
Exploring Popular SQL
Implementations

Any tour into the realm of writing SQL functions should begin with a solid foundation of the basic
principles of SQL. In this chapter, we will be discussing the ins and outs of creating, querying, and
modifying databases using basic SQL syntax. This chapter is the basis upon which we will build in
the following chapters. This will help you unravel the mystery of using the power of built-in func-
tions available across the various relational database management systems (RDBMS) platforms
and to introduce new functionality into your applications by developing your own user-defined
functions (UDFs).

Introduction to SQL
Structured Query Language (otherwise known as SQL and pronounced “SEE-kwul”) was first
developed by IBM in the mid- to late 1970s for their DB2 platform RDBMS. At the time, its purpose
was to provide a way in which the RDBMS could retrieve data in a declarative way. Declarative
“programming” was a way in which the RDBMS developer could specify what data would be
selected, inserted, updated, or deleted without having to necessarily know where the data was or
how it was stored. That was the job of the RDBMS. The main goal of SQL was to provide the follow-
ing functionality to the RDBMS:

❑ Query the database to retrieve the data stored therein.

❑ Update existing data within the database.

❑ Insert new data into the database.

❑ Remove unwanted data from the database.

❑ Add permissions to RDBMS objects (databases, tables, and so on).

❑ Modify a database’s structure.

❑ Change security settings.

04_569015 ch01.qxd 3/29/05 9:38 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Oracle released the first commercial RDBMS that used SQL in 1978. Soon after that, in the mid-1980s,
Sybase released its own RDBMS, SQL Server. In 1988, this was ported to OS/2 by Sybase and Microsoft,
and eventually to Windows NT. In 1993, the partnership parted ways and Sybase eventually renamed
their product Adaptive Server Enterprise (ASE) to differentiate it from the Microsoft version. However,
since that time, Open Source RDBMS solutions such as MySQL and PostgreSQL have taken hold in the
marketplace and are among the fastest growing. Even though all of these systems follow or attempt to
follow the same base SQL implementation, each has its own unique characteristics and extensions that
make it stand out from the rest.

Understanding the SQL Standard
The “standard” of SQL is laid out by both the American National Standards Institute (ANSI) and the
International Standards Organization (ISO). It is fundamentally a set of base standards that, in theory, is the
agreed-upon example of what the SQL syntax and logic in an RDBMS should be. The original ANSI stan-
dard was put forth in 1986 and then later developed into ANSI SQL:1989 or, simply, SQL 89. The former
version laid out a basic pattern of the following three separate ways in which SQL could be implemented:

❑ Embedded — This refers to embedding SQL statements within a program separate from the
RDBMS instance. Patterns for this implementation were written to reflect the programming
languages of the day (COBAL, FORTRAN, Pascal, and PL/1).

❑ Direct — The implementer could provide specific direct implementation of SQL to the developer.

❑ Module — Modules enable calls from procedures within programs and return a value to the
calling program.

This baseline was further expanded with the release of ANSI 1992 or SQL 92, which included such things
as connections to databases, dynamic SQL, and outer joins. This was in addition to establishing levels of
compliance (entry, intermediate, and full) that the RDBMS system could tout to their user base. SQL:1999
again extended the standard by including more data types in the mix, such as arrays, user-defined types
(UDTs), Boolean, BLOB, and CLOB. SQL:2003 expands upon the data types available, along with some
new built-in functions.

However, it should be noted that the standards for core compliance have not been changed from the
SQL:1999 version. This effectively means that anything that is SQL 99-compliant will automatically be
SQL:2003-compliant as well. Therefore, it is important to understand that even though a specific RDBMS
implementation may by SQL:2003-compliant, it does not mean that it has implemented all of the changes
proposed within the new standard. In actuality, it has just prescribed to a set of core compliance stan-
dards, and you will have to check the specific instance of your RDBMS documentation to see which parts
have truly been implemented.

Overview of Vendor Implementations of SQL
Another important aspect of understanding the basics of ANSI SQL is to know the different implementa-
tions of available RDBMS packages. This book is based upon what we see as the top six RDBMS imple-
mentations that use the ANSI SQL standard. It is important to realize that even though the ANSI SQL

2

Chapter 1

04_569015 ch01.qxd 3/29/05 9:38 PM Page 2

standard is something that every database should strive to emulate, each vendor implementation of that
standard is unique and has nuances that the other implementations will not have. This section provides
an overview of each of the six different RDBMS implementations discussed in this book to give you a
good understanding of their backgrounds before going into the technical details of each implementation.

