Introducing Java

This chapter will give you an appreciation of what the Java language is all about. Understanding
the details of what I'll discuss in this chapter is not important at this stage; you will see all of the
topics again in greater depth in later chapters of the book. The intent of this chapter is to introduce
you to the general ideas that underpin what I'll be covering through the rest of the book, as well as
the major contexts in which Java programs can be used and the kind of program that is applicable
in each context.

In this chapter you will learn:

The basic characteristics of the Java language

How Java programs work on your computer

Why Java programs are portable between different computers
The basic ideas behind object-oriented programming

How a simple Java program looks and how you can run it using the Java Development Kit

U 000U o

What HTML is and how it is used to include a Java program in a web page

What Is Java All About?

Java is an innovative programming language that has become the language of choice for programs
that need to run on a variety of different computer systems. First of all, Java enables you to write
small programs called applets. These are programs that you can embed in web pages to provide
some intelligence. Being able to embed executable code in a web page introduces a vast range of
exciting possibilities. Instead of being a passive presentation of text and graphics, a web page can
be interactive in any way that you want. You can include animations, games, interactive transac-
tion processing — the possibilities are almost unlimited.

Chapter 1

Of course, embedding program code in a web page creates special security requirements. As an Internet
user accessing a page with embedded Java code, you need to be confident that it won’t do anything that
might interfere with the operation of your computer, or damage the data you have on your system. This
implies that execution of the embedded code must be controlled in such a way that it will prevent acci-
dental damage to your computer environment, as well as ensure that any Java code that was created with
malicious intent is effectively inhibited. Java implicitly incorporates measures to minimize the possibility
of such occurrences arising with a Java applet.

Java’s support for the Internet and network-based applications generally doesn’t end with applets. For
example, Java Server Pages (JSP) provides a powerful means of building a server application that can
dynamically create and download HTML pages to a client that are precisely customized for the specific
request that is received. Of course, the pages that are generated by JSP can themselves contain Java applets.

Java also allows you to write large-scale application programs that you can run unchanged on any com-
puter with an operating system environment in which Java is supported. This applies to the majority of
computers in use today. You can even write programs that will work both as ordinary applications and
as applets.

Java has matured immensely in recent years, particularly since the introduction of Java 2. The breadth
of function provided by the standard core Java has grown incredibly. Java provides you with compre-
hensive facilities for building applications with an interactive graphical user interface (GUI), extensive
image processing and graphics programming facilities, as well as support for accessing relational data-
bases and communicating with remote computers over a network. Just about any kind of application
can now be programmed effectively in Java, with the implicit plus of complete portability.

Of course, Java is still developing and growing. Amongst a myriad of other enhancements, release 1.4
of Java added a major additional capability, the ability to read and write XML. Java 5.0, which followed
release 1.4, adds further new facilities, including important new language features as well as significant
additions to the class libraries. You'll be learning about all of these in this book.

Features of The Java Language

The most important characteristic of Java is that it was designed from the outset to be machine indepen-
dent. You can run Java programs unchanged on any machine and operating system combination that
supports Java. Of course, there is still the slim possibility of the odd glitch, as you are ultimately depen-
dent on the implementation of Java on any particular machine, but Java programs are intrinsically more
portable than programs written in other languages. An application written in Java will only require a
single set of source code statements, regardless of the number of different computer platforms on which
it is run. In any other programming language, the application will frequently require the source code to
be tailored to accommodate different computer environments, particularly if an extensive graphical user
interface is involved. Java offers substantial savings in time and resources in developing, supporting,
and maintaining major applications on several different hardware platforms and operating systems.

Possibly the next most important characteristic of Java is that it is object-oriented. The object-oriented
approach to programming is also an implicit feature of all Java programs, so we will be looking at what
this implies later in this chapter. Object-oriented programs are easier to understand and less time-
consuming to maintain and extend than programs that have been written without the benefit of using
objects.

Introducing Java

Not only is Java object-oriented, but it also manages to avoid many of the difficulties and complications
that are inherent in some other object-oriented languages, making it easy to learn and very straight-
forward to use. By and large, it lacks the traps and “gotchas” that arise in some other programming
languages. This makes the learning cycle shorter, and you need less real-world coding experience to
gain competence and confidence. It also makes Java code easier to test.

Java has a built-in ability to support national character sets. You can write Java programs as easily for

use in Greece or Japan as you can for English-speaking countries, always assuming you are familiar with
the national languages involved, of course. You can even build programs from the outset to support sev-
eral different national languages with automatic adaptation to the environment in which the code executes.

Learning Java

Java is not difficult to learn, but there is a great deal to it. Although the Java language is very powerful, it
is fairly compact, so acquiring an understanding of it will take less time than you think. However, there’s
more to Java than just the language. To be able to program effectively in Java, you also need to under-
stand the libraries that go with the language, and these are very extensive. In this book, the sequence in
which you learn how the language works and how you apply it has been carefully structured so that
you'll gain expertise and confidence with programming in Java through a relatively easy and painless
process. As far as possible, each chapter avoids the use of things you haven’t learned about already. A
consequence, though, is that you won’t be writing Java applications with a GUI right away. While it may
be an appealing idea, this would be a bit like learning to swim by jumping in the pool at the deep end.
Generally speaking, there is good evidence that by starting in the shallow end of the pool and learning
how to float before you try to swim, you'll minimize the chance of drowning, and there is a high expec-
tation that you'll end up being a competent swimmer.

Java Programs

As I'have already noted, there are two basic kinds of programs you can write in Java. Programs that are
to be embedded in a web page are called Java applets, and normal standalone programs are called Java
applications. You can further subdivide Java applications into console applications, which only support
character output to your computer screen (to the command line on a PC under Windows, for example),
and windowed applications, which can create and manage multiple windows. The latter use the typical
GUI mechanisms of window-based programs — menus, toolbars, dialogs, and so on.

While you are learning the Java language basics, you will be using console applications as examples to
illustrate how things work. These are applications that use simple command-line input and output. With
this approach you can concentrate on understanding the specifics of the language, without worrying
about any of the complexity involved in creating and managing windows. Once you are comfortable
with using all the features of the Java language, you'll move on to windowed applications and applet
examples.

Learning Java— The Road Ahead

Before starting out on any journey;, it is always helpful to have an idea of where you're heading and
what route you should take, so let’s take a look at a brief road map of where you’ll be going with Java.
There are five broad stages you’ll progress through in learning Java using this book:

Chapter 1

1. The first stage is this chapter. It sets out some fundamental ideas about the structure of Java pro-
grams and how they work. This includes such things as what object-oriented programming is
all about and how an executable program is created from a Java source file. Getting these con-
cepts straight at the outset will make learning to write Java programs that much easier for you.

2. Next, you'll learn how statements are put together, what facilities you have for storing basic
data in a program, how you perform calculations, and how you make decisions based on the
results of them. These are the nuts and bolts you need for the next stages.

3. Inthe third stage, you'll learn about classes —how you define them and how you can use them.
Classes are blueprints for objects, so this is where you’ll learn the object-oriented characteristics
of Java. By the time you are through this stage, you will have learned all the basics of how the
Java language works, so you'll be ready to progress further into how you can use it.

