
P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions
One of the most notable innovations in XPath 2.0 is the ability to construct and manipulate
sequences. This chapter is devoted to an explanation of the constructs in the language that help
achieve this.

Sequences can consist either of nodes, or of atomic values, or of a mixture of the two. Sequences
containing nodes only are a generalization of the node-sets offered by XPath 1.0. In the previous
chapter we looked at the operators for manipulating node-sets, in particular, path expressions, and
the operators «union», «intersect», and «except».

In this chapter we look at constructs that can manipulate any sequence, whether it contains nodes,
atomic values, or both. Specifically, the chapter covers the following constructs:

❑ Sequence concatenation operator: «,»

❑ Numeric range operator: «to»

❑ Filter expressions: «a[b]»

❑ Mapping expressions: «for»

❑ Quantified expressions: «some» and «every»

First, some general remarks about sequences.

Sequences (unlike nodes) do not have any concept of identity. Given two values that are both
sequences, you can ask (in various ways) whether they have the same contents, but you cannot ask
whether they are the same sequence.

Sequences are immutable. This is part of what it means for a language to be free of side effects. You
can write expressions that take sequences as input and produce new sequences as output, but you
can never modify an existing sequence in place.

Sequences cannot be nested. If you want to construct trees, build them as XML trees using nodes
rather than atomic values.

A single item is a sequence of length one, so any operation that applies to sequences also applies to
single items.

CO
PYRIG

HTED
 M

ATERIA
L

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Sequences do not have any kind of type label that is separate from the type labels attached to the items in
the sequence. As we will see in Chapter 9, you can ask whether a sequence is an instance of a particular
sequence type, but the question can be answered simply by looking at the number of items in the
sequence, and at the type labels attached to each item. It follows that there is no such thing as (for
example) an “empty sequence of integers” as distinct from an “empty sequence of strings”. If the
sequence has no items in it, then it also carries no type label. This has some real practical consequences,
for example, the sum() function, when applied to an expression that can only ever return a sequence of
xs:duration values, will return the integer 0 (not the zero-length duration) when the sequence is
empty, because there is no way at runtime of knowing that if the sequence hadn’t been empty, its items
would have been durations.

Functions and operators that attach position numbers to the items in a sequence always identify the first
item as number 1 (one), not zero. (Although programming with a base of zero tends to be more
convenient, Joe Public has not yet been educated into thinking of the first paragraph in a chapter as
paragraph zero, and the numbering convention was chosen with this in mind.)

This chapter covers the language constructs that handle general sequences, but there are also a number
of useful functions available for manipulating sequences, and these are described in Chapter 10.
Relevant functions include: count(), deep-equal(), distinct-values(), empty(), exists(),
index-of(), insert-before(), remove(), subsequence(), and unordered().

The Comma Operator
The comma operator can be used to construct a sequence by concatenating items or sequences. We
already saw the syntax in Chapter 5, because it appears right at the top level of the XPath grammar:

Expression Syntax

Expr ExprSingle («,»ExprSingle)*

ExprSingle ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

Although the production rule ExprSingle lists four specific kinds of expression that can appear as an
operand of the «,» operator, these actually cover any XPath expression whatsoever, provided it does not
contain a top-level «,».

Because the «,» symbol also has other uses in XPath (for example, it is used to separate the arguments in
a function call, and also to separate clauses in «for», «some», and «every» expressions, which we will
meet later in this chapter), there are many places in the grammar where use of a general Expr is
restricted, and only an ExprSingle is allowed. In fact, the only places where a general Expr (one that
contains a top-level comma) is allowed are:

❑ As the top-level XPath expression

❑ Within a parenthesized expression

240

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

❑ Within the parentheses of an «if» expression

❑ Within square brackets as a predicate

Neither of the last two is particularly useful, so in practice the rule is: if you want to use the comma
operator to construct a list, then it must either be at the outermost level of the XPath expression, or it must
be written in parentheses.

For example, the max() function expects a single argument, which is a sequence. If you want to find the
maximum of three values $a, $b, and $c, you can write:

max(($a, $b, $c))

The outer parentheses are part of the function call syntax; the inner parentheses are needed because the
expression «max($a, $b, $c)» would be a function call with three parameters rather than one, which
would be an error.

XPath does not use the JavaScript convention whereby a function call with three separate parameters is the
same as a function call whose single parameter is a sequence containing three items.

The operands of the «,» operator can be any two sequences. Of course, a single item is itself a sequence,
so the operands can also be single items. Either of the sequences can be empty, in which case the result of
the expression is the value of the other operand.

The comma operator is often used to construct a list, as in:

if ($status = (’current’, ’pending’, ’deleted’, ’closed’)) then ...

which tests whether the variable $status has one of the given four values (recall from Chapter 6 that the
«=» operator compares each item in the sequence on the left with each item in the sequence on the right,
and returns true if any of these pairs match). In this construct, you probably aren’t thinking of «,» as
being a binary operator that combines two operands to produce a result, but that’s technically what it is.
The expression «A,B,C,D» technically means «(((A,B),C),D)», but since list concatenation is
associative, you don’t need to think of it this way.

