larger script. I’ll
record the desired action first and use that as a start-
ing point for the “real” script.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 315

If you were watching the window carefully you noticed
that the Stop button enabled itself while your script was
running. Clicking that sucker terminates the script in
mid-run — a very useful feature when the script that you
thought you told to look through your entire hard drive for
Microsoft Word documents and copy duplicates onto a
blank CD and then burn it, actually winds up emailing
those boudoir photos you had done at the mall to every-
one in your 1,100-person Address Book.

� Note
Which ordinarily wouldn’t happen. AppleScript
doesn’t make mistakes like that. But if there’s one
thing more powerful than AppleScript, it’s Karmic
Justice.Yes, you, the lady in the pink raincoat I
encountered outside Blockbuster this morning.That
was my parking space and you knew it.Well, who’s
laughing now?

As you start to work with longer and more complicated
scripts, you’ll probably start making regular use of the
Compile button. Essentially, it double-checks your spelling
and grammar. If something you’ve typed doesn’t make
sense as AppleScript, it flags it for you and does its best to
explain what the problem is. If everything’s flawless, it
reformats the script with fancy nested indents and type
styles, like you saw in Figure 17-9.

Underneath the code section of the window exists a little
pane of information. It can display three different things,
depending on which of those three tabs underneath it has
been clicked:

Description. It’s a good idea to describe your script
and what it does. You’re going to start writing a lot of
scripts (No, really, I’ve paid a large man $30 to come
over to your house and beat the snot out of you if
you don’t. So, I mean, time’s a-wasting), and without
attaching notes to these things, it becomes really easy
to forget why you bothered to write this particular
script in the first place.

Result. That’s a debugging tool. When a script runs
to the very end, the results of the last operation it per-
formed are displayed in the Result tab. You can see
an example in Figure 17-9. The last thing this script
did was build a sentence out of the information it
retrieved from iTunes. Thus, this sentence winds up
in the Result pane.

� Tip
I talk the big talk when it comes to AppleScript, but
my arrogance ends when I sit down at the editing
window. I have taken the wise words of Rabbi Norm
Abram and kept them close to my heart:“Measure
twice, cut once.” Or in this case,“Don’t try to debug a
new snippet of code by inserting it inside a ten-page
script and hoping for the best; write it separately,
keep modifying until the Result is what you pre-
dicted and hoped it would be, and then trust it to
work properly as part of the larger project.” If the
Result tab were a woman and I were a married man
of considerably greater means, I’d be buying it a
condo and visiting it on the side.

Event Log. An even more sophisticated debugging
resource. At the root of a gas engine is combustion. At
the root of national-level politics is unresolved child-
hood inadequacy issues. And at the root of all Mac
software are events. These are the molecules of what
goes on behind the scenes — the actual activities that
software has to carry out to make things happen.
Script Editor can maintain an Event Log that keeps
track of everything your script did during execution
and what the immediate result was, step by step
by step.

With the current version of Script Editor, it’s impos-
sible to stop the script in mid-run to see if the line
“set theArtist to the artist” evaluated properly. But if
I click the Event Log, I can see that this line of script
returned the text The Beatles, just as it should have.

Part II: The Technical Bits

316

02b_567942 c17.qxd 6/25/04 11:33 PM Page 316

It’s an essential tool when you need to learn precisely
where a script went off the rails. You can fine-tune the
behavior of the Event Log through the History tab of
Script Editor’s preferences.

Ah, yes, we seem to have overlooked the Record button.
Well, let’s just clear that out of the way so we can move on.

Recording scripts

Like I said earlier, recording scripts can be a hit-or-miss
proposition. There’s no way to tell whether or not an app

is recordable — or exactly how useful its recording
features are — until you give it a whirl.

Let’s toss in a ringer for our example: the Finder. It’s
eminently recordable and as an environment for mind-
numbing, repetitious behavior it gives secondary education
a real run for its money.

I often organize my windows in a specific way that lets me
reorganize my hard drive’s clutter quickly. Regardez-vous
Figure 17-10.

Chapter 17: Automating with AppleScript

317

Figure 17-10
What my Finder screen looks like when I’m trying to beat poor, defensive Chaos into Order with a
motorcycle chain

02b_567942 c17.qxd 6/25/04 11:33 PM Page 317

It’s a master column view of the whole hard drive up top,
and three windows of subfolders arranged on the bottom.
But it’s a pain to create and arrange these windows manu-
ally, so I’m going to record a script that does it for me.