4. In the fourth stage, you'll learn how you can segment the activities that your programs carry
out into separate tasks that can execute concurrently. This is particularly important for when
you want to include several applets in a web page, and you don’t want one applet to have
to wait for another to finish executing before it can start. You may want a fancy animation to
continue running while you play a game, for example, with both programs sitting in the same
web page.

5. In the fifth stage, you'll learn in detail how you implement an application or an applet with a
graphical user interface, and how you handle interactions with the user in this context. This
amounts to applying the capabilities provided by the Java class libraries. When you finish this
stage, you will be equipped to write your own fully fledged applications and applets in Java.

At the end of the book, you should be a knowledgeable Java programmer. The rest is down to experience.

Throughout this book I'll be using complete examples to explore how Java works. You should create

and run all of the examples, even the simplest, preferably by typing them in yourself. Don’t be afraid to
experiment with them. If there is anything you are not quite clear on, try changing an example around to
see what happens, or better still —write an example of your own. If you're uncertain how some aspect
of Java that you have already covered works, don’t look it up right away — try it out. Making mistakes is
a very effective way to learn.

The Java Environment

You can run Java programs on a wide variety of computers using a range of operating systems. Your Java
programs will run just as well on a PC running any supported version of Microsoft Windows as it will
on Linux or a Sun Solaris workstation. This is possible because a Java program does not execute directly
on your computer. It runs on a standardized environment called the Java 2 Platform that has been imple-
mented as software on a wide variety of computers and operating systems. The Java Platform consists of
two elements — a software implementation of a hypothetical computer called the Java Virtual Machine
(JVM) and the Java Application Programming Interface (Java API), which is a set of software compo-
nents that provides the facilities you need to write a fully fledged interactive application in Java.

A Java compiler converts the Java source code that you write into a binary program consisting of byte-
codes. Bytecodes are machine instructions for the Java Virtual Machine. When you execute a Java pro-
gram, a program called the Java interpreter inspects and deciphers the bytecodes for it, checks it out to

Introducing Java

ensure that it has not been tampered with and is safe to execute, and then executes the actions that the
bytecodes specify within the Java Virtual Machine. A Java interpreter can run standalone, or it can be
part of a web browser such as Netscape Navigator, Mozilla, or Microsoft Internet Explorer where it can
be invoked automatically to run applets in a web page.

Because your Java program consists of bytecodes rather than native machine instructions, it is completely
insulated from the particular hardware on which it is run. Any computer that has the Java environment
implemented will handle your program as well as any other, and because the Java interpreter sits between
your program and the physical machine, it can prevent unauthorized actions in the program from being
executed.

In the past, there has been a penalty for all this flexibility and protection in the speed of execution of
your Java programs. An interpreted Java program would typically run at only one-tenth of the speed

of an equivalent program using native machine instructions. With present Java machine implementa-
tions, much of the performance penalty has been eliminated, and in programs that are not computation
intensive — which is usually the case with the sort of program you would want to include in a web page,
for example — you really wouldn’t notice this anyway. With the JVM that is supplied with the current
Java 2 Development Kit (JDK) available from the Sun web site, there are very few circumstances where
you will notice any appreciable degradation in performance compared to a program compiled to native
machine code.

Java Program Development

For this book you need the Java 2 Platform, Standard Edition (J2SE) version 5.0 or later. You can down-
load the JDK from Sun for a variety of hardware platforms and operating systems, either directly from
the Sun Java web site at http://java.sun.com (for Windows, Solaris, and Linux operating systems)
or from sites that you can link to from there. The JDK you'll be using is available from http://java.
sun.com/j2se. Versions of the Java Development Kit for Mac OS X are available from http: //
devworld.apple.com/java/.

Note that J2SE 5.0 succeeded J2SE 1.4. Normally, release 1.5 would have followed release 1.4, but it was
decided to identify it as release 5.0 in recognition of the significance of the new features that are intro-
duced by release 5.0 and the maturity of the product. Code module names in release 5.0 still use the
denotation 1.5.0 so expect to see folder names incorporating 1.5.0 rather than 5.0, and you'll see 1.5.0
popping up in a few other places too, so don’t let this confuse you.

One aspect of terminology also causes confusion sometimes — the Java Development Kit has been referred
to at various times as the JDK — the Java Development Kit—and as the SDK — the Software Development
Kit. The current usage with release 5.0 is JDK but with release 1.4 it was SDK, so if you see SDK this gen-
erally means the same as JDK. Just for consistency, I'll use JDK to refer to any Java Development Kit in
the book.

To create the Java program source files that you will use with the JDK, you'll need a plaintext editor. Any
editor will do as long as it does not introduce formatting codes into the contents of a file. Quite a num-
ber of shareware and freeware editors around are suitable, some of which are specific to Java, and you
should have no trouble locating one. I find the JCreator editor is particularly good. There’s a free version
and a fee version with more functionality, but the free version is perfectly adequate for learning. You can
download a free copy from http: //www.jcreator.com. A good place to start looking if you want to
investigate what other program text editors are available is the http: / /www.download.com web site.

Chapter 1

A number of excellent professional Java program development environments are available, including
products from Sun, Borland, Metrowerks, and Symantec. These all provide very friendly environments
for creating and editing your Java source code and compiling and debugging your programs. These are
powerful tools for the experienced programmer, but for learning Java using this book, I recommend
that you resist the temptation to use any of these, especially if you are relatively new to programming.
Instead, stick to using the JDK from Sun together with a suitable simple program text editor for creating
your source code. So why am I suggesting that you will be better off not using a tool that makes pro-
gramming easier and faster? There are several reasons. Firstly, the professional development systems
tend to hide a lot of things you need to get to grips with so that you have a full understanding of how
Java works. Secondly, the pro development environments are geared to managing complex applications
with a large amount of code, which introduces complexity that you really are better off without while
you are learning. Virtually all commercial Java development systems provide prebuilt facilities of their
own to speed development. While this is very helpful for production program development, it really
does get in the way when you are trying to learn Java. A further consideration is that productivity fea-
tures supported by a commercial Java development are sometimes tied to a specific version of the Java 2
Platform. This means that some features of the latest version of Java may not work. The professional
Java development tools are intended primarily for knowledgeable and experienced programmers, so
start with one when you get to the end of the book.

Having said that, if you really do prefer to work with a commercial Java development system for what-
ever reason, and you have problems with running a particular example from the book, try it out with the
JDK from the command line. The chances are good it will work okay:.

Installing the JDK

You can obtain detailed instructions on how to install the JDK for your particular operating system from
the Sun web site, so I won’t go into all the variations for different systems here. However, you should
watch out for a few things that may not leap out from the pages of the installation documentation.

First of all, the JDK and the documentation are separate, and you install them separately. The JDK for
Windows is available in two versions —as a web install where components are downloaded incremen-
tally, and as a full download of an . exe file that you just execute to start installation. The documentation
for the JDK consists of a large number of HTML files structured in a hierarchy that are distributed in a
ZIP archive. You will find it easier to install the JDK first, followed by the documentation. If you install
the JDK to drive C: under Windows, the directory structure shown in Figure 1-1 will be created.

