
Chapter 1

Writing Your First C++ Program
In This Chapter
� Finding out about C++

� Installing Dev-CPP from the accompanying CD-ROM

� Creating your first C++ program

� Executing your program

Okay, so here we are: No one here but just you and me. Nothing left to do
but get started. Might as well lay out a few fundamental concepts.

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s told —
nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable
human language — they don’t speak English either. Okay, I know what you’re
going to say: “I’ve seen computers that could understand English.” What you
really saw was a computer executing a program that could meaningfully under-
stand English. (I’m still a little unclear on this computer-understanding-language
concept, but then I don’t know that my son understands my advice, either, so
I’ll let it slide.)

Computers understand a language variously known as computer language or
machine language. It’s possible but extremely difficult for humans to speak
machine language. Therefore, computers and humans have agreed to sort of
meet in the middle, using intermediate languages such as C++. Humans can
speak C++ (sort of), and C++ is converted into machine language for the com-
puter to understand.

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

Grasping C++ Concepts
In the early 1970s, a consortium of really clever people worked on a computer
system called Multix. The goal of Multix was to give all houses inexpensive
computer access to graphics, e-mail, stock data, pornography (just kidding),
whatever. Of course, this was a completely crazy idea at the time, and the
entire concept failed.

A small team of engineers working for Bell Labs decided to save some portion
of Multix in a very small, lightweight operating system that they dubbed Unix
(Un-ix, the single task version of Mult-ix, get it?).

Unfortunately for these engineers, they didn’t have one large machine but a
number of smaller machines, each from a different manufacturer. The standard
development tricks of the day were all machine-dependent — they would have
to rewrite the same program for each of the available machines. Instead, these
engineers invented a small, powerful language named C.

C caught on like wildfire. Eventually, however, new programming techniques
(most notably object-oriented programming) left the C programming language
behind. Not to be outdone, the engineering community added equivalent new
features to the C language. The result was called C++.

The C++ language consists of two basic elements:

� Semantics: This is a vocabulary of commands that humans can under-
stand and that can be converted into machine language, fairly easily.

and

� Syntax: This is a language structure (or grammar) that allows humans to
combine these C++ commands into a program that actually does some-
thing (well, maybe does something).

Think of the semantics as the building blocks of your C++ program and the
syntax as the correct way to put them together.

What’s a program?
A C++ program is a text file containing a sequence of C++ commands put
together according to the laws of C++ grammar. This text file is known as the
source file (probably because it’s the source of all frustration). A C++ source
file carries the extension .CPP just as a Microsoft Word file ends in .DOC or
an MS-DOS (remember that?) batch file ends in .BAT. The concept extension
.CPP is just a convention.

10 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 10

The point of programming in C++ is to write a sequence of commands that can
be converted into a machine-language program that actually does what we want
done. The resulting machine-executable files carry the extension .EXE. The act
of creating an executable program from a C++ program is called compiling or
building (the subtle difference between the two is described in Chapter 22).

That sounds easy enough — so what’s the big deal? Keep going.

How do I program?
To write a program, you need two specialized computer programs. One (an
editor) is what you use to write your code as you build your .CPP source file.
The other (a compiler) converts your source file into a machine-executable
.EXE file that carries out your real-world commands (open spreadsheet, make
rude noise, deflect incoming asteroid, whatever).

Nowadays, tool developers generally combine compiler and editor into a single
package — a development environment. After you finish entering the commands
that make up your program, you need only click a button to create the exe-
cutable file.

The most popular of all C++ environments is a Microsoft product, Visual
C++.NET (pronounced “Visual-C-plus-plus-DOT-net”). All programs in this
book compile and execute with Visual C++.NET; however, many of you may
not already own Visual C++.NET — and at $250 bucks a pop, street price, this
may be a problem.

Fortunately, there are public-domain C++ environments. We use one of them
in this book — the Dev-CPP environment. A recent version of Dev-CPP envi-
ronment is included on CD-ROM enclosed at the back of this book (or you can
download the absolutely most recent version off the Web at www.bloodshed.
net).

You can download quite a range of public-domain programs from the Internet.
Some of these programs, however, are not free — you’re encouraged — or
required — to pay some (usually small) fee. You don’t have to pay to use Dev-
C++, but you can contribute to the cause if you like. See the Web site for details.