The order of the items in the two sequences is retained in the result. This is true even if the operands are
nodes: there is no sorting into document order. This means that in XSLT, for example, you can use a
construct such as:

<xsl:apply-templates select="title, author, abstract"/>

to process the selected elements in a specified order, regardless of the order in which they appear in the
source document. This example is not necessarily processing exactly three elements: there might, for
example, be five authors and no abstract. Since the path expression «author» selects the five authors in
document order, they will be processed in this order, but they will be processed after the <title>
element whether they precede or follow the title in the source document.

241

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Examples
Here are some examples of expressions that make use of the «,» operator to construct sequences.

Expression Effect

max(($net, $gross)) Selects whichever of $net and $gross is larger,
comparing them according to their actual data type (and
using the default collation if they are strings)

for $i in (1 to 4, 8, 13)
return $seq[$i]

Selects the items at positions 1, 2, 3, 4, 8, and 13 of the
sequence $seq. For the meaning of the «to» operator, see
the next section

string-join((@a, @b,
@c), "-")

Creates a string containing the values of the attributes @a,
@b, and @c of the context node (in that order), separated
by hyphens

(@code, "N/A")[1] Returns the code attribute of the context node if it has
such an attribute, or the string "N/A" otherwise. This
expression makes use of the fact that when the code
attribute is absent, the value of @code is an empty
sequence, and concatenating an empty sequence with
another sequence returns the other sequence (in this case
the singleton string "N/A") unchanged. The predicate in
square brackets makes this a filter expression: filter
expressions are described later in this chapter, on page 244

book/(author, title,
isbn)

Returns a sequence containing the <author>, <title>,
and <isbn> children of a <book> element, in document
order. Although the «,» operator retains the order as
specified, the «/» operator causes the nodes to be sorted
into document order. So in this case the «,» operator is
exactly equivalent to the union operator «|»

Numeric Ranges: The «to» Operator
A range expression has the syntax:

Expression Syntax

RangeExpr AdditiveExpr («to»AdditiveExpr)?

The effect is to return a sequence of consecutive integers in ascending order. For example, the expression
«1 to 5» returns the sequence «1,2,3,4,5».

The operands do not have to be constants, of course. A common idiom is to use an expression such as
«1 to count($seq)» to return the position number of each item in the sequence $seq. If the second
operand is less than the first (which it will be in this example if $seq is an empty sequence), then the

242

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

range expression returns an empty sequence. If the second operand is equal to the first, the expression
returns a single integer, equal to the value of the first operand.

The two operands must both evaluate to single integers. You can use an untyped value provided it is
capable of being converted to an integer: for example you can write «1 to @width» if width is an
attribute in a schema-less document containing the value «34». However, you can’t use a decimal or a
double value without converting it explicitly to an integer. If you write «1 to @width+1», you will get a
type error, because the value of «@width+1» is the double value 35.0e0. Instead, write «1 to
xs:integer(@width)+1». or «1 to 1 + @width idiv 1».

It’s an error if either operand is an empty sequence. For example, this would happen if you ran any of the
examples above when the context node did not have a width attribute. Supplying a sequence that
contains more than one item is also an error.

If you want a sequence of integers in reverse order, you can use the reverse() function described
in Chapter 10. For example, «reverse(1 to 5)» gives you the sequence «5,4,3,2,1». In an earlier
draft of the specification you could achieve this by writing «5 to 1», but the rules were changed because
this caused anomalies for the common usage «1 to count($seq)» in the case where $seq is empty.

Although the semantics of this operator are expressed in terms of constructing a sequence, a respectable
implementation will evaluate the sequence lazily, which means that when you write «1 to 1000000» it
won’t actually allocate space in memory to hold a million integers. Depending how you actually use the
range expression, in most cases an implementation will be able to iterate over the values one to a million
without actually laying them out end-to-end as a list in memory.

Examples
Here are some examples of expressions that make use of the «to» operator to construct sequences.

Expression Effect

for $n in 1 to 10 return
$seq[n]

Returns the first 10 items of the sequence $seq. The «for»
expression is described later in this chapter, on page 247

$seq[position() = 1 to 10] Returns the first 10 items of the sequence $seq. This achieves
the same effect as the previous example, but this time using a
filter expression alone. It works because the «=» operator
compares each item in the first operand (there is only one, the
value of position()), with each item in the second operand
(that is, each of the integers 1 to 10), and returns true if any of
them matches. It’s reasonable to expect that XPath processors
will optimize this construct so that this doesn’t actually
involve 10 separate comparisons for each item in the sequence.