The jdk1.5. 0 directory in Figure 1-1 is sometimes referred to as the root directory for Java. In some
contexts it is also referred to as the Java home directory. The actual root directory name may have the
release version number appended, in which case the actual directory name will be of the form
jdk1.5.0_n where # is a release number, so in the first maintenance release, it will be jdk1.5.0_01,
for example.

The sample directory contains sample applications that use JNLP, which is the Java Network Launching
Protocol that is used for executing applications or applets from a network server without the need for a
browser or the need to download and install the code.

You don’t need to worry about the contents of most of these directories, at least not when you get
started, but you should add the path for the jdk1.5.0\bin directory to the paths defined in your PATH
environment variable. That way you will be able to run the compiler and the interpreter from anywhere
without having to specify the path to it. If you installed the JDK to C:, then you need to add the path
C:\jdk1l.5.0\bin.

Introducing Java

Root directory
Contains a src.zip file that contains .
the source code files for the Jdk1.5.0
standard library classes |
| bin | | demo | | include | | sample | | jre | | lib |
Compiler Subdirectories C header files JNLP samples Java(runtime Files used
Interpreter containing for native by executables
+ demo code code
other
executables .
Executables for runtime Class libaries

Figure 1-1

A word of warning — if you have previously installed a commercial Java development product, check
that it has not modified your PATH environment variable to include the path to its own Java executables.
If it has, when you try to run the Java compiler or interpreter, you are likely to get the versions supplied
with the commercial product rather that those that came with the JDK. One way to fix this is to remove
the path or paths that cause the problem. If you don’t want to remove the paths that were inserted for
the commercial product, you will have to use the full path specification when you want to run the com-
piler or interpreter from the JDK. The jre directory contains the Java Runtime facilities that are used
when you execute a Java program. The classes in the Java libraries are stored in the jre\11ib directory.
They don’t appear individually though. They are all packaged up in the archive, rt . jar. Leave this alone.
The Java Runtime takes care of retrieving what it needs from the archive when your program executes.

The CLASSPATH environment variable is a frequent source of problems and confusion to newcomers to
Java. The current JDK does NOT require CLASSPATH to be defined, and if it has been defined by some
other Java version or system, it is likely to cause problems. Commercial Java development systems and
versions of the Java Development Kit prior to 1.2 may well define the CLASSPATH environment variable,
so check to see whether CLASSPATH has been defined on your system. If it has and you no longer have
whatever defined it installed, you should delete it. If you have to keep the CLASSPATH environment
variable — maybe because you want to keep the system that defined it or you share the machine with
someone who needs it — you will have to use a command-line option to define CLASSPATH temporarily
whenever you compile or execute your Java code. We will see how to do this a little later in this chapter.

If you want the JDK documentation installed in the hierarchy shown in Figure 1-1, then you

should now extract the documentation from the archive to the root directory. This corresponds to
C:\jdkl.5.0 if you installed the JDK to your C: drive. This will create a new subdirectory, docs,

to the root directory, and install the documentation files in that. To look at the documentation, you just
open the index.html file that is in the docs subdirectory.

Extracting the Source Code for the Class Libraries

The source code for the class libraries is included in the archive src. zip that you'll find in the
jdk1.5.0 root directory. Once you have learned the basics of the Java language, browsing this source is
very educational, and it can also be helpful when you are more experienced with Java in giving a better

7

Chapter 1

understanding of how things work — or when they don’t, why they don’t. You can extract the source
files from the archive using the Winzip utility, the JAR utility that comes with the JDK, or any other util-
ity that will unpack . zip archives —but be warned — there’s a lot of it, and it takes a while!

Extracting the contents of src. zip to the root directory \jdk1.5. 0 creates a new subdirectory, src, and
installs the source code in subdirectories to this. To look at the source code for a particular class, just
open the . java file that you are interested in using any plaintext editor.

Compiling a Java Program

Java source code is always stored in files with the extension . java. Once you have created the source
code for a program and saved it in a . java file, you need to process the source using a Java compiler.
Using the compiler that comes with the JDK, you would make the directory that contains your Java
source file the current directory, and then enter the following command:

javac MyProgram.java

Here, javac is the name of the Java compiler, and MyProgram. java is the name of the program source
file. This command assumes that the current directory contains your source file. If it doesn’t, the com-
piler won't be able to find your source file. It also assumes that the source file corresponds to the Java
language as defined in the current version of the JDK. There is a command-line option, -source, that
you can use to specify the Java language version, so for JDK 5.0, the command above to execute the com-
piler is equivalent to:

javac -source 5 MyProgram.java

Note that you can also use 1.5 as the value with the source command-line option, in which case you
could write the command like this:

javac -source 1.5 MyProgram.java

In practice you can ignore the -source command-line option unless you are compiling a Java program
that was written using an older version of the JDK. For example, to compile code written for JDK 1.4 you
would write:

javac -source 1.4 oldSourceCode.java
Here’s a simple program you can try out the compiler on:

public class MyProgram {
public static void main(String[] args) {
System.out.println("Rome wasn't burned in a day!");
}

This just outputs a line of text to the command line. As this is just to try out the compiler, I won’t explain
how the program works at this point. Of course, you must type the code in exactly as shown and save
the source file as MyProgram. java. If you have made any mistakes the compiler will issue error
messages.

Introducing Java

If you need to override an existing definition of the CLASSPATH environment variable — perhaps because
it has been set by a Java development system you have installed — the command would be:

javac -classpath . MyProgram.java

The value of cLASSPATH follows the -classpath specification and here it is just a period. This defines
just the path to the current directory, whatever that happens to be. This means that the compiler looks
for your source file or files in the current directory. If you forget to include the period, the compiler will
not be able to find your source files in the current directory. If you include the -classpath . command-
line option in any event, it will do no harm.

Note that you should avoid storing your source files within the directory structure that was created for
the JDK, as this can cause problems. Set up a separate directory of your own to hold the source code for
a program and keep the code for each program in its own directory.

Assuming your program contains no errors, the compiler generates a bytecode program that is the equiva-
lent of your source code. The compiler stores the bytecode program in a file with the same name as the
source file, but with the extension . class. Java executable modules are always stored in a file with the
extension .class. By default, the . class file will be stored in the same directory as the source file.

The command-line options we have introduced here are by no means all the options you have available
for the compiler. You will be able to compile all of the examples in the book just knowing about the
options we have discussed. There is a comprehensive description of all the options within the documen-
tation for the JDK. You can also specify the ~-help command-line option to get a summary of the stan-
dard options you can use.

If you are using some other product to develop your Java programs, you will probably be using a much
more user-friendly, graphical interface for compiling your programs that won’t involve entering com-
mands such as that shown above. However, the file name extensions for your source file and the object
file that results from it will be just the same.

Executing a Java Application

To execute the bytecode program in the . class file with the Java interpreter in the JDK, you make the
directory containing the .class file current and enter the command:

java -enableassertions MyProgram

Note that we use just the name MyProgram to identify the program, not the name of the file generated
by the compiler, MyProgram. class. It is a common beginner’s mistake to use the latter by analogy with
the compile operation. If you put a . class file extension on MyProgram, your program won'’t execute,
and you will get an error message:

Exception in thread "main" java.lang.NoClassDefFoundError: MyProgram/class
While the compiler expects to find the name of your source file, the java interpreter expects the name of

a class, which is MyProgram in this case, not the name of a file. The MyProgram. class file contains the
MyProgram class. We will explain what a class is shortly.