I have tested the programs in this book with Dev-C++ version 4.9.8.0; they
should work with other versions as well. You can check out my Web site at
www.stephendavis.com for a list of any problems that may arise with future
versions of Dev-C++ or Windows.

Dev-C++ is not some bug-ridden, limited edition C++ compiler from some fly-
by-night group of developers. Dev-C++ is a full-fledged C++ environment. Dev-
C++ supports the entire C++ language and executes all the programs in this
book (and any other C++ book) just fine, thank you.

11Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 11

Dev-C++ does generate Windows-compatible 32-bit programs, but it does not
easily support creating programs that have the classic Windows look. If you
want to do that, you’ll have to break open the wallet and go for a commercial
package like Visual Studio.NET. Having said that, I strongly recommend that
you work through the examples in this book first to learn C++ before you tackle
Windows development. They are two separate things and (for the sake of
sanity) should remain so in your mind.

Follow the steps in the next section to install Dev-C++ and build your first C++
program. This program’s task is to convert a temperature value entered by the
user from degrees Celsius to degrees Fahrenheit.

The programs in this book are compatible with Visual C++.NET and the C++
section of Visual Studio.NET (which are essentially the same thing). Use the
documentation in the Visual C++ .NET for instructions on installing C++. True,
the error messages generated by Visual C++.NET are different (and often just
as difficult to decipher), but the territory will seem mysteriously familiar. Even
though you’re using a different songbook, you shouldn’t have much trouble
following the tune.

Installing Dev-C++
The CD-ROM that accompanies this book includes the most recent version of
the Dev-C++ environment at the time of this writing.

The Dev-C++ environment comes in an easy-to-install, compressed executable
file. This executable file is contained in the DevCPP directory on the accom-
panying CD-ROM. Here’s the rundown on installing the environment:

1. Navigate to and double-click the file devcpp4980.exe, or (in Windows)
click Start➪Run.

• Double-clicking the file installs the environment automatically. (Note
that 4.9.8.0, the version number, will be different on any newer ver-
sion of Dev-C++ you downloaded off the Web.)

• If you clicked Start➪Run, type x:\devcpp\devcpp4980 in the Run
window that appears, where x is the letter designation for your
CD-ROM drive (normally D but perhaps E — if one doesn’t work,
try the other).

Dev-C++ begins with a warning (shown in Figure 1-1) that you’d better
uninstall any older version of Dev-C++ you may have hanging around,
and then reboot and start over. (Starting an installation with a threat
is an inauspicious way to begin a relationship, but everything gets
better from here.)

12 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 12

2. If you don’t have to uninstall an old version of Dev-C++, skip to Step 4;
if you do have to uninstall, abort the current installation process by
closing the Run window.

Don’t get upset if you’ve never even heard of Dev-C++ and you still get the
warning message. It’s just a reminder.

3. Okay, if you’re on this step, you’re uninstalling: Open the Dev-CPP
folder and double-click the Uninstall.exe file there.

The uninstall program does its thing, preparing the way for the new instal-
lation; the End User Legal Agreement (commonly known as the EULA)
appears.

4. Read the EULA and then click OK if you can live with its provisions.

Nope, the package really won’t install itself if you don’t accept. Assuming
you do click OK, Dev-C++ opens the window shown in Figure 1-2 and offers
you some installation options. The defaults are innocuous, with two
exceptions:

• You must leave the Mingw compiler system. . . option enabled.

• The Associate C and C++ Files to Dev-C++ option means that double-
clicking a .CPP file automatically opens Dev-C++ rather than some
other program (such as Visual C++ .NET, for example). It is possible,
but difficult, to undo this association.

Don’t check this option if you also have Visual Studio.NET installed. Dev-
C++ and Visual Studio.NET coexist peacefully on the same machine, but
what Visual Studio has done, let no man cast assunder. You can still open
your .CPP files with Dev-C++ by right-clicking on the file and selecting Open
With. Personally, I prefer to use this option, even with Visual Studio.NET
installed. It doesn’t cause any problems, and Dev-C++ starts a lot faster
than Visual Studio.

Figure 1-1:
You must
uninstall

earlier
versions of

Dev-C++
before you

begin the
installation

process.

13Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 13

5. Click the Next button.

The installation program asks where you want it to install Dev-C++, using
a message like that shown in Figure 1-3.

6. Accept the default directory, c:\Dev-CPP.

Don’t install Dev-C++ in the directory \Program Files with all the other
executables. That’s because Dev-C++ doesn’t do well with directories that
contain spaces in their names. I haven’t experimented much along these
lines, but I believe you can use any other directory name without any
special characters other than ‘_’. It’s safer just to accept the default.

7. Make sure you have enough room for the program, wherever you
decide to put it.

The Dev-C++ environment uses only a paltry 45MB, but it’s always good
practice to check.

8. Click Install.

At first, nothing seems to happen. Then Dev-C++ gets going, copying a
whole passel of files to the Dev-CPP directory — putting absolutely noth-
ing in the Windows home directory. Figure 1-4 displays the eventual result.

Figure 1-3:
The default
location for

the Dev-C++
environment
is provided.

Figure 1-2:
The default
installation

options
should be

acceptable
to most

users.

14 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 14

While the installation is going on, Dev-C++ presents a window that asks
whether you want to install for all users once it’s done copying files onto
your hard drive. That question boils down to this: If someone else logs
on to your computer, do you want her or him to be able to execute Dev-
C++? (The answer is “Yes” in my case.)

9. Choose whether you want to install for all users, and then click the
Close button to complete installation of the package.

Dev-C++ starts immediately, so you can set its options properly for your
needs. (Yep, there’s more work to do. But you knew that. Read on.)

Setting the options
As you probably know if you’ve spent more than a coffee break’s worth of time
installing software, setting options is a procedure unto itself. In this case, Dev-
C++ has two options that must be set before you can use it. Set ’em as follows:

1. Choose Tools➪Compiler Options.

You can change these settings at any time, but now is as good as any.

2. Choose the Settings tab.

3. Choose Code Generation from the menu on the left.

Make sure that the Enable Exception Handling is enabled, as shown in
Figure 1-5. (If it isn’t, click on the option box to display the two choices
and select Yes.)

4. Choose Linker and make sure the Generate Debugging Information
option is enabled.

Figure 1-6 shows you what to look for.

Figure 1-4:
The Dev-

C++
installation

process
unzips a

large
number of

mostly small
files.

15Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 15

5. Choose OK.

Installation is now complete! (Your options are saved automatically.)

Creating Your First C++ Program
In this section, you create your first C++ program. You first enter the C++ code
into a file called CONVERT.CPP, and then convert the C++ code into an exe-
cutable program.

Figure 1-6:
The

Generate
Debugging

Information
option must
be enabled.

Figure 1-5:
The Enable

Exception
Handling

option must
be enabled.

16 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 16

Entering the C++ code
The first step to creating any C++ program is to enter C++ instructions using a
text editor. The Dev-C++ user interface is built around a program editor specifi-
cally designed to create C++ programs.

1. Click Start➪Programs➪Bloodshed Dev-C++➪Dev-C++ to start up the
Dev-C++ tool.

The Dev-C++ interface looks fundamentally like that of any other Win-
dows program — perhaps a little clunkier, but a Windows application
nonetheless.

This is a lot of clicking. My personal preference is to create a shortcut
on the desktop. To create a shortcut, double-click My Computer. Now
double-click the Local Disk (C:). Finally, double-click Dev-CPP — whew!
Right-click the file devcpp.exe and choose Create Shortcut from the
drop down menu. Drag the Shortcut to devcpp.exe file onto your
desktop (or some other easily accessible place). From now on, you can
just double-click the shortcut to start Dev-C++.

2. Choose File➪New➪Source File.

Dev-C++ opens a blank window wherein you get to enter your new code.
Don’t worry if you find yourself wishing you knew what to enter right
now — that’s why you bought this book.

3. Enter the following program exactly as written.

Don’t worry too much about indentation or spacing — it isn’t critical
whether a given line is indented two or three spaces, or whether there
are one or two spaces between two words. C++ is case sensitive, how-
ever, so you need to make sure everything is lowercase.

You can cheat and copy the Conversion.cpp file contained on the
enclosed CD-ROM in directory \CPP_Programs\Chap01.