Note that you can’t simply write «$seq[1 to 10]». If the
predicate isn’t a single number, it is evaluated as a boolean,
and the effective boolean value of the sequence «1 to 10» is
true, so all the items will be selected

Continues

243

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Expression Effect

string-join(
for $i in 1 to $N
return " ", "")

Returns a string containing $N space characters

for $i in 1 to
count($S) return
($S[$i], $T[$i])

Returns a sequence that contains pairs of corresponding values
from the two input sequences $S and $T. For example, if $S is
the sequence ("a","b","c") and $T is the sequence
("x","y","z"), the result will be the sequence
("a","x","b","y","c","z")

Filter Expressions
A filter expression is used to apply one or more Predicates to a sequence, selecting those items in the
sequence that satisfy some condition.

Expression Syntax

FilterExpr PrimaryExpr Predicate*

Predicate «[»Expr «]»

A FilterExpr consists of a PrimaryExpr whose value is a sequence, followed by zero or more
Predicates that select a subset of the items in the sequence. Each predicate consists of an expression
enclosed in square brackets, for example «[@name=’London’]» or «[position()=1]».

The way the syntax is defined, every PrimaryExpr is also a trivial FilterExpr, including simple
expressions such as «23», «’Washington’», and «true()».

Since in XPath 2.0 every value is a sequence, it is possible to apply predicates to any value whatsoever.
For example, it is legitimate to write «1[$param]». This returns the value «1» if $param is true, or an
empty sequence if $param is false.

Each predicate is applied to the sequence in turn; only those items in the sequence for which the predicate
is true pass through to the next stage. The final result consists of those items in the original sequence that
satisfy each of the predicates, retaining their original order.

A predicate may be either a numeric predicate (for example «[1]» or «[last()-1]»), or a boolean
predicate (for example «[count(*) gt 5]» or «[@name and @address]»). If the value of the
expression is a single number, it is treated as a numeric predicate; otherwise it is converted, if necessary,
to an xs:boolean, and is treated as a boolean predicate. The conversion is done using the rules for
computing the effective boolean value, which are the same rules as are used for the condition in an «if»
expression (described in Chapter 5 on page 117) or for the operand of the boolean() function
(described in Chapter 10 on page 304), except that if the value is a single number—which might be an

244

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

integer, decimal, float, or double—then the predicate is treated as a numeric predicate rather than a
boolean predicate.

If the value of the predicate contains nodes, there is no automatic atomization of the nodes (that is, the
values of the nodes are not extracted). In fact, if the value of the predicate contains one or more nodes,
then its effective boolean value is always true. This means, for example, that «person[@isMarried]»
selects any <person> element that has an isMarried attribute, irrespective of the value of that
attribute. If you want to test the value of the attribute, you can atomize it explicity using the data()
function, or you can use a comparison such as «person[@isMarried=true()]».

A numeric predicate whose value is N is equivalent to the boolean predicate «[position() eq N]». So,
for example, the numeric predicate «[1]» means «[position() eq 1]», and the numeric predicate
«[last()]» means «[position() eq last()]».

It’s important to remember that this implicit testing of position() happens only when the predicate
expression actually evaluates to a single number. For example, «$paras[1 or last()]» does not mean
«$paras[position()=1 or position()=last()]», because the result of evaluating «1 or last()»
is a boolean, not a number (and as it happens, it will always be true). Similarly, «book[../@book-nr]»
does not mean «book[position()=../@book-nr]», because the result of «../@book-nr» is a node,
not a number.

A neat way to force the node to be atomized in such cases is to use the unary «+» operator: write
«book[+../@book-nr]».

A consequence of the rule is that if the predicate is a number that is not equal to an integer, the result will
be an empty sequence. For example, «$S[last() div 2]» will select nothing when the value of last()
is an odd number. If you want to select a single item close to the middle of the sequence, use
«$S[last() idiv 2]», because the idiv operator always returns an integer.

In nearly all practical cases, a numeric predicate selects either a single item from the sequence, or no items
at all. But this is not part of the definition. To give a counter-example, «$x[count(*)]» selects every
node whose position is the same as the number of children it has.

As discussed in Chapter 4, every XPath expression is evaluated in some context. For an expression used
as a predicate, the context is different from the context of the containing expression. While evaluating
each predicate, the context is established as follows:

❑ The context item (the item referenced as «.») is the item being tested

❑ The context position (the value of the position() function) is the position of that item within the
sequence of items surviving from the previous stage

❑ The context size (the value of the last() function) is the number of items surviving from the
previous stage.

To see how this works, consider the filter expression «$headings [self::h1] [last()]». This
starts with the sequence of nodes that is the value of the variable «$headings» (if this sequence
contains items that are not nodes, then evaluating the predicate «self::h1» will raise an error). The
first predicate is «[self::h1]». This is applied to each node in «$headings» in turn. While it is

245

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

being applied, the context node is that particular node. The expression «self::h1» is a path expression
consisting of a single AxisStep: it selects a sequence of nodes. If the context node is an
<h1> element this sequence will contain a single node—the context node. Otherwise, the sequence will
be empty. When this value is converted to a boolean, it will be true if it contains a node, and false if it
is empty. So the first predicate is actually filtering through those nodes in «$headings» that are <h1>
elements.