Chapter 1

The -enableassertions option is necessary for JDK 5.0 programs that use assertions, and since you
will be using assertions once you have learned about them it’s a good idea to get into the habit of always
using this option. You can abbreviate the -enableassertions option to -ea if you wish.

If you want to override an existing CLASSPATH definition, the option is the same as with the compiler.
You can also abbreviate -classpath to -cp with the compiler or the Java interpreter. Here’s how the
command would look:

java -ea -cp . MyProgram

To execute your program, the Java interpreter analyzes and then executes the bytecode instructions. The
Java Virtual Machine is identical in all computer environments supporting Java, so you can be sure your
program is completely portable. As we already said, your program will run just as well on a Unix Java
implementation as it will on that for Microsoft Windows, Solaris, Linux, OS/2, or any other operating
system that supports Java. (Beware of variations in the level of Java supported though. Some environ-
ments, such as the Macintosh, tend to lag a little, so implementations for Java 2 will typically be avail-
able later than under Windows or Solaris.)

Executing an Applet

The Java compiler in the JDK will compile both applications and applets. However, an applet is not exe-
cuted in the same way as an application. You must embed an applet in a web page before it can be run.
You can then execute it either within a Java 2-enabled web browser, or by using the appletviewer,

a bare-bones browser provided as part of the JDK. It is a good idea to use the appletviewer to run
applets while you are learning. This ensures that if your applet doesn’t work, it is almost certainly your
code that is the problem, rather than some problem in integration with the browser.

If you have compiled an applet and included it in a web page stored as MyApplet.html in the current
directory on your computer, you can execute it by entering the command:

appletviewer MyApplet.html

So how do you put an applet in a web page?

The Hypertext Markup Language

10

The Hypertext Markup Language, or HTML as it is commonly known, is used to define a web page.
When you define a web page as an HTML document, it is stored in a file with the extension .html. An
HTML document consists of a number of elements, and each element is identified by tags. The docu-
ment will begin with <html> and end with </html>. These delimiters, <html> and </html>, are tags,
and each element in an HTML document will be enclosed between a similar pair of tags between angle
brackets. All element tags are case-insensitive, so you can use uppercase or lowercase, or even a mixture
of the two, but by convention they are capitalized so they stand out from the text. Here is an example of
an HTML document consisting of a title and some other text:

<html>
<head>
<title>This is the title of the document</title>
</head>
<body>

Introducing Java

You can put whatever text you like here. The body of a document can contain
all kinds of other HTML elements, including Java applets. Note how each
element always begins with a start tag identifying the element, and ends with
an end tag that is the same as the start tag but with a slash added. The pair
of tags around 'Java applets' in the previous sentence will display the text
as bold.
</body>
</html>

There are two elements that can appear directly within the <html> element, a <head> element and a
<body> element, as in the example above. The <head> element provides information about the docu-
ment, and is not strictly part of it. The text enclosed by the <title> element tags that appears here
within the <head> element will be displayed as the window title when the page is viewed.

Other element tags can appear within the <body> element, and they include tags for headings, lists,
tables, links to other pages, and Java applets. There are some elements that do not require an end tag
because they are considered to be empty. An example of this kind of element tag is <hr/>, which speci-
fies a horizontal rule, a line across the full width of the page. You can use the <hr/> tag to divide up a
page and separate one type of element from another.

Adding an Applet to an HTML Document

For many element tag pairs, you can specify an element attribute in the starting tag that defines addi-
tional or qualifying data about the element. This is how a Java applet is identified in an <applet> tag.
Here is an example of how you might include a Java applet in an HTML document:

<html>
<head>
<title> A Simple Program </title>
</head>
<body>
<hr/>
<applet code = "MyFirstApplet.class" width = 300 height = 200 >
</applet>
<hr/>
</body>
</html>

The two shaded lines between tags for horizontal lines specify that the bytecodes for the applet are con-
tained in the file MyFirstApplet.class. The name of the file containing the bytecodes for the applet is
specified as the value for the code attribute in the <applet> tag. The other two attributes, width and
height, define the width and height of the region on the screen that will be used by the applet when it exe-
cutes. These always have to be specified to run an applet. Here is the Java source code for a simple applet:

import javax.swing.JApplet;
import java.awt.Graphics;

public class MyFirstApplet extends JApplet {
public void paint (Graphics g) {

g.drawString ("To climb a ladder, start at the bottom rung", 20, 90);
}

11

Chapter 1

0

12

Note that Java is case-sensitive. You can’t enter public with a capital p—if you do, the program won’t
compile. This applet just displays a message when you run it. The mechanics of how the message gets
displayed are irrelevant here — the example is just to illustrate how an applet goes into an HTML page.
If you compile this code and save the previous HTML page specification in the file MyFirstApplet.html

in the same directory as the Java applet code, you can run the applet using appletviewer from the JDK
with the command:

appletviewer MyFirstApplet.html

This will display a window something like that shown in Figure 1-2:

£ Applet Viewer: MyFirstApplet.... g@
Applet

Toclimb a ladder, start at the bottom rung

Applet started.

Figure 1-2

In this particular case, the window is produced by Internet Explorer under Windows XP. Under other
operating systems and browsers it is likely to look a little different. Since the height and width of the

window for the applet are specified in pixels, the physical dimensions of the window will depend on the
resolution and size of your monitor.

This example should work by default with Internet Explorer since the installation process for the JDK
will install the Java plug-in for you. If it doesn’t work, check the Internet Options . . . on the Tools menu
for Internet Explorer. On the Advanced tab you should find an option titled “Use JRE v1.5.0 for <applet>
(requires restart)”; make sure this option is checked. If you use Mozilla 1.x or Netscape 7.x, follow the
instruction given in the installation documentation for the JDK to enable the plug-in.

bject-Oriented Programming in Java

As Isaid at the beginning of this chapter, Java is an object-oriented language. When you use a program-
ming language that is not object-oriented, you must express the solution to every problem essentially in
terms of numbers and characters — the basic kinds of data that you can manipulate in the language. In
an object-oriented language like Java, things are different. Of course, you still have numbers and charac-
ters to work with — these are referred to as the primitive data types —but you can define other kinds of
entities that are relevant to your particular problem. You solve your problem in terms of the entities or
objects that occur in the context of the problem. This not only affects how a program is structured, but
also the terms in which the solution to your problem is expressed. If your problem concerns baseball

Introducing Java

players, your Java program is likely to have BaseballPlayer objects in it; if you are producing a pro-
gram dealing with fruit production in California, it may well have objects that are Oranges in it. Apart
from seeming to be an inherently sensible approach to constructing programs, object-oriented programs
are usually easier to understand.

In Java almost everything is an object. If you haven’t delved into object-oriented programming before,
or maybe because you have, you may feel this is a bit daunting. But fear not. Objects in Java are particu-
larly easy. So easy, in fact, that you are going to start out by understanding some of the ideas behind Java
objects right now. In that way you’ll be on the right track from the outset.

This doesn’t mean you are going to jump in with all the precise nitty-gritty of Java that you need for
describing and using objects. You are just going to get the concepts straight at this point. You'll do this
by taking a stroll through the basics using the odd bit of Java code where it helps the ideas along. All the
code that you use here will be fully explained in later chapters. Concentrate on understanding the notion
of objects first. Then you can ease into the specific practical details as you go along.