Oracle
Oracle is the market leader in the commercial RDBMS market. As mentioned in the previous section,
Oracle released the first commercially available RDBMS in 1978. With the release of its commercial ver-
sion 10g, Oracle claims SQL:2003 compliance, as well as a full set of features and tool sets for the devel-
oper. In addition, Oracle provides several different editions that fit a wide variety of operating
environments (UNIX, Linux, and Windows) and levels of use.

IBM DB2 UDB
IBM created SQL for their DB2 database platform in the mid- to late 1970s. IBM is the world’s leading
hardware vendor, and their DB2 database platform has evolved into their Universal Database line. As of
this writing, the current version is 8.2, and they offer several different editions to fit a number of operat-
ing platforms and uses.

Microsoft SQL Server and Sybase
As mentioned earlier, Sybase produced the original SQL Server and Microsoft later entered into a code-
velopment agreement with them. Later in 1988, Microsoft ported the database from OS/2 over to their
Windows platform. In 1993, the two companies discontinued their agreement and parted ways.

Since the split in 1993, Sybase has renamed their products Sybase Adaptive Server Enterprise and Sybase IQ.
Originally developed for the OS/2 environment, Sybase’s RDMS is now available for a wide variety of
platforms, such as Windows, Linux, Solaris x86/64-bit, and Mac.

Microsoft is now the world’s largest software developer. SQL Server 2000 is now their flagship database
version, and they will soon release SQL Server 2005 (its beta version is currently available). Microsoft
touts the ease of use of their database system, rather than total ANSI compliance. They provide a feature-
rich set of administration tools, but are limited to the Microsoft Windows platform. SQL Server’s most
obvious difference from other SQL implementations is its use of Microsoft’s extension language
T-SQL. In Microsoft’s version, there is no apparent difference to distinguish T-SQL from the standard
version of SQL: they are treated as one and the same.

MySQL
Possibly the world’s most-used Open Source RDBMS, MySQL is the product of its parent company
MySQL AB, which was founded in Sweden in the 1980s. Although its solution is marketed as Open
Source, it does have a commercial license if developers want to produce closed-source solutions with it.
MySQL was initially developed with speed in mind and, as such, has suffered somewhat from its lack of
a full feature set compared with some of its competitors. However, in recent releases (such as MySQL 4.0
and 5.0 Alpha), MySQL is starting to tout both its speed and compliance with the new SQL:2003 standard.

3

Exploring Popular SQL Implementations

04_569015 ch01.qxd 3/29/05 9:38 PM Page 3

PostgreSQL
PostgreSQL (pronounced “Post-gres-Q-L”) was developed in 1986 at the University of California at
Berkeley. Today, it is considered to be the most powerful of the available Open Source RDBMS packages.
Initially, PostgreSQL was written to perform on a number of versions of the UNIX operating system. As
of this writing, PostgreSQL is in version 8.0 Beta 4, and is available since the initial release of version 8.0
on Windows NT-based systems. Whereas MySQL was written to be fast, PostgreSQL was developed to
be “full featured.” However, the trend has shifted with each subsequent release to make it faster.

Connecting to SQL Databases
To connect to an RDBMS, you must have two things: an SQL client and a CONNECTION statement. The
SQL client acts as (or at least is perceived to be) a part of the specific SQL implementation. In addition,
it also helps keep track of the state of all three parts of the connection instance: itself, the SQL agent, and
the SQL server. Different vendors will have their own versions (even though the functionality is similar)
of the SQL client. Oracle has SQL-PLUS and SQLPlus Worksheet, Microsoft had their own version in
Query Analyzer, MySQL has MySQLGUI, and the list goes on. Once you have your particular client that
matches your RDBMS of choice, connecting to a database is a rather simple matter. This is done by issu-
ing the following SQL command:

CONNECT TO <database_name>

If your SQL client is set up with a default database to connect to, then you can simply issue the default
connection command, which is the following:

CONNECT TO DEFAULT

Please note that if there is no default database established for the SQL client, then an exception error will
be thrown by the client because it will not be able to establish a connection. However, depending on
which RDBMS system you have and how your security context is set up, after issuing the command,
you will more often than not be challenged for a username/password combination to access the
database itself.