The second predicate is now applied to each node in this sequence of <h1> elements. In each case the
predicate «[last()]» returns the same value: a number indicating how many <h1> elements there are
in the sequence. As this is a numeric predicate, a node passes the test when «[position()=
last()]», that is, when the position of the node in the sequence (taken in its original order) is equal to
the number of nodes in the sequence. So the meaning of «$headings [self::h1] [last()]» is “the
last <h1> element in the sequence $headings.”

Note that this isn’t the same as «$headings [last()] [self::h1]», which means “the last item in
$headings, provided it is an <h1> element.”

The operation of a Predicate in a FilterExpr is very similar to the application of a Predicate in an
AxisStep (which we studied in Chapter 7, on page 230), and although they are not directly related in the
XPath grammar rules, you can often use Predicates without being fully aware which of these two
constructs you are using. For example, «$para[1]» is a FilterExpr, while «para[1]» is an
AxisStep. The main differences to watch out for are firstly, that in a path expression the predicates apply
only to the most recent Step (for example, in «book/author[1]» the «[1]» means the first author
within each book), and secondly, that in a filter expression the items are always considered in the order of
the supplied sequence (whereas in an AxisStep they can be in forward or reverse document order
depending on the direction of the axis).

Examples
Expression Description

$paragraphs[23] This FilterExpr consists of a VariableReference
filtered by a Predicate. It selects the 23rd item in the
sequence that is the value of variable $paragraphs,
taking them in the order of that sequence. If there is no
23rd item, the expression returns an empty sequence

key(’empname’, ’John
Smith’)[@loc=’Sydney’]

This FilterExpr comprises a FunctionCall filtered
by a Predicate. The key() function is available only
in XSLT. Assuming that the key «empname» has been
defined in the containing stylesheet to select employees
by name, it selects all employees named John Smith
who are located in Sydney

(//section|//subsection)
[title=’Introduction’]

This FilterExpr consists of a parenthesized
UnionExpr filtered by a Predicate. It selects all
<section> and <subsection> elements that have a
child <title> element with the content
«Introduction»

246

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

Expression Description

(//@href/doc(.))
[pricelist][1]

This FilterExpr first selects all documents referenced
by URLs contained in href attributes anywhere in the
source document, by applying the doc() function to the
value of each of these attributes. The «/» operator causes
any duplicates to be removed, as described in Chapter 7.
From this set of documents it selects those whose
outermost element is named <pricelist>, and from
these it selects the first. The order of nodes that are in
different documents is not defined, so if there are several
price lists referenced, it is unpredictable which will be
selected

Where a predicate is used as part of a FilterExpr (as distinct from an AxisStep), the items are
considered in their original sequence for the purpose of evaluating the position() function within the
predicate. There are some cases where the order of the sequence is not predictable, but it is still possible to
use positional predicates. For example the result of the distinct-values() function is in an
undefined order, but you can still write «distinct-values($in)[1]» to obtain one item in the
sequence, chosen arbitrarily.

The «for» Expression
The «for» expression is one of the most powerful new features in XPath 2.0, and is closely related to the
extension to the data model to handle sequences. Its effect is to apply an expression to every item in an
input sequence, and to return the concatenated results of these expressions.

The syntax also allows several sequences to be provided as input, in which case the effect is to apply an
expression to every combination of values taken one from each sequence.

The syntax as given in the XPath 2.0 Recommendation is rather clumsy, because the grammar is designed
to share as many production rules as possible with XQuery, and the «for» expression in XPath can be
regarded as a cut-down version of XQuery’s much richer FLWOR expressions. For this book, I’ve
rewritten the syntax in the way it would probably have been presented if XQuery didn’t exist.

Expression Syntax

ForExpr «for $» VarName «in» ExprSingle
(«,» «$» VarName «in» ExprSingle)*
«return» ExprSingle

VarName QName

An ExprSingle is any XPath expression that does not contain a top-level «,» operator. If you want to
use an expression containing a «,» operator, write it in parentheses. For example the expression «for $i
in (1,5,10) return $i+1» returns the sequence «2,6,11».

247

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

The notation «for $» indicates that for the purposes of parsing, the word «for» must be followed by a
«$» sign to be recognized as a keyword. The two parts of this compound symbol can be separated by
whitespace and comments.

We’ll look first at «for» expressions that operate on a single sequence, and then move on to the more
general case where there are multiple input sequences.

Mapping a Sequence
When used with a single sequence, the «for» expression applies the expression in the «return» clause
to each item in the input sequence. The relevant item in the input sequence is accessed not as the context
item, but as the value of the variable declared in the «for» clause.

These variables are referred to as range variables, to distinguish them from variables supplied from outside
the XPath expression, such as variables declared in an XSLT stylesheet. The term comes originally from the
branch of mathematical logic called predicate calculus, and has been adopted in a number of programming
languages based on this underlying theory.

In most cases the expression in the «return» clause will depend in some way on the range variable. In
other words, the «return» value is a function of the range variable, which means we can rewrite the
«for» expression in the abstract form:

for $x in $SEQ return F($x)

where «F($x)» represents any expression that depends on $x (it doesn’t have to depend on $x, but it
usually will).