1. Create a new script file in Script Editor by pressing
Ô+N. Alternatively, you can click File ➜ New.

2. Click the Record button. The Stop button activates.

3. Click over to the Finder. Create those four windows,
click in them until they’re displaying the folders I
want to examine, and change their views to the styles
I want (one set to Columns and the rest set to Lists).

4. Click back into Script Editor when the windows
are just the way I like them. Notice that the script
window is now jam-freakin’-packed with script.

5. Click the Stop button. The final result is what you
see in Figure 17-11.

Figure 17-11
A successful recorded AppleScript

Woo-hoo! Just imagine having to type all that in yourself!
Recording scripts rules!!!

� Note
Correspondent carefully extends pinky and index
finger while curling ring and middle finger under
thumb; resulting hand-sign is then proudly lofted
into the air to create an overall motif of horns cus-
tomarily seen in traditional representations of Satan,
and thus signifying one’s allegiance to same.

Not so fast, Skeezix. Why don’t you try something even
simpler, like recording all the steps of using the Finder to
connect to an FTP server? Go ahead. I’ll wait here.

Uh-huh. You wound up with something like Figure 17-12,
didn’t you?

Figure 17-12
A stinky recorded AppleScript

The only thing it actually recorded was that thing at the
very end, when you finished logging in to the FTP server
and you changed the window’s view from Icon to List. See
what I mean? Spotty and unpredictable. Recording scripts
isn’t totally useless, but once you’ve picked up some script-
ing skills, you’ll practically never use it.

Well, the Finder window thing went well at any rate. I
might want to actually use that script later. Which dove-
tails us nicely into...

Part II: The Technical Bits

318

02b_567942 c17.qxd 6/25/04 11:33 PM Page 318

Chapter 17: Automating with AppleScript

Saving scripts

Saving a script has a couple of quirks, compared to saving
document files in other applications. No big surprise...in
a sense, you’re building software here, so you have to
decide how this new software is going to be deployed,
you know? Figure 17-13 shows Script Editor’s standard
Save dialog.

Figure 17-13
Script Editor’s Save options

The file format options are as follows:

Application. The most useful form for your finished
script. It’ll run whether or not Script Editor is present,
and it can run as a drag-and-drop utility if you’ve
scripted it properly.

Script. If you’re still working on your script — or if
you’re coauthoring it with another scripter — you
might want to save it as a Script file instead. It’s
slower and not quite as versatile as an application,
but it’s a little easier for a scripter to work with.

Text. It’s a file containing nothing but words. No for-
matting, no other data at all. Useful for publishing
purposes and when you need to read your script on an
OS that doesn’t support AppleScript (like a PDA or a
Windows notebook).

You also have three options available to you:

Run Only. Normally, a saved script, even one that
winds up as an Application, can be opened in Script
Editor and modified. If you want to protect your code
from tampering or theft, click this option.

Startup Screen. Sure, you know what this script does
and know how to use it. But will everybody else?
Clicking this option will take the text you wrote in
the Description tab of the script window and package
it as a startup screen that appears whenever the script
is run.

Stay Open. Scripts normally run once and then quit.
Checking this box causes the script to stay open and
active. There’s a special kind of AppleScript code
called an idle handler that takes advantage of this. If
it’s incredibly important that iTunes is always up and
running (it has to be available to serve music to all the
other Macs in your house, let’s say), you can write a
script that checks every 10 minutes to relaunch it if it
doesn’t appear to be in the list of running apps.

Give the script a name, click Save, and you’re golden.

� Tip
Remember, if you want this script to appear in the
Scripts menu, save it in Library ➜ Scripts ➜ inside
your user folder. If you want the script to appear in
the Scripts menu of all of this Mac’s users, save it in
the system-wide Library folder (click on your hard
drive’s icon in the Finder to see it).

319

02b_567942 c17.qxd 6/25/04 11:33 PM Page 319

Examining AppleScript dictionaries

Script Editor has another function on top of building,
debugging, running, and saving scripts: It lets you examine
an application’s scripting dictionary to learn how it can be
controlled via AppleScript.

