
Chapter 1

All about Java
In This Chapter
� What Java is

� Where Java came from

� Why Java is so cool

� How to orient yourself to object-oriented programming

Say what you want about computers. As far as I’m concerned, computers
are good for just two simple reasons:

� When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for SETI@home — the search
for extraterrestrial intelligence. Do I feel sorry for my computer because
it’s working so hard? Does the computer complain? Will the computer
report me to the National Labor Relations Board? No.

I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

� Computers move ideas, not paper. Not long ago, when you wanted to
send a message to someone, you hired a messenger. The messenger got
on his or her horse and delivered your message personally. The message
was on paper, parchment, a clay tablet, or whatever physical medium
was available at the time.

This whole process seems wasteful now, but that’s only because you and
I are sitting comfortably at the dawn of the electronic age. The thing is
that messages are ideas. Physical things like ink, paper, and horses have
little or nothing to do with real ideas. These physical things are just tem-
porary carriers for ideas (temporary because people used them to carry
ideas for several centuries). But, in truth, the ideas themselves are
paperless, horseless, and messengerless.

So the neat thing about computers is that they carry ideas efficiently.
They carry nothing but the ideas, a couple of photons, and a little elec-
trical power. They do this with no muss, no fuss, and no extra physical
baggage.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 11

CO
PYRIG

HTED
 M

ATERIA
L

When you start dealing efficiently with ideas, something very nice happens.
Suddenly, all the overhead is gone. Instead of pushing paper and trees, you’re
pushing numbers and concepts. Without the overhead, you can do things
much faster and do things that are far more complex than ever before.

What You Can Do with Java
It would be so nice if all this complexity was free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what the computer will be
asked to do. After that thinking is done, someone has to write a set of instruc-
tions for the computer to follow.

Given the current state of affairs, you can’t write these instructions in English
or any other language that people speak. Science fiction is filled with stories
about people who say simple things to robots and get back disastrous, unex-
pected results. English and other such languages are unsuitable for communi-
cation with computers for several reasons:

� An English sentence can be misinterpreted. “Chew one tablet three
times a day until finished.”

� It’s difficult to weave a very complicated command in English. “Join
flange A to protuberance B, making sure to connect only the outermost
lip of flange A to the larger end of the protuberance B, while joining the
middle and inner lips of flange A to grommet C.”

� An English sentence has lots of extra baggage. “Sentence has unneeded
words.”

� English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’),
Wiley shall pay the sum of one-thousand-two-hundred-fifty-seven dollars
and sixty-three cents ($1,257.63) to the Author for partial submittal of
Java 2 For Dummies, 2nd Edition (‘the Work’).”

To tell a computer what to do, you have to speak a special language and write
terse, unambiguous instructions in that language. A special language of this
kind is called a computer programming language. A set of instructions, written
in such a language, is called a program. When they’re looked at as a big blob,
these instructions are called software or code. Here’s what code looks like
when it’s written in Java:

import static java.lang.System.out;

class PayBarry {
public static void main(String args[]) {

12 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 12

double checkAmount = 1257.63;
out.print(“Pay to the order of “);
out.print(“Dr. Barry Burd “);
out.print(“$”);
out.println(checkAmount);

}
}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java 2 For Dummies,
2nd Edition, and you’re reading Chapter 1. At this rate, you’ll be an expert
Java programmer in no time at all, so rejoice in your eventual success by
throwing a big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake
cake mix. Let me see . . . add water to the mix, and then add butter and eggs . . .
Hey, wait! I just looked at the list of ingredients. What’s MSG? And what about
propylene glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder. But
that way, I get exactly what I want.

Computer programs work the same way. You can use somebody else’s pro-
gram or write your own. If you use somebody else’s program, you use what-
ever you get. When you write your own program, you can tailor the program
especially for your needs.

Writing computer code is a big, worldwide industry. Companies do it, free-
lance professionals do it, hobbyists do it, all kinds of people do it. A typical
big company has teams, departments, and divisions that write programs for
the company. But you can write programs for yourself or someone else, for a
living or for fun. In a recent estimate, the number of lines of code written
each day by programmers in the United States alone exceeds the number of
methane molecules on the planet Jupiter.* Take almost anything that can be
done with a computer. With the right amount of time, you can write your own
program to do it. (Of course, the “right amount of time” may be very long, but
that’s not the point. Many interesting and useful programs can be written in
hours or even minutes.)

* I made up this statistic all by myself.

13Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 13

Getting Perspective: Where Java Fits In
Here’s a brief history of modern computer programming:

� 1954–1957: FORTRAN is developed.

FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers through-
out the world. A well-known computer scientist, Tony Hoare, once said,
“I don’t know what the language of the year 2000 will look like, but I
know it will be called FORTRAN.”

� 1959: COBOL is created.

The letter B in COBOL stands for Business, and business is just what
COBOL is all about. The language’s primary feature is the processing of
one record after another, one customer after another, or one employee
after another.

Within a few years after its initial development, COBOL became the most
widely used language for business data processing. Even today, COBOL
represents a large part of the computer programming industry.

� 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

The look and feel that you see in this book’s examples come from the C
programming language. Code written in C uses curly braces, if state-
ments, for statements, and so on.

In terms of power, you can use C to solve the same problems that you
can solve by using FORTRAN, Java, or any other modern programming
language. (You can write a scientific calculator program in COBOL, but
doing that sort of thing would feel really strange.) The difference
between one programming language and another isn’t power. The differ-
ence is ease and appropriateness of use. That’s where the Java language
excels.

� 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++.

Unlike its C language ancestor, the language C++ supports object-
oriented programming. This represents a huge step forward.

� May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

Java improves upon the concepts in C++. Unlike C++, Java is streamlined
for use on the World Wide Web. Java’s “Write Once, Run Anywhere” phi-
losophy makes the language ideal for distributing code across the
Internet.

14 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 14

In addition, Java is a great general-purpose programming language. With
Java, you can write windowed applications, build and explore databases,
control handheld devices, and more. Within five short years, the Java
programming language had 2.5 million developers worldwide. (I know. I
have a commemorative T-shirt to prove it.)

� November 2000: The College Board announces that, starting in the
year 2003, the Computer Science Advanced Placement exams will be
based on Java.

Wanna know what that snot-nosed kid living down the street is going to
be learning in high school next year? You guessed it — Java.

� March 2003: SkillMarket (mshiltonj.com/sm) reports that the demand
for Java programmers tops the demand for C++ programmers by 42
percent.

And there’s more! The demand for Java programmers beats the com-
bined demand for C++ and C# programmers by 10 percent. Java pro-
grammers are more employable than VB (Visual Basic) programmers by
a whopping 111 percent.

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course that I failed
in high school. The teacher is yelling at me, “You have two days to study for
the final exam, but you won’t remember to study. You’ll forget and feel guilty,
guilty, guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even
less.) At first, I drop the telephone on the floor. After fumbling to pick it up, I
issue a grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from The
New York Times. I’m writing an article about Java and I need to know all about
the programming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say anything that comes to my mind,
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where
he could put his article about Java?

I put on my robe and rush to the front of my house’s driveway. As I pick up
the morning paper, I glance at the front page and see the two-inch headline:

Burd Calls Java “A Great Object-Oriented Language”

15Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 15

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages such as FOR-
TRAN, which focus on giving the computer imperative “Do this/Do that” com-
mands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. You start, however, by organizing
the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages
because they organize data in a way that lets people do all kinds of things
with it. To modify the data, you can build on what you already have, rather
than scrap everything you’ve done and start over each time you need to do
something new. Although computer programmers are generally smart people,
they took awhile to figure this out. For the full history lesson, see the sidebar
“The winding road from FORTRAN to Java” (but I won’t make you feel guilty if
you don’t read it).

16 Part I: Getting Started

The winding road from FORTRAN to Java
Back in the mid-1950s, a team of people created
a programming language named FORTRAN. It
was a good language, but it was based on the
idea that you should issue direct, imperative
commands to the computer. “Do this, computer.
Then do that, computer.” (Of course, the com-
mands in a real FORTRAN program were much
more precise than “Do this” or “Do that.”)

In the years that followed, teams developed
many new computer languages, and many of
the languages copied the FORTRAN “Do this/Do
that” model. One of the more popular “Do this/Do
that” languages went by the one-letter name C.
Of course, the “Do this/Do that” camp had some
renegades. In languages named SIMULA and
Smalltalk, programmers moved the imperative
“Do this” commands into the background and
concentrated on descriptions of data. In these
languages, you didn’t come right out and say,
“Print a list of delinquent accounts.” Instead,
you began by saying, “This is what it means to
be an account. An account has a name and a
balance.” Then you said, “This is how you ask

an account whether it’s delinquent.” Suddenly,
the data became king. An account was a thing
that had a name, a balance, and a way of telling
you whether it was delinquent.

Languages that focus first on the data are called
object-oriented programming languages. These
object-oriented languages make excellent pro-
gramming tools. Here’s why:

� Thinking first about the data makes you a
good computer programmer.

� You can extend and reuse the descriptions
of data over and over again. When you try
to teach old FORTRAN programs new tricks,
however, the old programs show how brittle
they are. They break.