What this expression does is to evaluate the expression «F($x)» once for each item in the input sequence
$SEQ, and then to concatenate the results, respecting the original order of the items in $SEQ.

In the simplest case, the return expression «F($x)» returns one item each time it is called. This is
illustrated in Figure 8-1, where the function «F($x)» in this example is actually the expression
«string-length($x)».

red blue green

3 4 5

Figure 8-1

We say that the expression «for $x in $SEQ return string-length($x)» maps the sequence
«"red","blue","green"» to the sequence «3,4,5».

In this case, the number of items in the result will be the same as the number of items in the input sequence.

However, the return expression isn’t constrained to return a single item, it can return any sequence of
zero or more items. For example, you could write:

for $s in ("red", "blue", "green") return string-to-codepoints($s)

248

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

The function string-to-codepoints(), which is part of the standard library defined in Chapter 10,
returns for a given string, the Unicode code values of the characters that make up the string. For example,
«string-to-unicode("red")» returns the sequence «114,101,100». The result of the above
expression is a sequence of 12 integers, as illustrated in Figure 8-2.

114 101 100 98 108 117 101 103 114 101 101 110

blue greenred

Figure 8-2

The integers are returned in the order shown, because unlike a path expression, there is nothing in the
rules for a «for» expression that causes the result sequence to be sorted into document order. Indeed,
document order is not a meaningful concept when we are dealing with atomic values rather than nodes.

Examples
Expression Description

for $i in 1 to 5
return $i*$i

Returns the sequence «1,4,9,16,25». This example is a
one-to-one mapping

for $i in 0 to 4
return 1 to $i

Returns the sequence «1,1,2,1,2,3,1,2,3,4». This
example is a one-to-many mapping. Note that for the first
item in the input sequence (0), the mapping function
returns an empty sequence, so this item contributes
nothing to the result

For Expressions and Path Expressions
The items in the input sequence of a «for» expression can be atomic values or nodes, or any mixture of
the two. When applied to a sequence of nodes, «for» expressions actually behave in a very similar way
to path expressions. The expression:

for $c in chapter return $c/section

returns exactly the same result as the path expression:

chapter/section

However, there are some significant differences between «for» expressions and path expressions:

❑ In a path expression, both the input sequence and the step expression are required to return
nodes exclusively. A «for» expression can work on any sequence, whether it contains nodes or
atomic values or both, and it can also return any sequence.

249

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

❑ Path expressions always sort the resulting nodes into document order, and eliminate duplicates. A
«for» expression returns the result sequence in the order that reflects the order of the input items.

❑ In a path expression, the context item for evaluating a step is set to each item in the input
sequence in turn. In a «for» expression, the range variable fulfils this function. The context item
is not changed. Nor are the context position and size (position() and last()) available to test
the position of the item in the input sequence.

A common mistake is to forget that «for» expressions don’t set the context node. The following example
is wrong (it’s not an error, but it doesn’t do what the writer probably intended):

(:wrong:) sum(for $i in item return @price * @qty)

The correct way of writing this is:

(:correct:) sum(for $i in item return $i/@price * $i/@qty)

Generally speaking, there is usually something amiss if the range variable is not used in the «return»
expression. However, there are exceptions to this rule. For example, it’s quite reasonable to write:

string-join(for $i in 1 to $n return "-", "")

which returns a string containing $n hyphens.

It’s also often (but not invariably) a sign of trouble if the value of the return expression depends on the
context item. But it’s not actually an error: the context item inside the return expression is exactly the
same as the context item for the «for» expression as a whole. So it’s legal to write an expression such as:

chapter/(for $i in 1 to 10 return section[$i])

which returns the first 10 sections of each chapter.

Combining Multiple Sequences
The «for» expression allows multiple input sequences to be defined, each with its own range variable.
For example, you can write:

for $c in //customer,
$o in $c/orders,
$ol in $o/line

return $ol/cost

The simplest way to think about this is as a nested loop. You can regard the «,» as a shorthand for writing
the keywords «return for», so the above expression is equivalent to:

for $c in //customer
return

for $o in $c/orders

250

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

return
for $ol in $o/line
return $ol/cost

Note that each of the range variables can be referenced in the expression that defines the input sequence
for the next range variable.

In the example above, each iteration is rather like a step in a path expression; it selects nodes starting from
the node selected in the containing loop. But it doesn’t have to be this way. For example, you could
equally write an expression such as:

for $c in doc(’customers.xml’)//customer,
$p in doc(’products.xml’)//product

[$c/orders/product-code = $p/code]
return $c/line/cost

It’s still true that this is equivalent to a nested-loop expression:

for $c in doc(’customers.xml’)//customer
return

for $p in doc(’products.xml’)//product
[$c/orders/product-code = $p/code]

return $c/line/cost

The other way to think about this, particularly if you are familiar with SQL, is as a relational join. The
system isn’t actually obliged to evaluate the «for» expression using nested loops (this applies whether
you write it in the abbreviated form using multiple range variables separated with commas, or whether
you use the expanded form shown above). Instead, the optimizer can use any of the mechanisms
developed over the years in relational database technology to evaluate the join more rapidly. There’s no
guarantee that it will do so (in practice, I think XQuery implementations are likely to put a lot of effort
into join optimization, while XPath implementations might be less ambitious), so you need to use
potentially expensive constructs like this with some care.