As I pointed out earlier, the strength or the weakness of an
app’s scripting support is up to the developer. Any func-
tions or capabilities that are specific to the app have to be
provided by the app. And they also have to provide Apple-
Script programmers with documentation explaining what
these app-specific functions and data types are.

The word documentation has to be used loosely. The develop-
ers write up a list of data types the app can recognize and deal
with and a list of functions the app can perform, and make
this list available to you, eager young space cadet, within the
application itself in the form of a scripting dictionary.

� Note
I will begrudgingly admit that many developers pro-
vide you with online scripting documentation, and
there’s often a whole page of sample AppleScripts
on their Web sites. All the same, keep your expecta-
tions low.The scripting dictionary is the only thing
you can absolutely count on, and a scripting diction-
ary helps you understand AppleScript about as
much as an English dictionary helps you to under-
stand the lyrics to “Louie, Louie.”

Part II: The Technical Bits

320

THESE AREN’T THE
DROIDS YOU’RE
LOOKING FOR;
MOVE ALONG

It’s been a long day. I barely had lunch. All day long,
the FedEx and UPS delivery people and the mailman
have wondered why I’ve been so brusque with them
instead of engaging in the usual 20 minutes of neigh-
borhood gossip, play-by-plays of recent surgeries, et
cetera. I mean, I haven’t been shirking off and I haven’t
sandbagged a single thing in all my years of working
on this book.

So can we please just pretend you never saw those
two bundle options? Trust me, you don’t need to know
how to use them. A bundle is a special format that lets
you enclose files and resources along with the script.
Like, if your script normally takes about 8 minutes to
complete its task, maybe you want to have it play
American Pie to keep the user entertained while wait-
ing. If you save the script as a bundled application, you
can stick the MP3 file right inside the app, so every-
thing’s in one nice, convenient package.

WHEN THE SCRIPTING
DICTIONARY LETS YOU
DOWN

If you were hoping to find a certain command, but the
dictionary broke your heart, that doesn’t necessarily
mean that you can’t script it. Panther brought with it a
new AppleScript feature called GUI Scripting. It’s a sys-
tem by which a script can send keystrokes and mouse
clicks to an app and manipulate its user interface the
same way a user can.

So while iChat’s scripting dictionary doesn’t let you do
something as esoteric as changing your online chat
icon, you can do it by having GUI Scripting select the
right menu and then click the right button in the right
window. I used this feature to turn my chat icon into a
live webcam; every minute, my iSight video camera
takes a new picture of me and updates my chat icon
with it.

There are plenty of privacy issues associated with
webcams, but at 32 x 32 pixels, I think I can scratch
more or less whatever I want with impunity.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 320

Chapter 17: Automating with AppleScript

Script Editor can open and read these dictionaries. Just
click Open Dictionary within Script Editor’s File menu.
Script Editor presents a list of all installed apps. Pick an
app, and you’ll see what additional features and functions
it brings to the AppleScript family (see Figure 17-14).

Figure 17-14
iTunes’ scripting dictionary, laid bare

A dictionary is organized into Classes and Commands.
Classes are a sophisticated construct of modern computer
science, but the word thingamabob just about covers it.
This list contains all of the thingamabobs that this app has
been specially trained to deal with. In iTunes’ case, you’ve
got playlists, tracks, music sources, equalizer presets...all
those things that Microsoft Excel’s programmers were too
lazy to teach their apps about.

Then you’ve got yer commands: play starts playback, next
track skips to the next track, and so forth. In the end,
reading through an app’s scripting dictionary is useful to
the extent that it’ll give you a sense of the app’s capabilities.
I want to write an iTunes script that does something to my
music library on an album-by-album basis. Can I ask
iTunes for a specific album, or do I have to find and gather
together all of the album’s individual tracks myself? I look
through iTunes scripting dictionary. Dang, it looks like
there’s no built-in way to process albums, so I’ll have to
write that feature myself.

