Chapter 1
Up from the Primordial C

In This Chapter
Hysterical C history

How C programs are created

Building the source code

Compiling and linking

Running the result

a\\J

A s the most useful device you have ever used, a computer can become
anything — as long as you have the ability to program it. That’s what
makes computers unique in the pantheon of modern devices. And although
most computer users shy away from programming — confusing it with math-
ematics or electrical engineering — the fact is that programming a computer
is really a rather simple and straightforward thing. It’s easy.

This chapter introduces you to the basics of programming. Although it has
some yabber-yabber and background information, the meat of the chapter
involves creating, compiling, and running your first program. Feel the power!
Finally, it’s you who can tell the computer what to do with itself!

Because you probably didn’t read this book’s Introduction (for shame), know
that you should preview Appendix A before starting here.

An Extremely Short and Cheap
History of the C Language

First, there was the B programming language. Then there was the C program-
ming language.

10

Part I: Introduction to C Programming

Q\Q’N' S T(/&~

Stuff you don’t need to know about language levels

Programming languages have different levels,
depending on how much they resemble human
languages. Programming languages that use
common words and are relatively easy for
most folks to read and study are called high-
level languages. The opposite of those are
low-level languages, which are not easy to
read or study.

High-level languages include the popular BASIC
programming language as well as other lan-
guages that just aren’t that popular any more.
BASIC reads almost like English, and all its com-
mands and instructions are English words — or
at least English words missing a few vowels or
severely disobeying the laws of spelling.

The lowest of the low-level programming lan-
guages is machine language. That language is
the actual primitive grunts and groans of the
microprocessor itself. Machine language con-
sists of numbers and codes that the micro-
processor understands and executes. Therefore,
no one really writes programs in machine lan-
guage; rather, they use assembly language,
which is one step above the low-level machine

language because the grunts and groans are
spelled out rather than entered as raw numbers.

Why would anyone use a low-level language
when high-level languages exist? Speed! Pro-
grams written in low-level languages run as fast
as the computer can run them, often many times
faster than their high-level counterparts. Plus,
the size of the program is smaller. A program
written in Visual Basic may be 34K in size, but
the same program written in assembly language
may be 896 bytes long. On the other hand, the
time it takes to develop an assembly language
program is much longer than it would take to
write the same program in a higher-level lan-
guage. It's a trade-off.

The C programming language is considered a
mid-level language. It has parts that are low-
level grunting and squawking, and also many
high-level parts that read like any sentence ina
Michael Crichton novel, but with more charac-
ter development. In C, you get the best of the
high-level programming languages and the
speed of development they offer, and you also
get the compact program size and speed of a
low-level language. That's why C is so bitchen.

No, I'm not being flip. C was developed at AT&T Bell Labs in the early 1970s.
At the time, Bell Labs had a programming language named B — B for Bell. The
next language they created was C — one up on B.

v C is the offspring of both the B programming language and a language
named BCPL, which stood for Basic Combined Programming Language.
But you have to admit that the B story is cute enough by itself.

+* You would think that the next, better version of C would be called the D
language. But, no; it’s named C++, for reasons that become apparent in
Chapter 16.

v Cis considered a mid-level language. See the nearby sidebar, “Stuff you
don’t need to know about language levels,” for the boring details.

Chapter 1: Up from the Primordial C

\\\(,p.\. STy, v+ The guy who created the C programming language at Bell Labs is Dennis

Ritchie. I mention him in case you're ever walking on the street and you
happen to bump into Mr. Ritchie. In that case, you can say “Hey, aren’t
you Dennis Ritchie, the guy who invented C?” And he’ll say “Why — why,
yes [am.” And you can say “Cool.”

The C Development Cycle

Here is how you create a C program in seven steps — in what’s known as the
development cycle:

. Come up with an idea for a program.

. Use an editor to write the source code.

. Compile the source code and link the program by using the C compiler.

. Run the program and test it.

1
2
3
4. Weep bitterly over errors (optional).
5
6. Pull out hair over bugs (optional).

7

. Start over (required).

No need to memorize this list. It’s like the instructions on a shampoo bottle,
though you don’t have to be naked and wet to program a computer. Eventually,
just like shampooing, you start following these steps without thinking about it.
No need to memorize anything.

v The C development cycle is not an exercise device. In fact, program-
ming does more to make your butt fit more snugly into your chair than
anything.

v~ Step 1 is the hardest. The rest fall naturally into place.

v Step 3 consists of two steps: compiling and linking. For most of this book,
however, they are done together, in one step. Only later — if you're still

interested — do I go into the specific differences of a compiler and a
linker.