Saxon, at the time of writing, will try to move sub-expressions out of a loop if they don’t depend on the
range variable. So the expression «doc(’products.xml’)//product» will probably only be
evaluated once, and the expression «$c/orders/product-code» will only be evaluated once for each
customer. But after this, every product code in the customer file will be compared with every product code
in the product file. In XSLT, you can avoid this overhead by using keys: see the description of the
<xsl:key> declaration and the key() function in XSLT 2.0 Programmer’s Reference.

Example
Expression Description

count(
for $i in 1 to 8,

$j in 1 to 8
return f:square($i, $j))

Assuming that «f:square(row, column)» returns an integer
identifying the piece that occupies a square on a chessboard, or
an empty sequence if the square is unoccupied, this expression
returns all the pieces on the board

251

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Examples in XMLSpy
The XMLSpy 2004 product (see http://www.altova.com/) includes a beta release of an XPath 2.0
processor that shows the results of an expression using a graphical user interface. In this section I will
provide a couple of examples that illustrate the results of «for» expressions using that product.

I’m using the sample document ipo.xml that comes with the product: look in the Purchase Order folder.
This consists of an outer element <ipo:purchase-order> with various namespace declarations, then
addresses for shipping and billing:

<shipTo export-code="1" xsi:type="ipo:EU-Address">
<name>Helen Zoe</name>
<street>47 Eden Street</street>
<city>Cambridge</city>
<postcode>126</postcode>

</shipTo>
<billTo xsi:type="ipo:US-Address">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>AK</state>
<zip>95819</zip>

</billTo>

This is followed by an <items> element containing a number of items with the general format:

<item partNum="833-AA">
<productName>Lapis necklace</productName>
<quantity>2</quantity>
<price>99.95</price>
<ipo:comment>Need this for the holidays!</ipo:comment>
<shipDate>1999-12-05</shipDate>

</item>

(Altova took this example from the XML Schema primer published by W3C, but apparently failed to
realize the subtlety that UK postcodes are alphanumeric.)

Let’s look first at the classic problem of getting the total value of the order. In this expression (Figure 8-3)
I’ll first list all the individual price and quantity elements, and then their sum.

The total is shown in the bottom line.

XMLSpy takes the namespace context for the XPath expression from the namespaces declared in the
source document, so to get this to work, I had to add the namespace declaration «xmlns:xs="http://
www.w3.org/2001/XMLSchema"» to the <ipo:purchaseOrder> element.

The second example from XMLSpy uses a join, and just to show that joins don’t arise only from
data-oriented XML, I’ve chosen an example that uses narrative XML as its source. Specifically, it uses the
XML source of the XPath 1.0 specification, which happens to be included in XMLSpy as a sample
document.

252

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

Figure 8-3

The DTD for this document type allows term definitions to be marked up using a <termdef> element
such as:

<termdef id="dt-document-order" term="Document Order">There is an
ordering, <term>document order</term>, defined on all the nodes in the
document corresponding to the order in which the first character of
the XML representation of each node occurs in the XML representation
of the document after expansion of general entities.</termdef>

References to a defined term can be marked up using a <termref> element. This example shows a
<termref> that happens to be nested inside another <termdef>:

<termdef id="dt-reverse-document-order" term="Reverse Document
Order"> <term>Reverse document order</term> is the reverse of
<termref def="dt-document-order">document order</termref>.</termdef>

There is a relationship between the <termref> element and the <termdef> element, by virtue of the
fact that the def attribute of a <termref> must match the id attribute of a <termdef>. The stylesheet
used to construct the published XPath specification turns this relationship into a hyperlink. Where there
is a relationship, there is potential for performing a join, as Figure 8-4 shows.

The output here is not particularly visual. It shows a sequence of pairs, each pair containing first, a
defined term (the term attribute of a <termdef> element), and secondly, the heading (<head> element)
of the innermost <div1>, <div2>, or <div3> section that contains a reference to that term. The reason
that this is shown as a one-dimensional list rather than as a table is of course that it is a list: the XPath 2.0

253

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Figure 8-4

data model does not allow construction of trees, or of nested sequences, that would allow a table to be
represented more directly. In practice, you would either use a custom application to present the data, or
you would embed this XPath expression in an XSLT stylesheet or XQuery query that allows you to
construct the output as XML or (say) HTML. The resulting display would probably look something like
this:

Term Section containing Reference

Context Position Node Set Functions

Context Size Node Set Functions

Proximity Position Predicates

String Value Introduction

String Value Location Paths

String Value Abbreviated Syntax

The «some» and «every» Expressions
These expressions are used to test whether some item in a sequence satisfies a condition, or whether all
values in a sequence satisfy a condition.