LEARNING APPLESCRIPT:
RESOURCES

Time and space prevent me from including a full primer
on the AppleScript language. (And when I say time and
space, I, of course, mean money. This is simple Einsteinian
physics, people. Einstein said that time and space were
merely vibrational manifestations of matter, and to me,
nothing matters more than money. Slip me another three
bucks and I’ll be all over this whole Primer thing but
otherwise, nothin’ doing.) So instead, I’ll steer you toward
other resources. The best way to learn AppleScript is to
examine a script that (a) already exists, and (b) works.
Over time, you’ll wind up working your way through all of
the sample scripts Apple left for you in the Scripts menu.
Scroll around until you see a script that seems to do some-
thing interesting, open the Script file in Script Editor, and
play with the code.

No kidding. I’ve written plenty of AppleScripts that use
Mail to create and send an email, but the central nugget of
that code is always the lines I found in one of Apple’s sam-
ples from the Scripts menu. Remember, kids, it’s only
thievery if you feel guilty about it later on.

Joking, joking. Apple’s scripts say explicitly that you’re free
to recycle these samples as you see fit. Plus, this is exactly
what AppleScript’s framers originally intended — learning
by example.

You’ll absolutely want to go back to wherever you tossed
your Panther install discs and get out Disc 4, the Devel-
oper Tools CD. I can confirm for you that this disc con-
tains hardcore supergeek resources and references so potent
that even now, just reading about them causes calcium
deposits to form around your neurons simply as a defen-
sive measure. But on this disc lurks a complete set of
AppleScript documentation and reference materials that’ll
help explain the basics of writing AppleScript all the way
through the intermediaries.

321

02b_567942 c17.qxd 6/25/04 11:33 PM Page 321

� Tip
If you can’t find this disc or don’t want to install it,
most of the best bits are on Apple’s Web site at
www.apple.com/applescript/developers/. But you’re
going to want to be able to access this information
without being tied to the Internet. Note that I didn’t
end that sentence with the term “trust me,” though
I could have. But I’ve already used it once, and Andy
Ihnatko doesn’t go around begging for respect. Do
you hear me?

Some other places to go:

The AppleScript-Users mailing list

(www.lists.apple.com/)

This is a public mailing list that’s chock-full of seasoned
scripting experts, newbies who’ve yet to write their first tell
block, and everyone in between, all asking questions and
swapping techniques. AppleScript is full of landmines
that require either the sort of lateral thinking that leads to
either madness, greatness, or the annual redesign of the
federal tax code and only someone Who’s Been There can
explain how AppleScript works...and more importantly,
why it sometimes doesn’t.

Apple’s Scriptable Applications page

(www.apple.com/applescript/apps/)

Partly as a user resource and partly to sell people on the
power of AppleScript, Apple maintains a Web page lifting
all of the built-in Panther apps and iLife apps that support
AppleScript, and embroiders each item with some sample
scripts complete with explanations. When you want to
start learning how to script Safari, this is your starting
point.

MacScripter.net (www.macscripter.net/)

Hands-down the best AppleScript information and educa-
tion resource outside of Apple. What the hey. Throw
Apple in there, too. At this writing, MacScripter contains
more than 1,300 sample scripts in every conceivable cate-
gory for your benefit and edification. It attempts the
impossible task of documenting every major Mac app’s
level of scriptability. There’s a busy, busy, busy message
board where newbie questions are always welcome;
MacScripter has succeeded in building a real community.

Doug’s AppleScripts for iTunes

(www.malcolmadams.com/itunes/)

This site does one thing, but it does it with remorseless
thoroughness: It’s all about scripting Panther’s music
player. It’s actually a fine place to focus your scripting skills
as they flower. The downloadable scripts range from sim-
ple five-liners to ones whose scale and ambitions demand
the use of the term Heroic.

SCRIPTUS ANNOTATUS

Still and all, I’ll show you a very simple script to start you
off. And, because you were one of the first 500 callers to
take advantage of this incredible offer, I’ll annotate some
of the high points afterward.

For a free word processor, TextEdit is actually pretty slick.
On top of all of its built-in features, it’s Microsoft
Word–compatible, so it’s actually possible to use it as a
serious productivity app. But I can’t use any word proces-
sor that doesn’t have a word-count feature. Adding one
is easy as pie. Just create a new Script file containing the
following code, and save it inside your Scripts folder:

Part II: The Technical Bits

322

02b_567942 c17.qxd 6/25/04 11:33 PM Page 322

Chapter 17: Automating with AppleScript

tell application “TextEdit”
set theText to the text of document 1

end tell

set theLength to the number of words in theText

display dialog “There are “ & theLength & “ words in the
text.”