From Text File to Program

When you create a program, you become a programmer. Your friends or rela-
tives may refer to you as a “computer wizard” or “guru,” but trust me when I
say that programmer is a far better title.

11

12

Part I: Introduction to C Programming

As a programmer, you job is not “programming.” No, the act of writing a pro-
gram is coding. So what you do when you sit down to write that program is
code the program. Get used to that term! It’s very trendy.

The job of the programmer is to write some code! Code to do what? And what
type of code do you use? Secret code? Morse Code? Zip code?

The purpose of a computer program is to make the computer do something.

The object of programming is to “make it happen.” The C language is only a
tool for communicating with the PC. As the programmer, it’s your job to trans-
late the intentions of the computer user into something the computer under-
stands and then give users what they want. And if you can’t give them what
they want, at least make it close enough so that they don’t constantly com-
plain or — worse — want their money back.

The tool you have chosen to make it happen is the C programming language.
That’s the code you use to communicate with the PC. The following sections
describe how the process works. After all, you can just pick up the mouse
and say “Hello, computer!”

v Programming is what TV network executives do. Computer programmers
code.

» You use a programming language to communicate with the computer,
telling it exactly what to do.

The source code (text file)

Because the computer can’t understand speech and, well, whacking the
computer — no matter how emotionally validating that is for you — does little
to the PC, your best line of communications is to write the computer a note —
a file on disk.

To create a PC epistle, you use a program called a text editor. This program is a
primitive version of a word processor minus all the fancy formatting and print-
ing controls. The text editor lets you type text — that’s about all.

Using your text editor, you create what'’s called a source code file. The only spe-
cial thing about this file is that it contains instructions that tell the computer
what to do. And although it would be nice to write instructions like “Make a
funny noise,” the truth is that you must write instructions in a tongue the com-
puter understands. In this case, the instructions are written in the C language.

Chapter 1: Up from the Primordial C 13

v The source code file is a text file on disk. The file contains instructions
for the computer that are written in the C programming language.

»* You use a text editor to create the source code file. See Appendix A for
more information on text editors.

Creating the GOODBVE.C source code file

Use your text editor to create the following source code. Carefully type each
line exactly as written; everything you see below is important and necessary.
Don’t leave anything out:

f#include <stdio.h>

int main()

{
printf("Goodbye, cruel world!\n");
return(0);

}

As you review what you have typed, note how much of it is familiar to you.
You recognize some words (include, main, "Goodbye, cruel world!",

and return), and some words look strange to you (stdio.h, printf, and
that \n thing).

When you have finished writing the instructions, save them in a file on disk.
Name the file GOODBYE.C. Use the commands in your text editor to save this
file, and then return to the command prompt to compile your instructions
into a program.

v See Appendix A for information on using a text editor to write C language
programs as well as for instructions on where you should save the source
code file on disk.

+* In Windows Notepad, you must ensure that the file ends in . C and not in
. TXT. Find a book about Windows for instructions on showing the file-
name extensions, which makes saving a text file to disk with a .C exten-
sion easier.

1 Note that the text is mostly in lowercase. It must be; programming lan-
guages are more than case sensitive — they’re case-fussy. Don’t worry
when English grammar or punctuation rules go wacky; C is a computer
language, not English.

v Also note how the program makes use of various parentheses: the angle
brackets, < and >; the curly braces, { and }; and the regular parentheses,
(and).

1 4 Part I: Introduction to C Programming
A\

Extra help in typing the GOODBYE.C source code

The first line looks like this:
#include <stdio.h>

Type a pound sign (press Shift+#) and then
include and a space. Type a left angle bracket
(it's above the comma key) and then stdio, a
period, h, and a right angle bracket. Everything
must be in lowercase — no capitals! Press
Enter to end this line and start the second line.

Press the Enter key alone on the second line to
make it blank. Blank lines are common in pro-
gramming code; they add space that separates
pieces of the code and makes it more readable.
And, trust me, anything that makes program-
ming code more readable is okay by me!

Type the word int, a space, main, and then two
parentheses hugging nothing:

int main()

There is no space between main and the
parentheses and no space inside the parenthe-
ses. Press Enter to start the fourth line.