//
// Program to convert temperature from Celsius degree
// units into Fahrenheit degree units:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

17Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 17

// enter the temperature in Celsius
int celsius;
cout << “Enter the temperature in Celsius:”;
cin >> celsius;

// calculate conversion factor for Celsius
// to Fahrenheit
int factor;
factor = 212 - 32;

// use conversion factor to convert Celsius
// into Fahrenheit values
int fahrenheit;
fahrenheit = factor * celsius/100 + 32;

// output the results (followed by a NewLine)
cout << “Fahrenheit value is:”;
cout << fahrenheit << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

4. Choose Save As under the File menu. Then type in the program name
and press Enter.

I know that it may not seem all that exciting, but you’ve just created
your first C++ program!

For purposes of this book, I created a folder CPP_Programs. Within this,
I created Chap01. Finally, I saved the program with the name Conversion.
cpp. Note that Dev-C++ won’t work properly with directory names that
contain spaces. (It doesn’t have a problem with names longer than eight
characters in length — thank goodness!)

Building your program
After you’ve saved your Conversion.cpp C++ source file to disk, it’s time to
generate the executable machine instructions.

To build your Conversion.cpp program, you choose Execute➪Compile from
the menu or press F9 — or you can even click that cute little icon with four
colored squares on the menu bar (use the Tool Tips to see which one I’m talk-
ing about). In response, Dev-C++ opens a compiling window. Nothing will
happen at first (sshh . . . it’s thinking). After a second or two, Dev-C++ seems
to take off, compiling your program with gusto. If all goes well, a window like
that shown in Figure 1-7 appears.

18 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 18

Dev-C++ generates a message if it finds any type of error in your C++ program —
and coding errors are about as common as snow in Alaska. You’ll undoubtedly
encounter numerous warnings and error messages, probably even when enter-
ing the simple Conversion.cpp. To demonstrate the error-reporting process,
let’s change Line 17 from cin >> celsius; to cin >>> celsius;.

This seems an innocent enough offense — forgivable to you and me perhaps,
but not to C++. Dev-C++ opens a Compiler tab, as shown in Figure 1-8. The mes-
sage parse error before ‘> is perhaps a little terse, but descriptive. To get
rid of the message, remove the extra > and recompile.

Figure 1-8:
Bad little

programs
generate

error
messages in
the Compiler

window.

Figure 1-7:
The user is

rewarded
with a

simple Done
message if

his program
is error free.

19Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 19

The term parse means to convert the C++ commands into something that the
machine-code-generating part of the process can work with.

There was once a language that tried to fix simple mistakes like this for you.
From my personal experience, I can tell you it was a waste of time — because
(except for very simple cases) the compiler was almost always wrong. At
least it warned me of the problem so I could fix it myself.

Executing Your Program
It’s now time to execute your new creation . . . that is, to run your program. You
will run the CONVERT.EXE program file and give it input to see how well it works.

To execute the Conversion program, click Execute➪Run or press Ctrl+F10.
(I have no idea how they selected function keys. I would think that an action
as common as executing a program would warrant its own function key —
something without a Control or Shift key to hold down — but maybe that’s
just me.)

A window opens immediately, requesting a temperature in Celsius. Enter a
known temperature, such as 100 degrees. After you press Enter, the program
returns with the equivalent temperature of 212 degrees Fahrenheit as follows:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press any key to continue . . .

20 Part I: Introduction to C++ Programming

Why is C++ so picky?
In the example given here, C++ could tell right
away — and without a doubt — that I had
screwed up. However, if C++ can figure out
what I did wrong, why doesn’t it just fix the prob-
lem and go on?

The answer is simple but profound. C++ thinks
that I mistyped the >> symbol, but it may be
mistaken. What could have been a mistyped
command may actually be some other, com-
pletely unrelated error. Had the compiler simply

corrected the problem, C++ would have masked
the real problem.

Finding an error buried in a program that
builds without complaining is difficult and time-
consuming. It’s far better to let the compiler find
the error for you if at all possible. Generating
a compiler error is a waste of the computer’s
time — forcing me to find a mistake that C++
could have caught is a waste of my time. Guess
which one I vote for?

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 20

The message Press any key gives you the opportunity to read what you’ve
entered before it goes away. Press Enter, and the window (along with its con-
tents) disappears. Congratulations! You just entered, built, and executed your
first C++ program.