So What Are Objects?

Anything can be thought of as an object. Objects are all around you. You can consider Tree to be a par-
ticular class of objects: trees in general. The notion of a Tree in general is a rather abstract concept —
although any tree fits the description, it is more useful to think of more specific types of tree. Hence, the
Oak tree in my yard which I call my0Oak, the Ash tree in your yard which you call thatDarnedTree, and
a generalSherman, the well-known redwood, are actual instances of specific types of tree, subclasses of
Tree that in this case happen to be 0Oak, Ash, and Redwood. Note how we drop into the jargon here —
class is a term that describes a specification for a collection of objects with common properties. Figure
1-3 shows some classes of trees and how you might relate them.

A class is a specification, or blueprint— expressed as a piece of program code — that defines what goes
to make up a particular sort of object. A subclass is a class that inherits all the properties of the parent
class, but that also includes extra specialization. Particular classes of Tree, such as Oak or Ash, have all
the characteristics of the most general type, Tree; otherwise, they could not be considered to be such.
However, each subclass of Tree, such as 0Oak, has its own characteristics that differentiate 0ak objects
from other types of Tree.

Of course, you define a class specification to fit what you want to do in your application context. There
are no absolutes here. For my trivial problem, the specification of a Tree class might just consist of its
species name and its height. If you are an arboriculturalist, then your problem with trees may require a
much more complex class, or more likely a set of classes, that involves a mass of arboreal characteristics.

Every object that your program will use will have a corresponding class definition somewhere for
objects of that type. This is true in Java as well as in other object-oriented languages. The basic idea of a
class in programming parallels that of classifying things in the real world. It is a convenient and well-
defined way to group things together.

An instance of a class is a technical term for an existing object of that class. Ash is a specification for a
type of object, and yourAsh is an object constructed to that specification. So, yourAsh would be an
instance of the class Ash. Once you have a class defined, then you can come up with objects, or instances,
of that class. This raises the question of what differentiates an object of a given class from an object of
another class, an Ash class object, say, from a Redwood object. In other words, what sort of information
defines a class?

13

Chapter 1

Generic Tree

derived from derived from

derived from

Ash

/N

Create Create
instance instance

Redwood

Objects of a class Tree
will have a given set
of properties in common.
Each object of the class
will have its own values
for these properties.

Objects of
type Ash

yourAsh

Figure 1-3

What Defines a Class of Objects?

14

You may have already guessed the answer. A class definition identifies all the parameters that define an
object of that particular class, at least, so far as your needs go. Someone else might define the class differ-
ently, with a larger or smaller set of parameters to define the same sort of object —it all depends on what
you want to do with the class. You decide what aspects of the objects you include to define that particu-
lar class of object, and you choose them depending on the kinds of problems that you want to address
using the objects of the class. Let’s think about a specific class of objects.

If you were defining a class Hat, for example, you might use just two parameters in the definition. You
could include the type of hat as a string of characters such as "Fedora" or "Baseball cap” and its size
as a numeric value. The parameters that define an object of a class are referred to as instance variables

Introducing Java

or attributes of a class, or class fields. The instance variables can be basic types of data such as numbers,
but they can also be other class objects. For example, the name of a Hat object could be of type String—
the class string defines objects that are strings of characters.

Of course there are lots of other things you could include to define a Hat if you wanted to, color, for
example, which might be another string of characters such as "Blue". To specify a class you just decide
what set of attributes meet your requirements, and those are what you use. This is called data abstraction
in the parlance of the object-oriented aficionado because you just abstract the attributes you want to use
from the myriad possibilities for a typical object.

In Java the definition of the class Hat would look something like this:

class Hat {
// Stuff defining the class in detail goes here.
// This could specify the name of the hat, the size,
// maybe the color, and whatever else you felt was necessary.

}

The name of the class follows the word class, and the details of the definition appear between the curly
braces.

Because the word class has this special role in Java it is called a keyword, and it is
reserved for use only in this context. There are lots of other keywords in Java that
you will pick up as we go along. You just need to remember that you must not use
any of them for any other purposes.

I'won’t go into the detail of how the class Hat is defined, since you don’t need it at this point. The lines
appearing between the braces above are not code; they are actually program comments, because they
begin with two successive forward slashes. The compiler will ignore anything on a line that follows two
successive forward slashes in your Java programs, so you'll use this to add explanations to your pro-
grams. Generally, the more useful comments you can add to your programs, the better. You will see in
Chapter 2 that there are other ways you can write comments in Java.

Each object of your class will have a particular set of values defined that characterize that particular
object. You could have an object of type CowboyHat, which might be defined by values such as "Stetson”
for the type of the hat, "white" for the color, and the size as 7. This is illustrated in Figure 1-4.

Although Figure 1-4 shows CowboyHat objects defined by a set of three values that you would not nor-
mally expect to change for a given instance, in general the parameter values that define an object are not
necessarily fixed. You would expect the type and size attributes for a particular CowboyHat object to
stay fixed since hats don’t usually change their size — at least, not unless it’s raining —but you could
have other attributes, as illustrated in Figure 1-5.

You might have a parameter owner, which would record the owner’s name, so the value stored as the
attribute owner could be changed when the hat was sold or otherwise transferred to someone else. You
might also have a parameter hatOn, for example, which would indicate whether the hat was on or off
the owner’s head; the value true would indicate that the owner was indeed wearing the hat, whereas
the value false would mean that the hat had been removed and was just lying about somewhere.

15

Chapter 1

16

type: Stetson
color: White
size: 6

class CowboyHat {

String type; /
String color; Class

int size; instances
{
type: Stetson
color: Gray
size: 7
Figure 1-4

owner: Jed
type: Stetson
color: White
size: 6

hatOn: false

class CowboyHat {

String owner; /
String type; Class

String color; instances
int size;
boolean hatOn;

owner: Slim
type: Stetson
color: Gray
size: 7

hatOn: true

Figure 1-5

Introducing Java

Operating on Objects

In spite of what you might think looking at Figure 1-5, a class object is not just a collection of various
items of data. In addition to the parameters that characterize an object, a class specifies what you can

do with an object of the class —that is, it defines the operations that are possible on objects of the class.
Clearly, for objects to be of any use in a program, you need to decide what you can do with them. The
operations that you specify for objects of a given type will depend on what sort of objects you are talking
about, the attributes they contain, and how you intend to use them.

For the CowboyHat class in Figure 1-5, you may want to have operations that you could refer to as
putHatOn and takeHatOff, which would have meanings that are fairly obvious from their names, and
do make sense for CowboyHat objects. These operations on a particular CowboyHat object would set the
value of hatOn for the object. To determine whether your CowboyHat was on or off, you would just need
to look at this value. Conceivably, you might also have an operation changeOwner by which you could
set the instance variable recording the current owner’s name to a new value. Figure 1-6 shows two oper-
ations applied in succession to a CowboyHat object.

owner: TimB owner: JonF

type: Stetson type: Stetson
color: White color: White
size: 7 size: 7

hatOn: false hatOn: true

owner: JonF
type: Stetson
color: White
size: 7

hatOn: false

Figure 1-6

17

Chapter 1

Of course, for each type of object you can have any operation that makes sense for you. If you want to
have a shootHoleIn operation for Hat objects, that’s no problem. You just have to define what that
operation does to an object.