Type a left curly brace:
{

This character is on a line by itself, right at the
start of the line. Press Enter to start the fifth line.

printf("Goodbye, cruel
world!\n");

If your editor was smart enough to automati-
cally indent this line, great. If not, press the Tab
key to indent. Then type printf, the word print
with a little fat the end. (It's pronounced “print-
eff.”) Type a left parenthesis. Type a double
quote. Type Goodbye, cruel world, followed by
an exclamation point. Then type a backslash, a
little n, double quotes, a right parenthesis, and,
finally, a semicolon. Press Enter to start the sixth
line.

return(0);

If the editor doesn’t automatically indent the
sixth line, press the Tab key to start the line with
an indent. Then type return, a paren, 0 (zero), a
paren, and a semicolon. Press Enter.

On the seventh line, type the right curly brace:
}

Some editors automatically unindent this brace
for you. If not, use your editor to back up the
brace so that it's in the first column. Press the
Enter key to end this line.

Leave the eighth line blank.

The compiler and the linker

After the source code is created and saved to disk, it must be translated into
a language the computer can understand. This job is tackled by the compiler.

The compiler is a special program that reads the instructions stored in the
source code file, examines each instruction, and then translates the information
into the machine code understood only by the computer’s microprocessor.

Chapter 1: Up from the Primordial C

If all goes well and the compiler is duly pleased with your source code, the
compiler creates an object code file. It’s a middle step, one that isn’t necessary
for smaller programs but that becomes vital for larger programs.

Finally, the compiler links the object code file, which creates a real, live com-
puter program.

If either the compiler or the linker doesn’t understand something, an error
message is displayed. At that point, you can gnash your teeth and sit and stew.
Then go back and edit the source code file again, fixing whatever error the
compiler found. (It isn’t as tough as it sounds.) Then you attempt to compile
the program again — you recompile and relink.

v The compiler translates the information in the source code file into instruc-
tions the computer can understand. The linker then converts that infor-
mation into a runnable program.

v The GCC compiler recommended and used in this book combines the
compiling and linking steps. An object file is created by GCC, but it is
automatically deleted when the final program file is created.

v Object code files end in OBJ or sometimes just O. The first part of the
object file name is the same as the source code filename.

v Feel free to cheerfully forget all this object code nonsense for now.
v Text editor=>Compiler.

v Source coder>Program.

Compiling GOODBVE.C

The gritty details for compiling a program are in Appendix A. Assuming that
you have thumbed through it already, use your powerful human memory to
recall the proper command to compile and link the GOODBYE.C source code.
Here’s a hint:

gcc goodbye.c -o goodbye
Type that command at your command prompt and see what happens.
Well?
Nothing happens! If you have done everything properly, the GCC compiler

merely creates the final program file for you. The only time you see a mes-
sage is if you goof up and an error occurs in the program.

15

10

Part I: Introduction to C Programming

If you do get an error, you most likely either made a typo or forgot some tiny
tidbit of a character: a missing “ or ; or \ or) or (or — you get the idea. Very
carefully review the source code earlier in this chapter and compare it with
what you have written. Use the editor to fix your mistake, save the code to
disk, and then try again.

Note that GCC reports errors by line number, or it may even specifically list

the foul word it found. In any event, note that Chapter 2 covers error-hunting
in your C programs.

Running the final result

If you used the proper compiling command, the name of the program to run is
identical to the first part of your source code. So why not run that program!

In Windows, the command to type is
goodbye

In the Unix-like operating systems, you must specify the program’s path or
location before the program name. Type this command:

./goodbye

Press the Enter key and the program runs, displaying this marvelous text on
your screen:

Goodbye, cruel world!
Welcome to C language programming!

(See Appendix A for more information on running programs.)

Save It! Compile and Link It! Run It!

Four steps are required in order to build any program in C. They are save, com-
pile, link, and run. Most C programming language packages automatically per-
form the linking step, though whether or not it’s done manually, it’s still in there.

Save! Saving means to save your source code. You create that source code in
a text editor and save it as a text file with the C (single letter C) extension.

Chapter 1: Up from the Primordial C

Compile and link! Compiling is the process of transforming the instructions
in the text file into instructions the computer’s microprocessor can under-
stand. The linking step is where the instructions are finally transformed into
a program file. (Again, your compiler may do this step automatically.)

Run! Finally, you run the program you have created. Yes, it’s a legitimate pro-
gram, like any other on your hard drive.

You have completed all these steps in this chapter, culminating in the cre-
ation of the GOODBYE program. That’s how C programs are built. At this
stage, the hardest part is knowing what to put in the source file, which gets
easier as you progress through this book. (But by then, getting your program
to run correctly and without errors is the hardest part!)

You find the instructions to save, compile, and run often in this book. That’s
because these steps are more or less mechanical. What’s more important is
understanding how the language works. That’s what you start to find out
about in the next chapter.

17

1 8 Part I: Introduction to C Programming