254

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

The syntax is like this:

Expression Syntax

QuantifiedExpr «some $» | «every $»
VarName «in»ExprSingle
(«,» «$»VarName «in»ExprSingle)*
«satisfies»ExprSingle

VarName QName

The name quantified expression comes from the mathematical notations on which these expressions are
based: the «some» expression is known in formal logic as an existential quantifier, while the «every»
expression is known as a universal quantifier.

As with the «for» expression, these two expressions bind a range variable to every item in a sequence in
turn, and evaluate an expression (the «satisfies» expression) for each of these items. Instead of
returning the results, however, a quanitified expression evaluates the effective boolean value of the
«satisfies» expression. In the case of «some», it returns true if at least one of these values is true,
while in the case of «every», it returns true if all of the values are true. The range variables can be
referenced anywhere in the expression following the «satisfies» keyword, and the expression
following the «in» keyword can use all variables declared in previous clauses of the expression (but not
the variable ranging over that expression itself).

For example:

some $p in //price satisfies $p > 10000

is true if there is a <price> element in the document whose typed value is a number greater than 10,000,
while:

every $p in //price satisfies $p > 10000

is true if every <price> element in the document has a typed value greater than 10,000.

The result of the expression (unless some error occurs) is always a single xs:boolean value.

The «satisfies» expression is evaluated to return a boolean value. This evaluation returns the effective
boolean value of the expression, using the same rules as for the boolean() function and the condition in
an «if» expression. For example, if the result of the expression is a string, the effective boolean value is
true if the string is not zero-length. The expression will almost invariably reference each one of the range
variables, although the results are still well defined if it doesn’t.

As with «for» expressions, «some» and «every» expressions do not change the
context item. This means that the following is wrong (it’s not an error, but it doesn’t
produce the intended answer):

(:wrong:) some $i in //item satisfies price > 200

It should be written instead:

(:correct:) some $i in //item satisfies $i/price > 200

255

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Note that if the input sequence is empty, the «some» expression will always be false, while the «every»
expression will always be true. This may not be intuitive to everyone, but it is logical—the «every»
expression is true if there are no counter-examples, for example, it’s true that every unicorn has one horn,
because there are no Unicorns that don’t have one horn. Equally, and this is where the surprise comes, it
is also true that every Unicorn has two horns.

In fact these two expressions are interchangeable: you can always rewrite

every $s in $S satisfies not(C)

as:

not(some $s in $S satisfies C)

If there is only a single range variable, you can usually rewrite the expression

some $s in $S satisfies $s/C

as

exists($S[C])

which some people prefer, as it is more concise. If the sequence $S consists of nodes, you can also leave
out the call on the exists() function, for example, you can rewrite:

if (some $i in //item satisfies $i/price * $i/quantity > 1000) ...

as:

if (//item[price*quantity > 1000]) ...

The difference is a matter of taste. The «some» expression, however, is more powerful than a simple
predicate because (like the «for» expression) it can handle joins, using multiple range variables.

The XPath 2.0 specification describes the semantics of the «some» and «every» expressions in a rather
complicated way, using a concept of “tuples of variable bindings”. This happened because the XPath 2.0
specification is generated by subsetting XQuery 1.0, whose core construct, the FLWOR expression, makes
use of this concept already. It would have been possible to specify «some» and «every» in a much
simpler way for XPath users. In fact, the expression:

some $s in $S, $t in $T, $u in $U satisfies CONDITION

has exactly the same effect as the expression:

exists(for $s in $S, $t in $T, $u in $U return boolean(CONDITION))[.]

while the expression:

every $s in $S, $t in $T, $u in $U satisfies CONDITION

256

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

has exactly the same effect as the expression:

empty(for $s in $S, $t in $T, $u in $U return not(CONDITION))[.]

The rather unusual predicate «[.]» selects all the items in a sequence whose effective boolean value is
true. In the first case, the result is true if the result of the «for» expression contains at least one value
that is true, while in the second case, the result is true if the result of the «for» expression contains no
value that is false.

(The functions exists() and empty() are described in Chapter 10. The exists() function returns
true if the supplied sequence contains one or more items, while empty() returns true if the sequence
contains no items.)

Examples
Expression Description

some $i in //item
satisfies $i/price gt 200

Returns true if the current document
contains an <item> element with a <price>
child whose typed value exceeds 200

some $n in 1 to count($S)-1
satisfies $S[$n] eq S[$n+1]

Returns true if there are two adjacent values in
the input sequence $S that are equal

every $p in //person
satisfies
$p/@dob castable as xs:date

Returns true if every <person> element in the
current document has a dob attribute that
represents a valid date, according to the XML
Schema format YYYY-MM-DD

some $k in //keyword,
$p in //para
satisfies contains($p, $k)

Returns true if there is at least one <keyword>
in the document that is present in at least one
<para> element of the document

every $d in //termdef/@id
satisfies
some $r in //termref
satisfies $d eq $r/@def

Returns true if every <termdef> element with
an id attribute is referenced by at least one
<termref> element with a matching def
attribute

Quantification and the «=»Operator
An alternative to using the «some» expression (and sometimes also the «every» expression) is to rely on
the implicit semantics of the «=» operator, and other operators in the same family, when they are used to
compare sequences. As we saw in Chapter 6, these operators can be used to compare two sequences, and
return true if any pair of items (one from each sequence) satisfies the equality condition.