You are probably wondering at this point how an operation for a class is defined. As you'll see in detail a
bit later, it boils down to a self-contained block of program code called a method that is identified by the
name you give to it. You can pass data items —which can be integers, floating-point numbers, character
strings, or class objects —to a method, and these will be processed by the code in the method. A method
may also return a data item as a result. Performing an operation on an object amounts to executing the
method that defines that operation for the object.

Of course, the only operations you can perform on an instance of a particular class
are those defined within the class, so the usefulness and flexibility of a class is
going to depend on the thought that you give to its definition. We will be looking
into these considerations more in Chapter 5.

Just so you'll recognize one when you see it, let’s take a look at an example of a complete class defini-
tion. The code for the class CowboyHat we have been talking about might be as illustrated in Figure 1-7.

class CowboyHat {
private String owner; // Name of current owner .
private int size; // Stores the hat size The.se SpECIfy the
private boolean hatOn=false; // Records whether a hat is on or off | attributes for the class
// Constructor to create a Hat object L. .
Thelb public Hat(String person, int theSize) { This is a special
€ braces size = theSize; // Set the hat size method that creates
enclose the owner = person; // Set the hat owner Hat objects
class }
definition
// Method to put the hat on
public void putHatOn() {
These braces hatOn = true; // Record hat status as on
enclose the
code for the // Method to put the hat on
method public void putHatOn() {
putHatOn() y hatOn = false; // Record hat status as off
These are the other
// Method to change the owner class methods
public void changeOwner(String newOwner) {
owner = newOwner;
}
// Method to get the hat size
public int getSize() {
return size; // Return the size of the hat
}
}
Figure 1-7

18

Introducing Java

This code would be saved in a file with the name CowboyHat . java. The name of a file that contains the
definition of a class is always the same as the class name, and the extension will be . java to identify
that the file contains Java source code.

The code for the class definition appears between the braces that follow the identification for the class,
as shown in Figure 1-7. The code for each of the methods in the class also appears between braces. The
class has three instance variables, owner, size, and hatOn, and this last variable is always initialized

as false. Each object that is created according to this class specification will have its own independent
copy of each of these variables, so each object will have its own unique values for the owner, the hat size,
and whether the hat is on or off. I omitted the type parameter in this version of the class to make the
code a little bit shorter.

The keyword private, which has been applied to each instance variable, ensures that only code within
the methods of the class can access or change the values of these directly. Methods of a class can also be
specified as private. Being able to prevent access to some members of a class from outside is an impor-
tant facility. It protects the internals of the class from being changed or used incorrectly. Someone using
your class in another program can get access only to the bits to which you want them to have access.
This means that you can change how the class works internally without affecting other programs that
may use it. You can change any of the things inside the class that you have designated as private, and
you can even change the code inside any of the public methods, as long as the method name and the
number and types of values passed to it or returned from it remain the same.

Our CowboyHat class also has five methods, so you can do five different things with a CowboyHat object.
One of these is a special method called a constructor, which creates a CowboyHat object — this is the
method with the name, CowboyHat, that is the same as the class name. The items between the paren-
theses that follow the name of the constructor specify data that is to be passed to the method when it is
executed — that is, when a CowboyHat object is created.

In practice you might need to define a few other methods for the class to be useful;
you might want to compare CowboyHat objects for example, to see if one was larger
than another. However, at the moment you just need to get an idea of how the code
looks. The details are of no importance here, as you'll return to all this in Chapter 5.

Java Program Statements

As you saw in the CowboyHat class example, the code for each method in the class appears between
braces, and it consists of program statements. A semicolon terminates each program statement. A state-
ment in Java can spread over several lines if necessary, since the end of each statement is determined by
the semicolon, not by the end of a line. Here is a Java program statement:

hatOn = false;

If you wanted to, you could also write this as:

hatOn =
false;

19

Chapter 1

You can generally include spaces and tabs, and spread your statements over multiple lines to enhance
readability if it is a particularly long statement, but sensible constraints apply. You can’t put a space in
the middle of a name for instance. If you write hat On, for example, the compiler will read this as two
words.

Encapsulation

At this point we can introduce another bit of jargon you can use to impress or bore your friends —
encapsulation. Encapsulation refers to the hiding of items of data and methods within an object. This
is achieved by specifying them as private in the definition of the class. In the CowboyHat class, the
instance variables owner, type, size, and hatOn were encapsulated. They were accessible only through
the methods defined for the class. Therefore, the only way to alter the values they contain is to call a
method that does that. Being able to encapsulate members of a class in this way is important for the
security and integrity of class objects. You may have a class with data members that can take on only
particular values. By hiding the data members and forcing the use of a method to set or change the val-
ues, you can ensure that only legal values are set.

I mentioned earlier another major advantage of encapsulation — the ability to hide the implementation
of a class. By allowing only limited access to the members of a class, you have the freedom to change the
internals of the class without necessitating changes to programs that use the class. As long as the exter-
nal characteristics of the methods that can be called from outside the class remain unchanged, the inter-
nal code can be changed in any way that you, the programmer, want.

A particular object, an instance of CowboyHat, incorporates, or encapsulates, the owner, the size of the
object, and the status of the hat in the instance variable haton. Only the constructor, and the putHaton (),
takeHatOff (), changeOwner (), and getSize () methods can be accessed externally.

Whenever I am referring to a method in the text, I will add a pair of parentheses
after the method name to distinguish it from other things that have names. Some
examples of this appear in the preceding paragraph. A method always has parenthe-
ses in its definition and in its use in a program, as you'll see, so it makes sense to
represent it in this way in the text.

Classes and Data Types

20

Programming is concerned with specifying how data of various kinds is to be processed, massaged,
manipulated, or transformed. Since classes define the types of objects that a program will work with,
you can consider defining a class to be the same as defining a data type. Thus, Hat is a type of data,

as is Tree, and any other class you care to define. Java also contains a library of standard classes that
provide you with a whole range of programming tools and facilities. For the most part then, your Java
program will process, massage, manipulate, or transform class objects.

There are some basic types of data in Java that are not classes, and these are called primitive types. I will
go into these in detail in the next chapter, but they are essentially data types for numeric values such as
99 or 3.75, for single characters such as A or ?, and for logical values that can be true or false. Java also
has classes that correspond to each of the primitive data types for reasons that you will see later on, so

Introducing Java

there is an Integer class that defines objects that encapsulate integers, for example. Every entity in your
Java program that is not of a primitive data type will be an object of a class — either a class that you define
yourself, a class supplied as part of the Java environment, or a class that you obtain from somewhere
else, such as from a specialized support package.

Classes and Subclasses

Many sets of objects that you might define in a class can be subdivided into more specialized subsets
that can also be represented by classes, and Java provides you with the capability to define one class as
a more specialized version of another. This reflects the nature of reality. There are always lots of ways of
dividing a cake — or a forest. Conifer, for example, could be a subclass of the class Tree. The Conifer
class would have all the instance variables and methods of the Tree class, plus some additional instance
variables and/or methods that make it a Conifer in particular. You refer to the Conifer class as a sub-
class of the class Tree, and the class Tree as a superclass of the class Conifer.