In the 1970s, object-oriented languages like
SIMULA and Smalltalk became buried in the
computer hobbyist magazine articles. In the
meantime, languages based on the old FOR-
TRAN model were multiplying like rabbits.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 16

Objects and their classes
In an object-oriented language, you use objects and classes to organize your
data.

Imagine that you’re writing a computer program to keep track of the houses in
a new real-estate development. The development (still under construction) is
a condominium. The houses differ only slightly from one another. Each house
has a distinctive siding color, an indoor paint color, a kitchen cabinet style, and
so on. In your object-oriented computer program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from one
another, all the houses share the same list of characteristics. For instance, each
house has a characteristic known as siding color. Each house has another
characteristic known as kitchen cabinet style. In your object-oriented pro-
gram, you need a master list containing all the characteristics that a house
object can possess. This master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should
really be called “programming with classes and objects.”

17Chapter 1: All about Java

So in 1986, a fellow named Bjarne Stroustrup
created a language named C++. The C++ lan-
guage became very popular because it mixed
the old C language terminology with the
improved object-oriented structure. Many com-
panies turned their backs on the old FORTRAN/C
programming style and adopted C++ as their
standard.

But C++ had a flaw. Using C++, you could
bypass all the object-oriented features and
write a program by using the old FORTRAN/C
programming style. When you started writing a
C++ accounting program, you could take either
fork in the road:

� You could start by issuing direct “Do this”
commands to the computer, saying the
mathematical equivalent of “Print a list of
delinquent accounts, and make it snappy.”

� You could take the object-oriented approach
and begin by describing what it means to be
an account.

Some people said that C++ offered the best of
both worlds, but others argued that the first
world (the world of FORTRAN and C) shouldn’t
be part of modern programming. If you gave a
programmer an opportunity to write code either
way, the programmer would too often choose to
write code the wrong way.

So in 1995, James Gosling of Sun Microsystems
created the language named Java. In creating
Java, Gosling borrowed the look and feel of C++.
But Gosling took most of the old “Do this/Do
that” features of C++ and threw them in the
trash. Then he added features that made the
development of objects smoother and easier. All
in all, Gosling created a language whose object-
oriented philosophy is pure and clean. When
you program in Java, you have no choice but to
work with objects. That’s the way it should be.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 17

Now notice that I put the word classes first. How dare I do this! Well, maybe
I’m not so crazy. Think again about a housing development that’s under con-
struction. Somewhere on the lot, in a rickety trailer parked on bare dirt, is a
master list of characteristics known as a blueprint. An architect’s blueprint is
like an object-oriented programmer’s class. A blueprint is a list of characteris-
tics that each house will have. The blueprint says, “siding.” The actual house
object has gray siding. The blueprint says, “kitchen cabinet.” The actual
house object has Louis XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important par-
allel exists between blueprints and classes. A year after you create the blue-
print, you use it to build ten houses. It’s the same with classes and objects.
First, the programmer writes code to describe a class. Then when the pro-
gram runs, the computer creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

What’s so good about an
object-oriented language?
Based on the previous section’s story about home building, imagine that you
have already written a computer program to keep track of the building
instructions for houses in a new development. Then, the big boss decides on
a modified plan — a plan in which half the houses have three bedrooms, and
the other half have four.

If you use the old FORTRAN/C style of computer programming, your instruc-
tions look like this:

Dig a ditch for the basement.
Lay concrete around the sides of the ditch.
Put two-by-fours along the sides for the basement’s frame.
...

This would be like an architect creating a long list of instructions instead of a
blueprint. To modify the plan, you would have to sort through the list to find
the instructions for building bedrooms. To make things worse, the instructions
could be scattered among pages 234, 394–410, 739, 10, and 2. If the builder had
to decipher other peoples’ complicated instructions, the task would be ten
times harder.

Starting with a class, however, is like starting with a blueprint. If someone
decides to have both three- and four-bedroom houses, you can start with a
blueprint called the house blueprint that has a ground floor and a second

18 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 18

floor, but has no indoor walls drawn on the second floor. Then, you make two
more second-floor blueprints — one for the three-bedroom house and
another for the four-bedroom house. (You name these new blueprints the
three-bedroom house blueprint and the four-bedroom house blueprint.)

Your builder colleagues are amazed with your sense of logic and organiza-
tion, but they have concerns. They pose a question. “You called one of the
blueprints the ‘three-bedroom house’ blueprint. How can you do this if it’s a
blueprint for a second floor, and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can
say, ‘For info about the lower floors, see the original house blueprint.’ That
way, the three-bedroom house blueprint describes a whole house. The four-
bedroom house blueprint can say the same thing. With this setup, we can
take advantage of all the work we already did to create the original house
blueprint and save lots of money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can
also say that the three- and four-bedroom house classes are extending the
original house class. (See Figure 1-1.)