Once you are connected to your particular database instance, you can change to another database by
issuing another CONNECT statement, naming the connection, and then issuing the SET statement to move
between your different named connections, as shown here:

CONNECT TO DATABASE1 AS FIRSTDB USER sa;
CONNECT TO DATABASE2 AS SECONDDB USER sa;
SET CONNECTION FIRSTDB;
// Now we are working with the first database... //
SET CONNECTION SECONDDB;
// Now we are working with the second database.... //

Once you are finished working within your database(s), it is also necessary to disconnect from your ses-
sion using the DISCONNECT statement, as shown here:

DISCONNECT <connection_name>;
// Or if you have multiple connections that you want to close... //
DISCONNECT ALL;

4

Chapter 1

04_569015 ch01.qxd 3/29/05 9:38 PM Page 4

ANSI SQL Data Types
The ANSI SQL standard also specifies different data types in which to hold your data. In general, each
RDBMS implementation will vary from these as each uses its own unique set to provide some unique-
ness to the environment. The basic set of SQL data types can be broken down into the categories shown
in the following table.

Type ANSI SQL Data Types

Boolean BOOLEAN

String CHAR
VARCHAR

Numeric NUMERIC
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
REAL
SMALLINT
BIGINT

Date Time DATE
TIME
TIMESTAMP

Since each RDBMS implementation differs, it is always best to refer to the documentation of your specific
vendor to determine which data types it supports. The preceding table should merely serve as a guideline
for some of the basic data types that are supported by the ANSI standard. Your particular vendor could
have more or less, depending on the implementation. It is equally important to read the vendor descrip-
tions of data types carefully, because, even though two vendors may provide data types with the same
name, their precision and range may differ.

Creating SQL Databases
To create a new SQL database, you must issue the following command:

CREATE DATABASE <database_name>

This is the basic syntax for the CREATE DATABASE statement. There are plenty of optional clauses that
can be used with the statement, but they differ from implementation to implementation. Clauses include
those that specify everything for location of data files, database collation, and database state. It is best to
check with your RDBMS systems documentation for the particular variance that they support.

Once the foundation of the database has been created, it is time to focus on creating the tables that will
hold the various data you need within the database. The basic syntax for the CREATE TABLE statement
is as follows:

5

Exploring Popular SQL Implementations

04_569015 ch01.qxd 3/29/05 9:38 PM Page 5

CREATE TABLE <table_name>
(
<column_name1> data_type,
<column_name2> data_type,
.......
)

The columns can be identified using any of the ANSI-supported data types detailed earlier in this chapter.

At least one column name of a specific data type must be designated at the time of creation. If all
columns are not named when the table is created, then the table may be altered using the ALTER TABLE
syntax detailed here:

ALTER TABLE <table_name>
[ADD COLUMN <column name> data type]
[ALTER COLUMN <column name> new data type]
[DROP COLUMN <column name>]

As you can see from this syntax, the ALTER TABLE syntax can be used not only to add columns to your
table, but also to either modify them or drop them altogether.

Additionally, at most one column of the table can be designated as an identity column. An identity col-
umn is automatically assigned values based on an internal sequence generator every time a new row is
inserted into the table. These identity columns are important in database table design because they
ensure that each row is unique in at least one column. You can implement an identity column in your
table by using syntax similar to the following:

CREATE TABLE employees
(
EMP_ID INTEGER

GENERATED ALWAYS AS IDENTITY
START WITH 1

INCREMENT 1
MINVALUE 1
NO MAXVALUE
NO CYCLE,

EMP_NAME VARCHAR (30),
EMP_ADDRESS VARCHAR (50),
EMP_CITY VARCHAR (20),
EMP_STATE CHAR (2),
EMP_SALARY DECIMAL (10, 2)
)

A table may also be created with an index, which is the equivalent of a table of contents for your table.
Indices are created separately from the actual data within the table, and are used to speed up queries
on the table. There are several different implementations of placing indices on tables, as shown in the
following syntax:

CREATE [UNIQUE] INDEX <index name>
ON <table_name> (column_name1,column_name2,.......)

6

Chapter 1

04_569015 ch01.qxd 3/29/05 9:38 PM Page 6

You may optionally use the UNIQUE keyword on your index to specify that any two index values must
be unique across your index on the table. Additionally, you may specify more than one column on which
to place the index, in which case it is commonly referred to as a covering index. It should also be specified
that in order to speed up your queries, the index must be placed on a column(s) that your queries are
using. In our previous example of creating the employees table, if we place an index on EMP_ID and per-
form a query on EMP_NAME our index would not be used.

Carefully planning your database creation will keep you from having to spend excess time and
resources reconfiguring different aspects of your database structure.