When you define a class such as Conifer using another class such as Tree as a starting point, the class
Conifer is said to be derived from the class Tree, and the class Conifer inherits all the attributes of
the class Tree.

Advantages of Using Objects

As I said at the outset, object-oriented programs are written using objects that are specific to the problem
being solved. Your pinball machine simulator may well define and use objects of type Table, Ball,
Flipper, and Bumper. This has tremendous advantages, not only in terms of easing the development
process and making the program code easier to understand, but also in any future expansion of such a
program. Java provides a whole range of standard classes to help you in the development of your pro-
gram, and you can develop your own generic classes to provide a basis for developing programs that
are of particular interest to you.

Because an object includes the methods that can operate on it as well as the data that defines it, program-
ming using objects is much less prone to error. Your object-oriented Java programs should be more robust
than the equivalent in a procedural programming language. Object-oriented programs take a little longer
to design than programs that do not use objects since you must take care in the design of the classes that
you will need, but the time required to write and test the code is sometimes substantially less than that
for procedural programs. Object-oriented programs are also much easier to maintain and extend.

Java Program Structure

Let’s summarize how a Java program is structured:

Q AJava program always consists of one or more classes.

Q You typically put the program code for each class in a separate file, and you must give each file
the same name as that of the class that is defined within it.

Q AJava source file name must have the extension . java.

21

Chapter 1

Thus your file containing the class Hat will be called Hat . java and your file containing the class
BaseballPlayer must have the file name BaseballPlayer.java.

A typical program consists of several files as illustrated in Figure 1-8.

class MyProgram { class Coat ({ class Shoe { class Sock { class Hat {

//Class //Class //Class //Class //Class
definition definition definition definition definition

} } } } }

MyProgram.Java Coat.java Shoe.java Sock.java Hat.java
— I
The complete program consists of 5 files
Figure 1-8

This program clearly majors on apparel, with four of the five classes representing clothing. Each source
file contains a class definition, and all of the files that go to make up the program are stored in the same
directory. The source files for your program contain all the code that you wrote, but this is not every-
thing that is ultimately included in the program. There is also code from the Java standard class library,
so let’s take a peek at what that can do.

Java’s Class Library

22

Alibrary in Java is a collection of classes — usually providing related facilities — that you can use in
your programs. The Java class library provides you with a whole range of goodies, some of which are
essential for your programs to work at all, and some of which make writing your Java programs easier.
To say that the standard class library covers a lot of ground would be something of an understatement,
so I won't be going into it in detail here; however, you will be looking into how to apply many of the
facilities it provides throughout the book.

Since the class library is a set of classes, it is stored in sets of files where each file contains a class defini-
tion. The classes are grouped together into related sets that are called packages, and each package is
stored in a separate directory. A class in a package can access any of the other classes in the package. A
class in another package may or may not be accessible. We will learn more about this in Chapter 5.

The package name is based on the path to the directory in which the classes belonging to the package
are stored. Classes in the package java.lang for example are stored in the directory path java\lang
(or java/lang under Unix). This path is relative to a particular directory that is automatically known
by the Java run-time environment that executes your code. You can also create your own packages that
will contain classes of your own that you want to reuse in different contexts, and that are related in
some way.

The JDK includes a growing number of standard packages —well over 100 the last time I counted. Some
of the packages you will meet most frequently are:

Introducing Java

Package Name Description

java.lang These classes support the basic language features and the handling
of arrays and strings. Classes in this package are always available
directly in your programs by default because this package is always
automatically loaded with your program.

java.io Classes for data input and output operations.

java.util This package contains utility classes of various kinds, including
classes for managing data within collections or groups of data items.

javax.swing These classes provide easy-to-use and flexible components for
building graphical user interfaces (GUIs). The components in this
package are referred to as Swing components.

java.awt Classes in this package provide the original GUI components
(JDK 1.1) as well as some basic support necessary for Swing
components.

java.awt .geom These classes define two-dimensional geometric shapes.

java.awt.event The classes in this package are used in the implementation of

windowed applications to handle events in your program. Events
are things like moving the mouse, pressing the left mouse button,
or clicking on a menu item.

As noted previously, you can use any of the classes from the java.lang package in your programs

by default. To use classes from the other packages, you typically use import statements to identify the
names of the classes that you need from each package. This allows you to reference the classes by the
simple class name. Without an import statement you would need to specify the fully qualified name of
each class from a package each time you refer to it. As we will see in a moment, the fully qualified name
for a class includes the package name as well as the basic class name. Using fully qualified class names
would make your program code rather cumbersome, and certainly less readable. It would also make
them a lot more tedious to type in.

You can use an import statement to import the name of a single class from a package into your program,
or all the class names. The two import statements at the beginning of the code for the applet you saw
earlier in this chapter are examples of importing a single class name. The first was:

import javax.swing.JApplet;

This statement imports the JApplet class name that is defined in the javax. swing package. Formally, the
name of the Japplet class is not really JApplet —it is the fully qualified name javax.swing.JApplet.
You can use the unqualified name only when you import the class or the complete package containing it
into your program. You can still reference a class from a package even if you don’t import it though — you
just need to use the full class name, javax.swing.JApplet. You could try this out with the applet you
saw earlier if you like. Just delete the two import statements from the file and use the full class names in the
program. Then recompile it. It should work the same as before. Thus, the fully qualified name for a class is
the name of the package in which it is defined, followed by a period, followed by the name given to the
class in its definition.

23

Chapter 1

You could import the names of all the classes in the javax. swing package with the statement:
import javax.swing.*;

The asterisk specifies that all the class names are to be imported. Importing just the class names that
your source code uses makes compilation more efficient, but when you are using a lot of classes from a
package you may find it more convenient to import all the names. This saves typing reams of import
statements for one thing. We will do this with examples of Java code in the book to keep the number of
lines to a minimum. However, there are risks associated with importing all the names in a package.
There may be classes with names that are identical to names you have given to your own classes, which
would obviously create some confusion when you compile your code.

You will see more on how to use import statements in Chapter 5, as well as more
about how packages are created and used, and you will be exploring the use of
classes from the standard packages in considerable depth throughout the book.

As Iindicated earlier, the standard classes do not appear as files or directories on your hard disk. They
are packaged up in a single compressed file, rt . jar, that is stored in the jre/1ib directory. This direc-
tory is created when you install the JDK on your computer. A jar file is a Java archive—a compressed
archive of Java classes. The standard classes that your executable program requires are loaded automati-
cally from rt. jar, so you don’t have to be concerned with it directly at all.

Java Applications

24

Every Java application contains a class that defines a method called main (). The name of this class is the
name that you use as the argument to the Java interpreter when you run the application. You can call

the class whatever you want, but the method which is executed first in an application is always called
main (). When you run your Java application, the method main () will typically cause methods belong-
ing to other classes to be executed, but the simplest possible Java application program consists of one
class containing just the method main (). As you will see below, the main () method has a particular
fixed form, and if it is not of the required form, it will not be recognized by the Java interpreter as the
method where execution starts.