Dev-C++ is not Windows
Notice that Dev-C++ is not truly intended for developing Windows programs.
In theory, you can write a Windows application by using Dev-C++, but it isn’t
easy. (That’s so much easier in Visual Studio.NET.)

Windows programs show the user a very visually oriented output, all nicely
arranged in onscreen windows. Convesion.exe is a 32-bit program that exe-
cutes under Windows, but it’s not a “Windows” program in the visual sense.

If you don’t know what 32-bit program means, don’t worry about it. As I said
earlier, this book isn’t about writing Windows programs. The C++ programs
you write in this book have a command line interface executing within an MS-
DOS box.

Budding Windows programmers shouldn’t despair — you didn’t waste your
money. Learning C++ is a prerequisite to writing Windows programs. I think
that they should be mastered separately: C++ first, Windows second.

Dev-C++ help
Dev-C++ provides a Help menu item. Choose Help followed by Help on Dev
C++ to open up a typical Windows help box. Help is provided on various aspects
of the Dev-C++ development package but not much else. Noticeably lacking is
help on the C++ language itself. Click a topic of interest to display help.

Reviewing the Annotated Program
Entering data in someone else’s program is about as exciting as watching some-
one else drive a car. You really need to get behind the wheel itself. Programs
are a bit like cars as well. All cars are basically the same with small differences
and additions — OK, French cars are a lot different than other cars, but the
point is still valid. Cars follow the same basic pattern — steering wheel in front
of you, seat below you, roof above you and stuff like that.

21Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 21

Similarly, all C++ programs follow a common pattern. This pattern is already
present in this very first program. We can review the Conversion program by
looking for the elements that are common to all programs.

Examining the framework
for all C++ programs
Every C++ program you write for this book uses the same basic framework,
which looks a lot like this:

//
// Template - provides a template to be used as the starting
// point
//
// the following include files define the majority of
// functions that any given program will need
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// your C++ code starts here

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Without going into all the boring details, execution begins with the code con-
tained in the open and closed braces immediately following the line begin-
ning main().

I have copied this code into a file called Template.cpp located in the main
CPP_Programs folder on the enclosed CD-ROM.

Clarifying source code with comments
The first few lines in Conversion.cpp appear to be freeform text. Either this
code was meant for human eyes or C++ is a lot smarter than I give it credit for.
These first six lines are known as comments. Comments are the programmer’s

22 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 22

explanation of what he or she is doing or thinking when writing a particular
code segment. The compiler ignores comments. Programmers (good program-
mers, anyway) don’t.

A C++ comment begins with a double slash (//) and ends with a newline. You
can put any character you want in a comment. A comment may be as long as
you want, but it’s customary to keep comment lines to no more than 80 char-
acters across. Back in the old days — “old” is relative here — screens were
limited to 80 characters in width. Some printers still default to 80 characters
across when printing text. These days, keeping a single line to under 80 char-
acters is just a good practical idea (easier to read, less likely to cause eye-
strain, the usual).

A newline was known as a carriage return back in the days of typewriters —
when the act of entering characters into a machine was called typing and not
keyboarding. A newline is the character that terminates a command line.

C++ allows a second form of comment in which everything appearing after a
/* and before a */ is ignored; however, this form of comment isn’t normally
used in C++ anymore. (Later in this book, I describe the one case in which
this type of comment is applied.)

It may seem odd to have a command in C++ (or any other programming lan-
guage) that’s specifically ignored by the computer. However, all computer lan-
guages have some version of the comment. It’s critical that the programmer
explain what was going through her mind when she wrote the code. A pro-
grammer’s thoughts may not be obvious to the next colleague who picks up
her program and tries to use it or modify it. In fact, the programmer herself
may forget what her program meant if she looks at it months after writing the
original code and has left no clue.

Basing programs on C++ statements
All C++ programs are based on what are known as C++ statements. This sec-
tion reviews the statements that make up the program framework used by
the Conversion.cpp program.

A statement is a single set of commands. All statements other than comments
end with a semicolon. (There’s a reason that comments don’t end with a
semicolon, but it’s obscure. To my mind, comments should end in semicolons
as well, for consistency’s sake. Why nobody asked me about that remains a
mystery.)

23Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 23

Program execution begins with the first C++ statement after the open brace
and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and newlines
appear throughout the program. In fact, I place a newline after every state-
ment in this program. These characters are collectively known as white space
because you can’t see them on the monitor.

You may add white space anywhere you like in your program to enhance
readability — except in the middle of a word:

See wha

t I mean?

Although C++ may ignore white space, it doesn’t ignore case. In fact, it’s case
sensitive to the point of obsession. The variable fullspeed and the variable
FullSpeed have nothing to do with each other. While the command int may
be understood completely, C++ has no idea what INT means.

Writing declarations
The line int nCelsius; is a declaration statement. A declaration is a state-
ment that defines a variable. A variable is a “holding tank” for a value of some
type. A variable contains a value, such as a number or a character.

The term variable stems from algebra formulae of the following type:

x = 10
y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The vari-
able x acts as a holding tank for a value. In this case, the value of x is 10, but
we could have just as well set the value of x to 20 or 30 or –1. The second for-
mula makes sense no matter what the value of x.

In algebra, you’re allowed to begin with a statement, such as x = 10. In C++,
the programmer must first define the variable x before she can use it.

In C++, a variable has a type and a name. The variable defined on Line 11 is
called celsius and declared to hold an integer. (Why they couldn’t have just
said integer instead of int, I’ll never know. It’s just one of those things you learn
to live with.)

24 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 24

The name of a variable has no particular significance to C++. A variable must
begin with the letters A through Z or a through z. All subsequent characters
must be a letter, a digit 0 through 9 or an underscore (_). Variable names can
be as long as you want to make them.

It’s convention that variable names begin with a lowercase letter. Each new
word within a variable begins with a capital letter, as in myVariable.

Try to make variable names short but descriptive. Avoid names such as x
because x has no particular meaning. A variable name such as lengthOfLine
Segment is much more descriptive.

Generating output
The lines beginning with cout and cin are known as input/output statements,
often contracted to I/O statements. (Like all engineers, programmers love con-
tractions and acronyms.)

The first I/O statement says output the phrase Enter the temperature in Celsius
to cout (pronounced “see-out”). cout is the name of the standard C++ output
device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. It says, in effect, Extract a value from the
C++ input device and store it in the integer variable celsius. The C++ input
device is normally the keyboard. What we’ve got here is the C++ analog to the
algebra formula x = 10 just mentioned. For the remainder of the program, the
value of celsius is whatever the user enters there.

Calculating Expressions
All but the most basic programs perform calculations of one type or another.
In C++, an expression is a statement that performs a calculation. Said another
way, an expression is a statement that has a value. An operator is a command
that generates a value.

For example, in the Conversion example program — specifically in the two
lines marked as a calculation expression — the program declares a vari-
able factor and then assigns it the value resulting from a calculation. This par-
ticular command calculates the difference of 212 and 32; the operator is the
minus sign (–), and the expression is 212–32.

25Chapter 1: Writing Your First C++ Program

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 25

Storing the results of expression
The spoken language can be very ambiguous. The term equals is one of those
ambiguities. The word equals can mean that two things have the same value
as in “5 cents equals a nickel.” Equals can also imply assignment, as in math
when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call the assignment operator, which says
(in effect), Store the results of the expression to the right of the equal sign in
the variable to the left. Programmers say that “factor is assigned the value
212 minus 32.”

Never say “factor is equal to 212 minus 32.” You’ll hear this from some lazy
types, but you and I know better.

Examining the remainder of
Conversion.cpp
The second expression in Conversion.cpp presents a slightly more compli-
cated expression than the first. This expression uses the same mathematical
symbols: * for multiplication, / for division and, + for addition. In this case, how-
ever, the calculation is performed on variables and not simply on constants.

The value contained in the variable called factor (calculated immediately
prior, by the way) is multiplied by the value contained in celsius (which was
input from the keyboard). The result is divided by 100 and summed with 32. The
result of the total expression is assigned to the integer variable fahrenheit.

The final two commands output the string Fahrenheit value is: to the
display, followed by the value of fahrenheit — and all so fast that the user
scarcely knows it’s going on.

26 Part I: Introduction to C++ Programming

04 568523 Ch01.qxd 4/5/04 2:00 PM Page 26