Querying SQL Databases
Querying information from the database involves using the SELECT statement, whose basic syntax is as
follows:

SELECT select_list
FROM table_source

The breakdown of the SELECT statement is similar to any SQL query in that it is composed of keywords
and clauses. Keywords are the individual SQL statements. In this case, SELECT and FROM would be the
keywords. Clauses are everything else within the statement and are objects that shape what data the key-
words operate upon. In a simple example, we could pull the First_Name and Last_Name from a table
named “Authors” in our database, as follows:

SELECT FIRST_NAME, LAST_NAME
FROM AUTHORS;
FIRST_NAME LAST_NAME
Tennessee Williams
Steven King
Danielle Steeley
Margo Hennesay
Jordan Michaels

By looking closely at the example, you can see several characteristics of the SELECT statement that are
true for all SQL statements in general. The first thing that you should see is that the objects in the select
list (FIRST_NAME, LAST_NAME) are pulled from the database in the order that they were named. Our SQL
query is written in uppercase, but it should be noted that SQL is a case-insensitive language. This means
that it does not matter in what case we specify our SQL statements. We could have used the following
statement and received the same results:

Select first_name, last_name
From authors;

FIRST_NAME LAST_NAME
Tennessee Williams
Steven King
Danielle Steeley
Margo Hennesay
Jordan Michaels

7

Exploring Popular SQL Implementations

04_569015 ch01.qxd 3/29/05 9:38 PM Page 7

It is important to remember, however, that the data within your database is case-sensitive. So, if we were
to add a WHERE clause to our previous query in order to pull any authors with the last name of “King”
from our database, it would be important to know in which case King was stored within the database.
“King,” “KING,” “king,” and “KinG” are all considered different from our WHERE clause.

// Incorrect case for King //
SELECT FIRST_NAME, LAST_NAME
FROM AUTHORS
WHERE LAST_NAME=’king’;

FIRST_NAME LAST_NAME
No rows selected

// Correct case for King //
SELECT FIRST_NAME, LAST_NAME
FROM AUTHORS
WHERE LAST_NAME=’King’;

FIRST_NAME LAST_NAME
Steven King

There are other clauses that can also be added to our SELECT statement to further shape and restrict the
data that is returned to us from our query. DISTINCT is used to restrict the query to return only distinct
values and to drop all duplicates from the query.

SELECT DISTINCT <select_list> FROM <table_name>

TOP N is used to return the first N number of rows from the query results returned by the rest of the
statement.

SELECT TOP <number or rows> <select_list> FROM <table_name>

ORDER BY is used to order the data from the query based upon the designated columns.

SELECT <select_list> FROM <table_name>
ORDER_BY <column_name1,column_name2,.......>

Using our previous example of the Authors table, we can combine several of these clauses to our SELECT
statement to alter our result set.

SELECT TOP 2 FIRST_NAME, LAST_NAME
FROM AUTHORS
ORDER BY LAST_NAME;

FIRST_NAME LAST_NAME
Margo Hennesay
Steven King

8

Chapter 1

04_569015 ch01.qxd 3/29/05 9:38 PM Page 8

The last thing to note before we change our focus to the manipulation of data in SQL databases is that
the query statements in this example use the semicolon as the terminating value. It should be noted
that some implementations use this syntax and will not process a query statement without it (such as
Oracle). However, others (such as SQL Server) make the syntax optional, so you can use it or not at your
leisure. As always, it is best to check your specific version of RDBMS documentation to find out the
proper syntax you should be using.

Manipulating Data in SQL Databases
Manipulating data within the database is centered on the use of the following three SQL statements:

❑ INSERT

❑ UPDATE

❑ DELETE

The INSERT statement handles the insertion of new data rows into the tables of your database. It can be
called using either specific values or the SELECT statement to populate the new rows in your table.
When you want to populate a single row in a table within your database, it is best to use the following
version of the statement:

INSERT INTO <table_name> (<column_name1,column_name2,.....>)
VALUES (<value1,value2,........)

The most important things to remember about the INSERT statement are that the arguments in the col-
umn list and the value list must be equal in number, and that they must appear in the same order. So,
using an example with our Authors table, we could use the following:

// Values are in incorrect order with respect to the Columns //
INSERT INTO Authors(First_Name, Last_Name)
VALUES (‘King’,’Steven’)

// Values are in the correct order with respect to the Columns //
INSERT INTO Authors(First_Name, Last_Name)
VALUES (‘Steven’,’King’)

This is a good example because it shows how the column names must align themselves with the values
in both number and order. Another interesting fact is that both of these statements will execute because
neither of them violates the structure of the table itself. The Last_Name and First_Name fields are obvi-
ously both character fields, and, as far as the database is concerned, they would both be valid values.
This illustrates how careful the developer must be to make sure that the data being entered into the
database is always entered in the correct fields to prevent complications down the road.