For example, the expression:

//book[author="Kay"]

257

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

means the same as

//book[some $a in author satisfies $a eq "Kay"]

Similarly, the expression:

//book[author=("Kay", "Tennison", "Carlisle")]

means the same as:

//book[some $a in author,
$s in ("Kay", "Tennison", "Carlisle")

satisfies $a eq $s]

It’s a matter of personal style which one you choose in these cases. However, if the operator is something
more complex than straight equality—for example, if you are comparing the two values using the
compare() function with a non-default collation—then the only way to achieve the effect within XPath
is to use a «some» or «every» expression.

Errors in «some»and «every»Expressions
Dynamic (runtime) errors can occur in «some» and «every» expressions just as in any other kind of
XPath expression, and the rules are the same. But for these expressions the rules have some interesting
consequences that are worth exploring.

Let’s summarize the rules here:

❑ If a dynamic error occurs when evaluating the «satisfies» expression, then the «some» or
«every» expression as a whole fails.

❑ As soon as the system finds an item in the sequence for which the «satisfies» expression is
true (in the case of «some») or false (in the case of «every») then it can stop the evaluation. It
doesn’t need to look any further. This means that it might not notice errors that would be found if
it carried on to the bitter end.

❑ The system can process the input sequence in any order that it likes. This means that if there is
one item for which evaluating the «satisfies» expression returns true, and another for which
it raises an error, then you can’t tell whether the «some» expression will return true or raise the
error.

Some systems might deliberately choose to exploit these rules by evaluating the error cases last (or
pretending to do so) so as to minimize the chance of the expression failing, but you can’t rely on this.

What does this mean in practice? Suppose you have an attribute defined in the schema as follows:

<xs:attribute name="readings">
<xs:simpleType>
<xs:list>
<xs:simpleType>
<xs:union>

258

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Sequence Expressions

<xs:simpleType base="xs:decimal"/>
<xs:simpleType base="xs:string"/>
<xs:enumeration value="n/a"/>

</xs:simpleType>
</xs:union>

</xs:simpleType>
</xs:list>

</xs:simpleType>
</xs:attribute>

Or to put it more simply, the attribute’s typed value is a list of atomic values, each of which is either a
decimal number or the string value «n/a». For example, the attribute might be written
«readings="12.2 -8.4 5.6 n/a 13.1"».

Now suppose you want to test whether the set of readings includes a negative value. You could write:

if (some $a in data(@readings) satisfies $a lt 0) then ...

The chances are you will get away with this. Most processors will probably evaluate the condition
«$a lt 0» against each value in turn, find that the condition is true for the second item in the list, and
return true. However, a processor that decided to evaluate the items in reverse order would encounter
the value «n/a», compare this with zero, and hit a type error: you can’t compare a string with a number.
So one processor will give you the answer true, while another gives you an error.

You can protect yourself against this error by writing the expression as:

if (some $a in data(@readings)[. instance of xs:decimal]
satisfies $a lt 0)

then ...

Or in this case, you can mask the error by writing:

if (some $a in data(@readings) satisfies number($a) lt 0) then ...

This works because «number(’n/a’)» returns NaN (not-a-number), and «NaN lt 0» returns false.

Summary

This chapter covered all the various kinds of expressions in the XPath language that are designed to
manipulate general sequences, specifically:

❑ The «,» operator, which appends two sequences

❑ The «to» operator, which forms a sequence of ascending integers

❑ Filter expressions, which are used to find those items in a sequence that satisfy some predicate

❑ The «for» expression, which applies an expression to every item in a sequence and returns the
results, as a new sequence

❑ The «some» and «every» expressions, which test whether a condition is true for some value (or
every value) in an input sequence, returning a boolean result.

259

P1: KTX

WY030-08 WY030-Kay WY030-Kay-v3.cls July 7, 2004 16:28

Chapter 8

Don’t forget that these are not the only constructs available for manipulating sequences. For sequences of
nodes, path expressions can be used, as well as the «union», «intersect», and «except» operators, as
discussed in Chapter 7. And in Chapter 10 you will find descriptions of all the functions in the standard
XPath library, including many functions that are useful for operating on sequences, for example,
count(), deep-equal(), distinct-values(), empty(), exists(), index-of(),
insert-before(), remove(), subsequence(), and unordered().

The next chapter deals with operations involving types: operations that convert a value of one type into a
value of another type, and operations that test the type of a value.

260