You can see how this works by taking a look at just such a Java program. You need to enter the program
code using your favorite plaintext editor, or if you have a Java development system with an editor, you
can enter the code for the example using that. When you have entered the code, save the file with the
same name as that used for the class and with the extension . java. For this example the file name will
be OurFirstProgram.java. The code for the program is shown in Figure 1-9

The program consists of a definition for a class I have called OurFirstProgram. The class definition
contains only one method, the method main (). The first line of the definition for the method main () is

always of the form:

public static void main(String[] args)

Introducing Java

This is the definition of the class
OurFirstProgram. The class
definition only contains the
method main ().

public class OurFirstProgram {

public static void main(String[] args) {

System.out.println ("Krakatoa, EAST of Java??");

) } /

This is the definition of the method main ().

The keyword public indicates it is globally accessible.
The keyword static ensures it is accessible even
though no objects of the class exist.

The keyword void indicates it does not return a value.

Figure 1-9

The code for the method appears between the pair of curly braces. This version of the method has only
one executable statement:

System.out.println("Krakatoa, EAST of Java??");

So what does this statement do? Let’s work through it from left to right:

Q

System is the name of a standard class that contains objects that encapsulate the standard I/O
devices for your system — the keyboard for command-line input and command-line output to
the display. It is contained in the package java. lang, so it is always accessible just by using
the simple class name System.

The object out represents the standard output stream — the command line on your display
screen —and is a data member of the class System. The member, out, is a special kind of mem-
ber of the System class. Like the method main () in our OurFirstProgram class, it is static.
This means that out exists even though there are no objects of type System (more on this in
forthcoming chapters). Using the class name, System, separated from the member name out
by a period — System. out —references the out member.

The bit at the rightmost end of the statement, println("Krakatoa, EAST of Java??"),
calls the print1n () method that belongs to the object out, and that outputs the text string that
appears between the parentheses to your display. This demonstrates one way in which you can
call a class method —by using the object name followed by the method name, with a period

25

Chapter 1

26

separating them. The stuff between the parentheses following the name of a method is informa-
tion that is passed to the method when it is executed. As we said, for println() itis the text we
want to output to the command line.

For completeness, the keywords public, static, and void that appear in the method definition are
explained briefly in the annotations to the program code, but you need not be concerned if these still
seem a bit obscure at this point. I will be coming back to them in much more detail in Chapter 5.

You can compile this program using the JDK compiler with the command
javac OurFirstProgram.java

or with the -classpath option specified:
javac -classpath . OurFirstProgram.java

If it didn’t compile, there’s something wrong somewhere. Here’s a checklist of possible sources of the
problem:

Q You forgot to include the path to the jdk1.5.0\bin directory in your PATH, or maybe you did
not specify the path correctly. This will result in your operating system not being able to find the
javac compiler that is in that directory.

O You made an error typing in the program code. Remember Java is case-sensitive, so
OurfirstProgram is not the same as OurFirstProgram, and of course, there must be no spaces
in the class name. If the compiler discovers an error, it will usually identify the line number in the
code where the error was found. In general, watch out for confusing zero, 0, with a small letter o,
or the digit one, 1, with the small letter 1. All characters such as periods, commas, and semicolons
in the code are essential and must be in the right place. Parentheses, (), curly braces, {}, and square
brackets, [], always come in matching pairs and are not interchangeable.

Q The source file name must match the class name exactly. The slightest difference will result in an
error. It must have the extension . java.

Once you have compiled the program successfully, you can execute it with the command:
java —ea OurFirstProgram

The -ea option is not strictly necessary since this program does not use assertions, but if you get used to
putting it in, you won't forget it when it is necessary. If you need the -classpath option specified:

java -ea -classpath . OurFirstProgram
Assuming the source file compiled correctly, and the jdk1.5.0\bin directory is defined in your path,
the most common reason for the program failing to execute is a typographical error in the class name,
OurFirstProgram. The second most common reason is writing the file name, OurFirstProgram.class,
in the command, whereas it should be just the class name, OurFirstProgram.

When you run the program, it will display the text:

Krakatoa, EAST of Java??

Introducing Java

Java and Unicode

Programming to support languages that use anything other than the Latin character set has always been
a major problem. There are a variety of 8-bit character sets defined for many national languages, but if
you want to combine the Latin character set and Cyrillic in the same context, for example, things can get
difficult. If you want to handle Japanese as well, it becomes impossible with an 8-bit character set because
with 8 bits you have only 256 different codes so there just aren’t enough character codes to go round.
Unicode is a standard character set that was developed to allow the characters necessary for almost all
languages to be encoded. It uses a 16-bit code to represent a character (so each character occupies 2 bytes),
and with 16 bits up to 65,535 non-zero character codes can be distinguished. With so many character
codes available, there is enough to allocate each major national character set its own set of codes, includ-
ing character sets such as Kanji, which is used for Japanese and which requires thousands of character
codes. It doesn’t end there though. Unicode supports three encoding forms that allow up to a million
additional characters to be represented.

As you'll see in Chapter 2, Java source code is in Unicode characters. Comments, identifiers (names in
other words —see Chapter 2), and character and string literals can all use any characters in the Unicode
set that represent letters. Java also supports Unicode internally to represent characters and strings, so the
framework is there for a comprehensive international language capability in a program. The normal
ASCII set that you are probably familiar with corresponds to the first 128 characters of the Unicode set.
Apart from being aware that each character usually occupies 2 bytes, you can ignore the fact that you are
handling Unicode characters in the main, unless of course you are building an application that supports
multiple languages from the outset.

I say each Unicode character usually occupies 2 bytes because Java supports Unicode 4.0, which allows
32-bit characters called surrogates. You might think that the set of 64K characters that you can represent
with 16 bits would be sufficient, but it isn’t. Far-eastern languages such as Japanese, Korean, and Chinese
alone involve more than 70,000 ideographs, and surrogates are used to represent characters that are not
contained within the basic multilingual set that is defined by 16-bit characters.

Summary

In this chapter you've looked at the basic characteristics of Java, and how portability between different
computers is achieved. I have also introduced you to the elements of object-oriented programming.
There are bound to be some aspects of what I've discussed that you don’t feel are completely clear to
you. Don’t worry about it. Everything I have discussed here I will be revisiting again in more detail later
on in the book.

The essential points [have covered in this chapter are:

Q Java applets are programs that are designed to be embedded in an HTML document. Java appli-
cations are standalone programs. Java applications can be console programs that only support
text output to the screen, or they can be windowed applications with a GUIL

Q Java programs are intrinsically object-oriented.

Q Java source code is stored in files with the extension . java.

27

Chapter 1

Q Java programs are compiled to bytecodes, which are instructions for the Java Virtual Machine.
The Java Virtual Machine is the same on all the computers on which it is implemented, thus
ensuring the portability of Java programs.

Q Java object code is stored in files with the extension .class.

Q Java programs are executed by the Java interpreter, which analyses the bytecodes and carries
out the operations they specify.

Q The Java Development Kit (JDK) supports the compilation and execution of Java applications
and applets.

Resources

You can download the source code for the examples in this book from http: / /www.wrox. com.
The source code download includes ancillary files, such as . gif files containing icons, for example,

where they are used in the examples. I also include the solutions to the exercises that appear at the end
of most chapters.

28