The other instance in which you would be entering data into a table would be one in which you wanted
to insert multiple rows with a single SQL statement. In this case, you would use a SELECT statement in
place of the VALUES statement.

9

Exploring Popular SQL Implementations

04_569015 ch01.qxd 3/29/05 9:38 PM Page 9

INSERT INTO <table_name> (<column_name1, column_name2,.....>)
SELECT <select_list>
FROM <table_name>

In essence, you are inserting the results of your SELECT statement into the specified table within your
database. In this instance, it is important to remember that the column list specified on the first line
above must match the select list of the SELECT statement in both number and order. Failing to pay close
attention to this will result in the possibility of incorrect values being loaded into your tables without an
exception being raised, as detailed in our previous example.

Once your data is loaded into the tables of your database, it may become necessary to change some of
the values. In order to accomplish this, you use the UPDATE statement.

UPDATE <table_name>
SET column_name1 = value1, column_name2 = value2,
WHERE
<search condition>

The UPDATE statement is called detailing which column values are to be changed, what they are to be
changed to, and a search condition to limit the number of rows affected. Please remember that if you do
not specify a search condition when issuing this command, then all of the rows within your table will be
modified to the new value(s), possibly an unintended result. The following provides an example of the
possible implementation of an UPDATE query on our theoretical Authors table:

// A query to check our original values //
SELECT FIRST_NAME, LAST_NAME FROM AUTHORS
WHERE LAST_NAME = ‘King’;
FIRST_NAME_________LAST_NAME
Steven King
// Now we update the First_Name of the row to Mike //
UPDATE Authors
SET First_Name = ‘Mike’
WHERE
Last_Name = ‘King’;

// Now we query the table again to confirm the row has been changed //
SELECT FIRST_NAME, LAST_NAME FROM AUTHORS
WHERE LAST_NAME = ‘King’;
FIRST_NAME_________LAST_NAME
Mike King

At some point in time, it may become necessary to completely remove rows of old data from the tables
within the database. To accomplish this, you would use the DELETE statement.

DELETE FROM <table_name>
WHERE <search condition>

The syntax of the DELETE statement is simple, but like the UPDATE statement, if you do not include the
search condition, then all rows are affected. Following our previous example, the DELETE statement can
be implemented like this:

10

Chapter 1

04_569015 ch01.qxd 3/29/05 9:38 PM Page 10

// Verify that the row we are going to delete exists //
SELECT FIRST_NAME, LAST_NAME FROM AUTHORS
WHERE LAST_NAME = ‘King’;
FIRST_NAME_________LAST_NAME
Mike King
// Now we say goodbye to Mr. King //
DELETE
FROM Authors
WHERE
Last_Name = ‘King’;

// Let’s verify that the row is gone //
SELECT FIRST_NAME, LAST_NAME FROM AUTHORS
WHERE LAST_NAME = ‘King’;
FIRST_NAME_________LAST_NAME
No rows selected

Summary
You should now have a general understanding of the basics of SQL history and structure. SQL has been
around since the late 1970s and has been set forth as the standard for the RDBMS industry. The standard
is maintained by ANSI, but they no longer test for compliance with the standard. Considering that, you
should always rely on your RDBMS documentation to determine if the specific implementation provides
the level of compliance you desire.

In addition, you should also have a reasonable understanding of the major RDBMS implementations
that will be used throughout this book. The differences between these systems will become more appar-
ent as you traverse the chapters of this book. These differences are an important point to remember
before taking the leap of deciding on a specific RDBMS implementation. These slight differences can
lead to major problems if existing code must be ported to another vendor’s implementation.

We have also detailed the basic functions (SELECT, INSERT, UPDATE, DELETE) used to maintain the data
within the tables of your database. We will use this basic knowledge as a building block in later chapters
in order to show the power and functionality of using functions within your database’s schema. In the
next chapter, we will discuss the basic concepts of built-in and user-defined SQL functions, which com-
prise the majority of this book.

11

Exploring Popular SQL Implementations

04_569015 ch01.qxd 3/29/05 9:38 PM Page 11

04_569015 ch01.qxd 3/29/05 9:38 PM Page 12