Running this script returns the number of words in the
frontmost TextEdit document. It also gives me three
opportunities for blathering on:

Tell...end Tell: Reflect upon the fact that there are
anywhere from dozens to hundreds of apps installed
on your Mac. If you have something to say to just one
of them, you can’t just stand on your chair and shout
“Hey, you!” So when you have something to say, you
surround it with a tell block so that it doesn’t get
intercepted by the wrong app.

In this script, the only thing we need TextEdit for is to
get the text of the document (document 1...aka, the
document whose window is in front of every other
TextEdit window). So that’s the only line you put
inside the tell block. That’s not always completely nec-
essary. The rest of the script is part of the core Apple-
Script language and should work anywhere. But it’s
sloppy to put more inside a tell block than you
absolutely must. It’s more than sloppy...it can often
have unpredictable results. For instance, I could have
put this line inside the tell block:

set theLength to the number of words in
theText of document 1

...and I wouldn’t have needed the line of script that
comes after it. It would have run just fine, but it
returns an incorrect result. When AppleScript counts
the number of words outside of the tell block, every-
thing is both hunky and dory.

set...to is how you load up a container (“theText,” in
this case) with data. When AppleScript encounters

this statement, it evaluates everything that comes after
“to” (be it a mathematical calculation, an operation to
retrieve information [like we’re doing here], or the
result of another operation). I don’t have to bother
declaring “theText” ahead of time, or telling Apple-
Script that it’s supposed to contain text. AppleScript
figures out that stuff dynamically.

� Note
If you’ve taken an introductory course in program-
ming, a container is what you think of as a variable.
Oh, and subroutines? They’re called handlers.

display dialog generates a standard Macintosh dialog
with the contents you specify. For simplicity’s sake,
we’re using the plain-vanilla, ready-to-wear dialog. It
has text, plus OK and Cancel buttons. AppleScript
lets you customize these pretty thoroughly. Because
the dialog is just giving us some information, there’s
really no need for a Cancel button, for example. Go
to the Scripts menu and look at the dialog samples
under the Script Editor Scripts menu. “display dialog”
generates its own results, too. If I made the line “set
someContainerName to display dialog (etc.),” some-
ContainerName would hold the name of the button
that the user clicked.

� Note
But AppleScript’s built-in dialog functions are pretty
limited.They can’t get a whole lot of information
from the user and they can’t display a whole lot in
return.When you absolutely, positively need some-
thing more ambitious, it’s time to look into Apple-
Script Studio.

And we’re saving ourselves a step by building the dialog’s
text on the fly. The ampersands are your signal to Apple-
Script that you’d like all those items schmooshed together
into one string of text.

323

02b_567942 c17.qxd 6/25/04 11:33 PM Page 323

324

Part II: The Technical Bits

When you’re stuck with me as a dinner guest, there are
three topics you don’t want to introduce: The JFK assassi-
nation (Oswald did it and he acted alone; for bonus

points, let me run down the 12 most popular conspiracy
theories and why they’re utterly baloneyous), the Apollo
program (yes, I was born 30 or 40 years too late, but I’m
still convinced that if I do a few pushups I might make it
as a backup LEM pilot on Apollo 18), and AppleScript.

I’m as enthusiastic about AppleScript as I am about my
favorite books and movies. You’ve never experienced this
thing? Oh, sit down, you poor, poor man or woman; your
whole life has been a mere prelude to seeing The Stunt
Man or reading The Code of the Woosters for the first time.

AppleScript is exactly what’s right about computers in gen-
eral and the Mac in particular. There are some scripting-ish
solutions for Windows, but no other platform brings such
a level of power to such a low level of user expertise.
AppleScript means never having to say, “I wish I could do
this on my Mac.”

CHECK YOUR TELLS
BEFORE BEGINNING
THE HUMAN
SACRIFICES

Often, when a script just isn’t working and I’m so frus-
trated that I’m willing to sacrifice a living creature to
the Cloven-Hooved One to make it work (a moth,
maybe — let’s not lose our heads here), I just tighten
up my tell blocks and the problem magically disap-
pears. Just something to keep in mind before you
consider offing an intern to get a project finished.

02b_567942 c17.qxd 6/25/04 11:33 PM Page 324