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are sub-
classes of the original house class. Put another way, the original house class
is called the parent class of three- and four-bedroom house classes. The three-
and four-bedroom house classes are child classes of the original house class.
(See Figure 1-1.)

house class

The three-bedroom house class
extends the house class,
inherits the features of the house class,
is a subclass of the house class,
is a child class of the house class.

The four-bedroom house class
extends the house class,
inherits the features of the house class,
is a subclass of the house class,
is a child class of the house class.

The house class is
thesuperclass of the three-bedroom house class,
theparent class of the three-bedroom house class,
thesuperclass of the four-bedroom house class,
theparent class of the four-bedroom house class.

Superclass Parent

three-bedroom
house class

four-bedroom
house class

Subclass ChildSubclass ChildSubclass Child

Figure 1-1:
Terminology

in object-
oriented

program-
ming.

19Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 19

Needless to say, your home-builder colleagues are jealous. A crowd of home-
builders is mobbing around you to hear about your great ideas. So, at that
moment, you drop one more bombshell: “By creating a class with subclasses,
we can reuse the blueprint in the future. If someone comes along and wants a
five-bedroom house, we can extend our original house blueprint by making a
five-bedroom house blueprint. We’ll never have to spend money for an origi-
nal house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a
different first-floor design? Do we trash the original house blueprint or start
scribbling all over the original blueprint? That’ll cost big bucks, won’t it?”

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a new,
small blueprint describing only the new living room and call this the Jacuzzi-
in-living-room house blueprint. Then, this new blueprint can refer to the origi-
nal house blueprint for info on the rest of the house (the part that’s not in the
living room).” In the language of object-oriented programming, the Jacuzzi-in-
living-room house blueprint still extends the original house blueprint. The
Jacuzzi blueprint is still a subclass of the original house blueprint. In fact, all
the terminology about superclass, parent class, and child class still applies.
The only thing that’s new is that the Jacuzzi blueprint overrides the living
room features in the original house blueprint.

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code, then dis-
covered new needs, and then had to trash their code and start from scratch.
This happened over and over again because the code that the programmers
were writing couldn’t be reused. Object-oriented programming changed all
this for the better (and, as Burd said, Java is “A Great Object-Oriented
Language”).

Refining your understanding
of classes and objects
When you program in Java, you work constantly with classes and objects.
These two ideas are really important. That’s why, in this chapter, I hit you
over the head with one analogy after another about classes and objects.

Close your eyes for a minute and think about what it means for something to
be a chair. . . .

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree of
softness, and so on. These are the properties that a chair possesses. What I

20 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 20

describe is chairness — the notion of something being a chair. In object-
oriented terminology, I’m describing the chair class.

Now peek over the edge of this book’s margin and take a minute to look
around your room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these
objects is an example of that ethereal thing called the Chair class. So that’s
how it works — the class is the idea of chairness, and each individual chair is
an object.

A class isn’t quite a collection of things. Instead, a class is the idea behind a
certain kind of thing. When I talk about the class of chairs in your room, I’m
talking about the fact that each chair has legs, a seat, a color, and so on. The
colors may be different for different chairs in the room, but that doesn’t
matter. When you talk about a class of things, you’re focusing on the proper-
ties that each of the things possesses.

It makes sense to think of an object as being a concrete instance of a class. In
fact, the official terminology is consistent with this thinking. If you write a
Java program in which you define a Chair class, each actual chair (the chair
that you’re sitting on, the empty chair right next to you, and so on) is called
an instance of the Chair class.

Here’s another way to think about a class. Imagine a table displaying all three
of your bank accounts. (See Table 1-1.)

Table 1-1 A Table of Accounts
Account Number Type Balance

16-13154-22864-7 Checking 174.87

1011 1234 2122 0000 Credit -471.03

16-17238-13344-7 Savings 247.38

Think of the table’s column headings as a class, and think of each row of the
table as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account
number, a type, and a balance. Rephrased in the terminology of object-
oriented programming, each object in the Account class (that is, each
instance of the Account class) has an account number, a type, and a
balance. So, the bottom row of the table is an object with account number

21Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 21

16-17238-13344-7. This same object has type Savings and a balance of 247.38.
If you opened a new account, you would have another object, and the table
would grow an additional row. The new object would be an instance of the
same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general descrip-
tion is good when you’re just getting started, but you don’t really understand
things until you get to know some specifics. That’s why the next several
chapters deal with specifics.

So please, turn the page. The next chapter can’t wait for you to read it.

22 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 22

